Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... Increase the Maximum Reactor Power Level, Florida Power & Light Company, St. Lucie, Units 1 and 2 AGENCY... amendment for Renewed Facility Operating License Nos. DPR-67 and NPF-16, issued to Florida Power & Light... St. Lucie County, Florida. The proposed license amendment would increase the maximum thermal power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirse, Nishant, E-mail: nishant.sirse@dcu.ie; Mishra, Anurag; Yeom, Geun Y.
The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHzmore » power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.« less
The impact of wind power on electricity prices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias
This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less
System-wide emissions implications of increased wind power penetration.
Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter
2012-04-03
This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.
Insulation Requirements of High-Voltage Power Systems in Future Spacecraft
NASA Technical Reports Server (NTRS)
Qureshi, A. Haq; Dayton, James A., Jr.
1995-01-01
The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.
NASA Technical Reports Server (NTRS)
Moss, J. E.; Cullom, R. R.
1981-01-01
Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.
NASA Astrophysics Data System (ADS)
Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.
2015-03-01
Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.
Cameron, M H; Elvik, R
2010-11-01
Nilsson (1981) proposed power relationships connecting changes in traffic speeds with changes in road crashes at various levels of injury severity. Increases in fatal crashes are related to the 4(th) power of the increase in mean speed, increases in serious casualty crashes (those involving death or serious injury) according to the 3(rd) power, and increases in casualty crashes (those involving death or any injury) according to the 2(nd) power. Increases in numbers of crash victims at cumulative levels of injury severity are related to the crash increases plus higher powers predicting the number of victims per crash. These relationships are frequently applied in OECD countries to estimate road trauma reductions resulting from expected speed reductions. The relationships were empirically derived based on speed changes resulting from a large number of rural speed limit changes in Sweden during 1967-1972. Nilsson (2004) noted that there had been very few urban speed limit changes studied to test his power model. This paper aims to test the assumption that the model is equally applicable in all road environments. It was found that the road environment is an important moderator of Nilsson's power model. While Nilsson's model appears satisfactory for rural highways and freeways, the model does not appear to be directly applicable to traffic speed changes on urban arterial roads. The evidence of monotonically increasing powers applicable to changes in road trauma at increasing injury severity levels with changes in mean speed is weak. The estimated power applicable to serious casualties on urban arterial roads was significantly less than that on rural highways, which was also significantly less than that on freeways. Alternative models linking the parameters of speed distributions with road trauma are reviewed and some conclusions reached for their use on urban roads instead of Nilsson's model. Further research is needed on the relationships between serious road trauma and urban speeds. 2010 Elsevier Ltd. All rights reserved.
US power plant sites at risk of future sea-level rise
NASA Astrophysics Data System (ADS)
Bierkandt, R.; Auffhammer, M.; Levermann, A.
2015-12-01
Unmitigated greenhouse gas emissions may increase global mean sea-level by about 1 meter during this century. Such elevation of the mean sea-level enhances the risk of flooding of coastal areas. We compute the power capacity that is currently out-of-reach of a 100-year coastal flooding but will be exposed to such a flood by the end of the century for different US states, if no adaptation measures are taken. The additional exposed capacity varies strongly among states. For Delaware it is 80% of the mean generated power load. For New York this number is 63% and for Florida 43%. The capacity that needs additional protection compared to today increases by more than 250% for Texas, 90% for Florida and 70% for New York. Current development in power plant building points towards a reduced future exposure to sea-level rise: proposed and planned power plants are less exposed than those which are currently operating. However, power plants that have been retired or canceled were less exposed than those operating at present. If sea-level rise is properly accounted for in future planning, an adaptation to sea-level rise may be costly but possible.
Kwon, In Ho; Bae, Youin; Yeo, Un-Cheol; Lee, Jin Yong; Kwon, Hyuck Hoon; Choi, Young Hee; Park, Gyeong-Hun
2018-02-01
The histologic responses to varied parameters of 1,927-nm fractional thulium fiber laser treatment have not yet been sufficiently elucidated. This study sought to evaluate histologic changes immediately after 1,927-nm fractional thulium fiber laser session at various parameters. The dorsal skin of Yucatan mini-pig was treated with 1,927-nm fractional thulium fiber laser at varied parameters, with or without skin drying. The immediate histologic changes were evaluated to determine the effects of varying laser parameters on the width and the depth of treated zones. The increase in the level of pulse energy widened the area of epidermal changes in the low power level, but increased the dermal penetration depth in the high power level. As the pulse energy level increased, the increase in the power level under the given pulse energy level more evidently made dermal penetration deeper and the treatment area smaller. Skin drying did not show significant effects on epidermal changes, but evidently increased the depth of dermal denaturation under both high and low levels of pulse energy. These results may provide important information to establish treatment parameters of the 1,927-nm fractional thulium fiber laser for various skin conditions.
Advanced Power Sources for Space Missions
1989-01-01
Range indicate that extremely high power levels hav- ing fast time-ramping capabilities must be provided during the tests. Only highly efficient prime...system efficiency results from advantages in thermal storage versus battery storage and from the increased conversion efficiency of a solar-dynamic... thermal manage- ment, power flow, and voltage levels, and may be in the same power range already experienced in the very- high -power radar and fusion
Active Power Control of Waked Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A; van Wingerden, Jan-Willem; Pao, Lucy
Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. Themore » effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.« less
Analysis of power gating in different hierarchical levels of 2MB cache, considering variation
NASA Astrophysics Data System (ADS)
Jafari, Mohsen; Imani, Mohsen; Fathipour, Morteza
2015-09-01
This article reintroduces power gating technique in different hierarchical levels of static random-access memory (SRAM) design including cell, row, bank and entire cache memory in 16 nm Fin field effect transistor. Different structures of SRAM cells such as 6T, 8T, 9T and 10T are used in design of 2MB cache memory. The power reduction of the entire cache memory employing cell-level optimisation is 99.7% with the expense of area and other stability overheads. The power saving of the cell-level optimisation is 3× (1.2×) higher than power gating in cache (bank) level due to its superior selectivity. The access delay times are allowed to increase by 4% in the same energy delay product to achieve the best power reduction for each supply voltages and optimisation levels. The results show the row-level power gating is the best for optimising the power of the entire cache with lowest drawbacks. Comparisons of cells show that the cells whose bodies have higher power consumption are the best candidates for power gating technique in row-level optimisation. The technique has the lowest percentage of saving in minimum energy point (MEP) of the design. The power gating also improves the variation of power in all structures by at least 70%.
CONTROL AND FAULT DETECTOR CIRCUIT
Winningstad, C.N.
1958-04-01
A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.
NASA Technical Reports Server (NTRS)
Larocque, G. R.
1980-01-01
The vulnerability of a power distribution system in Bedford and Lexington, Massachusetts to power outages as a result of exposure to carbon fibers released in a commercial aviation accident in 1993 was examined. Possible crash scenarios at Logan Airport based on current operational data and estimated carbon fiber usage levels were used to predict exposure levels and occurrence probabilities. The analysis predicts a mean time between carbon fiber induced power outages of 2300 years with an expected annual consequence of 0.7 persons losing power. In comparison to historical outage data for the system, this represents a 0.007% increase in outage rate and 0.07% increase in consequence.
Using theta and alpha band power to assess cognitive workload in multitasking environments.
Puma, Sébastien; Matton, Nadine; Paubel, Pierre-V; Raufaste, Éric; El-Yagoubi, Radouane
2018-01-01
Cognitive workload is of central importance in the fields of human factors and ergonomics. A reliable measurement of cognitive workload could allow for improvements in human machine interface designs and increase safety in several domains. At present, numerous studies have used electroencephalography (EEG) to assess cognitive workload, reporting the rise in cognitive workload to be associated with increases in theta band power and decreases in alpha band power. However, results have been inconsistent with some failing to reach the required level of significance. We hypothesized that the lack of consistency could be related to individual differences in task performance and/or to the small sample sizes in most EEG studies. In the present study we used EEG to assess the increase in cognitive workload occurring in a multitasking environment while taking into account differences in performance. Twenty participants completed a task commonly used in airline pilot recruitment, which included an increasing number of concurrent sub-tasks to be processed from one to four. Subjective ratings, performances scores, pupil size and EEG signals were recorded. Results showed that increases in EEG alpha and theta band power reflected increases in the involvement of cognitive resources for the completion of one to three subtasks in a multitasking environment. These values reached a ceiling when performances dropped. Consistent differences in levels of alpha and theta band power were associated to levels of task performance: highest performance was related to lowest band power. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance analysis of radiation cooled dc transmission lines for high power space systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1985-01-01
As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.
Action of an antioxidant complex on the antioxidant power of saliva.
Cornelli, U; Belcaro, G; Nardi, G M; Cesarone, M R; Dugall, M; Hosoi, M; Grossi, M G; Ippolito, E; Ledda, A; Ruffini, I
2010-06-01
Based on the results of the soluble antioxidants test (SAT), we have produced a combination of oral antioxidants aimed at increasing the antioxidant power of saliva. Several antioxidants are included in this product (Vit E, beta-carotene, Vit A, Vit C, polyphenols, cathechins, ellagic acid, anthocyanins, coenzyme Q10 and pyridoxine in association with Se, Zn, L-cysteine). The aim of this registry study was to evaluate the efficacy of these antioxidants in saliva, plasma and urines. MF Odontovis, an antioxidant complex, was administered to healthy subjects in the evening for one week with a final administration in the morning. Plasma, urine and saliva showed an increase in antioxidant power following both the evening administration and the final morning administration. The antioxidant action appeared to be present even at night when salival secretion is lower. Plasma SAT levels (SATs) in the morning following evening treatment were increased by 21% in comparison with controls. Morning administration increased levels up to 34% when measured 4 hours after treatment. Comparable increases were observed in saliva (SATs and morning values were +44 %; +58% two hours after morning administration and +28 % after 4 hours). In urine the evening administration caused an increase in antioxidant power (+6%). This study indicated that antioxidant levels can be increased with specific nutritional supplement. The clinical value of an increased antioxidant power in biological fluids, particularly in saliva, may be relevant for future trials of prevention and treatment.
Bagheri, Hesam Saghaei; Mousavi, Monireh; Rezabakhsh, Aysa; Rezaie, Jafar; Rasta, Seyed Hossein; Nourazarian, Alireza; Avci, Çigir Biray; Tajalli, Habib; Talebi, Mehdi; Oryan, Ahmad; Khaksar, Majid; Kazemi, Masoumeh; Nassiri, Seyed Mahdi; Ghaderi, Shahrooz; Bagca, Bakiye Goker; Rahbarghazi, Reza; Sokullu, Emel
2018-03-30
The distinct role of low-level laser irradiation (LLLI) on endothelial exosome biogenesis remains unclear. We hypothesize that laser irradiation of high dose in human endothelial cells (ECs) contributes to the modulation of exosome biogenesis via Wnt signaling pathway. When human ECs were treated with LLLI at a power density of 80 J/cm 2 , the survival rate reduced. The potential of irradiated cells to release exosomes was increased significantly by expressing genes CD63, Alix, Rab27a, and b. This occurrence coincided with an enhanced acetylcholine esterase activity, pseudopodia formation, and reduced zeta potential value 24 h post-irradiation. Western blotting showed the induction of LC3 and reduced level of P62, confirming autophagy response. Flow cytometry and electron microscopy analyses revealed the health status of the mitochondrial function indicated by normal ΔΨ activity without any changes in the transcription level of PINK1 and Optineurin. When cells exposed to high power laser irradiation, p-Akt/Akt ratio and in vitro tubulogenesis capacity were blunted. PCR array and bioinformatics analyses showed the induction of transcription factors promoting Wnt signaling pathways and GTPase activity. Thus, LLLI at high power intensity increased exosome biogenesis by the induction of autophagy and Wnt signaling. LLLI at high power intensity increases exosome biogenesis by engaging the transcription factors related to Wnt signaling and autophagy stimulate.
Solar power generation system for reducing leakage current
NASA Astrophysics Data System (ADS)
Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi
2018-04-01
This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less
Experience with ALARA and ALARA procedures in a nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahamse, J.C.
1995-03-01
The nuclear power plant Borssele is a Siemens two-loop Pressurized Water Reactor having a capacity of 480 MWe and in operation since 1973. The nuclear power plant Borssle is located in the southwest of the Netherlands, near the Westerschelde River. In the first nine years of operation the radiation level in the primary system increased, reaching a maximum in 1983. The most important reason for this high radiation level was the cobalt content of the grid assemblies of the fuel elements. After resolving this problem, the radiation level decreased to a level comparable with that of other nuclear power plants.
Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo
Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand,more » with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.« less
Impact of uncoordinated plug-in electric vehicle charging on residential power demand
NASA Astrophysics Data System (ADS)
Muratori, Matteo
2018-03-01
Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.
Data centers as dispatchable loads to harness stranded power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kibaek; Yang, Fan; Zavala, Victor M.
Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less
Data centers as dispatchable loads to harness stranded power
Kim, Kibaek; Yang, Fan; Zavala, Victor M.; ...
2016-07-20
Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less
Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf
2017-01-01
Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.
1985-12-01
statistics, each of the a levels fall. The mirror image of this is to work with the percentiles, or the I - a levels . These then become the minimum...To be valid, the power would have to be close to the *-levels, and that Is the case. The powers are not exactly equal to the a - levels , but that is a...Information available increases with sample size. When a - levels are analyzed, for a = .0 1, the only reasonable power Is 33 L 4 against the
Dzhebrailova, T D; Korobeĭnikova, I I; Rudneva, L P
2014-09-01
EEG spectral power was calculated in 24 students (18-21 years) with different levels of motivation and anxiety (tested by Spielberger) in two experimental conditions: during the common educational process and the examination stress. Before examination tests, in subjects with high motivation and anxiety level the relative delta activity power increased in right frontal (F4) brain areas. In students with medium motivation immediately before an examination the relative beta2-activity power increased in right frontal (F4) brain areas. It is suggested that delta oscillati- ons reflect activity of the defensive motivational system, whereas beta2 oscillations may be associated with the achievement motivation.
GaAs VLSI technology and circuit elements for DSP
NASA Astrophysics Data System (ADS)
Mikkelson, James M.
1990-10-01
Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs
Payload system tradeoffs for mobile communications satellites
NASA Technical Reports Server (NTRS)
Moody, H. J.
1990-01-01
System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.
Calcium and stretch activation modulate power generation in Drosophila flight muscle.
Wang, Qian; Zhao, Cuiping; Swank, Douglas M
2011-11-02
Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Research on DC Micro-grid system of photovoltaic power generation
NASA Astrophysics Data System (ADS)
Zheng, Yiming; Wang, Xiaohui
2018-01-01
The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1976-01-01
Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.
In-flight measurement of propeller noise on the fuselage of an airplane
NASA Technical Reports Server (NTRS)
Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.
1989-01-01
In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.
76 FR 35176 - Operation of Radar Systems in the 76-77 GHz Band
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... vehicular radars decrease power when the vehicle on which the radar is mounted is stopped, or not in motion... believes that the changes in power levels and use suggested by TMC and Era will not result in any increased.... The Commission proposes to modify Sec. 15.253 of its rules to increase the average power density limit...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, M. H.; Kim, S. J.; Yoo, J.
The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared withmore » the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)« less
Global performance enhancements via pedestal optimisation on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2017-02-01
Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.
Hypercholesterolemia in Male Power Lifters Using Anabolic-Androgenic Steroids.
ERIC Educational Resources Information Center
Cohen, Jonathan C.; And Others
1988-01-01
Measurement of serum cholesterol concentrations in male power lifters who used anabolic-androgenic steroids for eight weeks, three years, or eight years indicated that mean serum cholesterol levels increased with drug use, but decreased promptly to near pre-steroid levels after steroid use ended. (Author/CB)
NASA Astrophysics Data System (ADS)
Huang, Jing; Wan, Yuan; Chen, Weibiao
2015-02-01
The influence of temperature and incident pump power on reabsorption loss is theoretically discussed. Temperature characteristic and reabsorption loss rate of a diode-pumped quasi-three-level 946 nm Nd:YAG laser are investigated. Reabsorption effect has a significant impact on laser performance. The results indicate that reabsorption loss increases as the working temperature rises and decreases with the increased incident pump power.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison
2018-04-01
Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.
The Effect of Medical Socialization on Medical Students' Need for Power.
ERIC Educational Resources Information Center
Kressin, Nancy R.
1996-01-01
Examines whether the individual personality characteristic of power motivation increases during medical school. Recorded interviews with a diverse group of medical students at two points in time were coded for power motivation. Results showed that white students' power motivation decreased, whereas minority students' levels remained the same,…
Effects of plasma spray parameters on two layer thermal barrier
NASA Technical Reports Server (NTRS)
Stecura, S.
1981-01-01
The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.
CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems
NASA Technical Reports Server (NTRS)
Fossum, Eric R.
1996-01-01
The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.
Green Secure Processors: Towards Power-Efficient Secure Processor Design
NASA Astrophysics Data System (ADS)
Chhabra, Siddhartha; Solihin, Yan
With the increasing wealth of digital information stored on computer systems today, security issues have become increasingly important. In addition to attacks targeting the software stack of a system, hardware attacks have become equally likely. Researchers have proposed Secure Processor Architectures which utilize hardware mechanisms for memory encryption and integrity verification to protect the confidentiality and integrity of data and computation, even from sophisticated hardware attacks. While there have been many works addressing performance and other system level issues in secure processor design, power issues have largely been ignored. In this paper, we first analyze the sources of power (energy) increase in different secure processor architectures. We then present a power analysis of various secure processor architectures in terms of their increase in power consumption over a base system with no protection and then provide recommendations for designs that offer the best balance between performance and power without compromising security. We extend our study to the embedded domain as well. We also outline the design of a novel hybrid cryptographic engine that can be used to minimize the power consumption for a secure processor. We believe that if secure processors are to be adopted in future systems (general purpose or embedded), it is critically important that power issues are considered in addition to performance and other system level issues. To the best of our knowledge, this is the first work to examine the power implications of providing hardware mechanisms for security.
47 CFR 95.607 - CB transmitter modification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting frequencies, increased modulation level, a different form of modulation, or increased TP (RF... modulating frequency, typically 0.1 seconds at maximum power) or peak envelope power (TP averaged during 1 RF cycle at the highest crest of the modulation envelope), as measured at the transmitter output antenna...
Reversing Optical Damage In LiNbO3 Switches
NASA Technical Reports Server (NTRS)
Gee, C. M.; Thurmond, G. D.
1985-01-01
One symptom of optical damage in Ti-diffused LiNbO3 directional-coupler switch reversed by temporarily raising input illumination to higher-thannormal power level. Healing phenomenon used to restore normal operation, increase operating-power rating, and stabilize operating characteristics at lower powers. Higher operating power is tolerated after treatment.
Recent Performance of and Plasma Outage Studies with the SNS H- Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Martin P; Han, Baoxi; Murray Jr, S N
2016-01-01
SNS ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised RFQ, which requires higher RF power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ~55-kW 2-MHz plasma pulses reflecting ~90% of the continuous ~300W, 13-MHz power, which was mitigated withmore » a 4-ms filter for the reflected power signal and an outage resistant, slightly-detuned 13-MHz match. Lowering the H2 also increased the H- beam current to ~55 mA, and increased the transmission by ~7%.« less
Zhai, Haibo; Rubin, Edward S
2016-04-05
Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.
Leadership is associated with lower levels of stress
Sherman, Gary D.; Lee, Jooa J.; Cuddy, Amy J. C.; Renshon, Jonathan; Oveis, Christopher; Gross, James J.; Lerner, Jennifer S.
2012-01-01
As leaders ascend to more powerful positions in their groups, they face ever-increasing demands. As a result, there is a common perception that leaders have higher stress levels than nonleaders. However, if leaders also experience a heightened sense of control—a psychological factor known to have powerful stress-buffering effects—leadership should be associated with reduced stress levels. Using unique samples of real leaders, including military officers and government officials, we found that, compared with nonleaders, leaders had lower levels of the stress hormone cortisol and lower reports of anxiety (study 1). In study 2, leaders holding more powerful positions exhibited lower cortisol levels and less anxiety than leaders holding less powerful positions, a relationship explained significantly by their greater sense of control. Altogether, these findings reveal a clear relationship between leadership and stress, with leadership level being inversely related to stress. PMID:23012416
Is power-space a continuum? Distance effect during power judgments.
Jiang, Tianjiao; Zhu, Lei
2015-12-01
Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Characterizing and analyzing ramping events in wind power, solar power, load, and netload
Cui, Mingjian; Zhang, Jie; Feng, Cong; ...
2017-04-07
Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less
Augmentation of the space station module power management and distribution breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Hall, David K.; Lollar, Louis F.
1991-01-01
The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.
Variable gain for a wind turbine pitch control
NASA Technical Reports Server (NTRS)
Seidel, R. C.; Birchenough, A. G.
1981-01-01
The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.
Relationship Power, Sexual Decision Making, and HIV Risk Among Midlife and Older Women.
Altschuler, Joanne; Rhee, Siyon
2015-01-01
The number of midlife and older women with HIV/AIDS is high and increasing, especially among women of color. This article addresses these demographic realities by reporting on findings about self-esteem, relationship power, and HIV risk from a pilot study of midlife and older women. A purposive sample (N = 110) of ethnically, economically, and educationally diverse women 40 years and older from the Greater Los Angeles Area was surveyed to determine their levels of self-esteem, general relationship power, sexual decision-making power, safer sex behaviors, and HIV knowledge. Women with higher levels of self-esteem exercised greater power in their relationships with their partner. Women with higher levels of general relationship power and self-esteem tend to exercise greater power in sexual decision making, such as having sex and choosing sexual acts. Income and sexual decision-making power were statistically significant in predicting the use of condoms. Implications and recommendations for future HIV/AIDS research and intervention targeting midlife and older women are presented.
NASA Technical Reports Server (NTRS)
Wilson, T. G.
1980-01-01
The development of 5 kW converters with 100 kHz switching frequencies, consisting of two submodules each capable of 2.5 kW of output power, is discussed. Two semiconductor advances allowed increased power levels. Field effect transistors with ratings of 11 A and 400 V were operated in parallel to provide a converter output power of approximately 2000 W. Secondly, bipolar power switching transistor was operated in conjunction with a turn-off snubber circuit to provide converter output power levels approaching 1000 W. The interrelationships between mass, switching frequency, and efficiency were investigated. Converters were constructed for operation at a maximum output power level of 200 W, and a comparison was made for operation under similar input/output conditions for conversion frequencies of 20 kilohertz and 100 kilohertz. The effects of nondissipative turn-off snubber circuitry were also examined. Finally, a computerized instrumentation system allowing the measurement of pertinent converter operating conditions as well as the recording of converter waveforms is described.
Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles |
, WBG materials/devices enable lighter, more compact, and more efficient power electronics for vehicles, and increased electric vehicle adoption by consumers. Wide bandgap power electronics devices power electronics component size and potentially reduce system or component-level cost, while improving
de Pesters, A; Coon, W G; Brunner, P; Gunduz, A; Ritaccio, A L; Brunet, N M; de Weerd, P; Roberts, M J; Oostenveld, R; Fries, P; Schalk, G
2016-07-01
Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was suppressed in the locations within the auditory system that most robustly responded to particular sound stimuli. Altogether, our results provide experimental evidence for a mechanism that preferentially recruits task-related neuronal populations by increasing cortical excitability in task-related cortical areas and decreasing cortical excitability in task-unrelated areas. This mechanism is implemented by variations in alpha power and is common to humans and the non-human primate under study. These results contribute to an increasingly refined understanding of the mechanisms underlying the selection of the specific neuronal populations required for task execution. Copyright © 2016 Elsevier Inc. All rights reserved.
Investigation of the flatband voltage (V(FB)) shift of Al2O3 on N2 plasma treated Si substrate.
Kim, Hyungchul; Lee, Jaesang; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag
2013-09-01
The relationships between the physical and electrical characteristics of films treated with N2 plasma followed by forming gas annealing (FGA) were investigated. The Si substrates were treated with various radio frequency (RF) power levels under a N2 ambient. Al2O3 films were then deposited on Si substrates via remote plasma atomic-layer deposition. The plasma characteristics, such as the radical and ion density, were investigated using optical emission spectroscopy. Through X-ray photoelectron spectroscopy, the chemical-bonding configurations of the samples treated with N2 plasma and FGA were examined. The quantity of Si-N bonds increased as the RF power was increased, and Si--O--N bonds were generated after FGA. The flatband voltage (VFB) was shifted in the negative direction with increasing RF power, but the VFB values of the samples after FGA shifted in the positive direction due to the formation of Si--O--N bonds. N2 plasma treatment with various RF power levels slightly increased the leakage current due to the generation of defect sites.
Reliability of Wireless Sensor Networks
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2014-01-01
Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553
Neutron activation analysis of thermal power plant ash and surrounding area soils.
Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A
2015-08-01
Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.
NASA Astrophysics Data System (ADS)
Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.
2018-02-01
Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias
Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less
Nuclear Power Systems for Manned Mission to Mars
2004-12-01
Brayton Cycle ..........................................................................30 c. Stirling Cycle ...specific mass as the power level increases. This graph also shows the upward scalability of Brayton and Rankine cycles , predicting that higher...Orbit, 1985), 79. 47Joseph A. Angelo, Jr. and David Buden, Space Nuclear Power, (Malabar, Florida: Orbit, 1985), 80. 30 b. Brayton Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Michael; Bloom, Aaron P; Townsend, Aaron
Defining flexibility has been a challenge that a number of industry members and researchers have attempted to address in recent years. With increased variability and uncertainty of variable generation (VG), the resources on the system will have to be more flexible to adjust output, so that power output ranges, power ramp rates, and energy duration sustainability are sufficient to meet the needs of balancing supply with demand at various operational timescales. This chapter discusses whether existing market designs provide adequate incentives for resources to offer their flexibility into the market to meet the increased levels of variability and uncertainty introducedmore » by VG in the short-term operational time frame. It presents a definition of flexibility and discusses how increased levels of VG require increased needs for flexibility on power systems. Following this introductory material, the chapter examines how existing market designs ensure that resources have the right incentives to provide increased flexibility, and then discusses a number of emerging market design elements that impact flexibility incentives.« less
NASA Astrophysics Data System (ADS)
Miara, A.; Macknick, J.; Vorosmarty, C. J.; Corsi, F.; Fekete, B. M.; Newmark, R. L.; Tidwell, V. C.; Cohen, S. M.
2016-12-01
Thermoelectric plants supply 85% of electricity generation in the United States. Under a warming climate, the performance of these power plants may be reduced, as thermoelectric generation is dependent upon cool ambient temperatures and sufficient water supplies at adequate temperatures. In this study, we assess the vulnerability and reliability of 1,100 operational power plants (2015) across the contiguous United States under a comprehensive set of climate scenarios (five Global Circulation Models each with four Representative Concentration Pathways). We model individual power plant capacities using the Thermoelectric Power and Thermal Pollution model (TP2M) coupled with the Water Balance Model (WBM) at a daily temporal resolution and 5x5 km spatial resolution. Together, these models calculate power plant capacity losses that account for geophysical constraints and river network dynamics. Potential losses at the single-plant level are put into a regional energy security context by assessing the collective system-level reliability at the North-American Electricity Reliability Corporation (NERC) regions. Results show that the thermoelectric sector at the national level has low vulnerability under the contemporary climate and that system-level reliability in terms of available thermoelectric resources relative to thermoelectric demand is sufficient. Under future climates scenarios, changes in water availability and warm ambient temperatures lead to constraints on operational capacity and increased vulnerability at individual power plant sites across all regions in the United States. However, there is a strong disparity in regional vulnerability trends and magnitudes that arise from each region's climate, hydrology and technology mix. Despite increases in vulnerabilities at the individual power plant level, regional energy systems may still be reliable (with no system failures) due to sufficient back-up reserve capacities.
NASA Astrophysics Data System (ADS)
Chalise, Santosh
Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.
Development of beam leaded low power logic circuits
NASA Technical Reports Server (NTRS)
Smith, B. W.; Malone, F.
1972-01-01
The technologies of low power TTL and beam lead processing were merged into a single product family. This family offers the power and thermal advantages of low power(54L), while providing the additional reliability advantages of beam leads. The reduction in the power and heat levels also allows the system designer to take advantage, through beam lead, multichip assemblies, of increased package density to reduce system size and weight.
Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, Kc
2013-07-01
Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities.
Social power and approach-related neural activity
Smolders, Ruud; Cremer, David De
2012-01-01
It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power. PMID:19304842
Social power and approach-related neural activity.
Boksem, Maarten A S; Smolders, Ruud; De Cremer, David
2012-06-01
It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.
NASA Astrophysics Data System (ADS)
Krokhin, G.; Pestunov, A.; Arakelyan, E.; Mukhin, V.
2017-11-01
During the last decades, there can be noticed an increase of interest concerning various aspects of intellectual diagnostics and management in thermal power engineering according the hybrid principle. It is conditioned by the fact that conservative static methods does not allow to reflect the actual power installation state adequately. In order to improve the diagnostics quality, we use various fuzzy systems apparatus. In this paper, we introduce the intellectual system, called SKAIS, which is intended for quick and precise diagnostics of thermal power equipment. This system was developed as the result of the research carried out by specialists from National Research University “Moscow Power Engineering Institute” and Novosibirsk State University of Economics and Management. It drastically increases the level of intelligence of the automatic power plant control system.
The cost of large numbers of hypothesis tests on power, effect size and sample size.
Lazzeroni, L C; Ray, A
2012-01-01
Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Feng, Cong
Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S., E-mail: kovalev@dnph.phys.msu.su
2015-05-15
The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomicmore » levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.« less
20 year long term air quality trends in Israel
NASA Astrophysics Data System (ADS)
Luria, M.
2017-12-01
The Israeli air monitoring network was established in the mid 1990's with dozens of measuring sites near most populated areas. During these past 20 years the Israel economy has increased significantly. The population grew by 30%, energy consumption and power generation by more than 40% and the number of motor vehicles increased by nearly 50%. Most of the fossil energy is consumed by the electric power industry that has changed immensely during this period. Until the early 2000's the vast majority of the electricity was generated from coal and heavy oil. However, during the last ten years natural gas has gradually becomes the major source for power generation and for most of the heavy industry. In the present study we examined the impact of these economic trends on the major criteria air pollution parameters; O3, NOx, SO2 and PM10. The analyses was based on the long term trend of median value (50th percentile) and the 90th percentile. The results revealed that SO2 levels throughout the country decreased to very low levels, with the 90th percentile near the detection limit. The levels of PM10, that are relatively high compare with other global regions, did not show any trend during the 20 year period. This is consistent with the fact that most particulate matter results from long range transport of dust from the surrounding deserts. The long term trend of NOx indicates a gradual and steady increase at most measuring sites, which is consistent with the increase of fossil fuel consumption. The increase in NOx levels is most likely the cause for the significant increase in O3 levels found at most sites in a few of them to levels that are considered as an environmental hazard.
NASA Astrophysics Data System (ADS)
Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.
2017-10-01
Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.
Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio
2013-01-01
The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361
Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio
2013-03-01
The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.
Recent performance of and plasma outage studies with the SNS H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, M. P., E-mail: stockli@ornl.gov; Han, B.; Murray, S. N.
2016-02-15
Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H{sup −} beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ∼55-kW 2-MHz plasma pulses reflecting ∼90% of the continuousmore » ∼300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H{sub 2} gas also increased the H{sup −} beam current to ∼55 mA and increased the RFQ transmission by ∼7% (relative)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine
Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, likemore » storage, can easily saturate ancillary service markets.« less
Cortes-Briones, Jose A; Cahill, John D; Skosnik, Patrick D; Mathalon, Daniel H; Williams, Ashley; Sewell, R Andrew; Roach, Brian J; Ford, Judith M; Ranganathan, Mohini; D'Souza, Deepak Cyril
2015-12-01
Drugs that induce psychosis may do so by increasing the level of task-irrelevant random neural activity or neural noise. Increased levels of neural noise have been demonstrated in psychotic disorders. We tested the hypothesis that neural noise could also be involved in the psychotomimetic effects of delta-9-tetrahydrocannabinol (Δ(9)-THC), the principal active constituent of cannabis. Neural noise was indexed by measuring the level of randomness in the electroencephalogram during the prestimulus baseline period of an oddball task using Lempel-Ziv complexity, a nonlinear measure of signal randomness. The acute, dose-related effects of Δ(9)-THC on Lempel-Ziv complexity and signal power were studied in humans (n = 24) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, .015 and .03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Δ(9)-THC increased neural noise in a dose-related manner. Furthermore, there was a strong positive relationship between neural noise and the psychosis-like positive and disorganization symptoms induced by Δ(9)-THC, which was independent of total signal power. Instead, there was no relationship between noise and negative-like symptoms. In addition, Δ(9)-THC reduced total signal power during both active drug conditions compared with placebo, but no relationship was detected between signal power and psychosis-like symptoms. At doses that produced psychosis-like effects, Δ(9)-THC increased neural noise in humans in a dose-dependent manner. Furthermore, increases in neural noise were related with increases in Δ(9)-THC-induced psychosis-like symptoms but not negative-like symptoms. These findings suggest that increases in neural noise may contribute to the psychotomimetic effects of Δ(9)-THC. Published by Elsevier Inc.
Static noise tests on modified augmentor wing jet STOL research aircraft
NASA Technical Reports Server (NTRS)
Cook, G. R.; Lilley, B. F.
1981-01-01
Noise measurements were made to determine if recent modifications made to the bifurcated jetpipe to increase engine thrust had at the same time reduced the noise level. The noise field was measured by a 6-microphone array positioned on a 30.5m (100 ft) sideline between 90 and 150 degrees from the left engine inlet. Noise levels were recorded at three flap angles over a range of engine thrust settings from flight idle to emergency power and plotted in one-third octave band spectra. Little attenuation was observed at maximum power, but significant attenuation was achieved at approach and cruise power levels.
Keefe, Douglas H.; Schairer, Kim S.
2011-01-01
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure. PMID:21361437
Study on disinfestation of pulses using microwave technique.
Singh, Ranjeet; Singh, K K; Kotwaliwale, N
2012-08-01
Mortality of the pulse beetle (Callosobruchus chinensis L.) exposed, continuously, to microwave radiation (2450 MHz) was evaluated as a function of exposure time and percent power level, at adult stages. The microwave exposure time to attain 100% insect mortality at 100 %, 80%, 60%, 40%, and 20% power levels for Chickpea, Pigeon Pea and Green Gram was optimized. Effect of optimized microwave exposure time on viability, germination, cooking and milling characteristics of Chickpea, Pigeon Pea and Green Gram was also evaluated. Adult stage study was characterized by a distinct dose-exposure curve. The mortality curve was following third degree polynomial equation. The seed viability and germination of Chickpea, Pigeon Pea and Green Gram was affected by microwave exposure time and power level. It was observed that as the power level is decreasing the germination and viability of all the pulses are increasing. The effect on cooking and milling characteristics are not affected by microwave exposure time and power level. The insects in the mobile state were observed to move towards the surface from inside the nutrient medium during microwave exposure. They also curled up and in some cases aggregation was observed.
Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.
Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan
2005-10-01
To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.
Architectural-level power estimation and experimentation
NASA Astrophysics Data System (ADS)
Ye, Wu
With the emergence of a plethora of embedded and portable applications and ever increasing integration levels, power dissipation of integrated circuits has moved to the forefront as a design constraint. Recent years have also seen a significant trend towards designs starting at the architectural (or RT) level. Those demand accurate yet fast RT level power estimation methodologies and tools. This thesis addresses issues and experiments associate with architectural level power estimation. An execution driven, cycle-accurate RT level power simulator, SimplePower, was developed using transition-sensitive energy models. It is based on the architecture of a five-stage pipelined RISC datapath for both 0.35mum and 0.8mum technology and can execute the integer subset of the instruction set of SimpleScalar . SimplePower measures the energy consumed in the datapath, memory and on-chip buses. During the development of SimplePower , a partitioning power modeling technique was proposed to model the energy consumed in complex functional units. The accuracy of this technique was validated with HSPICE simulation results for a register file and a shifter. A novel, selectively gated pipeline register optimization technique was proposed to reduce the datapath energy consumption. It uses the decoded control signals to selectively gate the data fields of the pipeline registers. Simulation results show that this technique can reduce the datapath energy consumption by 18--36% for a set of benchmarks. A low-level back-end compiler optimization, register relabeling, was applied to reduce the on-chip instruction cache data bus switch activities. Its impact was evaluated by SimplePower. Results show that it can reduce the energy consumed in the instruction data buses by 3.55--16.90%. A quantitative evaluation was conducted for the impact of six state-of-art high-level compilation techniques on both datapath and memory energy consumption. The experimental results provide a valuable insight for designers to develop future power-aware compilation frameworks for embedded systems.
NASA Astrophysics Data System (ADS)
Liou, L. L.; Jenkins, T.; Huang, C. I.
1997-06-01
The d.c. power limitation of a conventional HBT with dot geometry was studied theoretically using combined electro-thermal and transmission line models. In most cases, the thermal runaway occurs at a power level lower than that set by the intrinsic electronic property of the device. The dependence of the d.c. thermal runaway threshold power density, Pmax, on the emitter dot radius and emitter ballast resistance was calculated. Increasing emitter dot radius lowers Pmax. Although ballast resistance increases Pmax, the effect reduces as the emitter dot radius increases. This is caused by the non-uniform potential distribution in the base layer. When thermal runaway is considered, the nonuniform base-emitter potential offsets the improvement of the power handling capability by the physical ballast resistance. Conventional HBTs with a large radius (greater than 4 μm) exhibit a small Pmax caused by thermal effect. This threshold power density can be increased drastically by using the thermal shunt technique.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-12-14
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-01-01
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666
Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M
2017-12-01
The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hitaj, Claudia
In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations with the bias in the Tobit estimates remaining at or below 5 percent. Under severe censoring (1 percent uncensored observations), large biases appear in the estimated standard errors and marginal effects. These are generally reduced as the sample size increases in both N and T.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
Space Power Free-Piston Stirling Engine Scaling Study
NASA Technical Reports Server (NTRS)
Jones, D.
1989-01-01
The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power module efficiency is seen to increase slightly, but at the expense of increased specific mass. An empirical equation relating power module thermal efficiency as a function of power module specific mass, power output, and temperature ratio is developed. Alternative configurations to the single cylinder, direct coupled linear alternator approach are also evaluated, but are shown to have technical drawbacks that lessen their attractiveness. The dynamic balance assembly mass (moving mass and structure) represents 20 to 30 percent of the total single cylinder power module mass. Joining two modules in a balanced opposed configuration eliminates the need for the balancer, and a hot end junction can be made without significant addition of structural mass. Recommendations are made for evaluation of advanced heat pipe concepts, tests of radial flow heat exchangers, and evaluation of high temperature alternator materials.
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Power superconducting power transmission cable
Ashworth, Stephen P.
2003-06-10
The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.
Power superconducting power transmission cable
Ashworth, Stephen P.
2003-01-01
The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.
Supplying the power requirements to a sensor network using radio frequency power transfer.
Percy, Steven; Knight, Chris; Cooray, Francis; Smart, Ken
2012-01-01
Wireless power transmission is a method of supplying power to small electronic devices when there is no wired connection. One way to increase the range of these systems is to use a directional transmitting antenna, the problem with this approach is that power can only be transmitted through a narrow beam and directly forward, requiring the transmitter to always be aligned with the sensor node position. The work outlined in this article describes the design and testing of an autonomous radio frequency power transfer system that is capable of rotating the base transmitter to track the position of sensor nodes and transferring power to that sensor node. The system's base station monitors the node's energy levels and forms a charge queue to plan charging order and maintain energy levels of the nodes. Results show a radio frequency harvesting circuit with a measured S11 value of -31.5 dB and a conversion efficiency of 39.1%. Simulation and experimentation verified the level of power transfer and efficiency. The results of this work show a small network of three nodes with different storage types powered by a central base node.
Preliminary investigation of the control of a gas-turbine engine for a helicopter / Richard P. Krebs
NASA Technical Reports Server (NTRS)
Krebs, Richard P
1951-01-01
An analog investigation of the power plant for a gas-turbine powered helicopter indicates that currently proposed turbine-propeller engine controls are satisfactory for helicopter application. Power increases from one-half to full rated at altitudes from sea level to 15,000 feet could be made in less than 4 seconds with either the rotor or propellers absorbing the engine power.
Launch vehicle and power level impacts on electric GEO insertion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Myers, Roger M.
1996-01-01
Solar Electric Propulsion (SEP) has been shown to increase net geosynchronous spacecraft mass when used for station keeping and final orbit insertion. The impact of launch vehicle selection and power level on the benefits of this approach were examined for 20 and 25 kW systems launched using the Ariane 5, Atlas IIAR, Long March, Proton, and Sea Launch vehicles. Two advanced on-board propulsion technologies, 5 kW ion and Hall thruster systems, were used to establish the relative merits of the technologies and launch vehicles. GaAs solar arrays were assumed. The analysis identifies the optimal starting orbits for the SEP orbit raising/plane changing while considering the impacts of radiation degradation in the Van Allen belts, shading, power degradation, and oblateness. This use of SEP to provide part of the orbit insertion results in net mass increases of 15 - 38% and 18 - 46% for one to two month trip times, respectively, over just using SEP for 15 years of north/south station keeping. SEP technology was shown to have a greater impact on net masses of launch vehicles with higher launch latitudes when avoidance of solar array and payload degradation is desired. This greater impact of SEP could help reduce the plane changing disadvantage of high latitude launch sites. Comparison with results for 10 and 15 kW systems show clear benefits of incremental increases in SEP power level, suggesting that an evolutionary approach to high power SEP for geosynchronous spacecraft is possible.
Al-Khelaifi, Fatima; Diboun, Ilhame; Donati, Francesco; Botrè, Francesco; Alsayrafi, Mohammed; Georgakopoulos, Costas; Suhre, Karsten; Yousri, Noha A; Elrayess, Mohamed A
2018-01-05
The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.
The 25 kW power module evolution study. Part 1: Payload requirements and growth scenarios
NASA Technical Reports Server (NTRS)
1978-01-01
Payload power level requirements and their general impact on the baseline and growth versions of the 25 kW power module during the 1983 to 1990 period are discussed. Extended duration Orbiter sortie flight, supported by a power module, with increased payload power requirements per flight, and free-flyer payload missions are included. Other payload disciplines considered, but not emphasized for the 1983 to 1986 period include astrophysics/astronomy, earth observations, solar power satellite, and life sciences. Of these, only the solar power satellite is a prime driver for the power module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.
This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels aremore » increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.« less
Power play in the supercontinuum spectra of saturable nonlinear media
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.
2014-04-01
We investigate the role of pump power in the generation of supercontinua spectra induced by modulational instability (MI) in saturable nonlinear media (SNL). First, we analyze the dynamics of MI in the SNL using linear stability analysis. We then deal with the generation of a broadband spectrum by virtue of the instability process, and identify the unique behavior of MI in the SNL system. Unlike the case of Kerr-type nonlinearity, the so-called critical modulational frequency (CMF) does not monotonically increase, but behaves in a unique way, such that the increase in power increases the CMF up to the saturation power, and a further increase in power decreases the CMF. This behavior is identified to be unusual in the context of MI and thus makes the study of MI and supercontinuum generation (SCG) of interest. In order to confirm the above stated behavior in relation to SCG, we numerically analyzed the SCG using a split-step Fourier method, and the results confirm that at input power equal to saturation power, phase matching occurs at a short distance relative to other power levels and leads to a maximum enhancement of SCG in certain SNL materials.
Origin and Consequences of the Relationship between Protein Mean and Variance
Vallania, Francesco Luigi Massimo; Sherman, Marc; Goodwin, Zane; Mogno, Ilaria; Cohen, Barak Alon; Mitra, Robi David
2014-01-01
Cell-to-cell variance in protein levels (noise) is a ubiquitous phenomenon that can increase fitness by generating phenotypic differences within clonal populations of cells. An important challenge is to identify the specific molecular events that control noise. This task is complicated by the strong dependence of a protein's cell-to-cell variance on its mean expression level through a power-law like relationship (σ2∝μ1.69). Here, we dissect the nature of this relationship using a stochastic model parameterized with experimentally measured values. This framework naturally recapitulates the power-law like relationship (σ2∝μ1.6) and accurately predicts protein variance across the yeast proteome (r2 = 0.935). Using this model we identified two distinct mechanisms by which protein variance can be increased. Variables that affect promoter activation, such as nucleosome positioning, increase protein variance by changing the exponent of the power-law relationship. In contrast, variables that affect processes downstream of promoter activation, such as mRNA and protein synthesis, increase protein variance in a mean-dependent manner following the power-law. We verified our findings experimentally using an inducible gene expression system in yeast. We conclude that the power-law-like relationship between noise and protein mean is due to the kinetics of promoter activation. Our results provide a framework for understanding how molecular processes shape stochastic variation across the genome. PMID:25062021
Analog synthesized fast-variable linear load
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1991-01-01
A several kilowatt power level, fast-variable linear resistor was synthesized by using analog components to control the conductance of power MOSFETs. Risetimes observed have been as short as 500 ns with respect to the control signal and 1 to 2 microseconds with respect to the power source voltage. A variant configuration of this load that dissipates a constant power set by a control signal is indicated. Replacement of the MOSFETs by static induction transistors (SITs) to increase power handling, speed and radiation hardness is discussed.
NASA Technical Reports Server (NTRS)
Jefferies, K. S.; Tew, R. C.
1974-01-01
A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.
Advanced solar dynamic space power systems perspectives, requirements and technology needs
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.
1986-01-01
Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.
Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter
2013-10-01
The basal ganglia may play an important role in the control of motor scaling or effort. Recently local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that local increases in the synchronisation of neurons in the gamma frequency band may correlate with force or effort. Whether this feature uniquely codes for effort and whether such a coding mechanism holds true over a range of efforts is unclear. Here we investigated the relationship between frequency-specific oscillatory activities in the subthalamic nucleus (STN) and manual grips made with different efforts. The latter were self-rated using the 10 level Borg scale ranging from 0 (no effort) to 10 (maximal effort). STN LFP activities were recorded in patients with Parkinson's Disease (PD) who had undergone functional surgery. Patients were studied while motor performance was improved by dopaminergic medication. In line with previous studies we observed power increase in the theta/alpha band (4-12 Hz), power suppression in the beta band (13-30 Hz) and power increase in the gamma band (55-90 Hz) and high frequency band (101-375 Hz) during voluntary grips. Beta suppression deepened, and then reached a floor level as effort increased. Conversely, gamma and high frequency power increases were enhanced during grips made with greater effort. Multiple regression models incorporating the four different spectral changes confirmed that the modulation of power in the beta band was the only independent predictor of effort during grips made with efforts rated <5. In contrast, increases in gamma band activity were the only independent predictor of effort during grips made with efforts ≥5. Accordingly, the difference between power changes in the gamma and beta bands correlated with effort across all effort levels. These findings suggest complementary roles for changes in beta and gamma band activities in the STN in motor effort coding. The latter function is thought to be impaired in untreated PD where task-related reactivity in these two bands is deficient. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less
Maximum thrust mode evaluation
NASA Technical Reports Server (NTRS)
Orme, John S.; Nobbs, Steven G.
1995-01-01
Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.
Siddiqi, Ariba; Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant
2016-01-01
Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20-30 years) and 18 older (60-85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.
Gingerich, Daniel B; Mauter, Meagan S
2015-07-21
Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.
NASA Astrophysics Data System (ADS)
Madhikar, Pratik Ravindra
The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.
Using Geothermal Electric Power to Reduce Carbon Footprint
NASA Astrophysics Data System (ADS)
Crombie, George W.
Human activities, including the burning of fossil fuels, increase carbon dioxide levels, which contributes to global warming. The research problem of the current study examined if geothermal electric power could adequately replace fossil fuel by 2050, thus reducing the emissions of carbon dioxide while avoiding potential problems with expanding nuclear generation. The purpose of this experimental research was to explore under what funding and business conditions geothermal power could be exploited to replace fossil fuels, chiefly coal. Complex systems theory, along with network theory, provided the theoretical foundation for the study. Research hypotheses focused on parameters, such as funding level, exploration type, and interfaces with the existing power grid that will bring the United States closest to the goal of phasing out fossil based power by 2050. The research was conducted by means of computer simulations, using agent-based modeling, wherein data were generated and analyzed. The simulations incorporated key information about the location of geothermal resources, exploitation methods, transmission grid limits and enhancements, and demand centers and growth. The simulation suggested that rapid and aggressive deployment of geothermal power plants in high potential areas, combined with a phase out of coal and nuclear plants, would produce minimal disruptions in the supply of electrical power in the United States. The implications for social change include reduced risk of global warming for all humans on the planet, reduced pollution due to reduction or elimination of coal and nuclear power, increased stability in energy supply and prices in the United States, and increased employment of United States citizens in jobs related to domestic energy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta
As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events,more » including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).« less
Toepfer, Christopher N; Sikkel, Markus B; Caorsi, Valentina; Vydyanath, Anupama; Torre, Iratxe; Copeland, O'Neal; Lyon, Alexander R; Marston, Steven B; Luther, Pradeep K; Macleod, Kenneth T; West, Timothy G; Ferenczi, Michael A
2016-08-01
Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae. Copyright © 2016 the American Physiological Society.
Photo-detachment of negative ions in Ar-CO2 dc discharge employing Langmuir probe
NASA Astrophysics Data System (ADS)
Rodríguez, Jannet; Yousif, Farook Bashir; Fuentes, Beatriz E.; Vázquez, Federico; Rivera, Marco; López-Patiño, J.; Figueroa, Aldo; Martínez, Horacio
2018-05-01
The electronegativity of the A r - C O 2 gas mixture was investigated, and the total relative negative oxygen ion density O2- + O- in the bulk of a dc discharge has been determined employing Langmuir probe assisted laser photo-detachment. The relative electron density and absolute temperature were obtained for the mixture at discharge powers between 200 and 3000 mW and pressures between 0.2 and 0.6 mbar, employing the collisional radiative model for several Ar gas mixtures. The absolute metastable number density for 1s3 and 1s5 levels was measured, and both showed an increasing trend as a function of pressure and power. The absolute number density of the 1s5 level was found to be higher than that of the 1s3 level. Electronegativity was found to decrease as a function of power and as a function of the increasing Ar percentage in the gas mixture.
Basal and dynamic relationships between implicit power motivation and estradiol in women.
Stanton, Steven J; Schultheiss, Oliver C
2007-12-01
This study investigated basal and reciprocal relationships between implicit power motivation (n Power), a preference for having impact and dominance over others, and both salivary estradiol and testosterone in women. 49 participants completed the Picture Story Exercise, a measure of n Power. During a laboratory contest, participants competed in pairs on a cognitive task and contest outcome (win vs. loss) was experimentally varied. Estradiol and testosterone levels were determined in saliva samples collected at baseline and several times post-contest, including 1 day post-contest. n Power was positively associated with basal estradiol concentrations. The positive correlation between n Power and basal estradiol was stronger in single women, women not taking oral contraceptives, or in women with low-CV estradiol samples than in the overall sample of women. Women's estradiol responses to a dominance contest were influenced by the interaction of n Power and contest outcome: estradiol increased in power-motivated winners but decreased in power-motivated losers. For power-motivated winners, elevated levels of estradiol were still present the day after the contest. Lastly, n Power and estradiol did not correlate with self-reported dominance and correlated negatively with self-reported aggression. Self-reported dominance and aggression did not predict estradiol changes as a function of contest outcome. Overall, n Power did not predict basal testosterone levels or testosterone changes as a function of dominance contest outcome.
Solar powered multipurpose remotely powered aircraft
NASA Technical Reports Server (NTRS)
Alexandrou, A. N.; Durgin, W. W.; Cohn, R. F.; Olinger, D. J.; Cody, Charlotte K.; Chan, Agnes; Cheung, Kwok-Hung; Conley, Kristin; Crivelli, Paul M.; Javorski, Christian T.
1992-01-01
Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as an attractive alternative source of power. The focus was to design and construct a solar powered, remotely piloted vehicle to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design included minimizing the power requirements and maximizing the strength-to-weight and lift-to-drag ratios. Given the design constraints, Surya (the code-name given to the aircraft), is a lightweight aircraft primarily built using composite materials and capable of achieving level flight powered entirely by solar energy.
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
Hyde, J S; Durik, A M
2000-05-01
R. F. Baumeister (2000) argued that there are gender differences in erotic plasticity, meaning that women are more influenced by cultural and social factors than men are. He attributed the gender difference in erotic plasticity to evolutionary, biological forces. We propose an alternative account of the data using a multifactor sociocultural model that rests on 4 assertions: (a) Men have more power than women on many levels including the institutional and the interpersonal levels, (b) education increases women's power, (c) groups with less power (women) pay more attention to and adapt their behavior more to the group with more power (men) than the reverse, and (d) gender roles powerfully shape behavior, and heterosexuality is a more important element of the male role than the female role.
NASA Astrophysics Data System (ADS)
Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.
2017-11-01
Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.
NASA Astrophysics Data System (ADS)
Tavousi, A.; Mansouri-Birjandi, M. A.
2018-02-01
Implementing intensity-dependent Kerr-like nonlinearity in octagonal-shape photonic crystal ring resonators (OSPCRRs), a new class of optical analog-to-digital converters (ADCs) with low power consumption is presented. Due to its size dependent refractive index, Silicon (Si) nanocrystal is used as nonlinear medium in the proposed ADC. Coding system of optical ADC is based on successive-like approximations which requires only one quantization level to represent each single bit, despite of conventional ADCs that require at least two distinct levels for each bit. Each is representing bit of optical ADC is formed by vertically alignment of double rings of OSPCRRs (DR-OSPCRR) and cascading m number of DR-OSPCRR, forms an m bit ADC. Investigating different parameters of DR-OSPCRR such as refractive indices of rings, lattice refractive index, and coupling coefficients of waveguide-to-ring and ring-to-ring, the ADC's threshold power is tuned. Increasing the number of bits of ADC, increases the overall power consumption of ADC. One can arrange to have any number of bits for this ADC, as long as the power levels are treated carefully. Finite difference time domain (FDTD) in-house codes were used to evaluate the ADC's effectiveness.
H2 arcjet performance mapping program
NASA Astrophysics Data System (ADS)
1992-01-01
Work performed during the period of Mar. 1991 to Jan. 1992 is reviewed. High power H2 arcjets are being considered for electric powered orbit transfer vehicles (EOTV). Mission analyses indicate that the overall arcjet thrust efficiency is very important since increasing the efficiency increases the thrust, and thereby reduces the total trip time for the same power. For example, increasing the thrust efficiency at the same specific impulse from 30 to 40 percent will reduce the trip time by 25 percent. For a 200 day mission, this equates to 50 days, which results in lower ground costs and less time during which the payload is dormant. Arcjet performance levels of 1200 seconds specific impulse (lsp) at 35 to 40 percent efficiency with lifetimes over 1000 hours are needed to support EOTV missions. Because of the potential very high efficiency levels, the objective of this program was to evaluate the ability of a scaled Giannini-style thruster to achieve the performance levels while operating at a reduced nominal power of 10 kW. To meet this objective, a review of past literature was conducted; scaling relationships were developed and applied to establish critical dimensions; a development thruster was designed with the aid of the plasma analysis model KARNAC and finite element thermal modeling; test hardware was fabricated; and a series of performance tests were conducted in RRC's Cell 11 vacuum chamber with its null-balance thrust stand.
Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices
NASA Astrophysics Data System (ADS)
Salehi, Fakhreddin; Kashaninejad, Mahdi; Jafarianlari, Ali
2017-05-01
Infrared-vacuum drying characteristics of button mushroom ( Agaricus bisporus) were evaluated in a combined dryer system. The effects of drying parameters, including infrared radiation power (150-375 W), system pressure (5-15 kPa) and time (0-160 min) on the drying kinetics and characteristics of button mushroom slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of button mushroom slices. The rate constants of the nine different kinetic's models for thin layer drying were established by nonlinear regression analysis of the experimental data which were found to be affected mainly by the infrared power level while system pressure had a little effect on the moisture ratios. The regression results showed that the Page model satisfactorily described the drying behavior of button mushroom slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 0.83 and 2.33 × 10-9 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased.
Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers
NASA Astrophysics Data System (ADS)
Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi
2016-03-01
We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.
Drought and the water-energy nexus in Texas
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Duncan, Ian; Reedy, Robert C.
2013-12-01
Texas experienced the most extreme drought on record in 2011 with up to 100 days of triple digit temperatures resulting in record electricity demand and historically low reservoir levels. We quantified water and electricity demand and supply for each power plant during the drought relative to 2010 (baseline). Drought raised electricity demands/generation by 6%, increasing water demands/consumption for electricity by 9%. Reductions in monitored reservoir storage <50% of capacity in 2011 would suggest drought vulnerability, but data show that the power plants were flexible enough at the plant level to adapt by switching to less water-intensive technologies. Natural gas, now ˜50% of power generation in Texas, enhances drought resilience by increasing the flexibility of power plant generators, including gas combustion turbines to complement increasing wind generation and combined cycle generators with ˜30% of cooling water requirements of traditional steam turbine plants. These reductions in water use are projected to continue to 2030 with increased use of natural gas and renewables. Although water use for gas production is controversial, these data show that water saved by using natural gas combined cycle plants relative to coal steam turbine plants is 25-50 times greater than the amount of water used in hydraulic fracturing to extract the gas.
NASA Technical Reports Server (NTRS)
Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.;
2002-01-01
We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.
Effect of low-level laser stimulation on EEG.
Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan
2012-01-01
Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.
Spatially resolved measurement of the core temperature in a high-power thulium fiber system
NASA Astrophysics Data System (ADS)
Walbaum, Till; Heinzig, Matthias; Beier, Franz; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2016-03-01
We present measurements of the temperature increase inside the active fiber of a thulium fiber amplifier during high power operation. At a pump power of over 100 W at a wavelength of 793 nm, we measure the core temperature distribution along the first section of a large mode area (LMA) highly thulium doped active fiber by use of an optical backscatter reflectometer. A mode field adaptor is used to maintain single mode operation in the LMA fiber. An increase in temperature of over 100 K can be observed in spite of conductive cooling, located at the pumped fiber end and jeopardizing the fiber coating. The recoated splice can be clearly identified as the hottest fiber region. This allows us to estimate the maximum thermally acceptable pump power for this amplifier. We also observe that the temperature can be decreased by increasing the seed power, which is in agreement with theoretical predictions on the increase of cross relaxation efficiency by depletion of the upper laser level. This underlines the role of power scaling of the respective seed power of a thulium amplifier stage as a means of thermal management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ela, Erik; Milligan, Michael; Bloom, Aaron
This paper discusses the importance and challenges of incentivizing flexibility during short-term operations of the bulk power system due to the increasing variability and uncertainty from growing penetrations of variable generation (VG). Operational flexibility can refer to many aspects of a resource's capability to support the power system, such as the speed, range, and duration of power output, as well as the ability to autonomously respond to frequency or voltage changes. Inefficient utilization of existing flexibility, or unwillingness of resources to provide flexibility, can compromise system reliability by not meeting the changing net load, and it can also lead tomore » higher costs when an inefficient use of flexibility resources occurs. There are many existing characteristics of market design that incentivize flexibility in some manner. How they incentivize the provision of flexibility as well as the level of flexibility is still debated. We explore some of these existing market designs, as well as new market mechanisms, such as pay-for-performance regulating reserve and flexible ramping products, that aim to explicitly incentivize the provision of more flexibility to the system, particularly as a result of increasing VG penetration levels.« less
Voltage Impacts of Utility-Scale Distributed Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, A.
2014-09-01
Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbinemore » interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.« less
Method for leveling the power output of an electromechanical battery as a function of speed
Post, R.F.
1999-03-16
The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.
Method for leveling the power output of an electromechanical battery as a function of speed
Post, Richard F.
1999-01-01
The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKegg, A.
On February 6, 1987, Westinghouse Industry Services Queensland and Integrated Power Corporation (IPC) of Rockville, Maryland began their joint effort to design, build and install a hybrid photovoltaic/diesel power generation station. Installation began on June 1, 1987 and the system was operational on October 30, 1987. The system combines the quality, reliability and low operating costs of photovoltaics with the lower capital cost, high energy density and high efficiency at full load of diesel generators. The performance of the Coconut Island power system has been an unquestioned success. Power availability has exceeded 99 percent, a level comparable with local utilities.more » Energy capacity has not only met projections, but the system's flexibility has allowed energy output to be increased 40 percent beyond design level to accommodate the Islanders' enthusiastic demand for power. The power describes the design, performance, installation, and acceptance of the hybrid system. A table lists technical applications.« less
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
NASA Astrophysics Data System (ADS)
Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.
2017-06-01
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.
Continuous wave power scaling in high power broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.
2018-02-01
Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721
An Investment Level Decision Method to Secure Long-term Reliability
NASA Astrophysics Data System (ADS)
Bamba, Satoshi; Yabe, Kuniaki; Seki, Tomomichi; Shibaya, Tetsuji
The slowdown in power demand increase and facility replacement causes the aging and lower reliability in power facility. And the aging is followed by the rapid increase of repair and replacement when many facilities reach their lifetime in future. This paper describes a method to estimate the repair and replacement costs in future by applying the life-cycle cost model and renewal theory to the historical data. This paper also describes a method to decide the optimum investment plan, which replaces facilities in the order of cost-effectiveness by setting replacement priority formula, and the minimum investment level to keep the reliability. Estimation examples applied to substation facilities show that the reasonable and leveled future cash-out can keep the reliability by lowering the percentage of replacements caused by fatal failures.
Vongas, John G; Al Hajj, Raghid
2017-06-01
A contribution to a special issue on Hormones and Human Competition. We investigated the effects of competition on men's testosterone levels and assessed whether androgen reactivity was associated with subsequent emotion recognition and reactive and proactive aggression. We also explored whether personalized power (p Power) moderated these relationships. In Study 1, 84 males competed on a number tracing task and interpreted emotions from facial expressions. In Study 2, 72 males competed on the same task and were assessed on proactive and reactive aggression. In both studies, contrary to the biosocial model of status (Mazur, 1985), winners' testosterone levels decreased significantly while losers' levels increased, albeit not significantly. Personalized power moderated the effect of competition outcome on testosterone change in both studies. Using the aggregate sample, we found that the effect of decreased testosterone levels among winners (compared to losers) was significant for individuals low in p Power but not for those with medium or high p Power. Testosterone change was positively related to emotion recognition, but unrelated to either aggression subtype. The testosterone-mediated relationship between winning and losing and emotion recognition was moderated by p Power. In addition, p Power moderated the direct (i.e., non-testosterone mediated) path between competition outcome and emotion recognition and both types of aggression: high p-Power winners were more accurate at deciphering others' emotions than high p-Power losers. Finally, among high p-Power men, winners aggressed more proactively than losers, whereas losers aggressed more reactively than winners. Collectively, these studies highlight the importance of implicit power motivation in modulating hormonal, cognitive, and behavioral outcomes arising from human competition. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ferrara, Margaret M.
2009-01-01
This study describes various strategies used by a university educator to integrate parent involvement curriculum into pre-existing teacher preparation courses. This curriculum infusion was not only effective in increasing preservice teacher knowledge but also in raising course instructors' level of awareness about the importance and necessity of…
Physico-chemical characteristics of microwave-dried wheat distillers grain with solubles.
Mosqueda, Maria Rosario P; Tabil, Lope G; Meda, Venkatesh
2013-01-01
Laboratory-prepared samples of wheat distillers grain with solubles with varying condensed distillers solubles (CDS) content were dried under varying microwave power, and microwave convection settings using a domestic microwave oven to examine their effect on the chemical, structural, color, flow, compression, thermal, and frictional properties of the product, which is dried distillers grain with solubles (DDGS). As CDS level increased, protein and ash content increased, while fat and fiber content decreased in wheat-based DDGS. Fat content was also markedly effected by the microwave oven drying conditions. While CDS level, microwave power or microwave convection setting, and/or their interactions significantly effected a number of physical properties; results indicated that CDS level had a stronger influence compared to the other factors. DDGS samples with high CDS levels were significantly denser, finer but more differentiated in size, less flowable, and less dispersible. These also produced denser and stronger pellets.
Arai, Takaomi
2016-10-01
Radioactive emissions into the environment from the Fukushima Daiichi Nuclear Power Plant accident led to global contamination. Radionuclides such as 131 I, 134 Cs, and 137 Cs were further transported to North America and Europe. Thus, the Fukushima Daiichi Nuclear Power Plant accident is a global concern for both human health and the ecosystem because a number of countries ban or impose restrictions the import of Japanese products. In the present study, three-year (May 2011 to May 2014) fluctuations and accumulations of Cs, 134 Cs, and 137 Cs in two salmonid fish, white-spotted char and masu salmon were examined in Northeast Japan. The total Cs, 134 Cs, and 137 Cs levels in the fish gradually decreased throughout the three-year studied period after the Fukushima Daiichi Nuclear Power Plant accident; however, higher levels (more than 100 Bq kg -1 ) were still detected in the Fukushima prefecture and neighboring prefectures in Japan 3 years after the Fukushima Daiichi Nuclear Power Plant accident. Spatial radiocesium levels gradually decreased with increasing distance from the Fukushima Daiichi Nuclear Power Plant (Fukushima prefecture). The radiocesium levels facing the Pacific Ocean area were generally higher than those facing the Sea of Japan area. These results suggest that radionuclides from Fukushima Daiichi Nuclear Power Plant are still widely distributed and remain in the natural environment in Northeast Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Lightning location system supervising Swedish power transmission network
NASA Technical Reports Server (NTRS)
Melin, Stefan A.
1991-01-01
For electric utilities, the ability to prevent or minimize lightning damage on personnel and power systems is of great importance. Therefore, the Swedish State Power Board, has been using data since 1983 from a nationwide lightning location system (LLS) for accurately locating lightning ground strikes. Lightning data is distributed and presented on color graphic displays at regional power network control centers as well as at the national power system control center for optimal data use. The main objectives for use of LLS data are: supervising the power system for optimal and safe use of the transmission and generating capacity during periods of thunderstorms; warning service to maintenance and service crews at power line and substations to end operations hazardous when lightning; rapid positioning of emergency crews to locate network damage at areas of detected lightning; and post analysis of power outages and transmission faults in relation to lightning, using archived lightning data for determination of appropriate design and insulation levels of equipment. Staff have found LLS data useful and economically justified since the availability of power system has increased as well as level of personnel safety.
PCB-level Electro thermal Coupling Simulation Analysis
NASA Astrophysics Data System (ADS)
Zhou, Runjing; Shao, Xuchen
2017-10-01
Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.
Power Management in Regenerative Life Support Systems
NASA Technical Reports Server (NTRS)
Crawford, Sekou; Pawlowski, Christopher; Finn, Cory; Mead, Susan C. (Technical Monitor)
1999-01-01
Effective management of power can reduce the cost of launch and operation of regenerative life support systems. Variations in power may be quite severe and may manifest as surges or spikes, While the power plant may have some ability to deal with these variations, with batteries for example, over-capacity is expensive and does nothing to address the fundamental issue of excessive demand. Because the power unit must be sized to accommodate the largest demand, avoiding power spikes has the potential to reduce the required size of the power plant while at the same time increasing the dependability of the system. Scheduling of processors can help to reduce potential power spikes. However, not all power-consuming equipment is easily scheduled. Therefore, active power management is needed to further decrease the risk of surges or spikes. We investigate the use of a hierarchical scheme to actively manage power for a model of a regenerative life support system. Local level controllers individually determine subsystem power usage. A higher level controller monitors overall system power and detects surges or spikes. When a surge condition is detected, the higher level controller conducts an 'auction' and describes subsystem power usage to re-allocate power. The result is an overall reduction in total power during a power surge. The auction involves each subsystem making a 'bid' to buy or sell power based on local needs. However, this re-allocation cannot come at the expense of life support function. To this end, participation in the auction is restricted to those processes meeting certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated. We present a simulation model and discuss some of our results.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...
2017-03-20
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Evolutionary growth for Space Station Freedom electrical power system
NASA Technical Reports Server (NTRS)
Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike
1989-01-01
Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, D. G.; Arent, D. J.; Johnson, L.
2006-06-01
This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources tomore » provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.« less
Silicon Nanophotonics for Many-Core On-Chip Networks
NASA Astrophysics Data System (ADS)
Mohamed, Moustafa
Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is superior to existing solutions in terms of power and performance. In fact, our solution can scale to thousand core with low overhead.
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, D.; Grigorakou, E.; Koumantakis, J.
2003-04-01
Vegoritis Lake, which is located at Vegoritis closed Basin in West Macedonia, Greece, is the biggest lake in Greece. In 1994 the area of the lake was 35 Km2 with maximum depth 42 m at the northwestern part of the lake. It is the final receiving body of the surface runoff of the hydrological basin. Moreover, it is the surficial appearance of an enormous and not well-known karstic aquifer. Being a closed hydrological basin any interference in surface or groundwater conditions in every part of its area affects the level of the lake. The level of the lake in 1900 was 525 masl, in 1942 was 542 masl reaching the higher level of 543 masl in 1956. The increase of the level of the lake was due to the drainage of Ptolemais (Sarigiol) swamp through Soulou drain ditches that transfer the water in the lake. Since then, a continuous drawdown took place with small periods of rising of water level. Today, the level of the lake is declined in a smaller rate having reached the level of 510 masl. Water coming from the lake has been used in the past, and in some cases still does, for agricultural, industrial and domestic use, for hydropower generation and for the cooling system of power plants. Moreover, P.P.C. (Public Power Corporation of Greece) develops an intense activity in the area with the exploitation of the lignite deposits of the basin and power generation in several Power Plants. Few years ago significant quantities from Vegoritis Lake were used for hydro power of Agras Power Plant. With the elaboration of the existent data (water level measurements, recharge, discharge) the connection between the lowering of the surface of the lake and the subtracted quantities through the Arnissa Tunel the first years of its use, is obvious. The last twenty years the condition has change. Outflow through the Arnissa Tunnel for hydropower has stopped. The continued lowering of the level of the lake is caused, mainly, by overexploitation due to the intense increase of the irrigating land. The dewatering of the aquifers for the protection of the lignite mine seems to have an insignificant influence on the aquatic balance, as the water is discharged again into the streams and rivers of the closed basin.
A Statistical Analysis Plan to Support the Joint Forward Area Air Defense Test.
1984-08-02
hy estahlishing a specific significance level prior to performing the statistical test (traditionally a levels are set at .01 or .05). What is often...undesirable increase in 8. For constant a levels , the power (I - 8) of a statistical test can he increased by Increasing the sample size of the test. fRef...ANOVA Iparison Test on MOP I=--ferences Exist AmongF "Upon MOP "A" Factor I "A" Factor I 1MOP " A " Levels ? I . I I I _ _ ________ IPerform k-Sample Com- I
2016-01-01
Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20–30 years) and 18 older (60–85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes. PMID:27610379
The SCARLET{trademark} array for high power GEO satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, B.R.; Jones, P.A.; Eskenazi, M.I.
1997-12-31
The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less
Federalism and social justice: implications for social work.
Linhorst, Donald M
2002-07-01
Federalism is a system of government that divides power between two or more levels of government. During the current conservative political climate in the United States, power has shifted increasingly from the federal government to states, a move that has implications for the achievement of social justice. Consequently, it is now necessary for social workers to engage in political activity at the state and local levels, in addition to the federal level, to promote social justice. Implications for social work policy practice, research, and education for advancing social justice within the federal system of government are explored.
Results of acoustic testing of the JT8D-109 refan engines
NASA Technical Reports Server (NTRS)
Burdsall, E. A.; Brochu, F. P.; Scaramella, V. M.
1975-01-01
A JT8D engine was modified to reduce jet noise levels by 6-8 PNdB at takeoff power without increasing fan generated noise levels. Designated the JT8D-109, the modified engines featured a larger single stage fan, and acoustic treatment in the fan discharge ducts. Noise levels were measured on an outdoor test facility for eight engine/acoustic treatment configurations. Compared to the baseline JT8D, the fully treated JT8D-109 showed reductions of 6 PNdB at takeoff, and 11 PNdB at a typical approach power setting.
Threshold-dependent sample sizes for selenium assessment with stream fish tissue
Hitt, Nathaniel P.; Smith, David R.
2015-01-01
Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased precision of composites for estimating mean conditions. However, low sample sizes (<5 fish) did not achieve 80% power to detect near-threshold values (i.e., <1 mg Se/kg) under any scenario we evaluated. This analysis can assist the sampling design and interpretation of Se assessments from fish tissue by accounting for natural variation in stream fish populations.
The effects of neurofeedback on oscillatory processes related to tinnitus.
Hartmann, Thomas; Lorenz, Isabel; Müller, Nadia; Langguth, Berthold; Weisz, Nathan
2014-01-01
Although widely used, no proof exists for the feasibility of neurofeedback for reinstating the disordered excitatory-inhibitory balance, marked by a decrease in auditory alpha power, in tinnitus patients. The current study scrutinizes the ability of neurofeedback to focally increase alpha power in auditory areas in comparison to the more common rTMS. Resting-state MEG was measured before and after neurofeedback (n = 8) and rTMS (n = 9) intervention respectively. Source level power and functional connectivity were analyzed with a focus on the alpha band. Only neurofeedback produced a significant decrease in tinnitus symptoms and-more important for the context of the study-a spatially circumscribed increase in alpha power in right auditory regions. Connectivity analysis revealed higher outgoing connectivity in a region ultimately neighboring the area in which power increases were observed. Neurofeedback decreases tinnitus symptoms and increases alpha power in a spatially circumscribed manner. In addition, compared to a more established brain stimulation-based intervention, neurofeedback is a promising approach to renormalize the excitatory-inhibitory imbalance putatively underlying tinnitus. This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback.
The power dynamics perpetuating unsafe abortion in Africa: a feminist perspective.
Braam, Tamara; Hessini, Leila
2004-04-01
Tens of thousands of African women die every year because societies and governments either ignore the issue of unsafe abortion or actively refuse to address it. This paper explores the issue of abortion from a feminist perspective, centrally arguing that finding appropriate strategies to reclaim women's power at an individual and social level is a central lever for developing effective strategies to increase women's access to safe abortion services. The paper emphasises the central role of patriarchy in shaping the ways power plays itself out in individual relationships, and at social, economic and political levels. The ideology of male superiority denies abortion as an important issue of status and frames the morality, legality and socio-cultural attitudes towards abortion. Patriarchy sculpts unequal gender power relationships and takes power away from women in making decisions about their bodies. Other forms of power such as economic inequality, discourse and power within relationships are also explored. Recommended solutions to shifting the power dynamics around the issue include a combination of public health, rights-based, legal reform and social justice approaches.
A monostable piezoelectric energy harvester for broadband low-level excitations
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Tan, Qinxue; Zhang, Yiwei; Liu, Shaohua; Cai, Meiling; Zhu, Yingmin
2018-03-01
This letter presents a monostable piezoelectric energy harvester (PEH) for achieving enhanced energy extraction from low-level excitations. The proposed PEH is realized by introducing symmetric magnetic attraction to a piezoelectric cantilever beam and a pair of stoppers to confine the maximum deflection of the beam. The lumped parameter model of such a system is presented and experimentally validated. Theoretical simulations and experimental measurements demonstrate that the proposed design can bring about a wider operating bandwidth and higher output voltage than the linear PEH. Under a sinusoidal vibration with an amplitude of 3 m/s2, a 54% increase in the operating bandwidth and a 253% increase in the magnitude of output power are achieved compared to its linear counterpart. Moreover, the proposed PEH exhibits rich dynamic features, including the tunable operating bandwidth, adjustable voltage and power levels, and softening hysteresis.
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1983-01-01
A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.
A new digital pulse power supply in heavy ion research facility in Lanzhou
NASA Astrophysics Data System (ADS)
Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin
2013-11-01
To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.
High power industrial picosecond laser from IR to UV
NASA Astrophysics Data System (ADS)
Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François
2013-02-01
Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.
Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan H.; Mills, Andrew; Seel, Joachim
We synthesize available literature, data, and analysis on the degree to which growth in variable renewable energy (VRE) has impacted to date or might in the future impact bulk power system assets, pricing, and costs. We do not analyze impacts on specific power plants, instead focusing on national and regional system-level trends. The issues addressed are highly context dependent—affected by the underlying generation mix of the system, the amount of wind and solar penetration, and the design and structure of the bulk power system in each region. Moreover, analyzing the impacts of VRE on the bulk power system is amore » complex area of research and there is much more to be done to increase understanding of how VRE impacts the dynamics of current and future electricity markets. While more analysis is warranted, including additional location-specific assessments, several high-level findings emerge from this synthesis: -VRE Is Already Impacting the Bulk Power Market -VRE Impacts on Average Wholesale Prices Have Been Modest -VRE Impacts on Power Plant Retirements Have So Far Been Limited -VRE Impacts on the Bulk Power Market will Grow with Penetration -The ’System Value’ of VRE will Decline with Penetration -Power System Flexibility Can Reduce the Rate of VRE Value Decline All generation types are unique in some respect—bringing benefits and challenges to the power system—and wholesale markets, industry investments, and operational procedures have evolved over time to manage the characteristics of a changing generation fleet. With increased VRE penetrations, power system planners, operators, regulators, and policymakers will continue to be challenged to develop methods to smoothly and cost-effectively manage the reliable integration of these new and growing sources of electricity supply.« less
High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique
Recent US initiatives in Nuclear Propulsion lend themselves naturally to raising the question of the assessment of various options and particularly to propose the High Power Electric Propulsion Subsystem (HPEPS) for the Nuclear Electric Propulsion (NEP). The purpose of this paper is to present the guidelines for the HPEPS with respect to the mission to Mars, for automatic probes as well as for manned missions. Among the various options, the technological options and the trajectory options are pointed out. The consequences of the increase of the electrical power of a thruster are first an increase of the thrust itself, butmore » also, as a general rule, an increase of the thruster performance due to its higher efficiency, particularly its specific impulse increase. The drawback is as a first parameter, the increase of the thruster's size, hence the so-called 'thrust density' shall be high enough or shall be drastically increased for ions thrusters. Due to the large mass of gas needed to perform the foreseen missions, the classical xenon rare gas is no more in competition, the total world production being limited to 20 -40 tons per year. Thus, the right selection of the propellant feeding the thruster is of prime importance. When choosing a propellant with lower molecular mass, the consequences at thruster level are an increase once more of the specific impulse, but at system level the dead mass may increase too, mainly because the increase of the mass of the propellant system tanks. Other alternatives, in rupture with respect to the current technologies, are presented in order to make the whole system more attractive. The paper presents a discussion on the thruster specific impulse increase that is sometime considered an increase of the main system performances parameter, but that induces for all electric propulsion systems drawbacks in the system power and mass design that are proportional to the thruster specific power increase (kW/N). The electric thruster specific impulse shall be optimized w.r.t. the mission. The trajectories taken into account in the paper are constrained by the allowable duration of the travel and the launcher size. The multi-arcs trajectories to Mars (using an optimized combination of chemical and Electric propulsion) are presented in detail. The compatibility with NEP systems that implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes fitting in with Ariane 5 or the Space Shuttle bay, is assessed.« less
Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B
2010-02-15
The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease.
NASA Astrophysics Data System (ADS)
Briggs, C. K.; Borg, I. Y.
1982-10-01
Flow diagrams to describe the US energy situation are given. In 1981 the energy consumption was 73 quads (or 73 times 10 to the 15th power Btu). Use was down from 75 quads in 1980. Oil continues to dominate the picture as it comprises 45% of the total energy used. Net oil use (exclusive of oil purchased for the Strategic Petroleum Reserve and Exports) fell 8%; oil imports declined 14%. In contrast to oil, use of natural gas and coal remained at 1980 levels. Decreased use of residual oils, principally for electric power generating, account for much of the drop in oil use. Increased use of coal and nuclear energy for power generation almost compensated for the decrease in use of oil in that end use. Transmitted power remained at 1980 levels. The remainder of the drop in energy usage is attributed to price driven conservation, increased efficiencies in end use and the recession that prevailed during most of the year. The share of the energy drop attributable to the recession is estimated by various analysts to be on the order of 40 to 50%.
Xu, Xiaoyan; Xu, Yangang; Mellor, David; Duan, Liqiong
2012-01-01
Previous research suggests that there is a relationship between social contexts (e.g., economic growth, engagement in wars) and motives within populations. In particular, high achievement motive is associated with subsequent economic growth, which in turn increases power motive. Increased national achievement and power motives have been argued to precede social changes that lead to decreased affiliation motives, and engagement in wars. The present study aimed to examine differences in achievement, power, and affiliation motives between 266 college students in China (a nation with sustained high economic growth) and 255 college students in the USA (a nation with previously strong but now slowing economic growth, and engaged in war). Analysis of personal strivings suggested that Chinese college students showed significantly higher levels of achievement motive than the American college students, but American college students showed significantly higher levels of affiliation motive than Chinese college students. Overall, males exhibited higher achievement motivation than females. No significant interaction effects were found for gender by location for any of the three motives. The findings are discussed in relation to previous research.
NASA Technical Reports Server (NTRS)
Chan, Agnes; Conley, Kristin; Javorski, Christian T.; Cheung, Kwok-Hung; Crivelli, Paul M.; Torrey, Nancy P.; Traver, Michael L.
1992-01-01
Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells.
Prediction and characterization of application power use in a high-performance computing environment
Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...
2017-02-27
Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.
High Power Local Oscillator Sources for 1-2 THz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank
2010-01-01
Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Zhang, Yingchen
The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from thatmore » of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.« less
Power and energy dissipation in subsequent return strokes as predicted by a new return stroke model
NASA Technical Reports Server (NTRS)
Cooray, Vernon
1991-01-01
Recently, Cooray introduced a new return stroke model which is capable of predicting the temporal behavior of the return stroke current and the return stroke velocity as a function of the height along the return stroke channel. The authors employed this model to calculate the power and energy dissipation in subsequent return strokes. The results of these calculations are presented here. It was concluded that a large fraction of the total energy available for the dart leader-subsequent stroke process is dissipated in the dart leader stage. The peak power per unit length dissipated in a subsequent stroke channel element decreases with increasing height of that channel element from ground level. For a given channel element, the peak power dissipation increases with increasing current in that channel element. The peak electrical power dissipation in a typical subsequent return stroke is about 1.5 times 10(exp 11) W. The energy dissipation in a subsequent stroke increases with increasing current in the return stroke channel, and for a typical subsequent stroke, the energy dissipation per unit length is about 5.0 times 10(exp 3) J/m.
Cortical oscillations and entrainment in speech processing during working memory load.
Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten
2018-02-02
Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Applied-field MPD thruster geometry effects
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1991-01-01
Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.
USSR Report, World Economy and International Relations, No. 1, January 1987
1987-05-22
food, ecology . The gap in the levels of economic development between states is becoming increasingly threatening, and the developing countries’ debt...practice of the safe development of nuclear power engineering. To "star wars," it proposes "star peace," that is, interaction in peaceful space, the...electric power engineering, industry and municipal services. Thus the construction of new heat and electric power plants using fuel oil was
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
Investigation into the absorptivity change in metals with increased laser power
NASA Astrophysics Data System (ADS)
Blidegn, M. Sc. K.; Olsen, Flemming O.
1997-04-01
At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.
Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhenbang; Huang, Hua; Lei, Lurong
2015-09-15
To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is aboutmore » 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.« less
X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation
NASA Technical Reports Server (NTRS)
DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)
2001-01-01
Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.
Solar power satellite system sizing tradeoffs
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Monford, L. G.
1981-01-01
Technical and economic tradeoffs of smaller solar power satellite systems configured with larger antennas, reduced output power, and smaller rectennas, are considered. The differential costs in electricity for seven antenna/rectenna configurations operating at 2.45 GHz and five satellite systems operating at 5.8 GHz are calculated. Two 2.45 GHz configurations dependent upon the ionospheric power density limit are chosen as examples. If the ionospheric limit could be increased to 54 mW sq/cm from the present 23 mW sq/cm level, a 1.53 km antenna satellite operating at 2.45 GHz would provide 5.05 GW of output power from a 6.8 km diameter rectenna. This system gives a 54 percent reduction in rectenna area relative to the reference solar power satellite system at a modest 17 percent increase in electricity costs. At 5.8 GHz, an 0.75 km antenna providing 2.72 GW of power from a 5.8 km diameter rectenna is selected for analysis. This configuration would have a 67 percent reduction in rectenna area at a 36 percent increase in electricity costs. Ionospheric, atmospheric, and thermal limitations are discussed. Antenna patterns for three configurations to show the relative main beam and sidelobe characteristics are included.
Korte, F Steven; McDonald, Kerry S
2007-01-01
The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271
The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain
NASA Astrophysics Data System (ADS)
Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.
2018-05-01
The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement, peak residual load (from sources other than wind) and wind power curtailment. The present-day level of wind power capacity (approximately 15 GW) is shown to have already changed the power system’s overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.
1982-01-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; McDonald, G.
1982-02-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
Kenny, Anne M; Biskup, Bradley; Robbins, Bertha; Marcella, Glenn; Burleson, Joseph A
2003-12-01
To study the effects of vitamin D supplementation in healthier populations of men. : Randomized, controlled trial. General clinical research center. Sixty-five healthy, community-dwelling men (mean age+/-standard deviation=76+/-4, range 65-87). Cholecalciferol (1,000 IU/d) or placebo supplementation for 6 months; all received 500 mg supplemental calcium. Upper and lower extremity muscle strength and power, physical performance and activity, health perception, calcium and vitamin D intake, and biochemical assessment, including 25-hydroxyvitamin D (25OHD), parathyroid hormone (PTH), and ionized calcium levels. The levels of 25OHD increased and PTH decreased in the cholecalciferol group, whereas there were no significant changes in the control group (P<.001). Baseline 25OHD levels correlated with baseline single-leg stance time and physical activity score. Baseline PTH levels correlated with baseline 8-foot walk time and physical activity score. No significant difference in strength, power, physical performance, or health perception was found between groups. The 25OHD or PTH levels correlated with physical activity and physical performance in older, community-dwelling men with normal 25OHD status. Vitamin D supplementation increased 25OHD levels and decreased PTH levels but did not increase muscle strength or improve physical performance or health perception in this group of healthy, older men. Further investigations of the effects of vitamin D supplementation should focus on individuals with low levels of vitamin D.
NASA Astrophysics Data System (ADS)
Rezaei, Farzaneh; Richard, Tom L.; Logan, Bruce E.
Microbial fuel cells (MFCs) produce bioelectricity from a wide variety of organic and inorganic substrates. Chitin can be used as a slowly degrading substrate in MFCs and thus as a long-term fuel to sustain power by these devices in remote locations. However, little is known about the effects of particle size on power density and length of the power cycle (longevity). We therefore examined power generation from chitin particles sieved to produce three average particle sizes (0.28, 0.46 and 0.78 mm). The longevity increased from 9 to 33 days with an increase in the particle diameter from 0.28 to 0.78 mm. Coulombic efficiency also increased with particle size from 18% to 56%. The maximum power density was lower for the largest (0.78 mm) particles (176 mW m -2), with higher power densities for the 0.28 mm (272 mW m -2) and 0.46 mm (252 mW m -2) particle sizes. The measured lifetimes of these particles scaled with particle diameter to the 1.3 power. Application of a fractal dissolution model indicates chitin particles had a three-dimensional fractal dimension between 2 and 2.3. These results demonstrate particles can be used as a sustainable fuel in MFCs, but that particle sizes will need to be controlled to achieve desired power levels.
Disproportionality in Power Plants’ Carbon Emissions: A Cross-National Study
Jorgenson, Andrew; Longhofer, Wesley; Grant, Don
2016-01-01
Past research on the disproportionality of pollution suggests a small subset of a sector’s facilities often produces the lion’s share of toxic emissions. Here we extend this idea to the world’s electricity sectors by calculating national-level disproportionality Gini coefficients for plant-level carbon emissions in 161 nations based on data from 19,941 fossil-fuel burning power plants. We also evaluate if disproportionalities in plant-level emissions are associated with increased national carbon emissions from fossil-fuel based electricity production, while accounting for other well-established human drivers of greenhouse gas emissions. Results suggest that one potential pathway to decreasing nations’ greenhouse gas emissions could involve reducing disproportionality among fossil-fuel power plants by targeting those plants in the upper end of the distribution that burn fuels more inefficiently to produce electricity. PMID:27363677
Magnetoplasmadynamic Thruster Workshop
NASA Technical Reports Server (NTRS)
1991-01-01
On May 16, 1991, the NASA Headquarters Propulsion, Power, and Energy Division and the NASA Lewis Research Center Low Thrust Propulsion Branch hosted a workshop attended by key experts in magnetoplasmadynamic (MPD) thrusters and associated sciences. The scope was limited to high power MPD thrusters suitable for major NASA space exploration missions, and its purpose was to initiate the process of increasing the expectations and prospects for MPD research, primarily by increasing the level of cooperation, interaction, and communication between parties within the MPD community.
Public water systems are increasingly facing higher bromide levels in their source waters from anthropogenic contamination through coal-fired power plants, conventional oil and gas extraction, and hydraulic fracturing. Climate change is likely to exacerbate this in coming years. ...
Institutional Authority and Traces of Intergenerational Conflict
ERIC Educational Resources Information Center
Tufan, Ismail; Kilic, Sultan; Tokgoz, Nimet; Howe, Jurgen; Yaman, Hakan
2010-01-01
While society's level of education increases in a modernization process, the knowledge monopoly is taken over by the young. Increasing demand on knowledge attained through organized education leads to increasing power by the young. In the modernizing society of Turkey, this kind of struggle will occur between intellectual groups. Results of this…
Comparison of Time-to-First Event and Recurrent Event Methods in Randomized Clinical Trials.
Claggett, Brian; Pocock, Stuart; Wei, L J; Pfeffer, Marc A; McMurray, John J V; Solomon, Scott D
2018-03-27
Background -Most Phase-3 trials feature time-to-first event endpoints for their primary and/or secondary analyses. In chronic diseases where a clinical event can occur more than once, recurrent-event methods have been proposed to more fully capture disease burden and have been assumed to improve statistical precision and power compared to conventional "time-to-first" methods. Methods -To better characterize factors that influence statistical properties of recurrent-events and time-to-first methods in the evaluation of randomized therapy, we repeatedly simulated trials with 1:1 randomization of 4000 patients to active vs control therapy, with true patient-level risk reduction of 20% (i.e. RR=0.80). For patients who discontinued active therapy after a first event, we assumed their risk reverted subsequently to their original placebo-level risk. Through simulation, we varied a) the degree of between-patient heterogeneity of risk and b) the extent of treatment discontinuation. Findings were compared with those from actual randomized clinical trials. Results -As the degree of between-patient heterogeneity of risk was increased, both time-to-first and recurrent-events methods lost statistical power to detect a true risk reduction and confidence intervals widened. The recurrent-events analyses continued to estimate the true RR=0.80 as heterogeneity increased, while the Cox model produced estimates that were attenuated. The power of recurrent-events methods declined as the rate of study drug discontinuation post-event increased. Recurrent-events methods provided greater power than time-to-first methods in scenarios where drug discontinuation was ≤30% following a first event, lesser power with drug discontinuation rates of ≥60%, and comparable power otherwise. We confirmed in several actual trials in chronic heart failure that treatment effect estimates were attenuated when estimated via the Cox model and that increased statistical power from recurrent-events methods was most pronounced in trials with lower treatment discontinuation rates. Conclusions -We find that the statistical power of both recurrent-events and time-to-first methods are reduced by increasing heterogeneity of patient risk, a parameter not included in conventional power and sample size formulas. Data from real clinical trials are consistent with simulation studies, confirming that the greatest statistical gains from use of recurrent-events methods occur in the presence of high patient heterogeneity and low rates of study drug discontinuation.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.
Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength
NASA Astrophysics Data System (ADS)
Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš
2018-02-01
Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.
Anomalous response of superconducting titanium nitride resonators to terahertz radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bueno, J., E-mail: j.bueno@sron.nl; Baselmans, J. J. A; Coumou, P. C. J. J.
We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggestmore » that an inhomogeneous state of these disordered superconductors should be used to explain these observations.« less
ERIC Educational Resources Information Center
James, Lee; James, Terry; Washington, Lee; Taylor, John Grady; Rushing, Jimmy
2007-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... surface evaporation. The canals are a closed recirculating loop that serves as the ultimate heat sink for...) for water discharges to an onsite closed-loop recirculation cooling canal system. The seasonal... to 90 [deg]F (21 [deg]C to 32 [deg]C). Additionally, the CCS water is hyper-saline (twice the...
Dzul, Maria C.; Dixon, Philip M.; Quist, Michael C.; Dinsomore, Stephen J.; Bower, Michael R.; Wilson, Kevin P.; Gaines, D. Bailey
2013-01-01
We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey's power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design.
Impact of distributed energy resources on the reliability of a critical telecommunications facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.
2006-03-01
This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power inmore » the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.« less
2013-05-15
Corps has increased the number of foreign area and regional area officer opportunities in the Marine Corps. As a result, an increased level of...and contribute to larger ‘whole of government’ system of projecting ‘smart’ power across the range of military operations.”5 On a macro- level , every...Wherefore, the ability to respond will depend on the level of resources and organizational structure of the MAGTF. The Unit Deployment Program (UDP
NASA Astrophysics Data System (ADS)
Braswell, Michael G.
The transmission network that connects electricity generators with consumers is a critical yet often-overlooked component of the nation's electrical power infrastructure. However, the transmission grid has suffered from chronic underinvestment in recent decades due to various economic and regulatory factors that impede timely and efficient investments in transmission. One factor that might help offset these obstacles to transmission is the growth in wind power generation. The assumption among many in the electrical power industry is that wind power investments necessarily require greater investment in transmission due to the fact that wind power is a geographically-restricted resource and cannot always be situated close to areas of high electricity demand. However, to date there have been few, if any, empirical studies to verify this connection. This paper discusses a state-by-state empirical study exploring the relationship between increased wind generation capacity and the level of investment in transmission infrastructure. This study begins with the hypothesis that increases in installed wind generation capacity, in combination with other policies that promote wind energy more generally, should result in higher levels of transmission investment. Using data from the Federal Energy Regulatory Commission (FERC) and the American Wind Energy Association (AWEA), this paper develops regression models suggesting that wind investment has a small but distinct positive impact on transmission investment. This paper then explores the effects of other state renewable energy promotion policies, and discusses the policy implications of these findings.
Three-dimensional kinematic analysis and power output of elite flat-water kayakers.
Bjerkefors, Anna; Tarassova, Olga; Rosén, Johanna S; Zakaria, Pascal; Arndt, Anton
2017-09-20
The purpose was to examine power output and three-dimensional (3D) kinematic variables in the upper limbs, lower limbs and trunk in elite flat-water kayakers during kayak ergometer paddling. An additional purpose was to analyse possible changes in kinematics with increased intensity and differences between body sides. Six male and four female international level flat-water kayakers participated. Kinematic and kinetic data were collected during three tasks; low (Int L ), high (Int H ) and maximal (Int M ) intensities. No differences were observed in any joint angles between body sides, except for shoulder abduction. Significantly greater range of motion (RoM) values were observed for Int H compared to Int L and for Int M compared to Int L in trunk and pelvis rotation, and in hip, knee and ankle flexion. The mean maximal power output was 610 ± 65 and 359 ± 33 W for the male and female athletes, respectively. The stroke frequencies were significantly different between all intensities (Int L 59.3 ± 6.3; Int H 108.0 ± 6.8; Int M 141.7 ± 18.4 strokes/min). The results showed that after a certain intensity level, the power output must be increased by other factors than increasing the joint angular RoM. This information may assist coaches and athletes to understand the relationship between the movement of the kayaker and the paddling power output.
Voltage scheduling for low power/energy
NASA Astrophysics Data System (ADS)
Manzak, Ali
2001-07-01
Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned to lower voltage levels (thus reducing the power consumption). A polynomial time resource and latency constrained scheduling algorithm is developed to distribute the available slack among the nodes such that power consumption is minimum. The algorithm is iterative and utilizes the slack based on the Lagrange multiplier method.
Results of the harmonics measurement program at the John F. Long photovoltaic house
NASA Astrophysics Data System (ADS)
Campen, G. L.
1982-03-01
Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.
Performance study on the effect of filter curve in CWDM System for the access network
NASA Astrophysics Data System (ADS)
Ali, N.; Rahman, N. A.; Hambali, N. A. M. Ahmad; Rashidi, C. B. M.
2017-11-01
This paper presents the study on the effect of filter variation on the coarse wavelength division multiplexing (CWDM) system. The filter curve will affect the performance of the CWDM system due to changes of received power lever and isolation of the signal. The significant impact on the received power level and isolation can be found when the required signal is isolated from unwanted signal by the steep curve of filter. As a result, BER of 1.0x 10-12 was obtained corresponding to receive power level of -24.27 dBm with isolation of 23.22 dB. When the wavelength spacing is reduced to 1nm, the isolation is only 11.30 dB and BER increased to 5.49x10-7 with a received power of -15.39 dBm.
NASA Technical Reports Server (NTRS)
Van Fossen, G. J.
1983-01-01
It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.
Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J
2008-04-26
The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to whether or not progressive resistance cycling is an appropriate protocol for SCI subjects.
Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J
2008-01-01
Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to whether or not progressive resistance cycling is an appropriate protocol for SCI subjects. PMID:18439300
More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-02-01
Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less
Alpha power increases in right parietal cortex reflects focused internal attention
Benedek, Mathias; Schickel, Rainer J.; Jauk, Emanuel; Fink, Andreas; Neubauer, Aljoscha C.
2014-01-01
This study investigated the functional significance of EEG alpha power increases, a finding that is consistently observed in various memory tasks and specifically during divergent thinking. It was previously shown that alpha power is increased when tasks are performed in mind—e.g., when bottom-up processing is prevented. This study aimed to examine the effect of task-immanent differences in bottom-up processing demands by comparing two divergent thinking tasks, one intrinsically relying on bottom-up processing (sensory-intake task) and one that is not (sensory-independence task). In both tasks, stimuli were masked in half of the trials to establish conditions of higher and lower internal processing demands. In line with the hypotheses, internal processing affected performance and led to increases in alpha power only in the sensory-intake task, whereas the sensory-independence task showed high levels of task-related alpha power in both conditions. Interestingly, conditions involving focused internal attention showed a clear lateralization with higher alpha power in parietal regions of the right hemisphere. Considering evidence from fMRI studies, right-parietal alpha power increases may correspond to a deactivation of the right temporoparietal junction, reflecting an inhibition of the ventral attention network. Inhibition of this region is thought to prevent reorienting to irrelevant stimulation during goal-driven, top-down behavior, which may serve the executive function of task shielding during demanding cognitive tasks such as idea generation and mental imagery. PMID:24561034
Precise bearing support ditherer with piezoelectric drive means
NASA Astrophysics Data System (ADS)
Assard, G. L.; Moorcroft, A. L.
1985-06-01
A relatively solid mounting surface, which may be part of a leveling gimbal, supports a piezoelectric bearing mount which has the properties of an acoustic transducer. The transducer has electrodes thereon which are powered from multi-phase electrical sources causing the bearing mount, and a bearing jewel which is rigid therewith, to move so as to dither the jewel in a rotary or other preselected fashion, thereby reducing bearing friction. Bandwidth, level and phasing sequence of the power sources are adjustable permitting optimized average dynamic motion and corresponding increased readout accuracy.
A thermophone on porous polymeric substrate
NASA Astrophysics Data System (ADS)
Chitnis, G.; Kim, A.; Song, S. H.; Jessop, A. M.; Bolton, J. S.; Ziaie, B.
2012-07-01
In this Letter, we present a simple, low-temperature method for fabricating a wide-band (>80 kHz) thermo-acoustic sound generator on a porous polymeric substrate. We were able to achieve up to 80 dB of sound pressure level with an input power of 0.511 W. No significant surface temperature increase was observed in the device even at an input power level of 2.5 W. Wide-band ultrasonic performance, simplicity of structure, and scalability of the fabrication process make this device suitable for many ranging and imaging applications.
NASA Technical Reports Server (NTRS)
Knapp, C. F.; Evans, J. M.; Grande, K. J.; Murphy, C. D.; Patwardhan, A. R.
1992-01-01
Changes in autonomic outflow to peripheral organs during the development of bedrest induced orthostatic intolerance have not been determined. Recent studies have indicated that spectral analysis provides an indirect assessment of these changes. Eight male subjects were studied before and after 22 hours of 6 degree head down bedrest plus Lasix (40 mg. P.P.). Cardiovascular spectra (using an autoregressive technique) were determined for heart rate (HR, ECG), arterial pressure (AP, Finapres), radial artery flow (RF, Hokansen) and respiration rate (RR, BoMed). Spectra were obtained from 2.5 minute segments during control, lower body negative pressure (minus 10, 20, 30, 40, 50 mmHg) and recovery. Bedrest increased HR spectra power in the low frequency (.001 to .041 Hz) range, increased RF power in the low and mid (.04 to .18 Hz) range and increased AP power in the high (.18 to .50 Hz) frequency range. Increasing levels of lower body negative pressure decreased HR power and increased RF power in the high frequency range and decreased AP power in the low frequency range. Since spectral power of HR in the high frequency range has been shown to indicate parasympathetically mediated regulation and power in the low and mid frequency ranges indicates a sympathetic / parasympathetic mixture, then both bedrest and lower body negative pressure appeared to shift sympathetic / parasympathetic balance toward sympathetic regulation of HR. The interpretation of the spectral content of AP and RF with respect to their autonomic origins remains unclear.
NASA Astrophysics Data System (ADS)
Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy
2018-01-01
Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Polar lunar power ring: Propulsion energy resource
NASA Technical Reports Server (NTRS)
Galloway, Graham Scott
1990-01-01
A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.
Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine
NASA Astrophysics Data System (ADS)
Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.
1993-01-01
The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.
The effect on the transmission loss of a double wall panel of using helium gas in the gap
NASA Astrophysics Data System (ADS)
Atwal, M. S.; Crocker, M. J.
The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.
The effect on the transmission loss of a double wall panel of using helium gas in the gap
NASA Technical Reports Server (NTRS)
Atwal, M. S.; Crocker, M. J.
1985-01-01
The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.
Quantitative electroencephalographic studies of cue-induced cocaine craving.
Reid, Malcolm S; Prichep, Leslie S; Ciplet, Debra; O'Leary, Siobhan; Tom, MeeLee; Howard, Bryant; Rotrosen, John; John, E Roy
2003-07-01
Quantitative electroencephalographic (qEEG) profiles were studied in cocaine dependent patients in response to cocaine cue exposure. Using neurometric analytical methods, the spectral power of each primary bandwidth was computed and topographically mapped. Additional measures of cue-reactivity included cocaine craving, anxiety and related subjective ratings, and physiological measures of skin conductance, skin temperature, heart rate, and plasma cortisol and HVA levels. Twenty-four crack cocaine-dependent subjects were tested for their response to tactile, visual and audio cues related to crack cocaine or neutral items. All measures were analyzed for significant difference by comparing cocaine versus neutral cue conditions. An increase in cocaine craving, anxiety and related subjective ratings, elevated plasma cortisol levels, and a decrease in skin temperature, were induced by cocaine cue exposure. Distinct qEEG profiles were found during the paraphernalia handling and video viewing (eyes-open), and guided imagery (eyes-closed), phases of cocaine cue exposure. During paraphernalia handling and video viewing, there was an increase in beta activity accompanied by a drop in delta power in the frontal cortex, and an increase in beta mean frequency in the occipital cortex. In contrast, during guided imagery there was an increase in theta and delta power in the frontal cortex, and an increase in beta power in the occipital cortex. Correlation analyses revealed that cue-induced anxiety during paraphernalia handling and video viewing was associated with reduced high frequency and enhanced low frequency EEG activity. These findings demonstrated that EEG activation during cue-induced cocaine craving may be topographically mapped and subsequently analyzed for functional relevance.
Changes in European wind energy generation potential within a 1.5 °C warmer world
NASA Astrophysics Data System (ADS)
Hosking, J. Scott; MacLeod, D.; Phillips, T.; Holmes, C. R.; Watson, P.; Shuckburgh, E. F.; Mitchell, D.
2018-05-01
Global climate model simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project were used to assess how wind power generation over Europe would change in a future world where global temperatures reach 1.5 °C above pre-industrial levels. Comparing recent historical (2006–2015) and future 1.5 °C forcing experiments highlights that the climate models demonstrate a northward shift in the Atlantic jet, leading to a significant (p < 0.01) increase in surface winds over the UK and Northern Europe and a significant (p < 0.05) reduction over Southern Europe. We use a wind turbine power model to transform daily near-surface (10 m) wind speeds into daily wind power output, accounting for sub-daily variability, the height of the turbine, and power losses due to transmission and distribution of electricity. To reduce regional model biases we use bias-corrected 10 m wind speeds. We see an increase in power generation potential over much of Europe, with the greatest increase in load factor over the UK of around four percentage points. Increases in variability are seen over much of central and northern Europe with the largest seasonal change in summer. Focusing on the UK, we find that wind energy production during spring and autumn under 1.5 °C forcing would become as productive as it is currently during the peak winter season. Similarly, summer winds would increase driving up wind generation to resemble levels currently seen in spring and autumn. We conclude that the potential for wind energy in Northern Europe may be greater than has been previously assumed, with likely increases even in a 1.5 °C warmer world. While there is the potential for Southern Europe to see a reduction in their wind resource, these decreases are likely to be negligible.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Kulagina, M. M.; Zhukov, A. E.
2017-09-01
The influence of the modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied experimentally for devices having various external losses. It is shown that in the case of short cavities (high external loss), there is an increase in the lasing power component corresponding to the ground-state optical transitions of QDs as the p-doping level grows. However, in the case of long cavities (small external loss), higher dopant concentrations may have an opposite effect on the output power. Based on these observations, an optimal design of laser geometry and an optimal doping level are discussed.
Postactivation potentiation: effect of various recovery intervals on bench press power performance.
Ferreira, Sandra Lívia de Assis; Panissa, Valéria Leme Gonçalves; Miarka, Bianca; Franchini, Emerson
2012-03-01
Postactivation potentiation (PAP) is a strategy used to improve performance in power activities. The aim of this study was to determine if power during bench press exercise was increased when preceded by 1 repetition maximum (1RM) in the same exercise and to determine which time interval could optimize PAP response. For this, 11 healthy male subjects (age, 25 ± 4 years; height, 178 ± 6 cm; body mass, 74 ± 8 kg; bench press 1RM, 76 ± 19 kg) underwent 6 sessions. Two control sessions were conducted to determine both bench press 1RM and power (6 repetitions at 50% 1RM). The 4 experimental sessions were composed of a 1RM exercise followed by power sets with different recovery intervals (1, 3, 5, and 7 minutes), performed on different days, and determined randomly. Power values were measured via Peak Power equipment (Cefise, Nova Odessa, São Paulo, Brazil). The conditions were compared using an analysis of variance with repeated measures, followed by a Tukey test. The significance level was set at p < 0.05. There was a significant increase in PAP in concentric contractions after 7 minutes of recovery compared with the control and 1-minute recovery conditions (p < 0.05). Our results indicated that 7 minutes of recovery has generated an increase in PAP in bench press and that such a strategy could be applied as an interesting alternative to enhance the performance in tasks aimed at increasing upper-body power performance.
Buu, Anne; Williams, L Keoki; Yang, James J
2018-03-01
We propose a new genome-wide association test for mixed binary and continuous phenotypes that uses an efficient numerical method to estimate the empirical distribution of the Fisher's combination statistic under the null hypothesis. Our simulation study shows that the proposed method controls the type I error rate and also maintains its power at the level of the permutation method. More importantly, the computational efficiency of the proposed method is much higher than the one of the permutation method. The simulation results also indicate that the power of the test increases when the genetic effect increases, the minor allele frequency increases, and the correlation between responses decreases. The statistical analysis on the database of the Study of Addiction: Genetics and Environment demonstrates that the proposed method combining multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests.
Power inversion design for ocean wave energy harvesting
NASA Astrophysics Data System (ADS)
Talebani, Anwar N.
The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.
Governing University Strategy: Perceptions and Practice of Governance and Management Roles
ERIC Educational Resources Information Center
Rytmeister, Catherine
2009-01-01
Intertwined trends of massification, internationalisation and marketisation constitute and drive change in higher education at all levels. Consequences at the institutional level include: increased competition, adoption of corporate management forms, accrual of power to executive management, and greater emphasis on strategy. As Government policy…
A Low-Power Instruction Issue Queue for Microprocessors
NASA Astrophysics Data System (ADS)
Watanabe, Shingo; Chiyonobu, Akihiro; Sato, Toshinori
Instruction issue queue is a key component which extracts instruction level parallelism (ILP) in modern out-of-order microprocessors. In order to exploit ILP for improving processor performance, instruction queue size should be increased. However, it is difficult to increase the size, since instruction queue is implemented by a content addressable memory (CAM) whose power and delay are much large. This paper introduces a low power and scalable instruction queue that replaces the CAM with a RAM. In this queue, instructions are explicitly woken up. Evaluation results show that the proposed instruction queue decreases processor performance by only 1.9% on average. Furthermore, the total energy consumption is reduced by 54% on average.
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1971-01-01
Calculation results are reviewed of the radiant heat transfer characteristics in the fuel and buffer gas regions of a nuclear light bulb engine based on the transfer of energy by thermal radiation from gaseous uranium fuel in a neon vortex, through an internally cooled transparent wall, to seeded hydrogen propellant. The results indicate that the fraction of UV energy incident on the transparent walls increases with increasing power level. For the reference engine power level of 4600 megw, it is necessary to employ space radiators to reject the UV radiated energy absorbed by the transparent walls. This UV energy can be blocked by employing nitric oxide and oxygen seed gases in the fuel and buffer gas regions. However, this results in increased UV absorption in the buffer gas which also requires space radiators to reject the heat load.
The effect of exposure to SO2 on the respiratory system of power-station workers.
Froom, P; Sackstein, G; Cohen, C; Lerman, Y; Kristal-Boneh, E; Ribak, J
1998-01-01
Sulfur dioxide (SO2) is generally recognized as a respiratory irritant, but its effects if any at low levels of exposure are uncertain. We studied 38 power station technicians exposed to 0.8 ppm (parts per million) 8-h weighted levels of sulfur dioxide, and compared them to workers performing similar tasks without such exposure. Those exposed complained 5.8 times more frequently of cough (95% CI =1.8-20.6, P < 0.001), and also had significantly more sputum production. There was also a trend for increasing prevalence of dyspnea. On the other hand there was no decrease in pulmonary function test values. In the eight exposed subjects who complained of dyspnea, there was a significant decrease in pulmonary flow values. We conclude that power station workers exposed to low levels of SO2 have increased respiratory symptoms, and deserve compensation if their symptoms become chronic. The pulmonary function tests were not different from the control subjects, but there may be a small group who are prone to long-term morbidity. Additional studies are warranted to confirm our findings, and to define immediate and long-term morbidity due to low exposure to SO2.
Wired: impacts of increasing power line use by a growing bird population
NASA Astrophysics Data System (ADS)
Moreira, Francisco; Encarnação, Vitor; Rosa, Gonçalo; Gilbert, Nathalie; Infante, Samuel; Costa, Julieta; D'Amico, Marcello; Martins, Ricardo C.; Catry, Inês
2017-02-01
Power lines are increasingly widespread across many regions of the planet. Although these linear infrastructures are known for their negative impacts on bird populations, through collision and electrocution, some species take advantage of electricity pylons for nesting. In this case, estimation of the net impact of these infrastructures at the population level requires an assessment of trade-offs between positive and negative impacts. We compiled historical information (1958-2014) of the Portuguese white stork Ciconia ciconia population to analyze long-term changes in numbers, distribution range and use of nesting structures. White stork population size increased 660% up to 12000 breeding pairs between 1984 and 2014. In the same period, the proportion of nests on electricity pylons increased from 1% to 25%, likely facilitated by the 60% increase in the length of the very high tension power line grid (holding the majority of the nests) in the stork’s distribution range. No differences in breeding success were registered for storks nesting on electricity pylons versus other structures, but a high risk of mortality by collision and electrocution with power lines was estimated. We discuss the implications of this behavioral change, and of the management responses by power line companies, both for stork populations and for managers.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant; Dale, Larry; Larsen, Peter
2011-06-22
This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end ofmore » the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.« less
Advances in space power research and technology at the National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.; Ambrus, J. H.
1981-01-01
Progress and plans in various areas of the NASA Space Power Program are discussed. Solar cell research is narrowed to GaAs, multibandgap, and thin Si cells for arrays in planar and concentrator configurations, with further work to increase cell efficiency, radiation hardness, develop flexible encapsulants, and reduce cost. Electrochemical research is concentrating on increasing energy and power density, cycle and wet stand life, reliability and cost reduction of batteries. Further development of the Ni-H2 battery and O2-H2 fuel cell to multihundred kW with a 5 year life and 30,000 cycles is noted. Basic research is ongoing for alkali metal anodes for high energy density secondary cells. Nuclear thermoelectric propulsion is being developed for outer planets exploration propulsion systems, using Si-Ge generators, and studies with rare earth chalcogenides and sulfides are mentioned. Power Systems Management seeks to harmonize increasing power supply levels with inner and outer spacecraft environments, circuits, demands, and automatic monitoring. Concomitant development of bipolar transistors, an infrared rectenna, spacecraft charging measurement, and larger heat pipe transport capacity are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.
Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is thatmore » additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.« less
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, P.S.
The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% frommore » the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.« less
Usuda, Haruki; Miura, Nobuhiko; Fukuishi, Nobuyuki; Nonogaki, Tsunemasa; Onosaka, Satomi
2017-01-01
The aim of this study was to determine whether calcium potentiates acute carbon tetrachloride (CCl4) -induced toxicity. Elevated calcium levels were induced in mice by pre-treatment with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to induce hypercalcemia in human and animal models. As seen previously, mice injected with CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotransferase, and creatinine; transient body weight loss; and increased lipid peroxidation along with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of these animals with V.D3 caused further elevation of the values of these liver functional markers without altering kidney functional markers; continued weight loss; a lower lethal threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kidney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hypercalcemia transiently (within 3 h of injection), our results suggest that calcium enhances the CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress. PMID:28448545
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress
NASA Astrophysics Data System (ADS)
Jinkui, FENG; Decheng, WANG; Changyong, SHAO; Lili, ZHANG; Xin, TANG
2018-03-01
The effect of different cold plasma treatments on the germination and seedling growth of alfalfa (Medicago sativa L.) seeds under simulated drought stress conditions was investigated. Polyethyleneglycol-6000 (PEG 6000)with the mass fraction of 0% (purified water), 5%, 10%, and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with 15 different power levels ranged between 0-280 W for 15 s. The germination potential, germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential, germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20% respectively compared to CK0-0, CK5-0, CK10-0, and CK15-0 (the control sample under 0%, 5%, 10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research. Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations.
Effect of 940 nm low-level laser therapy on osteogenesis in vitro
NASA Astrophysics Data System (ADS)
Jawad, Mohammed Mahmood; Husein, Adam; Azlina, Ahmad; Alam, Mohammad Khursheed; Hassan, Rozita; Shaari, Rumaizi
2013-12-01
Bone regeneration is essential in medical treatment, such as in surgical bone healing and orthodontics. The aim of this study is to examine the effect of different powers of 940 nm diode low-level laser treatment (LLLT) on osteoblast cells during their proliferation and differentiation stages. A human fetal osteoblast cell line was cultured and treated with LLLT. The cells were divided into experimental groups according to the power delivered and periods of exposure per day for each laser power. The (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to determine cell proliferation. Both alkaline phosphatase and osteocalcin activity assays were assessed for cell differentiation. All treatment groups showed a significant increase in cell proliferation and differentiation compared to the control group. Regarding the exposure time, the subgroups treated with the LLLT for 6 min showed higher proliferation and differentiation rates for the powers delivered, the 300-mW LLLT group significantly increased the amount of cell proliferation. By contrast, the 100 and 200 mW groups showed significantly greater amounts of cell differentiation. These results suggest that the use of LLLT may play an important role in stimulating osteoblast cells for improved bone formation.
Muscular Strength and Power in 3-to 7-Year-Old Children.
Fry, Andrew C; Irwin, Carol C; Nicoll, Justin X; Ferebee, David E
2015-08-01
To determine absolute and relative (adjusted for body mass) strength, mean power, and mean velocity for upper and lower body resistance exercises, forty-seven young boys and girls participated in maximal strength testing. Healthy young boys and girls, ages 3- to 7-years old, were tested for one-repetition maximum (1-RM) strength, and 70% of 1-RM to determine mean power and mean velocity on the chest press and leg press exercises. Adult weight machines were modified to accommodate the smaller size and lower strength levels of the children. A 2 × 4 (sex × age) ANOVA was used to determine age and sex differences in performance. No interaction or sex differences were observed for any variable at any age. 1-RM strength, mean power, and mean velocity significantly increased across ages (p ≤ .05). When adjusted for body mass, the changes were insignificant, with one exception. Relative mean power for the bench press increased with age. Data indicated children from 3-7 years of age are capable of performing strength and power tests, but may require more attempts at maximal loads compared with adults. It appears that muscular strength and velocity during this stage of development are primarily dependent on increasing body mass, whereas power is influenced by additional variable(s).
Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian
2012-05-01
A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.
Performance calculations for 200-1000 MWe MHD/steam power plants
NASA Technical Reports Server (NTRS)
Staiger, P. J.
1981-01-01
The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, S. M., E-mail: haidar@imr.tohoku.ac.jp; Lustikova, J.; Shiomi, Y.
2015-10-12
We have investigated microwave power dependence of dc voltage generated upon ferromagnetic resonance in a La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrRuO{sub 3} epitaxial bilayer film at room temperature. With increasing microwave power above ∼75 mW, the magnitude of the voltage signal decreases as the sample temperature approaches the Curie temperature of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} due to heating effects. By analyzing the dependence of the voltage signal on the direction of the magnetic field, we show that with increasing microwave power the contribution from the inverse spin Hall effect becomes more dominant than that from the anisotropic magnetoresistance effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert; Bennion, Kevin
This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components.more » WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.« less
Performance analysis of Aloha networks with power capture and near/far effect
NASA Astrophysics Data System (ADS)
McCartin, Joseph T.
1989-06-01
An analysis is presented for the throughput characteristics for several classes of Aloha packet networks. Specifically, the throughput for variable packet length Aloha utilizing multiple power levels to induce receiver capture is derived. The results are extended to an analysis of a selective-repeat ARQ Aloha network. Analytical results are presented which indicate a significant increase in throughput for a variable packet network implementing a random two power level capture scheme. Further research into the area of the near/far effect on Aloha networks is included. Improvements in throughput for mobile radio Aloha networks which are subject to the near/far effect are presented. Tactical Command, Control and Communications (C3) systems of the future will rely on Aloha ground mobile data networks. The incorporation of power capture and the near/far effect into future tactical networks will result in improved system analysis, design, and performance.
Reliability Assessment Approach for Stirling Convertors and Generators
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Schreiber, Jeffrey G.; Zampino, Edward; Best, Timothy
2004-01-01
Stirling power conversion is being considered for use in a Radioisotope Power System for deep-space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power. Quantifying the reliability of a Radioisotope Power System that utilizes Stirling power conversion technology is important in developing and demonstrating the capability for long-term success. A description of the Stirling power convertor is provided, along with a discussion about some of the key components. Ongoing efforts to understand component life, design variables at the component and system levels, related sources, and the nature of uncertainties is discussed. The requirement for reliability also is discussed, and some of the critical areas of concern are identified. A section on the objectives of the performance model development and a computation of reliability is included to highlight the goals of this effort. Also, a viable physics-based reliability plan to model the design-level variable uncertainties at the component and system levels is outlined, and potential benefits are elucidated. The plan involves the interaction of different disciplines, maintaining the physical and probabilistic correlations at all the levels, and a verification process based on rational short-term tests. In addition, both top-down and bottom-up coherency were maintained to follow the physics-based design process and mission requirements. The outlined reliability assessment approach provides guidelines to improve the design and identifies governing variables to achieve high reliability in the Stirling Radioisotope Generator design.
Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.
Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.
Barmashenko, B D; Rosenwaks, S
2012-09-01
A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20 m/s.
EEG alpha power and creative ideation☆
Fink, Andreas; Benedek, Mathias
2014-01-01
Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals’ creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity. PMID:23246442
Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.
Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio
2005-03-01
To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.
Steinert, Roger F; Schafer, Mark E
2006-02-01
To evaluate and compare ultrasonic turbulence created by conventional and micropulse ultrasound technology. Sonora Medical Systems, Longmont, Colorado, USA. A high-resolution digital ultrasound probe imaged the zone around a phacoemulsification tip. Doppler analysis allowed determination of flow. The fluid velocity was measured at 4 levels of ultrasound power at a constant flow, comparing the ultrasonic conditions of continuous energy to WhiteStar micropulses. In addition to the normal baseline irrigation and aspiration, fluid movement was detected directly below the phaco tip, produced by a nonlinear effect known as acoustic streaming. Acoustic streaming increased with increased phacoemulsification power for both conditions. At each of the 4 levels of power, fluid velocity away from the tip was less with micropulse technology than with continuous phacoemulsification. The demonstrated decrease in acoustic streaming flow away from the phaco tip with Sovereign WhiteStar micropulse technology compared to conventional ultrasound provides an objective explanation for clinical observations of increased stability of nuclear fragments at the tip and less turbulence in the anterior chamber during phacoemulsification. This methodology can be used to examine and compare fluid flow and turbulence under a variety of clinically relevant conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishofberger, Kip A.
Within Building 19 of TA-53, a screen room has been evaluated for use as a reverb chamber (with deep gratitude to Dale Dalmas and Greg Dale for their assistance). With minimal additional sealing of the chamber, we expect the Q to increase even more, and thus field levels for the same RF source power. Future studies need to determine leakage field levels, which will define maximum achievable field levels.
NASA Astrophysics Data System (ADS)
Joyner, Claude Russell; Fowler, Bruce; Matthews, John
2003-01-01
In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.
Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Todd; Botterud, Audun
2015-05-01
We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less
Advanced development of a programmable power processor
NASA Technical Reports Server (NTRS)
Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.
1980-01-01
The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.
NASA Astrophysics Data System (ADS)
Besset, M.; Anthony, E.; Sabatier, F.
2016-12-01
The influence of physical processes on river deltas has long been identified, mainly on the basis of delta morphology. A cuspate delta is considered as wave-dominated, a delta with finger-like extensions is characterized as river-dominated, and a delta with estuarine re-entrants is considered tide-dominated (Galloway, 1975). The need for a more quantitative classification is increasingly recognized, and is achievable through quantified combinations, a good example being Syvitski and Saito (2007) wherein the joint influence of marine power - wave and tides - is compared to that of river influence. This need is further justified as deltas become more and more vulnerable. Going forward from the Syvitski and Saito (2007) approach, we confront, from a large database on 60 river deltas, the maximum potential power of waves and the tidal range (both representing marine power), and the specific stream power and river sediment supply reflecting an increasingly human-impacted river influence. The results show that 45 deltas (75%) have levels of marine power that are significantly higher than those of specific stream power. Five deltas have sufficient stream power to counterbalance marine power but a present sediment supply inadequate for them to be statistically considered as river-dominated. Six others have a sufficient sediment supply but a specific stream power that is not high enough for them to be statistically river-dominated. A major manifestation of the interplay of these parameters is accelerated delta erosion worldwide, shifting the balance towards marine power domination. Deltas currently eroding are mainly influenced by marine power (93%), and small deltas (< 300 km2 of deltaic protuberance) are the most vulnerable (82%). These high levels of erosion domination, compounded by accelerated subsidence, are related to human-induced sediment supply depletion and changes in water discharge in the face of the sediment-dispersive capacity of waves and currents.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Multiple Cylinder Free-Piston Stirling Machinery
NASA Astrophysics Data System (ADS)
Berchowitz, David M.; Kwon, Yong-Rak
In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.
Islanding the power grid on the transmission level: less connections for more security
Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard
2016-01-01
Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids. PMID:27713509
Islanding the power grid on the transmission level: less connections for more security
NASA Astrophysics Data System (ADS)
Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard
2016-10-01
Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids.
Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency
NASA Astrophysics Data System (ADS)
Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.
2011-05-01
This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.
Experimental design, power and sample size for animal reproduction experiments.
Chapman, Phillip L; Seidel, George E
2008-01-01
The present paper concerns statistical issues in the design of animal reproduction experiments, with emphasis on the problems of sample size determination and power calculations. We include examples and non-technical discussions aimed at helping researchers avoid serious errors that may invalidate or seriously impair the validity of conclusions from experiments. Screen shots from interactive power calculation programs and basic SAS power calculation programs are presented to aid in understanding statistical power and computing power in some common experimental situations. Practical issues that are common to most statistical design problems are briefly discussed. These include one-sided hypothesis tests, power level criteria, equality of within-group variances, transformations of response variables to achieve variance equality, optimal specification of treatment group sizes, 'post hoc' power analysis and arguments for the increased use of confidence intervals in place of hypothesis tests.
Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas
2015-12-01
Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.
Extending the wavelength range in the Oclaro high-brightness broad area modules
NASA Astrophysics Data System (ADS)
Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert
2010-02-01
The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.
NASA Technical Reports Server (NTRS)
Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.
1963-01-01
A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.
Universal Power Law of the Gravity Wave Manifestation in the AIM CIPS Polar Mesospheric Cloud Images
NASA Astrophysics Data System (ADS)
Rong, P. P.; Yue, J.; Russell, J. M., III; Siskind, D. E.; Randall, C. E.
2017-12-01
A large ensemble of gravity waves (GWs) resides in the PMCs and we aim to extract the universal law that governs the wave display throughout the GW population. More specifically, we examined how wave display morphology and clarity level varies throughout the wave population manifested through the PMC albedo data. Higher clarity refers to more distinct exhibition of the features which often correspond to larger variances and better organized nature. A gravity wave tracking algorithm is designed and applied to the PMC albedo data taken by the AIM Cloud Imaging and Particle Size (CIPS) instrument to obtain the gravity wave detections throughout the two northern summers in 2007 and 2010. The horizontal wavelengths in the range of 20-60km are the focus of the study because they are the most commonly observed and readily captured in the CIPS orbital strips. A 1-dimensional continuous wavelet transform (CWT) is applied to PMC albedo along all radial directions within an elliptical region that has a radius of 400 km and an axial ratio of 0.65. The center of the elliptical region moves around the CIPS orbital strips so that waves at different locations and orientations can be captured. It shows that the CWT albedo power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution via removing the dependence of the albedo power on the background cloud brightness because we tend to examine the wave morphology beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution, and at three brightness levels, to represent the high, medium, and low albedo power categories. For these cases the albedo CWT power spectra follow exponential decay toward smaller scales. The high albedo power has the most rapid decay (i.e., exponent=-3.2) and corresponds to the most distinct wave display. Overall higher albedo power and more rapid decay both contributed to the more distinct display. The wave display becomes increasingly more blurry for the medium and low power categories that hold the exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can be collapsed irrespective of the brightness levels but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.
Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E
2009-10-01
The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.
NASA Astrophysics Data System (ADS)
Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz
2018-04-01
Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.
Typical calculation and analysis of carbon emissions in thermal power plants
NASA Astrophysics Data System (ADS)
Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang
2018-03-01
On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.
On the impact of relatedness on SNP association analysis.
Gross, Arnd; Tönjes, Anke; Scholz, Markus
2017-12-06
When testing for SNP (single nucleotide polymorphism) associations in related individuals, observations are not independent. Simple linear regression assuming independent normally distributed residuals results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of type I error is often successfully corrected by genomic control. However, this reduces the power of the test when relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the consequences of variance inflation on hypothesis testing and compare the results with those of genomic control correction. We apply the developed theory to the publicly available HapMap trio data (N=129), the Sorbs (a self-contained population with N=977 characterised by a cryptic relatedness structure) and synthetic family studies with different sample sizes (ranging from N=129 to N=999) and different degrees of relatedness. We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability. Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation while the opposite holds for larger significance levels. When genomic control is applied, type I error is preserved while power decreases rapidly with increasing variance inflation. Stronger relatedness as well as higher heritability result in increased variance of the effect estimate of simple linear regression analysis. While type I error rates are generally inflated, the behaviour of power is more complex since power can be increased or reduced in dependence on relatedness and the heritability of the phenotype. Genomic control cannot be recommended to deal with inflation due to relatedness. Although it preserves type I error, the loss in power can be considerable. We provide a simple formula for estimating variance inflation given the relatedness structure and the heritability of a trait of interest. As a rule of thumb, variance inflation below 1.05 does not require correction and simple linear regression analysis is still appropriate.
Low Mass Muscle Actuators (LoMMAs) Using Electroactive Polymers
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Xue, T.; Joffe, B.; Lih, S. S.; Willis, P.; Simpson, J.; Smith, J.; Clair, T.; Shahinpoor, M.
1997-01-01
NASA is using actuation devices for many space applications and there is an increasing need to cut their cost as well as reduce their size, mass, and power consumption. Existing transducing actuators, such as piezoceramics, are inducing limited displacement levels. Potentially, electroactive polymers (so called EAP) can be formed as inexpensive, low-mass, low-power, miniature muscle actuators that are superior to the widely used actuators.
Human responses to upright tilt: a window on central autonomic integration
NASA Technical Reports Server (NTRS)
Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.
1999-01-01
1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.
Human responses to upright tilt: a window on central autonomic integration.
Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L
1999-06-01
1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.
OMI air-quality monitoring over the Middle East
NASA Astrophysics Data System (ADS)
Barkley, Michael P.; González Abad, Gonzalo; Kurosu, Thomas P.; Spurr, Robert; Torbatian, Sara; Lerot, Christophe
2017-04-01
Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of nitrogen dioxide (NO2), formaldehyde (HCHO), sulfur dioxide (SO2), and glyoxal (CHOCHO), we have conducted a robust and detailed time series analysis to assess changes in local air quality for over 1000 locations (focussing on urban, oil refinery, oil port, and power plant targets) over the Middle East for 2005-2014. Apart from NO2, which is highest over urban locations, average tropospheric column levels of these trace gases are highest over oil ports and refineries. The highest average pollution levels over urban settlements are typically in Bahrain, Kuwait, Qatar, and the United Arab Emirates. We detect 278 statistically significant and real linear NO2 trends in total. Over urban areas NO2 increased by up to 12 % yr-1, with only two locations showing a decreasing trend. Over oil refineries, oil ports, and power plants, NO2 increased by about 2-9 % yr-1. For HCHO, 70 significant and real trends were detected, with HCHO increasing by 2-7 % yr-1 over urban settlements and power plants and by about 2-4 % yr-1 over refineries and oil ports. Very few SO2 trends were detected, which varied in direction and magnitude (23 increasing and 9 decreasing). Apart from two locations where CHOCHO is decreasing, we find that glyoxal tropospheric column levels are not changing over the Middle East. Hence, for many locations in the Middle East, OMI observes a degradation in air quality over 2005-2014. This study therefore demonstrates the capability of OMI to generate long-term air-quality monitoring at local scales over this region.
Conceptual design of a 500 watt solar AMTEC space power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.; Harty, R.B.
1995-12-31
Numerous design studies have been completed on Radioisotope powered Alkali Metal Thermal to Electric Converter (RAMTEC) power systems demonstrating their substantial increase in performance. Prior to recent advances in AMTEC technology and Thermal Energy Storage (TES), coupling AMTEC converters with a solar concentrator did not increase the performance of solar powered space power systems. This paper describes a conceptual design of an innovative, low cost, reliable, low mass, long life 500 watt Solar AMTEC (SAMTEC) power system, and the predicted system performance. The concept uses innovative, high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated withmore » an individual TES unit. These multi-tube AMTEC cells are identical to the AMTEC cells designed for radioisotope powered systems. The TES used in this conceptual design is the LiF-22%CaF{sub 2} unit currently being developed at NASA Lewis Research Center (LeRC) for the Solar Dynamic Ground Test Demonstration (SDGTD) Program. The system was designed to provide 500 watts of electrical power at 28 volts to a payload in Low Earth Orbit (LEO, 800 km, 28.5{degree} inclination) for a minimum lifetime of 5 years. The SAMTEC power system is predicted to have a specific power k of 5.3 to 8.9 W(e)/kg (including the concentrator, receiver, AMTEC cells, gimbals and drives, structure, power processing and control, and a 30% mass contingency) at the 500 watt power level, and 12 to 17 W(e)/kg at the 5,000 watt power level. The SAMTEC system, including all of the components listed above, is anticipated to cost $1,000/W(e) once development is complete and production begins. The SAMTEC system provides 92% of its Beginning of Life (BOL) power after a 5 year period in LEO, and SAMTEC systems should provide 10 to 15 years of life in LEO. Current AMTEC cells have demonstrated 18% efficiency in the laboratory and have been heated radiatively, with propane flames and electrical resistance heaters.« less
Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung
2016-05-01
In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern.
E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions.
Farsalinos, Konstantinos E; Voudris, Vassilis; Poulas, Konstantinos
2015-08-01
Aldehydes are emitted by electronic cigarettes due to thermal decomposition of liquid components. Although elevated levels have been reported with new-generation high-power devices, it is unclear whether they are relevant to true exposure of users (vapers) because overheating produces an unpleasant taste, called a dry puff, which vapers learn to avoid. The aim was to evaluate aldehyde emissions at different power levels associated with normal and dry puff conditions. Two customizable atomizers were prepared so that one (A1) had a double wick, resulting in high liquid supply and lower chance of overheating at high power levels, while the other (A2) was a conventional setup (single wick). Experienced vapers took 4-s puffs at 6.5 watts (W), 7.5 W, 9 W and 10 W power levels with both atomizers and were asked to report whether dry puffs were generated. The atomizers were then attached to a smoking machine and aerosol was trapped. Clinic office and analytical chemistry laboratory in Greece. Seven experienced vapers. Aldehyde levels were measured in the aerosol. All vapers identified dry puff conditions at 9 W and 10 W with A2. A1 did not lead to dry puffs at any power level. Minimal amounts of aldehydes per 10 puffs were found at all power levels with A1 (up to 11.3 µg for formaldehyde, 4.5 µg for acetaldehyde and 1.0 µg for acrolein) and at 6.5 W and 7.5 W with A2 (up to 3.7 µg for formaldehyde, 0.8 µg for acetaldehyde and 1.3 µg for acrolein). The levels were increased by 30 to 250 times in dry puff conditions (up to 344.6 µg for formaldehyde, 206.3 µg for acetaldehyde and 210.4 µg for acrolein, P < 0.001), while acetone was detected only in dry puff conditions (up to 22.5 µg). Electronic cigarettes produce high levels of aldehyde only in dry puff conditions, in which the liquid overheats, causing a strong unpleasant taste that e-cigarette users detect and avoid. Under normal vaping conditions aldehyde emissions are minimal, even in new-generation high-power e-cigarettes. © 2015 Society for the Study of Addiction.
Energy Storage on the Grid and the Short-term Variability of Wind
NASA Astrophysics Data System (ADS)
Hittinger, Eric Stephen
Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and profitability of wind farms. We find that market scenarios using existing price signals to motivate wind to reduce variability allow wind generators to participate in variability reduction when the market conditions are favorable, and can reduce short-term (30-minute) fluctuations while having little effect on wind farm revenue.
The Payout Method: A Spending Policy That Enhances Return.
ERIC Educational Resources Information Center
Morrell, Louis R.
1991-01-01
College and university business officers are encouraged to implement an endowment distribution method that increases the amount distributed by a fixed annual percentage based on asset mix, inflation, and expected return. Such a payout system provides a predictable, steadily increasing level of endowment income yet maintains the purchasing power of…
Multistage quantum absorption heat pumps.
Correa, Luis A
2014-04-01
It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.
Wide spectral band beam analysis
NASA Astrophysics Data System (ADS)
Aharon, Oren
2015-03-01
The reality in laser beam profiling is that measurements are performed over a wide spectrum of wavelengths and power ranges. Many applications use multiple laser wavelengths with very different power levels, a fact which dictates a need for a better measuring tool. Rapid progress in the fiber laser area has increased the demand for lasers in the wavelength range of 900 - 1030 nm, while the telecommunication market has increased the demand for wavelength range of 1300nm - 1600 nm, on the other hand the silicone chip manufacturing and mass production requirements tend to lower the laser wavelength towards the 190nm region. In many cases there is a need to combine several lasers together in order to perform a specific task. A typical application is to combine one visible laser for pointing, with a different laser for material processing with a very different wavelength and power level. The visible laser enables accurate pointing before the second laser is operated. The beam profile of the intensity distribution is an important parameter that indicates how a laser beam will behave in an application. Currently a lab, where many different lasers are used, will find itself using various laser beam profilers from several vendors with different specifications and accuracies. It is the propose of this article to present a technological breakthrough in the area of detectors, electronics and optics allowing intricate measurements of lasers with different wavelength and with power levels that vary many orders of magnitude by a single beam profiler.
Relative and absolute level populations in beam-foil-excited neutral helium
NASA Technical Reports Server (NTRS)
Davidson, J.
1975-01-01
Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.
Newspapers and Adult Understanding of Public Affairs: Two Longitudinal Community Studies.
ERIC Educational Resources Information Center
Tichenor, P. J.; And Others
Two longitudinal field studies of the process of information dissemination through newspapers were conducted on two different public affairs topics (regional planning and routing of a high voltage power line) in four communities to examine the role of newspapers in increasing levels of conflict and in creating greater levels of awareness and…
ERIC Educational Resources Information Center
Hedges, Larry V.; Hedberg, E. C.
2013-01-01
Background: Cluster-randomized experiments that assign intact groups such as schools or school districts to treatment conditions are increasingly common in educational research. Such experiments are inherently multilevel designs whose sensitivity (statistical power and precision of estimates) depends on the variance decomposition across levels.…
ERIC Educational Resources Information Center
Hedges, Larry V.; Hedberg, Eric C.
2013-01-01
Background: Cluster randomized experiments that assign intact groups such as schools or school districts to treatment conditions are increasingly common in educational research. Such experiments are inherently multilevel designs whose sensitivity (statistical power and precision of estimates) depends on the variance decomposition across levels.…
Marshall, Amanda C; Cooper, Nicholas R
2017-07-01
Cumulative experienced stress produces shortcomings in old adults' cognitive performance. These are reflected in electrophysiological changes tied to task execution. This study explored whether stress-related aberrations in older adults' electroencephalographic (EEG) activity were also apparent in the system at rest. To this effect, the amount of stressful life events experienced by 60 young and 60 elderly participants were assessed in conjunction with resting state power changes in the delta, theta, alpha, and beta frequencies during a resting EEG recording. Findings revealed elevated levels of delta power among elderly individuals reporting high levels of cumulative life stress. These differed significantly from young high and low stress individuals and old adults with low levels of stress. Increases of delta activity have been linked to the emergence of conditions such as Alzheimer's Disease and Mild Cognitive Impairment. Thus, a potential interpretation of our findings associates large amounts of cumulative stress with an increased risk of developing age-related cognitive pathologies in later life. Copyright © 2017 Elsevier B.V. All rights reserved.
Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications
NASA Technical Reports Server (NTRS)
Merryman, Stephen A.; Chen, Zheng
2000-01-01
Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.
Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
Supekar, Sarang D; Skerlos, Steven J
2015-10-20
This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.
Artiukhov, V G; Kalaev, V N; Sen'kevich, E V; Vakhtel', V M; Savko, A D
2004-01-01
Cytogenetic characteristics (mitotic activity, level and spectrum of pathological mitoses, nucleoly characteristics) of seed offspring of Quercus robur L. and Betula pendula Roth from Novovoronezh nuclear power station's 1-kilometer zone have been studied. It has been shown the change of time of passing though mitotic stages by cells, the increasing of bridges frequency occur in spectrum of mitotic aberrations (that shows activation of reparation systems), the change in nucleoly characteristics (the part of polynucleolaris cells increase in case of oak and decrease in case of birch, the rase of surface square of single nucleolies). The phenomena, mean above, probably, induced by synergic effects of Novovoronezh nuclear power station and environment pollutants. The most contaminated territories of 1-kilometer zone of Novovoronezh nuclear power station have been discovered by means of methods of cluster analysis of total cytogenetic characteristics of tree plants seed offspring.
Orbital Space Solar Power Option for a Lunar Village
NASA Technical Reports Server (NTRS)
Johnson, L.
2017-01-01
The international community is increasingly interested in returning humans to the Moon and this time establishing a permanent lunar base. There are several system level constraints that will drive the location for the base, chief among which are the need for continuous power and communications with the Earth. The NASA George C. Marshall Space Flight Center (MSFC) performed a study of placing an operational space based solar power station in lunar orbit to beam energy to the lunar base, or village, eliminating the need for the base to be located at the south pole or for it to be equipped with a fission power source.
Innovation on Energy Power Technology (1)
NASA Astrophysics Data System (ADS)
Nagano, Susumu; Kakishima, Masayoshi
After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.
Low-Complexity Adaptive Multisine Waveform Design for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Clerckx, Bruno; Bayguzina, Ekaterina
Far-field Wireless Power Transfer (WPT) has attracted significant attention in the last decade. Recently, channel-adaptive waveforms have been shown to significantly increase the DC power level at the output of the rectifier. However the design of those waveforms is generally computationally complex and does not lend itself easily to practical implementation. We here propose a low-complexity channel-adaptive multisine waveform design whose performance is very close to that of the optimal design. Performance evaluations confirm the benefits of the new design in various rectifier topologies.
AeroMACS Interference Simulations for Global Airports
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Apaza, Rafael D.
2012-01-01
Ran 18 scenarios with Visualyse Professional interference software (presented 2 most realistic scenarios). Scenario A: 85 large airports can transmit 1650 mW on each of 11 channels. 173 medium airports can transmit 825 mW on each of 6 channels. 5951 small airports can transmit 275 mW on one channel. Reducing power allowed for small airports in Scenario B increases allowable power for large and medium airports, but should not be necessary as Scenario A levels are more than adequate. These power limitations are conservative because we are assuming worst case with 100% duty.
Effects of noradrenaline on human vagal baroreflexes
NASA Technical Reports Server (NTRS)
Airaksinen, K. E.; Huikuri, H. V.; Huhti, L.; Kuusela, T. A.; Tahvanainen, K. U.; Tulppo, M.; Makikallio, T.; Eckberg, D. L.
2001-01-01
BACKGROUND: Baroreflex sensitivity (BRS) is depressed in conditions associated with high sympathetic nerve activity in proportion to circulating noradrenaline (NA) levels. Despite the prognostic importance of measurements of BRS in patients, there is little information on how high NA levels affect arterial baroreflex function. AIM: To understand better the role of NA in cardiovascular homeostasis. METHODS: We gave incremental intravenous NA infusions (at 50 and 100 ng/kg/min) to 12 healthy young men. We measured RR intervals and photoplethysmographic arterial pressures and estimated BRS with cross-spectral and sequence methods during metronome-guided respiration at 0.25 Hz. RESULTS: The high NA infusion rate significantly increased respiratory-frequency (0.15-0.40 Hz) RR interval spectral power and decreased low-frequency (0.04-0.15 Hz) systolic pressure spectral power compared with baseline levels (P < 0.05 for both). Cross-spectral BRS increased from an average (+/- SD) baseline level of 17.3+/-6.6 to 34.1+/-20.8 ms/mmHg at the high NA infusion rate (P < 0.05). Sequence BRS values did not increase significantly during NA infusions. The percentage of sequences with parallel changes in systolic pressures and RR intervals decreased progressively from a baseline level of 16.0+/-12.9 to 10.1+/-7.4 during the low NA infusion rate and to 6.2+/-6.2% during the high rate (P < 0.05 and 0.01, respectively). CONCLUSIONS: Increases in circulating NA to high physiological levels do not depress BRS but interfere with the close baroreflex-mediated coupling that is usually present between arterial pressure and heart rate.
Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers
NASA Astrophysics Data System (ADS)
Bou Sanayeh, Marwan
2017-05-01
The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.
Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie
2017-01-01
Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.
Transitioning to Zero Freshwater Withdrawal for Thermoelectric Generation
NASA Astrophysics Data System (ADS)
Macknick, J.; Tidwell, V. C.; Zemlick, K. M.; Sanchez, J.; Woldeyesus, T.
2013-12-01
The electricity sector is the largest withdrawer of freshwater in the United States. The primary demand for water from the electricity sector is for cooling thermoelectric power plants. Droughts and potential changes in water resources resulting from climate change pose important risks to thermoelectric power production in the United States. Power plants can minimize risk in a variety of ways. One method of reducing risk is to move away from dependency on freshwater resources. Here a scoping level analysis is performed to identify the technical tradeoffs and initial cost estimates for retrofitting all existing steam-powered generation to achieve zero freshwater withdrawal. Specifically, the conversion of existing freshwater-cooled plants to dry cooling or a wet cooling system utilizing non-potable water is considered. The least cost alternative is determined for each of the 1,178 freshwater using power plants in the United States. The use of non-potable water resources, such as municipal wastewater and shallow brackish groundwater, is considered based on the availability and proximity of those resources to the power plant, as well as the costs to transport and treat those resources to an acceptable level. The projected increase in levelized cost of electricity due to power plant retrofits ranges roughly from 0.20 to 20/MWh with a median value of 3.53/MWh. With a wholesale price of electricity running about 35/MWh, many retrofits could be accomplished at levels that would add less than 10% to current power plant generation expenses. Such retrofits could alleviate power plant vulnerabilities to thermal discharge limits in times of drought (particularly in the East) and would save 3.2 Mm3/d of freshwater consumption in watersheds with limited water availability (principally in the West). The estimated impact of retrofits on wastewater and brackish water supply is minimal requiring only a fraction of the available resource. Total parasitic energy requirements to achieve zero freshwater withdrawal are estimated at 140 million MWh or roughly 4.5% of the initial production from the retrofitted plants.
Scientific Challenges in Sustainable Energy Technology
NASA Astrophysics Data System (ADS)
Lewis, Nathan
2006-03-01
This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power on the needed scale by the 2050 timeframe. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
Alfimova, M V; Uvarova, L G
2008-06-01
EEG correlates of impairments in the processing of emotiogenic information which might reflect a genetic predisposition to schizophrenia were sought by studying the dynamics of EEG rhythm powers on presentation of neutral and emotional words in 36 patients with schizophrenia, 50 of their unaffected first-degree relatives, and 47 healthy subjects without any inherited predisposition to psychoses. In controls, passive hearing of neutral words produced minimal changes in cortical rhythms, predominantly in the form of increases in the power levels of slow and fast waves, while perception of emotional words was accompanied by generalized reductions in the power of the alpha and beta(1) rhythms and regionally specific suppression of theta and beta(2) activity. Patients and their relatives demonstrated reductions in power of alpha and beta(1) activity, with an increase in delta power on hearing both groups of words. Thus, differences in responses to neutral and emotional words in patients and their relatives were weaker, because of increased reactions to neutral words. These results may identify EEG reflections of pathology of involuntary attention, which is familial and, evidently, inherited in nature. No reduction in reactions to emotiogenic stimuli was seen in patients' families.
Epidemiology of Medicare Abuse: The Example of Power Wheelchairs R2
Goodwin, James S.; Nguyen-Oghalai, Tracy U.; Kuo, Yong-Fang; Ottenbacher, Kenneth J.
2007-01-01
Background Press reports and government investigations have uncovered widespread abuse in power wheelchair prescriptions reimbursed by Medicare, with specific targeting of minority neighborhoods for aggressive marketing. Objective We sought to determine the impact of neighborhood ethnic composition on power wheelchair prescriptions. Design The 5% non-cancer sample of Medicare recipients in the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database, from 1994–2001 Setting SEER regions Participants Individuals covered by Medicare living in SEER regions without a cancer diagnosis Measurements Individual characteristics (age, gender, ethnicity, justifying diagnosis, and comorbidity), primary diagnoses, neighborhood characteristics (% black, % Hispanic, % with <12 years education and median income) and SEER region Results The rate of power wheelchair prescriptions increased 33 fold from 1994 to 2001, with a shift over time from justifying diagnoses more closely tied to mobility impairment, such as strokes, to less specific medical diagnoses, such as osteoarthritis. In multilevel, multivariate analyses, individuals living in neighborhoods with higher percentages of blacks or Hispanics were more likely to receive power wheelchairs (OR= 1.09 for each 10% increase in black residents and 1.23 for each 10% increase in Hispanic residents), after controlling for ethnicity and other characteristics at the individual level. Conclusion These results support allegations that minority neighborhoods have been specifically targeted by marketers promoting power wheelchairs. PMID:17302658
Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images
NASA Astrophysics Data System (ADS)
Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.
2018-01-01
We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.
Jang, Kyungeun; Baek, Young Min
2018-04-16
This study investigated whether individuals with different socioeconomic status (SES) should be provided differently tailored health messages to promote healthy dietary behaviour (HDB). Prior research has suggested that people with different SESs tend to exhibit different types of beliefs about health, but it remains unclear how SES interacts with these beliefs to influence health outcomes. To better understand the differences in HDB between high- and low-SES populations and propose effective intervention strategies, we examined (i) how SES is associated with HDB, (ii) how internal health locus of control (HLC) and powerful others HLC are associated with HDB, and (iii) how SES interacts with internal and powerful others HLC to influence HDB. Using data from the Annenberg National Health Communication Survey, collected from 2005 to 2012 (N = 6,262) in the United States, hierarchical multiple regression analyses were conducted. Education level was found to be positively associated with HDB, while income level was not. Both internal and powerful others HLC beliefs were positively associated with HDB. The positive relationship between internal HLC and HDB strengthened as the level of education and income increased, whereas the positive relationship between powerful others HLC and HDB weakened as respondents' education level increased. These results suggest that the design and delivery of communication messages should be tailored to populations' specific SES and HLC beliefs for effective public health interventions. For example, messages enhancing internal HLC (e.g. providing specific skills and knowledge about health behaviours) might be more helpful for the richer and more-educated, while messages appealing to one's powerful others HLC beliefs (e.g. advice on health lifestyles given by well-known health professionals) might be more effective for less-educated people. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Schämann, M.; Bücker, M.; Hessel, S.; Langmann, U.
2008-05-01
High data rates combined with high mobility represent a challenge for the design of cellular devices. Advanced algorithms are required which result in higher complexity, more chip area and increased power consumption. However, this contrasts to the limited power supply of mobile devices. This presentation discusses the application of an HSDPA receiver which has been optimized regarding power consumption with the focus on the algorithmic and architectural level. On algorithmic level the Rake combiner, Prefilter-Rake equalizer and MMSE equalizer are compared regarding their BER performance. Both equalizer approaches provide a significant increase of performance for high data rates compared to the Rake combiner which is commonly used for lower data rates. For both equalizer approaches several adaptive algorithms are available which differ in complexity and convergence properties. To identify the algorithm which achieves the required performance with the lowest power consumption the algorithms have been investigated using SystemC models regarding their performance and arithmetic complexity. Additionally, for the Prefilter Rake equalizer the power estimations of a modified Griffith (LMS) and a Levinson (RLS) algorithm have been compared with the tool ORINOCO supplied by ChipVision. The accuracy of this tool has been verified with a scalable architecture of the UMTS channel estimation described both in SystemC and VHDL targeting a 130 nm CMOS standard cell library. An architecture combining all three approaches combined with an adaptive control unit is presented. The control unit monitors the current condition of the propagation channel and adjusts parameters for the receiver like filter size and oversampling ratio to minimize the power consumption while maintaining the required performance. The optimization strategies result in a reduction of the number of arithmetic operations up to 70% for single components which leads to an estimated power reduction of up to 40% while the BER performance is not affected. This work utilizes SystemC and ORINOCO for the first estimation of power consumption in an early step of the design flow. Thereby algorithms can be compared in different operating modes including the effects of control units. Here an algorithm having higher peak complexity and power consumption but providing more flexibility showed less consumption for normal operating modes compared to the algorithm which is optimized for peak performance.
Kim, Peter H; Mislin, Alexandra; Tuncel, Ece; Fehr, Ryan; Cheshin, Arik; van Kleef, Gerben A
2017-10-01
People may express a variety of emotions after committing a transgression. Through 6 empirical studies and a meta-analysis, we investigate how the perceived authenticity of such emotional displays and resulting levels of trust are shaped by the transgressor's power. Past findings suggest that individuals with power tend to be more authentic because they have more freedom to act on the basis of their own personal inclinations. Yet, our findings reveal that (a) a transgressor's display of emotion is perceived to be less authentic when that party's power is high rather than low; (b) this perception of emotional authenticity, in turn, directly influences (and mediates) the level of trust in that party; and (c) perceivers ultimately exert less effort when asked to make a case for leniency toward high rather than low-power transgressors. This tendency to discount the emotional authenticity of the powerful was found to arise from power increasing the transgressor's perceived level of emotional control and strategic motivation, rather than a host of alternative mechanisms. These results were also found across different types of emotions (sadness, anger, fear, happiness, and neutral), expressive modalities, operationalizations of the transgression, and participant populations. Altogether, our findings demonstrate that besides the wealth of benefits power can afford, it also comes with a notable downside. The findings, furthermore, extend past research on perceived emotional authenticity, which has focused on how and when specific emotions are expressed, by revealing how this perception can depend on considerations that have nothing to do with the expression itself. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Traveling-Wave Tube Efficiency Enhancement
NASA Technical Reports Server (NTRS)
Dayton, James A., Jr.
2011-01-01
Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.
Practice advisory: The utility of EEG theta/beta power ratio in ADHD diagnosis
Gloss, David; Varma, Jay K.; Pringsheim, Tamara; Nuwer, Marc R.
2016-01-01
Objective: To evaluate the evidence for EEG theta/beta power ratio for diagnosing, or helping to diagnose, attention-deficit/hyperactivity disorder (ADHD). Methods: We identified relevant studies and classified them using American Academy of Neurology criteria. Results: Two Class I studies assessing the ability of EEG theta/beta power ratio and EEG frontal beta power to identify patients with ADHD correctly identified 166 of 185 participants. Both studies evaluated theta/beta power ratio and frontal beta power in suspected ADHD or in syndromes typically included in an ADHD differential diagnosis. A bivariate model combining the diagnostic studies shows that the combination of EEG frontal beta power and theta/beta power ratio has relatively high sensitivity and specificity but is insufficiently accurate. Conclusions: It is unknown whether a combination of standard clinical examination and EEG theta/beta power ratio increases diagnostic certainty of ADHD compared with clinical examination alone. Recommendations: Level B: Clinicians should inform patients with suspected ADHD and their families that the combination of EEG theta/beta power ratio and frontal beta power should not replace a standard clinical evaluation. There is a risk for significant harm to patients from ADHD misdiagnosis because of the unacceptably high false-positive diagnostic rate of EEG theta/beta power ratio and frontal beta power. Level R: Clinicians should inform patients with suspected ADHD and their families that the EEG theta/beta power ratio should not be used to confirm an ADHD diagnosis or to support further testing after a clinical evaluation, unless such diagnostic assessments occur in a research setting. PMID:27760867
Al-Nimer, Marwan S. M.; Wahbee, Zainab
2017-01-01
Aim: Symphytum officinale (comfrey) is a medicinal plant commonly used in decoction and to treat ailments. It protects the skin against ultraviolet (UV)-irradiation. UV irradiation may induce variable effects on the constituents of herbal extracts and thereby may limit or improve the advantages of using these extracts as medicinal supplements. This study aimed to assess the effect of UV radiations including UV-A, UV-B, and UV-C on the constituents of S. officinale aqueous and alcoholic extracts. Materials and Methods: Comfrey extracts (1% w/v) were prepared using distilled water, ethanol, and methanol. They were exposed to wavelengths of UV-A, UV-B, and UV-C for 10 min. The principal peak on the UV-spectroscopy scanning, the flavonoids, reducing power, and the allantoin levels were determined before and after irradiation. Results: UV irradiation reduces the magnitude of the principle peak at 355 nm wavelength of the aqueous infusion and methanol extracts. It improves the levels of flavonoids and reducing power of the aqueous extracts and increases the levels of allanotoin in aqueous and methanol extracts. Conclusions: UV-radiation enhances the yields of active ingredient of comfrey extracted with methanol, whereas improves the flavonoids, reducing power, and allantoin levels of comfrey extracted by the aqueous infusion method. UV-radiation reduces the levels of flavonoids, reducing power and allantoin when the comfrey extracted by alcohols. PMID:28894626
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong
2017-06-01
This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.
Synthesis and thermoelectric property of Ca and In-doped n-type Bi85Sb15 alloy
NASA Astrophysics Data System (ADS)
Kadel, Kamal; Li, Wenzhi; Joshi, Giri; Ren, Zhifeng
2014-03-01
In the present work we investigated the thermo-electric properties of undoped Bi85Sb15 and different Ca-doped Bi85Sb15Cax (x =0.5, 2, and 5) and In-doped Bi85Sb15Inx(x =0.5, 2) alloys synthesized via arc-melting first and followed by ball milling and hot pressing. Effect of different Ca and In doping levels on transport properties of Bi85Sb15 alloys has been investigated. It is found that thermal conductivity decreases with increasing Ca and decreasing In. Electrical transport measurements show that power factor increases with doping level of Ca up to Bi85Sb15Ca2 and then decreases yielding the maximum power factor of 3.8 × 10-3 Wm-1K-2 and zT of 0.39 at room temperature for Bi85Sb15Ca2. For indium doping, power factor decreases with doping level from 0.5 to 2, yielding the maximum zT value of 0.37 at room temperature for Bi85Sb15In0.5. In this work, calcium doping in Bi85Sb15 alloy is found to yield better thermoelectric property than indium doping.
Night sleep electroencephalogram power spectral analysis in excessive daytime sleepiness disorders.
Reimão, R
1991-06-01
A group of 53 patients (40 males, 13 females) with mean age of 49 years, ranging from 30 to 70 years, was evaluated in the following excessive daytime sleepiness (EDS) disorders: obstructive sleep apnea syndrome (B4a), periodic movements in sleep (B5a), affective disorder (B2a), functional psychiatric non affective disorder (B2b). We considered all adult patients referred to the Center sequentially with no other distinctions but these three criteria: (a) EDS was the main complaint; (b) right handed; (c) not using psychotropic drugs for two weeks prior to the all-night polysomnography. EEG (C3/A1, C4/A2) samples from 2 to 10 minutes of each stage of the first REM cycle were chosen. The data was recorded simultaneously in magnetic tape and then fed into a computer for power spectral analysis. The percentage of power (PP) in each band calculated in relation to the total EEG power was determined of subsequent sections of 20.4 s for the following frequency bands: delta, theta, alpha and beta. The PP in all EDS patients sample had a tendency to decrease progressively from the slowest to the fastest frequency bands, in every sleep stage. PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were close to stage 2 levels. In an EDS patients interhemispheric coherence was high in every band and sleep stage. B4a patients sample PP had a tendency to decrease progressively from the slowest to the fastest frequency bands, in every sleep stage; PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were between stage 1 and stage 2 levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y
2014-06-01
Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Is the price squeeze doctrine still viable in fully-regulated energy markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiwak, L.J.
Simply stated, a price squeeze occurs when a firm with monopoly power on the primary, or wholesale, level engages in a prolonged price increase that drives competitors out of the secondary, or retail level, and thereby extends its monopoly power to the secondary market. A price squeeze will not be found, however, for any short-term exercise in market power. Rather, because anticompetitive effects of a price squeeze are indirect, the price squeeze must last long enough and be severe enough to produce effects on actual or potential competition in the secondary market. In regulated electric industries, a price squeeze claimmore » usually arises from the complex relationship between the supplier, the wholesale customer, the retail customer, and the federal and state regulators. The supplier sells electric power to both wholesale and retail customers. Wholesale transactions are regulated by federal regulators, and retail transactions are regulated at the state level. The wholesale customers in turn sell power to their retail customers. Over the last several years, there have been substantial developments in the application of the price squeeze doctrine to fully-regulated electric utilities. This article will examine the current developments in this area, and attempt to highlight the burdens potential litigants, both plaintiffs and defendants, must overcome to succeed.« less
Multi-hundred kilowatt roll ring assembly
NASA Technical Reports Server (NTRS)
Jacobson, Peter E.
1985-01-01
A program was completed to develop an evaluation unit of a high power rotary transfer device for potential application in a space environment. This device was configured around a Roll Ring concept which performs the same function as a slip ring/brush assembly with a rolling instead of sliding interface. An eight circuit Evaluation Unit (EU) and a portable Test Fixture (TF) were designed and fabricated. The EU was designed to transfer currents to 200 amperes at a potential of as high as 500 volts for an ultimate 100 kW/circuit transfer capability. The EU was evaluated in vacuum at dc transfer currents of 50 to 200 amperes at voltages to 10 volts and at 500 volts at 2 amperes. Power transfer to levels of 2 kW through each of the eight circuits was completed. Power transfer in vacuum at levels and efficiencies not previously achieved was demonstrated. The terminal-to-terminal resistance was measured to be greater than 0.42 milliohms which translates to an efficiency at 100 kW of 99.98 percent. The EU and TF have been delivered to the Lewis Research Center and are being prepared tor testing at increased power levels and for life testing, which will include both dc and ac power.
Kim, Jung Eun; Choi, Hyeon-Son; Lee, Dong-Un; Min, Sea C
2017-12-18
The efficacy of microwave-combined cold plasma treatment (MCPT) for inactivating Bacillus cereus spores contaminating red pepper (Capsicum annum L.) flakes was investigated. The effects of red pepper drying method, particle size, and water activity (a w ) were also evaluated at two levels of microwave power (1700 and 2500W/cm 2 ). The inactivation effect of MCPT was higher at higher microwave power. Spore reduction was more effective with vacuum-dried red pepper than far-infrared-dried flakes. A significantly higher level of spore reduction was observed with the red pepper sample with a smaller surface to volume ratio when one surface (exterior surface) was inoculated (p<0.05). Spore reduction by MCPT at high microwave power increased from 1.7 to 2.6logspores/cm 2 when the a w of flake increased from 0.4 to 0.9 (p<0.05). MCPT did not change the color of red pepper flakes. MCPT demonstrated potential as a microbial decontaminating technology for red pepper flakes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haas, J.; Olivares, M. A.; Palma, R.
2013-12-01
In central Chile, water from reservoirs and streams is mainly used for irrigation and power generation. Hydropower reservoirs operation is particularly challenging because: i) decisions at each plant impact the entire power system, and ii) the existence of large storage capacity implies inter-temporal ties. An Independent System Operator (ISO) decides the grid-wide optimal allocation of water for power generation, under irrigation-related constraints. To account for the long-term opportunity cost of water, a future cost function is determined and used in the short term planning. As population growth and green policies demand increasing levels of renewable energy in power systems, deployment of wind farms and solar plants is rising quickly. However, their power output is highly fluctuating on short time scales, affecting the operation of power plants, particularly those fast responding units as hydropower reservoirs. This study addresses these indirect consequences of massive introduction of green energy sources on reservoir operations. Short-term reservoir operation, under different wind penetration scenarios, is simulated using a replica of Chile's ISO's scheduling optimization tools. Furthermore, an ongoing study is exploring the potential to augment the capacity the existing hydro-power plants to better cope with the balancing needs due to a higher wind power share in the system. As reservoir releases determine to a great extent flows at downstream locations, hourly time series of turbined flows for 24-hour periods were computed for selected combinations between new wind farms and increased capacity of existing hydropower plants. These time series are compiled into subdaily hydrologic alteration (SDHA) indexes (Zimmerman et al, 2010). The resulting sample of indexes is then analyzed using duration curves. Results show a clear increase in the SDHA for every reservoir of the system as more fluctuating renewables are integrated into the system. High-fluctuation events become more frequent. While the main load-following reservoirs are very susceptible to even small levels of additional wind power, the remaining withstand greater amounts before producing a significant SDHA. The additional effect of augmented installed capacity of existing hydropower plants on the SDHA is modest. The increase in SDHA calls for alternative operational constraints beyond the current practice based exclusively on minimum instream flows. Previous research by this group has shown the potential of maximum ramping rates constraints to efficiently achieve improvement in the SDHA. This alternative is being studied as part of a project currently in progress. This may contribute to make hydropower projects more socially acceptable and environmentally sound.
What Do Animal Studies Tell Us about the Mechanism of Myopia-Protection by Light?
Norton, Thomas T
2016-09-01
: Human studies have provided strong evidence that exposure to time outdoors is protective against the onset of myopia. A causal factor may be that the light levels outdoors (30,000-130,000 lux) are much higher than light levels indoors (typically less than 500 lux). Studies using animal models have found that normal animals exposed to low illuminance levels (50 lux) can develop myopia. The myopia and axial elongation, produced in animals by monocular form deprivation, is reduced by light levels in the 15,000 to 25,000 range. Myopia induced with a negative-power lens seems less affected, perhaps because the lens provides a powerful target for the emmetropization mechanism. Animal studies suggest that raising the light levels may have their effect by increasing retinal dopamine activity, probably via the D2 receptor pathway, altering gene expression in the retina and reducing the signals that produce axial elongation.
Heinrichs-Graham, Elizabeth; Wilson, Tony W
2016-07-01
Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an absolute threshold of beta power that must be reached in order to move, and that an inability to suppress beta power to this threshold results in an increase in movement duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Spring 2014 Internship Diffuser Data Analysis
NASA Technical Reports Server (NTRS)
Laigaie, Robert T.; Ryan, Harry M.
2014-01-01
J-2X engine testing on the A-2 test stand at the NASA John C. Stennis Space Center (SSC) has recently concluded. As part of that test campaign, the engine was operated at lower power levels in support of expanding the use of J-2X to other missions. However, the A-2 diffuser was not designed for engine testing at the proposed low power levels. To evaluate the risk of damage to the diffuser, computer simulations were created of the rocket engine exhaust plume inside the 50ft long, water-cooled, altitude-simulating diffuser. The simulations predicted that low power level testing would cause the plume to oscillate in the lower sections of the diffuser. This can possibly cause excessive vibrations, stress, and heat transfer from the plume to the diffuser walls. To understand and assess the performance of the diffuser during low power level engine testing, nine accelerometers and four strain gages were installed around the outer surface of the diffuser. The added instrumentation also allowed for the verification of the rocket exhaust plume computational model. Prior to engine hot-fire testing, a diffuser water-flow test was conducted to verify the proper operation of the newly installed instrumentation. Subsequently, two J-2X engine hot-fire tests were completed. Hot-Fire Test 1 was 11.5 seconds in duration, and accelerometer and strain data verified that the rocket engine plume oscillated in the lower sections of the diffuser. The accelerometers showed very different results dependent upon location. The diffuser consists of four sections, with Section 1 being closest to the engine nozzle and Section 4 being farthest from the engine nozzle. Section 1 accelerometers showed increased amplitudes at startup and shutdown, but low amplitudes while the diffuser was started. Section 3 accelerometers showed the opposite results with near zero G amplitudes prior to and after diffuser start and peak amplitudes to +/- 100G while the diffuser was started. Hot-Fire Test 1 strain gages showed different data dependent on section. Section 1 strains were small, and were in the range of 50 to 150 microstrain, which would result in stresses from 1.45 to 4.35 ksi. The yield stress of the material, A-285 Grade C Steel, is 29.7 ksi. Section 4 strain gages showed much higher values with strains peaking at 1600 microstrain. This strain corresponds to a stress of 46.41 ksi, which is in excess of the yield stress, but below the ultimate stress of 55 to 75 ksi. The decreased accelerations and strain in Section 1, and the increased accelerations and strain in Sections 3 and 4 verified the computer simulation prediction of increased plume oscillations in the lower sections of the diffuser. Hot-Fire Test 2 ran for a duration of 125 seconds. The engine operated at a slightly higher power level than Hot-Fire Test 1 for the initial 35 seconds of the test. After 35 seconds the power level was lowered to Hot-Fire Test 1 levels. The acceleration and strain data for Hot-Fire Test 2 was similar during the initial part of the test. However, just prior to the engine being lowered to the Hot-Fire Test 1 power level, the strain gage data in Section 4 showed a large decrease to strains near zero microstrain from their peak at 1500 microstrain. Future work includes further strain and acceleration data analysis and evaluation.
Influence of performance level on anaerobic power and body composition in elite male judoists.
Kim, Jongkyu; Cho, Hyun-Chul; Jung, Han-Sang; Yoon, Jong-Dae
2011-05-01
This study examined the relationship between 30-second anaerobic power and body composition by performance level in elite Judoists. During a 3-month period, 10 male Korean Judo national team athletes (NT), 26 male university varsity team athletes (VT), and 28 male junior varsity team athletes (JT) were assessed for 30-second anaerobic power and body composition at the Youngin University. Anaerobic power was measured using a 30-second Wingate test. Body composition was assessed via bioelectric impedance analysis in standardized conditions using BioSpace (Korean)-specific prediction formulas. All testing occurred at the beginning of the winter nonseason period but excluded a brief weight-loss period before the competition phase. Anaerobic power measures were significantly greater (p < 0.05) in NT and VT than in JT. Fat-free mass (FFM), muscle mass (MM), and total body water in JT were also greater than in VT and JT (p < 0.05). Muscle mass in VT was significantly lower than in NT (p < 0.05). Fat-free mass in NT was strongly correlated to mean and peak anaerobic power (r = 0.77, p = 0.009; r = 0.87, p < 0.001, respectively). Varsity team athletes also indicated a moderate association between FFM and peak and mean anaerobic power (r = 0.63, p < 0.001; r = 0.48, p = 0.013, respectively). However, relationship between FFM and anaerobic power was not statistically significantly correlated in JT (r = 0.14, p = 0.470; r = 0.23, p = 0.232, separately). In conclusion, our data indicated that anaerobic power is closely correlated with increase in FFM and MM and was different dependent among performance levels. Further research in the field is warranted to elucidate the Judo-specific relationship between FFM and performance.
ERIC Educational Resources Information Center
Hagström, Linus; Scheja, Max
2014-01-01
The aim of this article is to contribute to the discussion on how examinations can be designed to enhance students' learning and increase throughput in terms of the number of students who sit, and pass, the course examination. The context of the study is a basic level political science course on power analysis, which initially suffered from low…
High-Capacity Communications from Martian Distances
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali
2007-01-01
High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.
NASA Astrophysics Data System (ADS)
Pourmousavi Kani, Seyyed Ali
Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation environment to evaluate the effectiveness of the proposed methodologies. Simulation results revealed the effectiveness of the proposed methods in providing balancing reserves and microgrids' economic and stable operation. The proposed tools and approaches can significantly enhance the application of microgrids and demand response in the smart grid era. They will also help to increase the penetration level of variable distributed generation resources in the smart grid.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.
2004-01-01
Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua
As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the servermore » and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.« less
A Distribution Level Wide Area Monitoring System for the Electric Power Grid–FNET/GridEye
Liu, Yong; You, Shutang; Yao, Wenxuan; ...
2017-02-09
The wide area monitoring system (WAMS) is considered a pivotal component of future electric power grids. As a pilot WAMS that has been operated for more than a decade, the frequency monitoring network FNET/GridEye makes use of hundreds of global positioning system-synchronized phasor measurement sensors to capture the increasingly complicated grid behaviors across the interconnected power systems. In this paper, the FNET/GridEye system is overviewed and its operation experiences in electric power grid wide area monitoring are presented. Particularly, the implementation of a number of data analytics applications will be discussed in details. FNET/GridEye lays a firm foundation for themore » later WAMS operation in the electric power industry.« less
Kim, Kyoung Min; Choi, Sam-Wook; Lee, Jaewon; Kim, Jun Won
2018-06-05
Background and aims This study aimed to evaluate the association between the severity of pathological gambling, serum brain-derived neurotrophic factor (BDNF) level, and the characteristics of quantitative electroencephalography (EEG) in patients with gambling disorder. Methods A total of 55 male patients aged 18-65 with gambling disorder participated. The severity of pathological gambling was assessed with the nine-item Problem Gambling Severity Index from the Canadian Problem Gambling Index (CPGI-PGSI). The Beck Depression Inventory and Lubben Social Network Scale were also assessed. Serum BDNF levels were assessed from blood samples. The resting-state EEG was recorded while the eyes were closed, and the absolute power of five frequency bands was analyzed: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-50 Hz). Results Serum BDNF level was positively correlated with theta power in the right parietal region (P4, r = .403, p = .011), beta power in the right parietal region (P4, r = .456, p = .010), and beta power in the right temporal region (T8, r = .421, p = .008). Gambling severity (CPGI-PGSI) was positively correlated with absolute beta power in the left frontal region (F7, r = .284, p = .043) and central region [(C3, r = .292, p = .038), (C4, r = .304, p = .030)]. Conclusions These findings support the hypothesis that right-dominant lateralized correlations between BDNF and beta and theta power reflect right-dominant brain activation in addiction. The positive correlations between beta power and the severity of gambling disorder may be associated with hyperexcitability and increased cravings. These findings contribute to a better understanding of brain-based electrophysiological changes and BDNF levels in patients with pathological gambling.
NASA Astrophysics Data System (ADS)
Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.
2016-05-01
Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.
NASA Technical Reports Server (NTRS)
Wolfe, R. W.
1976-01-01
A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.
Spaceflight alters autonomic regulation of arterial pressure in humans
NASA Technical Reports Server (NTRS)
Fritsch-Yelle, Janice M.; Charles, John B.; Jones, Michele M.; Beightol, Larry A.; Eckberg, Dwain L.
1994-01-01
Spaceflight is associated with decreased orthostatic tolerance after landing. Short-duration spaceflight (4 - 5 days) impairs one neutral mechanism: the carotid baroreceptor-cardiac reflex. To understand the effects of longer-duration spaceflight on baroreflex function, we measured R-R interval power spectra, antecubital vein plasma catecholamine levels, carotid baroreceptor-cardiac reflex responses, responses to Valsalva maneuvers, and orthostatic tolerance in 16 astronauts before and after shuttle missions lasting 8 - 14 days. We found the following changes between preflight and landing day: (1) orthostatic tolerance decreased; (2) R-R interval spectral power in the 0.05- to 0.15-Hz band increased; (3) plasma norepinephrine and epinephrine levels increased; (4) the slope, range, and operational point of the carotid baroreceptor cardiac reflex response decreased; and (5) blood pressure and heart rate responses to Valsalva maneuvers were altered. Autonomic changes persisted for several days after landing. These results provide further evidence of functionally relevent reductions in parasympathetic and increases in sympathetic influences on arterial pressure control after spaceflight.
Formality of the Chinese collective leadership.
Li, Haiying; Graesser, Arthur C
2016-09-01
We investigated the linguistic patterns in the discourse of four generations of the collective leadership of the Communist Party of China (CPC) from 1921 to 2012. The texts of Mao Zedong, Deng Xiaoping, Jiang Zemin, and Hu Jintao were analyzed using computational linguistic techniques (a Chinese formality score) to explore the persuasive linguistic features of the leaders in the contexts of power phase, the nation's education level, power duration, and age. The study was guided by the elaboration likelihood model of persuasion, which includes a central route (represented by formal discourse) versus a peripheral route (represented by informal discourse) to persuasion. The results revealed that these leaders adopted the formal, central route more when they were in power than before they came into power. The nation's education level was a significant factor in the leaders' adoption of the persuasion strategy. The leaders' formality also decreased with their increasing age and in-power times. However, the predictability of these factors for formality had subtle differences among the different types of leaders. These results enhance our understanding of the Chinese collective leadership and the role of formality in politically persuasive messages.
NASA Astrophysics Data System (ADS)
Ivanov, O. A.; Kuzikov, S. V.; Vikharev, A. A.; Vikharev, A. L.; Lobaev, M. A.
2017-10-01
We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.
NASA Astrophysics Data System (ADS)
Nontapot, Kanokwan
2018-03-01
The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.
A modular neural network scheme applied to fault diagnosis in electric power systems.
Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio
2014-01-01
This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.
A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems
Flores, Agustín; Morant, Francisco
2014-01-01
This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897
Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile
2005-07-01
The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.
Intensity coding in electric hearing: Effects of electrode configurations and stimulation waveforms
Chua, Tiffany Elise H.; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Objectives Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception, but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were 5 Clarion cochlear implant users. For each subject, data from apical, middle and basal electrode positions were collected when possible. Results Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings, nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen. PMID:21610498
Statistical power analysis in wildlife research
Steidl, R.J.; Hayes, J.P.
1997-01-01
Statistical power analysis can be used to increase the efficiency of research efforts and to clarify research results. Power analysis is most valuable in the design or planning phases of research efforts. Such prospective (a priori) power analyses can be used to guide research design and to estimate the number of samples necessary to achieve a high probability of detecting biologically significant effects. Retrospective (a posteriori) power analysis has been advocated as a method to increase information about hypothesis tests that were not rejected. However, estimating power for tests of null hypotheses that were not rejected with the effect size observed in the study is incorrect; these power estimates will always be a??0.50 when bias adjusted and have no relation to true power. Therefore, retrospective power estimates based on the observed effect size for hypothesis tests that were not rejected are misleading; retrospective power estimates are only meaningful when based on effect sizes other than the observed effect size, such as those effect sizes hypothesized to be biologically significant. Retrospective power analysis can be used effectively to estimate the number of samples or effect size that would have been necessary for a completed study to have rejected a specific null hypothesis. Simply presenting confidence intervals can provide additional information about null hypotheses that were not rejected, including information about the size of the true effect and whether or not there is adequate evidence to 'accept' a null hypothesis as true. We suggest that (1) statistical power analyses be routinely incorporated into research planning efforts to increase their efficiency, (2) confidence intervals be used in lieu of retrospective power analyses for null hypotheses that were not rejected to assess the likely size of the true effect, (3) minimum biologically significant effect sizes be used for all power analyses, and (4) if retrospective power estimates are to be reported, then the I?-level, effect sizes, and sample sizes used in calculations must also be reported.
Using Literature to Teach Inference across the Curriculum
ERIC Educational Resources Information Center
Bintz, William P.; Moran, Petra Pienkosky; Berndt, Rochelle; Ritz, Elizabeth; Skilton, Julie A.; Bircher, Lisa S.
2012-01-01
Today, increasing numbers of teachers at all grade levels are recognizing that inference is a powerful way of thinking and an important 21st century skill for all students to use and develop across the curriculum. Increasing numbers of teachers are also recognizing that developing and implementing integrative curriculum is important at all grade…
Power-constrained supercomputing
NASA Astrophysics Data System (ADS)
Bailey, Peter E.
As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound. Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels, from the processor level to the cluster level.
Rothmaler, Katrin; Nigbur, Roland; Ivanova, Galina
2017-01-27
Insight refers to a situation in which a problem solver immediately changes his understanding of a problem situation. This representational change can either be triggered by external stimuli, like a hint or the solution itself, or by internal solution attempts. In the present paper, the differences and similarities between these two phenomena, namely "extrinsic" and "intrinsic" insight, are examined. To this end, electroencephalogram (EEG) is recorded while subjects either recognize or generate solutions to German verbal compound remote associate problems (CRA). Based on previous studies, we compare the alpha power prior to insightful solution recognition with the alpha power prior to insightful solution generation. Results show that intrinsic insights are preceded by an increase in alpha power at right parietal electrodes, while extrinsic insights are preceded by a respective decrease. These results can be interpreted in two ways. In consistency with other studies, the increase in alpha power before intrinsic insights can be interpreted as an increased internal focus of attention. Accordingly, the decrease in alpha power before extrinsic insights may be associated with a more externally oriented focus of attention. Alternatively, the increase in alpha power prior to intrinsic insights can be interpreted as an active inhibition of solution-related information, while the alpha power decrease prior to extrinsic insights may reflect its activation. Regardless of the interpretation, the results provide strong evidence that extrinsic and intrinsic insight differ on the behavioral as well as the neurophysiological level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai
2015-01-01
Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.
The United States has articulated a deep decarbonization strategy for achieving a reduction in economy-wide greenhouse gas (GHG) emissions of 80% below 2005 levels by 2050. Achieving such deep emissions reductions will entail a major transformation of the energy system and of the electric power sector in particular. , This study uses a detailed state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA) to demonstrate pathways for the evolution of the U.S. electric power sector that achieve 80% economy-wide reductions in GHG emissions by 2050. The pathways presented in this report are based onmore » feedback received during a workshop of experts organized by the U.S. Department of Energy’s Office of Energy Policy and Systems Analysis. Our analysis demonstrates that achieving deep decarbonization by 2050 will require substantial decarbonization of the electric power sector resulting in an increase in the deployment of zero-carbon and low-carbon technologies such as renewables and carbon capture utilization and storage. The present results also show that the degree to which the electric power sector will need to decarbonize and low-carbon technologies will need to deploy depends on the nature of technological advances in the energy sector, the ability of end-use sectors to electrify and level of electricity demand.« less
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
Takada, Katsuko; Ishii, Akira; Matsuo, Takashi; Nakamura, Chika; Uji, Masato; Yoshikawa, Takahiro
2018-02-15
Obesity is a major public health problem in modern society. Appetitive behavior has been proposed to be partially driven by unconscious decision-making processes and thus, targeting the unconscious cognitive processes related to eating behavior is essential to develop strategies for overweight individuals and obese patients. Here, we presented food pictures below the threshold of awareness to healthy male volunteers and examined neural activity related to appetitive behavior using magnetoencephalography. We found that, among participants who did not recognize food pictures during the experiment, an index of heart rate variability assessed by electrocardiography (low-frequency component power/high-frequency component power ratio, LF/HF) just after picture presentation was increased compared with that just before presentation, and the increase in LF/HF was negatively associated with the score for cognitive restraint of food intake. In addition, increased LF/HF was negatively associated with increased alpha band power in Brodmann area (BA) 47 caused by food pictures presented below the threshold of awareness, and level of cognitive restraint was positively associated with increased alpha band power in BA13. Our findings may provide valuable clues to the development of methods assessing unconscious regulation of appetite and offer avenues for further study of the neural mechanisms related to eating behavior.
NASA Technical Reports Server (NTRS)
Povolny, John H.; Bogdan, Louis J.
1947-01-01
An investigation was conducted to determine the coolant-flow distribu tion, the cylinder temperatures, and the heat rejections of the V-165 0-7 engine . The tests were run a t several power levels varying from minimum fuel consumption to war emergency power and at each power l evel the coolant flows corresponded to the extremes of those likely t o be encountered in typical airplane installations, A mixture of 30-p ercent ethylene glycol and 70-percent water was used as the coolant. The temperature of each cylinder was measured between the exhaust val ves, between the intake valves, in the center of the head, on the exh aust-valve guide, at the top of the barrel on the exhaust side, and o n each exhaust spark-plug gasket. For an increase in engine power fro m 628 to approximately 1700 brake horsepower the average temperature for the cylinder heads between the exhaust valves increased from 437 deg to 517 deg F, the engine coolant heat rejection increased from 12 ,600 to 22,700 Btu. per minute, the oil heat rejection increased from 1030 to 4600 Btu per minute, and the aftercooler-coolant heat reject ion increased from 450 to 3500 Btu -per minute.
Ansell, Nicola
2014-01-01
Critics of empowerment have highlighted the concept's mutability, focus on individual transformation, one-dimensionality and challenges of operationalisation. Relating these critiques to children's empowerment raises new challenges. Drawing on scholarship on children's subjecthood and exercise of power, alongside empirical research with children affected by AIDS, I argue that empowerment envisaged as individual self-transformation and increased capacity to act independently offers little basis for progressive change. Rather it is essential to adopt a relational approach that recognises the need to transform power relationships at multiple levels. This analysis has implications for our wider understanding of empowerment in the 21st century.
NASA Astrophysics Data System (ADS)
Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul
2018-03-01
Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.
Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
Kühn, S; Phillips, B S; Lunt, E J; Hawkins, A R; Schmidt, H
2010-01-21
The development of on-chip methods to manipulate particles is receiving rapidly increasing attention. All-optical traps offer numerous advantages, but are plagued by large required power levels on the order of hundreds of milliwatts and the inability to act exclusively on individual particles. Here, we demonstrate a fully integrated electro-optical trap for single particles with optical excitation power levels that are five orders of magnitude lower than in conventional optical force traps. The trap is based on spatio-temporal light modulation that is implemented using networks of antiresonant reflecting optical waveguides. We demonstrate the combination of on-chip trapping and fluorescence detection of single microorganisms by studying the photobleaching dynamics of stained DNA in E. coli bacteria. The favorable size scaling facilitates the trapping of single nanoparticles on integrated optofluidic chips.
Habibi, E; Zare, M; Barkhordari, A; Mirmohammadi, Sj; Halvani, Ghh
2008-12-28
The aim of this study was to identify the hazards, evaluate their risk factors and determine the measure for promotion of the process and reduction of accidents in the chemical unit of the power station. In this case and qualitative study, HAZOP technique was used to recognize the hazards and problems of operations on the chemical section at power station. Totally, 126 deviations were documented with various causes and consequences. Ranking and evaluation of identified risks indicate that the majority of deviations were categorized as "acceptable" and less than half of that were "unacceptable". The highest calculated risk level (1B) related to both the interruption of acid entry to the discharge pumps and an increased density of the acid. About 27% of the deviations had the lowest risk level (4B). The identification of hazards by HAZOP indicates that it could, systemically, assess and criticize the process of consumption or production of acid and alkali in the chemical unit of power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L; Brinkman, Gregory L; Mai, Trieu T
One of the significant limitations of solar and wind deployment is declining value caused by the limited correlation of renewable energy supply and electricity demand as well as limited flexibility of the power system. Limited flexibility can result from thermal and hydro plants that cannot turn off or reduce output due to technical or economic limits. These limits include the operating range of conventional thermal power plants, the need for process heat from combined heat and power plants, and restrictions on hydro unit operation. To appropriately analyze regional and national energy policies related to renewable deployment, these limits must bemore » accurately captured in grid planning models. In this work, we summarize data sources and methods for U.S. power plants that can be used to capture minimum generation levels in grid planning tools, such as production cost models. We also provide case studies for two locations in the U.S. (California and Texas) that demonstrate the sensitivity of variable generation (VG) curtailment to grid flexibility assumptions which shows the importance of analyzing (and documenting) minimum generation levels in studies of increased VG penetration.« less
NASA Astrophysics Data System (ADS)
Patterson, Maxx
Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.
Ishii, Akira; Tanaka, Masaaki; Watanabe, Yasuyoshi
2016-01-01
Fatigue is a major contributor to workplace accidents, morbidity, and mortality. To prevent the disruption of homeostasis and to concurrently accomplish an assigned workload, it is essential to control the level of workload based on the subjective estimation of the level of fatigue that will be experienced in the near future. In this study, we aimed to clarify the neural mechanisms related to predicting subjective levels of fatigue that would be experienced 60 min later, using magnetoencephalography. Sixteen healthy male volunteers participated in this study. In relation to the prediction, a decrease of alpha band power in the right Brodmann’s area (BA) 40 and BA 9 at 1200 to 1350 ms and that in the right BA 9 at 1350 to 1500 ms, and a decrease of gamma band power in the right BA 10 at 1500 to 1650 ms were observed. In addition, the decreased level of alpha band power in BA 9 at 1200 to 1350 ms was positively associated with the daily level of fatigue. These findings may help increase our understanding of the neural mechanisms activated to indicate the need to take a rest based on the prediction of the subjective fatigue in the future. PMID:27112115
Characterization of zero-bias microwave diode power detectors at cryogenic temperature.
Giordano, Vincent; Fluhr, Christophe; Dubois, Benoît; Rubiola, Enrico
2016-08-01
We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes is measured as functions of the applied microwave power. We highlight strong variations of the diode characteristics when the applied microwave power is higher than a few microwatts. For a diode operating at 4 K, the differential gain increases from 1000 V/W to about 4500 V/W when the power passes from -30 dBm to -20 dBm. The diode white noise floor is equivalent to a Noise Equivalent Power of 0.8 pW/Hz and 8 pW/Hz at 4 K and 300 K, respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density Sα(1 Hz) = - 120 dB/Hz at 4 K. Flicker noise is 10 dB higher at room temperature.
Wireless data and power transfer of an optogenetic implantable visual cortex stimulator.
Fattah, Nabeel; Laha, Soumyasanta; Sokolov, Danil; Chester, Graeme; Degenaar, Patrick
2015-08-01
In this paper, the wireless data and power transfer for a novel optogenetic visual cortex implant system was demonstrated by using pork tissue mimic in-vitro at the ISM 2.4 GHz and 13.5 MHz frequency band respectively. The observed data rate was 120 kbps with no loss in data for up to a thickness of 35 mm in both water & pork. To increase the power level of the implant a Class E power amplifier is separately designed and simulated for the transmitter end and has an output power of around 223 mW with an efficiency of 81.83%. The transferred power at the receiver was measured to be 66.80 mW for the pork tissue medium considering a distance of 5 mm between the transmitter and the receiver coils, with a coupling coefficient of ~0.8. This serves the power requirement of the visual cortex implant.
NASA Technical Reports Server (NTRS)
Stoker, P. H.
1985-01-01
Recordings on relativistic solar flare protons observed at Sanae, Antarctic, show that the percentage increase in counting rates of the neutron moderated detector (4NMD) is larger than the percentage increase in counting rates of the 3NM64 neutron monitor. These relative increases are described by solar proton differential spectra j sub s(P) = AP(beta). The power beta is determined for each event and the hardnesses of the temporal variations of beta, found for the ground level events (GLE) of 7 May, 1978 and 22 November, 1977.
NASA Astrophysics Data System (ADS)
Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori
2018-05-01
Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianhui
2015-09-01
Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less
NASA Technical Reports Server (NTRS)
Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.
1984-01-01
The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.
The Improved Power of the Central Lobe in the Beam Combination and High Power Output
NASA Astrophysics Data System (ADS)
Liu, Hou-Kang; Xue, Yu-Hao; Li, Zhen; He, Bing; Zhou, Jun; Ding, Ya-Qian; Jiao, Meng-Li; Liu, Chi; Qi, Yun-Feng; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong
2012-04-01
In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.
Synergistic Success: The Power of Mentorship and Reaching the Senior Levels of the U.S. Army
2017-06-09
the Army can optimize its mentorship efforts in increasing black combat arms officers. Demographics Every segment of American society is...appeal more to the American people . African Americans recognized the opportunities the Army offered as social and environmental conditions changed. The...identifies mentorship and its power in influencing African American Army officers to branch combat arms. One area where the Army can improve its
Power Electronics Development for the SPT-100 Thruster
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.; Sankovic, John M.
1994-01-01
Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.
Argus, Christos K; Gill, Nicholas D; Keogh, Justin W L
2012-10-01
Levels of strength and power have been used to effectively discriminate between different levels of competition; however, there is limited literature in rugby union athletes. To assess the difference in strength and power between levels of competition, 112 rugby union players, including 43 professionals, 19 semiprofessionals, 32 academy level, and 18 high school level athletes, were assessed for bench press and box squat strength, and bench throw, and jump squat power. High school athletes were not assessed for jump squat power. Raw data along with data normalized to body mass with a derived power exponent were log transformed and analyzed. With the exception of box squat and bench press strength between professional and semiprofessional athletes, higher level athletes produced greater absolute and relative strength and power outputs than did lower level athletes (4-51%; small to very large effect sizes). Lower level athletes should strive to attain greater levels of strength and power in an attempt to reach or to be physically prepared for the next level of competition. Furthermore, the ability to produce high levels of power, rather than strength, may be a better determinate of playing ability between professional and semiprofessional athletes.
Massey, J K
1979-01-01
The increasing usage of electronic instruments in health care systems invariably leads to some level of dependence on them. In order to maximize the utility of these tools a high degree of reliability is essential. Many of the failures being experienced in systems where electronic instruments are being utilized may be attributed not to a failure of the instrument itself but rather to the poor quality of the commercial power to which they are attached. In order to reduce the effects of power fluctuations and outages, some type of power protection equipment must be installed between the commercial power system and the instrument. This article discusses the types of "electronic noise" present on commercial power lines and the various types of equipment used to reduce its effect on electronic instrumentation. In general, the Uninterruptible Power System (UPS) is shown to be the most effective power buffering element for a health care environment. General terminology associated with specifications of a UPS is defined in the article and attached appendix.
Varying ultrasound power level to distinguish surgical instruments and tissue.
Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E
2018-03-01
We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.
Characterization of a spray torch and analysis of process parameters
NASA Astrophysics Data System (ADS)
Ramasamy, R.; Selvarajan, V.
1999-07-01
Anode for a non-transferred DC plasma spray torch was designed to improve electrothermal efficiency. A theoretical calculation was made for the electrothermal efficiency in a DC plasma torch operating with argon at atmospheric pressure with power level in the range of 5.2 20 kW using energy balance equations. ANOVA for the two level factorial design was done. Plasma gas flow rate, current intensity, nozzle diameter and length were found to influence the efficiency. The efficiency was found to decrease with increase in current intensity and nozzle length and to increase with increase in nozzle diameter and gas flow rate. The overall energy balance calculations showed that the heat transfer to the plasma-forming gas decreases with increase in arc current and the same was more significant at higher flow rates. Plasma jet velocity for different flow rates, input to the torch and nozzle dimensions was calculated from the gas enthalpy. It was found that the velocity increased with increase in the power input to the torch and gas flow rate and decreased with increase in nozzle length and diameter. The current voltage characteristics of the torch operating with argon gas were studied for different gas flow rates. The Nottingham coefficients were calculated using least square method.
NASA Astrophysics Data System (ADS)
Sroka, Ronald; Frank, Johannes; Reichenberger, Frank; Behr, J.; Gesierich, Wolfgang
2017-04-01
Granulation and tumor regrowth in the area of bronchi stent implants may result in restenosis. It had been shown that by means of Thulium-Fibre-Laser (TFL) a controlled ablation and reduction of the tissue within the stent could be performed. When using Nd:YAG irradiation there is risk for explosive flames, burns of fibre and stent, ruptures of stent meshes as well as perforation of stent and cover. Therefore it was the aim to investigate the safety margin when using TFL. Four different types of clinical used stents (with/without cover) were fixed to pig trachea tissue. Irradiation was performed by fibre assisted TFL-1940nm-laser irradiation while laser power, light application duration and distance, as well as oxygen percentage and contamination were varied. In case of Nitinol-stents rupture were observed at power levels >=7W or distances of <5mm, oxygen conc. of 40% result in increased flame appearance. Polyurethan-covers were ruptured at each variable, flame appeared at 5W. Silicon-stents were destroyed at power levels of about 5W and distances of <5mm and additionally 30%-oxygen or contamination either by blood or soot result in increased appearance of burns and flames. Based upon these observations in clinical TFL-irradiation the distance should >=5 mm and the power level should be <=6W. Furthermore the oxygen conc. should not exceed 30% and short term continuous irradiation of less than 15s exposition should be considered. In case of Silicon-stents light application on contaminated area should be avoided.
A Comprehensive Program for Measurement of Military Aircraft Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn
2009-11-01
Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicatemore » that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.« less
International Nursing: How Much Power Do Nurse Managers Have?
Trus, Marija; Martinkenas, Arvydas; Suominen, Tarja
This study was conducted to explore issues of nurse managers' power and empowerment. Data were collected from nurse managers by way of a questionnaire consisting of background factors, work-related questions, and power-related questions at the unit and organization levels. The degree of empowerment was evaluated using 2 established instruments (CWEQ-II and Work Empowerment Questionnaire). The overall level of managers' personal power within their own units was relatively high. Nurse managers' perception of their power at an organizational level was found to be at a moderate level. Several factors related to an individual's professional background were correlated to power issues, both at the unit and organizational levels. Structural and psychological empowerment correlated with the overall level of power at a unit level and the overall level of power at an organizational level. Nurse managers self-reported their own general power at a unit level as high, which offers them possibilities to lead the development of nursing care in their units. Organizations may benefit more from nurse managers' leadership by more fully integrating them in the development processes of the entire organization.
Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.
2017-02-01
The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and construct OSC and USC head power plants, joint efforts of the government, experts in power industry and metallurgy, scientific institutions, and equipment manufacturers are required.
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert
The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.
Space Shuttle Main Engine Off-Nominal Low Power Level Operation
NASA Technical Reports Server (NTRS)
Bradley, Michael
1997-01-01
This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.
A combined compensation method for the output voltage of an insulated core transformer power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.
2014-06-15
An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from themore » primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.« less
Sensitivity of resonant tunneling diode photodetectors.
Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas
2016-09-02
We have studied the sensitivity of AlGaAs/GaAs double barrier resonant tunneling diode photodetectors with an integrated GaInNAs absorption layer for light sensing at the telecommunication wavelength of λ = 1.3 μm for illumination powers from pico- to microwatts. The sensitivity decreases nonlinearly with power. An illumination power increase of seven orders of magnitude leads to a reduction of the photocurrent sensitivity from S I = 5.82 × 10(3) A W(-1) to 3.2 A W(-1). We attribute the nonlinear sensitivity-power dependence to an altered local electrostatic potential due to hole-accumulation that on the one hand tunes the tunneling current, but on the other hand affects the lifetime of photogenerated holes. In particular, the lifetime decreases exponentially with increasing hole population. The lifetime reduction results from an enhanced electrical field, a rise of the quasi-Fermi level, and an increased energy splitting within the triangular potential well. The non-constant sensitivity is a direct result of the non-constant lifetime. Based on these findings, we provide an expression that allows us to calculate the sensitivity as a function of illumination power and bias voltage, show a way to model the time-resolved photocurrent, and determine the critical power up to which the resonant tunneling diode photodetector sensitivity can be assumed constant.
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Xie, Ying; Zhang, Tong
2012-11-05
Repetitive transcranial magnetic stimulation is a noninvasive treatment technique that can directly alter cortical excitability and improve cerebral functional activity in unconscious patients. To investigate the effects and the electrophysiological changes of repetitive transcranial magnetic stimulation cortical treatment, 10 stroke patients with non-severe brainstem lesions and with disturbance of consciousness were treated with repetitive transcranial magnetic stimulation. A quantitative electroencephalography spectral power analysis was also performed. The absolute power in the alpha band was increased immediately after the first repetitive transcranial magnetic stimulation treatment, and the energy was reduced in the delta band. The alpha band relative power values slightly decreased at 1 day post-treatment, then increased and reached a stable level at 2 weeks post-treatment. Glasgow Coma Score and JFK Coma Recovery Scale-Revised score were improved. Relative power value in the alpha band was positively related to Glasgow Coma Score and JFK Coma Recovery Scale-Revised score. These data suggest that repetitive transcranial magnetic stimulation is a noninvasive, safe, and effective treatment technology for improving brain functional activity and promoting awakening in unconscious stroke patients.
Combined Euler column vibration isolation and energy harvesting
NASA Astrophysics Data System (ADS)
Davis, R. B.; McDowell, M. D.
2017-05-01
A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.
A high-pressure carbon dioxide gasdynamic laser
NASA Technical Reports Server (NTRS)
Kuehn, D. M.
1973-01-01
A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.
NASA Astrophysics Data System (ADS)
Delibalta, M. S.; Kahraman, S.; Comakli, R.
2015-11-01
Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.
Liu, Boquan; Polce, Evan; Sprott, Julien C; Jiang, Jack J
2018-05-17
The purpose of this study is to introduce a chaos level test to evaluate linear and nonlinear voice type classification method performances under varying signal chaos conditions without subjective impression. Voice signals were constructed with differing degrees of noise to model signal chaos. Within each noise power, 100 Monte Carlo experiments were applied to analyze the output of jitter, shimmer, correlation dimension, and spectrum convergence ratio. The computational output of the 4 classifiers was then plotted against signal chaos level to investigate the performance of these acoustic analysis methods under varying degrees of signal chaos. A diffusive behavior detection-based chaos level test was used to investigate the performances of different voice classification methods. Voice signals were constructed by varying the signal-to-noise ratio to establish differing signal chaos conditions. Chaos level increased sigmoidally with increasing noise power. Jitter and shimmer performed optimally when the chaos level was less than or equal to 0.01, whereas correlation dimension was capable of analyzing signals with chaos levels of less than or equal to 0.0179. Spectrum convergence ratio demonstrated proficiency in analyzing voice signals with all chaos levels investigated in this study. The results of this study corroborate the performance relationships observed in previous studies and, therefore, demonstrate the validity of the validation test method. The presented chaos level validation test could be broadly utilized to evaluate acoustic analysis methods and establish the most appropriate methodology for objective voice analysis in clinical practice.
NASA Astrophysics Data System (ADS)
Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.
2018-04-01
The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S; Lundquist, J K; Marjanovic, N
This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads onmore » the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum velocity (power) deficits reached up to 50% (70%) during strongly stable conditions. At an offshore Danish wind farm, Hansen et al. found a strong negative correlation between power deficit and ambient turbulence intensity (i.e., atmospheric stability). Under convective conditions, when turbulence levels were relatively high, smallest power deficits were observed. Power deficits approaching 35 to 40% were found inside the wind farm during stable conditions.« less
Hvid, L G; Nielsen, M K F; Simonsen, C; Andersen, M; Caserotti, P
2017-07-01
Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 47 older men and women: n=22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7±5.4years, 55% women) and n=25 in the control group (CG: no interventions; age 82.2±4.5years, 76% women). Following overnight fasting, basal serum levels of mBDNF and tBDNF were assessed (human ELISA kits) at baseline and post-intervention. At baseline, mBDNF and tBDNF levels were comparable in the two groups, TG and CG. Post-intervention, no significant within-group or between-group changes were observed in mBDNF or tBDNF. Moreover, when divided into responder tertiles based upon changes in mBDNF and tBDNF (i.e. decliners, maintainers, improvers), respectively, comparable findings were observed for TG and CG. Altogether, basal systemic levels of serum mBDNF and tBDNF are not affected in mobility-limited older adults following 12-weeks of power training, and do not appear to be a major mechanistic factor mediating neuroplasticity in mobility-limited older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Walker, Elaine M.
2002-01-01
Studied the implementation of school-based management in 30 of the poorest school districts in New Jersey (the Abbott districts). Findings show that genuine autonomy has been usurped by increased state power and authority, and that state elites allow little opportunity for capacity building at the district level. The level of democratization has…
Muscle damage induced by stretch-shortening cycle exercise.
Kyröläinen, H; Takala, T E; Komi, P V
1998-03-01
Strenuous stretch-shortening cycle exercise was used as a model to study the leakage of proteins from skeletal muscle. The analysis included serum levels of creatine kinase (S-CK), myoglobin (S-Mb), and carbonic anhydrase (S-CA III). Blood samples from power- (N=11) and endurance-trained (N=10) athletes were collected before, 0, and 2 h after the exercise, which consisted of a total of 400 jumps. The levels of all determined myocellular proteins increased immediately after the exercise (P < 0.05-0.001) among both subject groups. In the endurance group, the protein levels increased (P < 0.05-0.001) further during the following 2 h after the exercise, and the ratio of S-CA III and S-Mb decreased (P < 0.05) in a before-after comparison. This was not the case among the power group despite their greater mechanical work (P < 0.001) and higher ratio of eccentric and concentric EMG activity of the leg extensor muscles (P < 0.05). The differences of the determined protein levels between the subject groups might be due to obvious differences in the muscle fiber distribution, differences in recruitment order of motor units, and/or differences in training background.
Anaerobic and Aerobic Performance of Elite Female and Male Snowboarders
Żebrowska, Aleksandra; Żyła, Dorota; Kania, Damian; Langfort, Józef
2012-01-01
The physiological adaptation to training is specific to the muscle activity, dominant energy system involved, muscle groups trained, as well as intensity and volume of training. Despite increasing popularity of snowboarding only little scientific data is available on the physiological characteristics of female and male competitive snowboarders. Therefore, the purpose of this study was to compare the aerobic capacity and maximal anaerobic power of elite Polish snowboarders with untrained subjects. Ten snowboarders and ten aged matched students of Physical Education performed two exercise tests. First, a 30-second Wingate test was conducted and next, a cycle ergometer exercise test with graded intensity. In the first test, peak anaerobic power, the total work, relative peak power and relative mean power were measured. During the second test, relative maximal oxygen uptake and lactate threshold were evaluated. There were no significant differences in absolute and relative maximal oxygen uptake between snowboarders and the control group. Mean maximal oxygen uptake and lactate threshold were significantly higher in men than in women. Significant differences were found between trained men and women regarding maximal power and relative maximal power. The elite snowboarders demonstrated a high level of anaerobic power. The level of relative peak power in trained women correlated negatively with maximal oxygen uptake. In conclusion, our results seem to indicate that the demanding competition program of elite snowboarders provides a significant training stimulus mainly for anaerobic power with minor changes in anaerobic performance. PMID:23487498
Upgrades to the MARIA Helicon Experiment at UW-Madison
NASA Astrophysics Data System (ADS)
Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg; Winters, Victoria
2016-10-01
The MARIA helicon plasma device at UW Madison is setup to investigate the neutral particle fueling of helicon discharges. Following initial results from the 668.614nm diode laser LIF system, the active spectroscopy diagnostic suite was expanded by establishing a 1.4J pulsed Nd:YAG pumped dye laser. To verify the new laser system, a comparison of measured ion velocities near a target plate was made between the diode based and dye based LIF systems. Additionally, theory and further verification of a new technique for measuring ion velocities leveraging Zeeman splitting is presented. During a campaign with <= 750W RF power, densities in the range of 1x1018 m-3 and 2 eV electron temperature were achieved with 4.1 mTorr of argon and a magnetic field of 750G. To achieve higher densities and explore the physics of neutral depletion, the available RF power was increased from 750W to 2kW, with further expansion to 4kW on a single antenna planned. For both power levels a clear helicon mode can be reliably established and its extension increases with increasing RF power. Basic plasma characterization at the higher RF power, such as electron density vs magnetic field scans, will be presented. This work was funded by the NSF CAREER Award PHY-1455210.
Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ela, E.; Milligan, M.; Bloom, A.
2014-09-01
Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.
DYNAMIC AND STATIC PARAMETERS OF THE AQUEOUS HOMOGENEOUS ARMOUR RESEARCH REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrell, C.W.; McElroy, W.N.
1959-06-01
A brief description of the aqueous homogeneous Armour Research Reactor is given. The negative reactivity coefficient resulting from a temperature increase was determined over a fuel temperature range of 37 to 150 deg F. Possession of an accurately calibrated rod and temperature coefficient permitted a direct measurement of the void coefficient. The reactor was taken to different power levels, and from the calibrated rod the total reduction in excess reactivity was obtained. During the power increase program additional U/sup 235/ and water were added to the core to determine the worth of U/sup 235/ and water. (W.D.M.)
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Phase 1 space fission propulsion system design considerations
NASA Astrophysics Data System (ADS)
Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .
NASA Astrophysics Data System (ADS)
Santos-Alamillos, Francisco J.; Brayshaw, David J.; Methven, John; Thomaidis, Nikolaos S.; Ruiz-Arias, José A.; Pozo-Vázquez, David
2017-11-01
The concept of a European super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability. The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e. a ‘better’ spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued—if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply.
NASA Astrophysics Data System (ADS)
Baggett, R.
2004-11-01
Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.
DOT National Transportation Integrated Search
2017-06-30
The ever-increasing processing speed and computational power of computers and simulation systems has led to correspondingly larger, more sophisticated representations of evacuation traffic processes. Today, micro-level analyses can be conducted for m...
A Rising China: Shifting the Economic Balance of Power Through Cyberspace
2014-12-01
YouTube as outlets for personal expression, but their Beijing counterparts identify the websites as...levels not seen since the Great Depression (see additional information below).98 Despite weakening income growth, increasing trade deficits, and
View from... Photonics Meets Biology Summer School: The bio-mission of diode lasers
NASA Astrophysics Data System (ADS)
Won, Rachel
2015-12-01
Diode lasers represent a viable alternative to light sources used in many biomedical applications. Their ongoing development will further increase their importance, offering not only multiple wavelength ranges, but also higher power levels.
The High-efficiency LED Driver for Visible Light Communication Applications.
Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen
2016-08-08
This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system's efficiency of 80.8% can be achieved at 1-Mb/s data rate.
The 20 GHz spacecraft FET solid state transmitter
NASA Technical Reports Server (NTRS)
1983-01-01
The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.
Psychology in nuclear power plants: an integrative approach to safety - general statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shikiar, R.
Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals withmore » the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety.« less
Power sharing. A transformational strategy for nurse retention, effectiveness, and extra effort.
Trofino, Joan
2003-01-01
Power sharing with staff nurses is an essential strategy for organizational transformation. The current competitive health care environment requires a powerful team of participants, including staff at all levels, to provide health care in mutual partnership. The challenges of today's competitive and global environment call for collegial relationships among nurse executive leadership, middle nurse managers, and staff nurses. Research has demonstrated that middle nurse managers maintain primary responsibility for staff nurse retention. A higher retention rate was reported among nurses who were very satisfied with their nurse managers. Nurses considered favorably nurse managers who value staff contributions, promote information sharing, and exert influence for a stable work environment. Furthermore, as staff nurse satisfaction increased, effectiveness and extra effort also increased when staff nurses perceived transformational leadership strategies. Strategies for power sharing include serving as role models and mentors, energizing staff, resisting attitudes of staff ownership, reducing staff nurse stress of leader presence, and information sharing and commendations at meetings.
Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel
2018-05-01
Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.
A 500 A device characterizer utilizing a pulsed-linear amplifier
NASA Astrophysics Data System (ADS)
Lacouture, Shelby; Bayne, Stephen
2016-02-01
With the advent of modern power semiconductor switching elements, the envelope defining "high power" is an ever increasing quantity. Characterization of these semiconductor power devices generally falls into two categories: switching, or transient characteristics, and static, or DC characteristics. With the increasing native voltage and current levels that modern power devices are capable of handling, characterization equipment meant to extract quasi-static IV curves has not kept pace, often leaving researchers with no other option than to construct ad hoc curve tracers from disparate pieces of equipment. In this paper, a dedicated 10 V, 500 A curve tracer was designed and constructed for use with state of the art high power semiconductor switching and control elements. The characterizer is a physically small, pulsed power system at the heart of which is a relatively high power linear amplifier operating in a switched manner in order to deliver well defined square voltage pulses. These actively shaped pulses are used to obtain device's quasi-static DC characteristics accurately without causing any damage to the device tested. Voltage and current waveforms from each pulse are recorded simultaneously by two separate high-speed analog to digital converters and averaged over a specified interval to obtain points in the reconstructed IV graph.
Joy, Jordan M; Vogel, Roxanne M; Moon, Jordan R; Falcone, Paul H; Mosman, Matt M; Pietrzkowski, Zbigniew; Reyes, Tania; Kim, Michael P
2016-07-18
Increased cellular ATP levels have the potential to enhance athletic performance. A proprietary blend of ancient peat and apple extracts has been supposed to increase ATP production. Therefore, the purpose of this investigation was to determine the effects of this supplement on athletic performance when used during 12 weeks of supervised, periodized resistance training. Twenty-five healthy, resistance-trained, male subjects completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extract (TRT) or an equal-volume, visually-identical placebo (PLA) daily. Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2 week overreach and a 2 week taper phase. Strength was determined using 1-repetition-maximum (1RM) testing in the barbell back squat, bench press (BP), and deadlift exercises. Peak power and peak velocity were determined during BP at 30 % 1RM and vertical jump tests as well as a 30s Wingate test, which also provided relative power (watt:mass) A group x time interaction was present for squat 1RM, deadlift 1RM, and vertical jump peak power and peak velocity. Squat and deadlift 1RM increased in TRT versus PLA from pre to post. Vertical jump peak velocity increased in TRT versus PLA from pre to week 10 as did vertical jump peak power, which also increased from pre to post. Wingate peak power and watt:mass tended to favor TRT. Supplementing with ancient peat and apple extract while participating in periodized resistance training may enhance performance adaptations. ClinicalTrials.gov registration ID: NCT02819219 , retrospectively registered on 6/29/2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narducci, Dario, E-mail: dario.narducci@unimib.it; Consorzio DeltaTi Research; Selezneva, Ekaterina
2012-09-15
Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of themore » actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.« less
Detection of significant variation in acoustic output of an electromagnetic lithotriptor.
Pishchalnikov, Yuri A; McAteer, James A; Vonderhaar, R Jason; Pishchalnikova, Irina V; Williams, James C; Evan, Andrew P
2006-11-01
We describe the observation of significant instability in the output of an electromagnetic lithotriptor. This instability had a form that was not detected by routine assessment, but rather was observed only by collecting many consecutive shock waves in nonstop regimen. A Dornier DoLi-50 lithotriptor used exclusively for basic research was tested and approved by the regional technician. This assessment included hydrophone measures at select power levels with the collection of about 25 shock waves per setting. Subsequent laboratory characterization used a fiberoptic hydrophone and storage oscilloscope for data acquisition. Waveforms were collected nonstop for hundreds of pulses. Output was typically stable for greater than 1,000 shock waves but substantial fluctuations in acoustic pressures were also observed. For example, output at power level 3 (mean peak positive acoustic pressure +/- SD normally 44 +/- 2 MPa) increased dramatically to greater than 50 MPa or decreased significantly to approximately 30 MPa for hundreds of shock waves. The cause of instability was eventually traced to a faulty lithotriptor power supply. Instability in lithotriptor acoustic output can occur and it may not be detected by routine assessment. Collecting waveforms in a nonstop regimen dramatically increases sampling size, improving the detection of instability. Had the instability that we observed occurred during patient treatment, the energy delivered may well have exceeded the planned dose. Since the potential for adverse effects in lithotripsy increases as the dose is increased, it would be valuable to develop ways to better monitor the acoustic output of lithotriptors.
Karthikeyan, C; Sathishkumar, Y; Lee, Yang Soo; Kim, Ae Rhan; Yoo, Dong Jin; Kumar, G Gnana
2017-01-01
A simple, environmental friendly and biologically important sediment interfaced fuel cell was developed for the green energy generation. The soil sediment used for the study is enriched of rich anthropogenic free organic carbon, sufficient manganese and high level potassium contents as evidenced from the geochemical characterizations. The saccharides produced by the catalytic reaction of substrate chitosan were utilized for the growth of microorganisms and electron shuttling processes. Chitosan substrate influenced sediment microbial fuel cells exhibited the nearly two fold power increment over the substrate free fuel cells. The fuel cell efficiencies were further increased by bringing the substrate chitosan at nanometric level, which is nearly three and two fold higher than that of substrate free and chitosan influenced sediment microbial fuel cells, respectively, and the influential parameters involved in the power and longevity issues were addressed with different perspectives.
A Sensemaking Perspective on Situation Awareness in Power Grid Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Schur, Anne; Paget, Mia L.
2008-07-21
With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid operations continues to grow. New paradigms are needed to guide research to improve operations by enhancing situation awareness of operators. Research on human factors/situation awareness is described within a taxonomy of tools and approaches that address different levels of cognitive processing. While user interface features and visualization approaches represent the predominant focus of human factors studies of situation awareness, this paper argues that a complementary level, sensemaking, deserves further consideration by designers of decision support systems for power grid operations. A sensemaking perspective onmore » situation aware-ness may reveal new insights that complement ongoing human factors research, where the focus of the investigation of errors is to understand why the decision makers experienced the situation the way they did, or why what they saw made sense to them at the time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustikova, J., E-mail: lustikova@imr.tohoku.ac.jp; Shiomi, Y.; Handa, Y.
2015-02-21
We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spinmore » Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.« less
Baker, Daniel G; Newton, Robert U
2007-11-01
Athletes experienced in maximal-power and power-endurance training performed 1 set of 2 common power training exercises in an effort to determine the effects of moderately high repetitions upon power output levels throughout the set. Twenty-four and 15 athletes, respectively, performed a set of 10 repetitions in both the bench throw (BT P60) and jump squat exercise (JS P60) with a resistance of 60 kg. For both exercises, power output was highest on either the second (JS P60) or the third repetition (BT P60) and was then maintained until the fifth repetition. Significant declines in power output occurred from the sixth repetition onwards until the 10th repetition (11.2% for BT P60 and 5% for JS P60 by the 10th repetition). These findings suggest that athletes attempting to increase maximal power limit their repetitions to 2 to 5 when using resistances of 35 to 45% 1RM in these exercises.
Schoof, Valérie A M; Jack, Katharine M; Carnegie, Sarah D
2011-01-01
We examined fecal androgen and cortisol levels in three adult male white-faced capuchin monkeys (Cebus capucinus) before and after a non-aggressive rank increase in one habituated group residing in the Santa Rosa Sector of the Área de Conservación Guanacaste, Costa Rica. Fecal samples (n = 116) were collected opportunistically between July 2006 and July 2007. Alpha males had higher mean androgen levels than subordinates, and acquisition of the alpha position was linked to an immediate increase in mean androgens. Cortisol levels also increased in the alpha male after acquisition of his new rank, though this increase was delayed relative to the change in rank. These results indicate that, during a non-aggressive rank change, androgen and cortisol levels in male white-faced capuchins are physiological responses to dominance rank, rather than precursors that facilitate rank acquisition. Copyright © 2012 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.
2017-12-01
Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Technical Reports Server (NTRS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin
1994-01-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Simões, Alyne; Eduardo, Fernanda P; Luiz, Ana Claudia; Campos, Luana; Sá, Pedro Henrique R N; Cristófaro, Márcio; Marques, Márcia M; Eduardo, Carlos P
2009-04-01
Oral mucositis is a dose-limiting and painful side effect of radiotherapy (RT) and/or chemotherapy in cancer patients. The purpose of the present study was to analyze the effect of different protocols of laser phototherapy (LPT) on the grade of mucositis and degree of pain in patients under RT. Thirty-nine patients were divided into three groups: G1, where the irradiations were done three times a week using low power laser; G2, where combined high and low power lasers were used three time a week; and G3, where patients received low power laser irradiation once a week. The low power LPT was done using an InGaAlP laser (660 nm/40 mW/6 J cm(-2)/0.24 J per point). In the combined protocol, the high power LPT was done using a GaAlAs laser (808 nm, 1 W/cm(2)). Oral mucositis was assessed at each LPT session in accordance to the oral-mucositis scale of the National Institute of the Cancer-Common Toxicity criteria (NIC-CTC). The patient self-assessed pain was measured by means of the visual analogue scale. All protocols of LPT led to the maintenance of oral mucositis scores in the same levels until the last RT session. Moreover, LPT three times a week also maintained the pain levels. However, the patients submitted to the once a week LPT had significant pain increase; and the association of low/high LPT led to increased healing time. These findings are desired when dealing with oncologic patients under RT avoiding unplanned radiation treatment breaks and additional hospital costs.
Scientific challenges in sustainable energy technology
NASA Astrophysics Data System (ADS)
Lewis, Nathan
2006-04-01
We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Astrophysics Data System (ADS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael
1994-06-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Zhang, Siyuan; Zong, Yujin; Wan, Mingxi; Yu, Xiaojun; Fu, Quanyou; Ding, Ting; Zhou, Fanyu; Wang, Supin
2012-06-01
This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.
The problem of automation: Inappropriate feedback and interaction, not overautomation
NASA Technical Reports Server (NTRS)
Norman, Donald A.
1989-01-01
As automation increasingly takes its place in industry, especially high-risk industry, it is often blamed for causing harm and increasing the chance of human error when failures occur. It is proposed that the problem is not the presence of automation, but rather its inappropriate design. The problem is that the operations are performed appropriately under normal conditions, but there is inadequate feedback and interaction with the humans who must control the overall conduct of the task. When the situations exceed the capabilities of the automatic equipment, then the inadequate feedback leads to difficulties for the human controllers. The problem is that the automation is at an intermediate level of intelligence, powerful enough to take over control that which used to be done by people, but not powerful enough to handle all abnormalities. Moreover, its level of intelligence is insufficient to provide the continual, appropriate feedback that occurs naturally among human operators. To solve this problem, the automation should either be made less intelligent or more so, but the current level is quite inappropriate. The overall message is that it is possible to reduce error through appropriate design considerations.
Zinc Bromide Flow Battery Installation for Islanding and Backup Power
2017-08-09
predictably is in place. The ability to control generation has become more difficult with the increase of RE systems such as solar PV and wind turbines ...Both PV and wind systems generate power based on unpredictable cycles of nature. At very low levels of RE penetration the grid can be balanced by...Page Intentionally Left Blank 15 5.0 TEST DESIGN This goal of this demonstration was to solve two main problems . The first
OPERATION DOMINIC, SHOT SWORD FISH. Project Officer’s Report. Project 1. 1. Underwater Pressures
1985-09-01
LEVEL ACCESSION FOR NT1S GRAfcl DTK TAB UNANNOUNCED JUSTIFICATION D D BY DISTRIBUTION / AVAILABILrTY CODES DIST AW AVAIL AND/OR SPECIAL...The batteries ueed to power the recorderi were composed of new nickel-cadnlum cells with the ssse capacity rating as those used during Hardtack...the better cell quality and approximately 35-percent reduction in power requirements. A new battery-charging circuit of Increased convenience and
Wind Power Technologies FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-03-01
The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation’s electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80% by 2050 by reducing costs and increasing performance of wind energy systems.
Development of micro-heaters with optimized temperature compensation design for gas sensors.
Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon
2011-01-01
One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.
Early Oscillation Detection Technique for Hybrid DC/DC Converters
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s normal operation. This technique eliminates the probing problem of a gain/phase margin method by connecting the power input to a spectral analyzer. Therefore, it is able to evaluate stability for all kinds of hybrid DC/DC converters with or without remote sense pins, and is suitable for real-time and in-circuit testing. This frequency-domain technique is more sensitive to detect oscillation at early stage than the time-domain method using an oscilloscope.
Standby battery requirements for telecommunications power
NASA Astrophysics Data System (ADS)
May, G. J.
The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed for telecommunications power, either different battery chemistries including lithium batteries, flywheel energy storage or the use of fuel cells. These will be evaluated and the position of lead/acid batteries in the medium term for this important market will be assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulsh, M.; Wheeler, D.; Protopappas, P.
The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study usingmore » a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.« less
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1995-01-01
The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.
Head loss coefficient through sharp-edged orifices
NASA Astrophysics Data System (ADS)
Adam, Nicolas J.; De Cesare, Giovanni; Schleiss, Anton J.; Richard, Sylvain; Muench-Alligné, Cécile
2016-11-01
Nowadays, high-head power plants could increase their installed power capacity for many reasons, e.g. dam heightening, increase of their peak power capacity or refurbishment with new turbines. Frequently, due to several considerations, e.g. topographical or economical limitations, the existing surge tank cannot be extended to keep previous safety levels and efficiency. A valuable way to adapt these surge tanks is to place a throttle at their entrance like, for example, an orifice. The main effect of this adaptation is the introduction of head losses that reduce the extreme levels in the surge tank due to the mass oscillations resulting from a closure or opening of downstream discharge control. This research studies the influence of the edge angle of a ASME-standard orifice on the head losses. This angle introduces an asymmetrical behavior and influences head losses. Different angles are tested from 0° to the 67° (biggest angle possible for this configuration). The first step of this study is to determine experimentally the steady losses produced by orifice for several discharges. In the second step, a numerical model on ANSYS CFX is performed. Combining the two approaches, it is possible to understand and quantify the effect of the edge angle.
Kirschbaum, Andreas; Höchsmann, N; Steinfeldt, T; Seyfer, P; Pehl, A; Bartsch, D K; Palade, E
2016-08-01
Lung metastases in healthy patients should be removed non-anatomically whenever possible. This can be done with a laser. Lung parenchyma can be cut very well, because of its high energy absorption at a wavelength of 1940 nm. A coagulation layer is created on the resected surface. It is not clear, whether this surface also needs to be sutured to ensure that it remains airtight even at higher ventilation pressures. It would be helpful, if suturing could be avoided, because the lung can become too puckered, especially with multiple resections, resulting in considerable restriction. We carried out our experiments on isolated and ventilated paracardiac lung lobes of pigs. Non-anatomic resection was carried out reproducibly using three different thulium laser fibres (230, 365 and 600 μm) at two different laser power levels (10 W, 30 W) and three different resection depths (0.5, 1.0 and 2.0 cm). Initial airtightness was investigated while ventilating at normal frequency. We also investigated the bursting pressures of the resected areas by increasing the inspiratory pressure. When 230- and 365-μm fibres were used with a power of 10 W, 70 % of samples were initially airtight up to a resection depth of 1 cm. This rate fell at depths of up to 2 cm. All resected surfaces remained airtight during ventilation when 600-μm fibres were used at both laser power levels (10 and 30 W). The bursting pressures achieved with 600-μm fibres were higher than with the other fibres used: 0.5 cm, 41.6 ± 3.2 mbar; 1 cm, 38.2 ± 2.5 mbar; 2 cm, 33.7 ± 4.8 mbar. As laser power and thickness of laser fibre increased, so the coagulation zone became thicker. With a 600-μm fibre, it measured 145.0 ± 8.2 μm with 10 W power and 315.5 ± 6.4 μm with 30 W power. Closure with sutures after non-anatomic resection of lung parenchyma is not necessary when a thulium laser is used provided a 600-μm fibre and adequate laser power (30 W) are employed. At deeper resection levels, the risk of cutting small segmental bronchi is considerably increased. They must always be closed with sutures.
Can IGF-I polymorphism affect power and endurance athletic performance?
Ben-Zaken, Sigal; Meckel, Yoav; Nemet, Dan; Eliakim, Alon
2013-10-01
Insulin-like growth factor-I (IGF-I) plays a key role in exercise-associated muscle growth and development. The regulatory region of the promoter of the IGF-I gene is labile, but changes in this region were studied mostly in the elderly and in relation to pathological states. C-1245T (rs35767) is a genetic variation in the promoter region of the IGF-I gene. The minor allele T was found to be associated with higher circulating IGF-I levels, and possibly with increased muscle mass. The aim of the current study was to analyze the frequency distribution of C-1245T SNP in athletic and nonathletic Israeli populations. One hundred and sixty-five athletes (78 endurance-type athletes, and 87 power-type athletes) and 159 nonathletic healthy individuals participated in the current study. Genomic DNA was extracted from peripheral EDTA treated anti-coagulated blood using a standard protocol. Genotyping of the IGF1 C-1245T polymorphism was performed using polymerase chain reaction (PCR). We found that the endurance and power athletes' allele and genotype frequencies were significantly different from those of the control group. Only 4.8% of the athletes were TT carriers, but none of the controls carried this genotype. The T allele was found to be more frequent in the top-level power athletes (international and Olympic level) compared to national level athletes, but such a difference was not found in endurance athletes. Our findings suggest a possible contribution for the relatively rare IGF-I TT genotype to endurance performance, and in particular to power sport excellence in Israeli athletes. © 2013.
Convective Array Cooling for a Solar Powered Aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Dolce, James (Technical Monitor)
2003-01-01
A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.
Dworski-Riggs, Deanne; Langhout, Regina Day
2010-06-01
Community psychologists are increasingly using Participatory Action Research (PAR) as a way to promote social justice by creating conditions that foster empowerment. Yet, little attention has been paid to the differences between the power structure that PAR advocates and the local community power structures. This paper seeks to evaluate the level of participation in a PAR project for multiple stakeholder groups, determine how PAR was adjusted to better fit community norms, and whether our research team was able to facilitate the emergence of PAR by adopting an approach that was relevant to the existing power relations. We conclude that power differences should not be seen as roadblocks to participation, but rather as moments of opportunity for the researchers to refine their methods and for the community and the community psychologist to challenge existing power structures.
Nuclear power propulsion system for spacecraft
NASA Astrophysics Data System (ADS)
Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.
2015-12-01
The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.
Dworski-Riggs, Deanne
2010-01-01
Community psychologists are increasingly using Participatory Action Research (PAR) as a way to promote social justice by creating conditions that foster empowerment. Yet, little attention has been paid to the differences between the power structure that PAR advocates and the local community power structures. This paper seeks to evaluate the level of participation in a PAR project for multiple stakeholder groups, determine how PAR was adjusted to better fit community norms, and whether our research team was able to facilitate the emergence of PAR by adopting an approach that was relevant to the existing power relations. We conclude that power differences should not be seen as roadblocks to participation, but rather as moments of opportunity for the researchers to refine their methods and for the community and the community psychologist to challenge existing power structures. PMID:20232244
Lim, Kyung-Geun; Kim, Hak-Beom; Jeong, Jaeki; Kim, Hobeom; Kim, Jin Young; Lee, Tae-Woo
2014-10-08
A self-organized hole extraction layer (SOHEL) with high work function (WF) is designed for energy level alignment with the ionization potential level of CH3 NH3 PbI3 . The SOHEL increases the built-in potential, photocurrent, and power conversion efficiency (PCE) of CH3 NH3 PbI3 perovskite solar cells. Thus, interface engineering of the positive electrode of solution-processed planar heterojunction solar cells using a high-WF SOHEL is a very effective way to achieve high device efficiency (PCE = 11.7% on glass). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.
A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching betweenmore » mode structures with various Q-factors are considered.« less
Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test
Domínguez, Raul; Garnacho-Castaño, Manuel Vicente; Cuenca, Eduardo; García-Fernández, Pablo; Muñoz-González, Arturo; de Jesús, Fernando; Lozano-Estevan, María Del Carmen; Veiga-Herreros, Pablo
2017-01-01
Background: Beetroot juice (BJ) is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO) levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg) undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3−) or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6%) (p = 0.034), average power 0–15 s (6.7%) (p = 0.048) and final blood lactate levels (82.6%) (p < 0.001), and there was a trend towards a shorter time taken to attain peak power (−8.4%) (p = 0.055). Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test. PMID:29244746
Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A
2011-01-01
The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989
Nitrogen Dioxide in Indoor Ice Skating Facilities: An International Survey.
Brauer, Michael; Lee, Kiyoung; Spengler, John D; Salonen, Raimo O; Pennanen, Arto; Braathen, Ole Anders; Miskovic, Eva Mihalikova And Peter; Nozaki, Atsuo; Tsuzuki, Toshifumi; Rui-Jin, Song; Qing-Xiang, Yang Xu And Zeng; Drahonovska, Hana; Kjaergaard, Søren
1997-10-01
An international survey of nitrogen dioxide (NO 2 ) levels inside indoor ice skating facilities was conducted. One-week average NO 2 concentrations were measured inside and outside of 332 ice rinks located in nine countries. Each rink manager also completed a questionnaire describing the building, the resurfacing machines, and their use patterns. The (arithmetic) mean NO 2 level for all rinks in the study was 228 ppb, with a range of 1-2,680 ppb, based on a sample collected at breathing height and adjacent to the ice surface. The mean of the second indoor sample (collected at a spectator's area) was 221 ppb, with a range of 1-3,175 ppb. The ratio of the indoor to outdoor NO 2 concentrations was above 1 for 95% of the rinks sampled, indicating the presence of an indoor NO 2 source (mean indoor:outdoor ratio = 20). Estimates of short-term NO 2 concentrations indicated that as many as 40% of the sampled rinks would have exceeded the World Health Organization 1-hour guideline value of 213 ppb NO 2 for indoor air. Statistically significant associations were observed between NO 2 levels and the type of fuel used to power the resurfacer, the absence of a catalytic converter on a resurfacer, and the use of an ice edger. There were also indications that decreased use of mechanical ventilation, increased number of resurfacing operations per day, and smaller rink volumes were associated with increased NO 2 levels. In rinks where the main resurfacer was powered by propane, the NO 2 concentrations were higher than in those with gasoline-powered resurfacers, while the latter had NO 2 concentrations higher than in those using diesel. Rinks where the main resurfacer was electric had the lowest indoor NO 2 concentrations, similar to the levels measured outdoor.
Wireless power charging using point of load controlled high frequency power converters
Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.
2015-10-13
An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.
Wang, Liqiang; Li, Pengfei; Yu, Shaocai; Mehmood, Khalid; Li, Zhen; Chang, Shucheng; Liu, Weiping; Rosenfeld, Daniel; Flagan, Richard C; Seinfeld, John H
2018-01-17
Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO 2 , NO 2 , PM 2.5 , and PM 10 levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO 2 , NO 2 , PM 2.5 , and PM 10 in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.
Acoustic energy harvesting using an electromechanical Helmholtz resonator.
Liu, Fei; Phipps, Alex; Horowitz, Stephen; Ngo, Khai; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark
2008-04-01
This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices.
Status and Trends in the U.S. Voluntary Green Power Market (2014 Data)
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Heeter, Jenny; Liu, Chang
2015-10-16
NREL's annual report on green power markets summarizes status and trends in the voluntary demand for renewable energy. U.S. green power markets have become more complex over time as state-level policies have enabled more avenues for green power purchases. In recent years, community solar, community choice aggregation (CCA), and voluntary power purchase agreements (PPAs) have significantly increased the number of U.S. voluntary green power customers. The community solar model has grown rapidly with 90 projects in 25 states by 2015. Renewable energy sales in CCAs declined slightly in 2014 in response to less favorable economic conditions in Illinois. At themore » same time, several California CCAs continued to grow, and many more communities are planning to pursue green power through aggregation. Voluntary green power purchasing through bi-lateral PPAs took off in 2014 due to several large-scale agreements signed by information and communication technology firms. Traditional green power options, such as utility green pricing programs and voluntary RECs markets, also grew in 2014. Current trends suggest strong continued growth in U.S. voluntary green power markets.« less
Modeling the Ocean Tide for Tidal Power Generation Applications
NASA Astrophysics Data System (ADS)
Kawase, M.; Gedney, M.
2014-12-01
Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the current speed. In the standard case considered, at the maximum power extraction the tidal range in the estuary is reduced by 37% and the natural dissipation by 78% from the unperturbed state. Thus, environmental consequences of power generation are likely to become the limiting factor on the scale of resource development before the physical maximum is reached.
Microwave system performance for a solar power satellite during startup/shutdown operations
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Berlin, L. A.
1979-01-01
The paper investigates the system performance and antenna characteristics under startup/shutdown conditions for the high power beam from a solar power satellite. Attention is given to the present microwave system reference configuration together with the dc power distribution system in the solar array and in the antenna. The pattern characteristics for the main beam, sidelobes, and grating lobes are examined for eight types of energizing configurations which include: random sequences, two types of concentric circles, and three types of line strips. In conclusion, it is noted that a proper choice of sequences should not cause environmental problems due to increased microwave radiation levels during the short time periods of energizing and de-energizing the antenna.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
Analog self-powered harvester achieving switching pause control to increase harvested energy
NASA Astrophysics Data System (ADS)
Makihara, Kanjuro; Asahina, Kei
2017-05-01
In this paper, we propose a self-powered analog controller circuit to increase the efficiency of electrical energy harvesting from vibrational energy using piezoelectric materials. Although the existing synchronized switch harvesting on inductor (SSHI) method is designed to produce efficient harvesting, its switching operation generates a vibration-suppression effect that reduces the harvested levels of electrical energy. To solve this problem, the authors proposed—in a previous paper—a switching method that takes this vibration-suppression effect into account. This method temporarily pauses the switching operation, allowing the recovery of the mechanical displacement and, therefore, of the piezoelectric voltage. In this paper, we propose a self-powered analog circuit to implement this switching control method. Self-powered vibration harvesting is achieved in this study by attaching a newly designed circuit to an existing analog controller for SSHI. This circuit aims to effectively implement the aforementioned new switching control strategy, where switching is paused in some vibration peaks, in order to allow motion recovery and a consequent increase in the harvested energy. Harvesting experiments performed using the proposed circuit reveal that the proposed method can increase the energy stored in the storage capacitor by a factor of 8.5 relative to the conventional SSHI circuit. This proposed technique is useful to increase the harvested energy especially for piezoelectric systems having large coupling factor.
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.
2017-12-01
The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.
Roache, Sarah A.; Gostin, Lawrence O.
2017-01-01
Globally, soda taxes are gaining momentum as powerful interventions to discourage sugar consumption and thereby reduce the growing burden of obesity and non-communicable diseases (NCDs). Evidence from early adopters including Mexico and Berkeley, California, confirms that soda taxes can disincentivize consumption through price increases and raise revenue to support government programs. The United Kingdom’s new graduated levy on sweetened beverages is yielding yet another powerful impact: soda manufacturers are reformulating their beverages to significantly reduce the sugar content. Product reformulation – whether incentivized or mandatory – helps reduce overconsumption of sugars at the societal level, moving away from the long-standing notion of individual responsibility in favor of collective strategies to promote health. But as a matter of health equity, soda product reformulation should occur globally, especially in low- and middleincome countries (LMICs), which are increasingly targeted as emerging markets for soda and junk food and are disproportionately impacted by NCDs. As global momentum for sugar reduction increases, governments and public health advocates should harness the power of soda taxes to tackle the economic, social, and informational drivers of soda consumption, driving improvements in food environments and the public’s health. PMID:28949460
Study of electromagnetic radiation pollution in Jalandhar city, India
NASA Astrophysics Data System (ADS)
Basandrai, D.; Dhami, A. K.; Bedi, R. K.; Khan, S. A.
2017-07-01
Environment pollution from electromagnetic radiations emitted from cell phone towers is a new kind of health hazard, which has increase the public concern regarding the health implications of electromagnetic radiations on humans and animals. Long term consequences of these radiations are still unknown. So it become important to measure and maps the electromagnetic radiation level to analyze potential risk. The present study has been taken to estimate the RF pollution by measuring radiation power densities level near school, hospitals and old age home of Jalandhar City, India. The radiation exposure was measured using a handheld portable electrosmog meter. Results were compared with the safety guidelines issued by ICNIRP (International commission on non ionizing radiation protection) and Bio-initiative report, 2012. It has been found that the radiation exposure level in terms of power densities and corresponding specific absorption rate (SAR) are much below than ICNIRP guidelines for all schools, hospitals and old age home. But in the case of 3 schools, the results are quite alarming where the power density and SAR was found to be 79.6% and 4%, respectively higher in comparisons with safe biological limit.
Seven ways to increase power without increasing N.
Hansen, W B; Collins, L M
1994-01-01
Many readers of this monograph may wonder why a chapter on statistical power was included. After all, by now the issue of statistical power is in many respects mundane. Everyone knows that statistical power is a central research consideration, and certainly most National Institute on Drug Abuse grantees or prospective grantees understand the importance of including a power analysis in research proposals. However, there is ample evidence that, in practice, prevention researchers are not paying sufficient attention to statistical power. If they were, the findings observed by Hansen (1992) in a recent review of the prevention literature would not have emerged. Hansen (1992) examined statistical power based on 46 cohorts followed longitudinally, using nonparametric assumptions given the subjects' age at posttest and the numbers of subjects. Results of this analysis indicated that, in order for a study to attain 80-percent power for detecting differences between treatment and control groups, the difference between groups at posttest would need to be at least 8 percent (in the best studies) and as much as 16 percent (in the weakest studies). In order for a study to attain 80-percent power for detecting group differences in pre-post change, 22 of the 46 cohorts would have needed relative pre-post reductions of greater than 100 percent. Thirty-three of the 46 cohorts had less than 50-percent power to detect a 50-percent relative reduction in substance use. These results are consistent with other review findings (e.g., Lipsey 1990) that have shown a similar lack of power in a broad range of research topics. Thus, it seems that, although researchers are aware of the importance of statistical power (particularly of the necessity for calculating it when proposing research), they somehow are failing to end up with adequate power in their completed studies. This chapter argues that the failure of many prevention studies to maintain adequate statistical power is due to an overemphasis on sample size (N) as the only, or even the best, way to increase statistical power. It is easy to see how this overemphasis has come about. Sample size is easy to manipulate, has the advantage of being related to power in a straight-forward way, and usually is under the direct control of the researcher, except for limitations imposed by finances or subject availability. Another option for increasing power is to increase the alpha used for hypothesis-testing but, as very few researchers seriously consider significance levels much larger than the traditional .05, this strategy seldom is used. Of course, sample size is important, and the authors of this chapter are not recommending that researchers cease choosing sample sizes carefully. Rather, they argue that researchers should not confine themselves to increasing N to enhance power. It is important to take additional measures to maintain and improve power over and above making sure the initial sample size is sufficient. The authors recommend two general strategies. One strategy involves attempting to maintain the effective initial sample size so that power is not lost needlessly. The other strategy is to take measures to maximize the third factor that determines statistical power: effect size.
General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong
2013-01-01
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515
Competency-Based Education: Changing the Traditional College Degree Power, Policy, and Practice
ERIC Educational Resources Information Center
Ordonez, Bonnie
2014-01-01
Higher education is going through a time of change. The United States federal government and its Department of Education are calling for reform as student debt has increased and the cost of college tuition has risen steadily to unattainable levels. In the next decade, the number of jobs requiring a college degree will increase to 70% of all new…
Ojha, Kumari Shikha; Kerry, Joseph P; Alvarez, Carlos; Walsh, Des; Tiwari, Brijesh K
2016-07-01
The objective of this study was to investigate the efficacy of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrasound power level (0-68.5 W) and sonication time (0-9 min) at 20 °C were assessed against the growth of L. sakei using a Microplate reader over a period of 24h. The L. sakei growth data showed a good fit with the Gompertz model (R(2)>0.90; SE<0.042). Second order polynomial models demonstrated the effect of ultrasonic power and sonication time on the specific growth rate (SGR, μ, h(-1)) and lag phase (λ, h). A higher SGR and a shorter lag phase were observed at low power (2.99 W for 5 min) compared to control. Conversely, a decrease (p<0.05) in SGR with an increase in lag phase was observed with an increase in ultrasonic power level. Cell-free extracts obtained after 24h fermentation of ultrasound treated samples showed antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella typhimurium at lower concentrations compared to control. No significant difference (p<0.05) among treatments was observed for lactic acid content after a 24h fermentation period. This study showed that both stimulation and retardation of L. sakei is possible, depending on the ultrasonic power and sonication time employed. Hence, fermentation process involving probiotics to develop functional food products can be tailored by selection of ultrasound processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Aydin, Burak; Leite, Walter L.; Algina, James
2016-01-01
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
NASA Astrophysics Data System (ADS)
Linkevics, O.; Ivanova, P.; Balodis, M.
2016-12-01
Intermittent generation (solar PV and wind energy) integration in power production portfolio as well as electricity price fluctuations have changed the running manner of conventional combined heat and power (CHP) plants: the shift from base load operation to running in cyclic modes. These cogeneration power plants are not adapted to new running conditions. The level of CHP plant flexibility should be improved to operate profitably and efficiently from both technical and fuel usage point of view. There are different ways to increase the flexibility of power plants. Before any improvements, the situation at power plants should be evaluated and the weakest points defined. In this publication, such measures are presented on Riga CHP-2 plant example: installation of heat storage tank; extension of operation rang; acceleration of start-ups.
A parametric study of motor starting for a 2- to 10-kilowatt Brayton power system
NASA Technical Reports Server (NTRS)
Cantoni, D. A.
1971-01-01
A study of the motor starting of a Brayton cycle power system was conducted to provide estimates of system sensitivity to several controllable parameters. These sensitivity estimates were used as a basis for selection of an optimum motor-start scheme to be implemented on the 2- to 10-kilowatt Brayton power system designed and presently under test. The studies were conducted with an analog simulation of the Brayton power system and covered a range of frequencies from 400 Hz (33 percent design) to 1200 Hz (design), voltage-to-frequency ratios of 0.050 (50 percent design) to 0.100 (design), turbine-inlet temperatures of 800 K (1440 R, 70 percent design) to 1140 K (2060 deg R, design), and prestart pressure levels of 14.5 psia to 29.0 psia. These studies have shown the effect of selected system variables on motor starting. The final selection of motor-start variables can therefore be made on the basis of motor-start inverter complexity, battery size and weight, desired steady-state pressure level after startup, and other operational limitations. In general, the study showed the time required for motor starting to be inversely proportional to motor frequency, voltage, turbine-inlet temperature, and pressure level. An increase in any of these parameters decreases startup time.
Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry
Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; ...
2015-07-08
The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigatedmore » for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.« less
The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis
2011-01-01
Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis
2005-01-01
An engineering discipline denoted as hybrid power management (HPM) has emerged from continuing efforts to increase energy efficiency and reliability of hybrid power systems. HPM is oriented toward integration of diverse electric energy-generating, energy-storing, and energy-consuming devices in optimal configurations for both terrestrial and outer-space applications. The basic concepts of HPM are potentially applicable at power levels ranging from nanowatts to megawatts. Potential applications include terrestrial power-generation, terrestrial transportation, biotechnology, and outer-space power systems. Instances of this discipline at prior stages of development were reported (though not explicitly labeled as HPM) in three prior NASA Tech Briefs articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle"(LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW-17177), Vol. 27, No. 8 (August 2003), page 38; and "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 24, No. 10 (October 2003), page 37. As the titles of the cited articles indicate, the use of ultracapacitors as energy-storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller. Power-control circuits for ultracapacitors can be simpler than those for batteries, for two reasons: (1) Because of the absence of chemical reactions, charge and discharge currents can be greater than those in batteries, limited only by the electrical resistances of conductors; and (2) whereas the charge level of a battery depends on voltage, temperature, age, and load condition, the charge level of an ultracapacitor, like that of a conventional capacitor, depends only on voltage.
Weekly Time Course of Neuro-Muscular Adaptation to Intensive Strength Training.
Brown, Niklas; Bubeck, Dieter; Haeufle, Daniel F B; Weickenmeier, Johannes; Kuhl, Ellen; Alt, Wilfried; Schmitt, Syn
2017-01-01
Detailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants. Muscular adaptations were analyzed on a morphological level with MRI scans of the right quadriceps muscle and the calculation of muscle volume, on a voluntary strength level by isometric voluntary contractions with doublet stimulation (interpolated twitch technique) and on a non-voluntary level by resting twitch torques. Further, training volume and isokinetic power were closely monitored during the training phase. Data were analyzed weekly for 1 week prior to training, pre-training, 8 weeks of training and 2 weeks of detraining (no strength training). Results show a very individual adaptation to the intense strength training protocol. While training volume and isokinetic power increased linearly during the training phase, resting twitch parameters decreased for both participants after the first week of training and stayed below baseline until de-training. Voluntary activation level showed an increase in the first 4 weeks of training, while maximum voluntary contraction showed only little increase compared to baseline. Muscle volume increased for both subjects. Especially training status seemed to influence the acute reaction to intense strength training. Fatigue had a major influence on performance and could only be overcome by one participant. The results give a first detailed insight into muscular adaptation to intense strength training on various levels, providing a basis of data for a validation of muscle fatigue and adaptation models.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.
1998-01-01
The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.
Gender, Power, and Intimate Partner Violence: A Study on Couples From Rural Malawi
Conroy, Amy A.
2013-01-01
Gender-based power imbalances are perhaps the most compelling underlying explanation for intimate partner violence (IPV) among women in sub-Saharan Africa. However, an overemphasis on female victimization results in an incomplete understanding of men’s experiences as victims and the broader dyadic context in which violence occurs. This study examines the role of three domains of relationship power (power resources, processes, and outcomes) on sexual and physical IPV victimization in a unique sample of 466 young couples from Malawi. Two power resources were studied, namely, income and education level. Power processes were captured with a measure of couple communication and collaboration called unity. Power outcomes included a measure of relationship dominance (male dominated or female-dominated/egalitarian). Multilevel logistic regression using the Actor Partner Interpersonal Model framework was used to test whether respondent and partner data were predictive of IPV. The findings show that unity and male dominance were salient power factors that influenced young people’s risk for sexual IPV. Unity had a stronger protective effect on sexual IPV for women than for men. Involvement in a male-dominated relationship increased the risk of sexual IPV for women, but decreased the risk for men. The findings also showed that education level and unity were protective against physical IPV for both men and women. Contrary to what was expected, partner data did not play a role in the respondent’s experience of IPV. The consistency of these findings with the literature, theory, and study limitations are discussed. PMID:24227592
Gender, power, and intimate partner violence: a study on couples from rural Malawi.
Conroy, Amy A
2014-03-01
Gender-based power imbalances are perhaps the most compelling underlying explanation for intimate partner violence (IPV) among women in sub-Saharan Africa. However, an overemphasis on female victimization results in an incomplete understanding of men's experiences as victims and the broader dyadic context in which violence occurs. This study examines the role of three domains of relationship power (power resources, processes, and outcomes) on sexual and physical IPV victimization in a unique sample of 466 young couples from Malawi. Two power resources were studied, namely, income and education level. Power processes were captured with a measure of couple communication and collaboration called unity. Power outcomes included a measure of relationship dominance (male dominated or female-dominated/egalitarian). Multilevel logistic regression using the Actor Partner Interpersonal Model framework was used to test whether respondent and partner data were predictive of IPV. The findings show that unity and male dominance were salient power factors that influenced young people's risk for sexual IPV. Unity had a stronger protective effect on sexual IPV for women than for men. Involvement in a male-dominated relationship increased the risk of sexual IPV for women, but decreased the risk for men. The findings also showed that education level and unity were protective against physical IPV for both men and women. Contrary to what was expected, partner data did not play a role in the respondent's experience of IPV. The consistency of these findings with the literature, theory, and study limitations are discussed.
Technology for Bayton-cycle powerplants using solar and nuclear energy
NASA Technical Reports Server (NTRS)
English, R. E.
1986-01-01
Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.
NASA Astrophysics Data System (ADS)
Kim, S. H.; Casper, T. A.; Snipes, J. A.
2018-05-01
ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0 × 10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
Up gradation of LHCD system for rf power level up to 2MW for SST1
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Ambulkar, K. K.; Parmar, P. R.; Virani, C. G.; Thakur, A. L.; Kulkarni, S. V.; Lhcd Group
2010-02-01
To operate superconducting steadystate tokamak (SST1) for 1000 seconds, lower hybrid current drive (LHCD) system has been designed at a frequency of 3.7 GHz., which would couple 1.0 MW CW of microwave power to the shaped plasma. The system consists of various rf passive components and transmission line, employing which the rf power from the source is transported to the antenna. During calibration of transmission line, it was observed that the losses in the transmission line is substantial and eventually would lead to less coupled power to the plasma. Further it is anticipated that more LH power would be required for advanced operation of SST1 machine. Thus it is decided to upgrade the existing LHCD system to 2 MW CW power level. The proposed up gradation would demand several infra structural changes and needs to be addressed. Due to lack of space, we have proposed a scheme in which additional two klystrons, along with existing two klystrons would be accommodated in the existing space. The low rf power requirements have also been increased to cater the new needs. Accordingly additional cooling requirements have been proposed to accommodate the two new klystrons. The DAC and auxiliary power supplies have been also designed. The new up graded LHCD system would address several key technological issues. Firstly it would establish the operation of four klystrons at rated power in parallel employing single RHVPS (80kV, 70A). Secondly it would establish the operation of two high power klystrons operation at rated power when their collectors are cooled in series. In this paper we would present the various requirements for up-gradation of LHCD system to 2MW. The main requirements like high power rf source, along with modified support structure, low power rf systems to drive the high power rf source, auxiliary power supplies required for high power rf source, DAC system improvement, cooling improvements, etc. would be discussed.
Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, R.K.
1986-01-01
A population-based case-control study of adult acute nonlymphocytic leukemia (ANLL) and residential exposure to power frequency magnetic fields was conducted in King, Pierce and Snohomish Counties in Washington state. Of 164 cases who were diagnosed from January 1, 1981 through December 31, 1984, 114 were interviewed. Controls were selected from the study area on the basis of random digit dialing and frequency matched to the cases by age and sex. Analyses were undertaken to evaluate whether exposure to high levels of power frequency magnetic fields in the residence were associated with an increased risk of ANLL. Neither the directly measuredmore » magnetic fields nor the surrogate values based on the wiring configurations were associated with ANLL. Additional analyses suggested that persons with prior allergies were at decreased risk of acute myelocytic leukemia (AML). Also, persons with prior autoimmune diseases were at increased risk of AML. The increase in AML risk in rheumatoid arthritics was of borderline statistical significance. Finally, cigarette smoking was associated with an increased risk of AML. The risk of AML increased significantly with the number of years of cigarette smoking.« less
Pulse Compression Techniques for Laser Generated Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, R. F.; Madaras, E. I.
1999-01-01
Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Wait, John
2003-01-01
AlliedSignal Engines (AE) defined a number of concepts that significantly increased the horsepower of a turboshaft engine to accommodate the loss of an engine and enable the safe landing of a twin-engined, 40-passenger, short haul civil tiltrotor. From these concepts, "Water/Methanol Injection," a "Better Power Turbine Than Required," and a "Secondary Combustor For Interturbine Reheat" were chosen, based on system safety and economics, for more detailed examination. Engine performance, mission, and cost analysis of these systems indicated contingency power levels of 26 to 70 percent greater than normal rated takeoff could be attained for short durations, thus enabling direct operating cost savings between 2 and 6 percent.
Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters
NASA Astrophysics Data System (ADS)
Pfaff, Michael
Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.
Pienaar, Cindy; Coetzee, Ben
2013-02-01
The purpose of this study was to determine the effects of a microcycle (4 weeks) combined rugby conditioning plyometric compared with a nonplyometric rugby conditioning program on selected physical and motor performance components and anthropometric measurements of university-level rugby players. Players (18.94 ± 0.40 years) were assigned to either a control (n = 16) or experimental group (n = 19) from the U/19 rugby teams of the North-West University (South Africa). Twenty-six direct and indirect anthropometric measurements were taken, and the players performed a battery of 5 physical and motor performance tests before and after a microcycle (4 week) combined rugby conditioning plyometric (experimental group) and a nonplyometric rugby conditioning program (control group). The dependent t-test results showed that the control group's upper-body explosive power decreased significantly, whereas the stature, skeletal mass, and femur breadth increased significantly from pre- to posttesting. The experimental group showed significant increases in wrist breadth, speed over 20 m, agility, and power and work measurements of the Wingate anaerobic test (WAnT). Despite these results, the independent t-test revealed that speed over 20 m, average power output at 20 seconds, relative work of the WAnT, and agility were the only components of the experimental group that improved significantly more than the control group. A microcycle combined rugby conditioning plyometric program therefore leads to significantly bigger changes in selected physical and motor performance components of university-level rugby players than a nonplyometric rugby conditioning program alone. Based on these findings, coaches and sport scientists should implement 3 weekly combined rugby conditioning plyometric programs in rugby players' training regimens to improve the players' speed, agility, and power.
Effects of gendered behavior on testosterone in women and men.
van Anders, Sari M; Steiger, Jeffrey; Goldey, Katherine L
2015-11-10
Testosterone is typically understood to contribute to maleness and masculinity, although it also responds to behaviors such as competition. Competition is crucial to evolution and may increase testosterone but also is selectively discouraged for women and encouraged for men via gender norms. We conducted an experiment to test how gender norms might modulate testosterone as mediated by two possible gender→testosterone pathways. Using a novel experimental design, participants (trained actors) performed a specific type of competition (wielding power) in stereotypically masculine vs. feminine ways. We hypothesized in H1 (stereotyped behavior) that wielding power increases testosterone regardless of how it is performed, vs. H2 (stereotyped performance), that wielding power performed in masculine but not feminine ways increases testosterone. We found that wielding power increased testosterone in women compared with a control, regardless of whether it was performed in gender-stereotyped masculine or feminine ways. Results supported H1 over H2: stereotyped behavior but not performance modulated testosterone. These results also supported theory that competition modulates testosterone over masculinity. Our findings thus support a gender→testosterone pathway mediated by competitive behavior. Accordingly, cultural pushes for men to wield power and women to avoid doing so may partially explain, in addition to heritable factors, why testosterone levels tend to be higher in men than in women: A lifetime of gender socialization could contribute to "sex differences" in testosterone. Our experiment opens up new questions of gender→testosterone pathways, highlighting the potential of examining nature/nurture interactions and effects of socialization on human biology.
Mead, Nicole L; Baumeister, Roy F; Stuppy, Anika; Vohs, Kathleen D
2018-04-01
The corrosive effects of power have been noted for centuries, but the self-related changes responsible for those effects have remained somewhat elusive. Narcissists tend to rise to-and abuse-positions of power, so we considered the possibility that positions of power may corrupt because they inflate narcissism. Two pathways were considered: Powerholders abuse their power because having power over others makes them feel superior (grandiosity pathway) or deserving of special treatment (entitlement pathway). Supporting the entitlement pathway, assigning participants to a position of power (vs. equal control) over a group task increased scores on the Exploitative/Entitlement component of narcissism among those with high baseline testosterone. What is more, heightened Exploitative/Entitlement scores among high-testosterone participants endowed with power (vs. equal control) statistically explained amplified self-reported willingness to misuse their power (e.g., taking fringe benefits as extra compensation). The grandiosity pathway was not well supported. The Superiority/Arrogance, Self-Absorption/Self-Admiration, and Leadership/Authority facets of narcissism did not change as a function of the power manipulation and testosterone levels. Taken together, these results suggest that people with high (but not low) testosterone may be inclined to misuse their power because having power over others makes them feel entitled to special treatment. This work identifies testosterone as a characteristic that contributes to the development of the socially toxic component of narcissism (Exploitative/Entitlement). It points to the possibility that structural positions of power and individual differences in narcissism may be mutually reinforcing, suggesting a vicious cycle with personal, relational, and societal implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The creation of high-temperature superconducting cables of megawatt range in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.
Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and developmentmore » of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.« less
The creation of high-temperature superconducting cables of megawatt range in Russia
NASA Astrophysics Data System (ADS)
Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.
2015-12-01
Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Toomey, Bridget
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality asmore » an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.« less
Power Hardware-in-the-Loop Testing of a Smart Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige
This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less
A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size
NASA Astrophysics Data System (ADS)
Chen, Jun-Da; Zhang, Jie
2017-10-01
The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.
An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Wang, M.
2014-11-01
The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.
NASA Astrophysics Data System (ADS)
Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.
2016-12-01
The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.
GROVER: An autonomous vehicle for ice sheet research
NASA Astrophysics Data System (ADS)
Trisca, G. O.; Robertson, M. E.; Marshall, H.; Koenig, L.; Comberiate, M. A.
2013-12-01
The Goddard Remotely Operated Vehicle for Exploration and Research or Greenland Rover (GROVER) is a science enabling autonomous robot specifically designed to carry a low-power, large bandwidth radar for snow accumulation mapping over the Greenland Ice Sheet. This new and evolving technology enables reduced cost and increased safety for polar research. GROVER was field tested at Summit, Greenland in May 2013. The robot traveled over 30 km and was controlled both by line of sight wireless and completely autonomously with commands and telemetry via the Iridium Satellite Network, from Summit as well as remotely from Boise, Idaho. Here we describe GROVER's unique abilities and design. The software stack features a modular design that can be adapted for any application that requires autonomous behavior, reliable communications using different technologies and low level control of peripherals. The modules are built to communicate using the publisher-subscriber design pattern to maximize data-reuse and allow for graceful failures at the software level, along with the ability to be loaded or unloaded on-the-fly, enabling the software to adopt different behaviors based on power constraints or specific processing needs. These modules can also be loaded or unloaded remotely for servicing and telemetry can be configured to contain any kind of information being generated by the sensors or scientific instruments. The hardware design protects the electronic components and the control system can change functional parameters based on sensor input. Power failure modes built into the hardware prevent the vehicle from running out of energy permanently by monitoring voltage levels and triggering software reboots when the levels match pre-established conditions. This guarantees that the control software will be operational as soon as there is enough charge to sustain it, giving the vehicle increased longevity in case of a temporary power loss. GROVER demonstrates that autonomous rovers can be a revolutionary tool for data collection, and that both the technology and the software are available and ready to be implemented to create scientific data collection platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M
The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion.more » Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.« less
High Pressure Regenerative Turbine Engine: 21st Century Propulsion
NASA Technical Reports Server (NTRS)
Lear, W. E.; Laganelli, A. L.; Senick, Paul (Technical Monitor)
2001-01-01
A novel semi-closed cycle gas turbine engine was demonstrated and was found to meet the program goals. The proof-of-principle test of the High Pressure Regenerative Turbine Engine produced data that agreed well with models, enabling more confidence in designing future prototypes based on this concept. Emission levels were significantly reduced as predicted as a natural attribute of this power cycle. Engine testing over a portion of the operating range allowed verification of predicted power increases compared to the baseline.
NASA Astrophysics Data System (ADS)
Chow, Raymond
The aerodynamic characteristics of the NREL 5-MW rotor have been examined using a Reynolds-averaged Navier-Stokes method, OVERFLOW2. A comprehensive off-body grid independence study has been performed. A strong dependence on the size of the near-body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near-wake grid at minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near-body forces. The NREL 5-MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three-dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. Both integrated aerodynamic coefficients and detailed wake structures for the baseline NREL 5-MW rotor are in excellent agreement with results by Riso at Uinfinity = 8 and 11 m/s. A simple, continuous full-chord fence was applied at the maximum chord location of the blade, within the region of separation. This non-optimized device reduced the boundary-layer cross-flow and resulting separation, and increased rotor power capture by 0.9% and 0.6% at U infinity = 8 and 11 m/s, respectively. Suction side only fences perform similarly in terms of power capture but reduce the increase in rotor thrust. Fence heights from 0.5% to 17.5% of the maximum chord all demonstrate some level of effectiveness, with fences (1-2.5%cmax) showing similar performance gains to taller fences with smaller penalties in thrust. Performance in terms of power capture is not very sensitive to spanwise location when placed within the separation region. Blunt trailing edge modifications to the inboard region of the blade showed a relatively significant effect on rotor power. Over a large range of trailing edge thicknesses from hTE = 10 to 25%c, power was found to increase by 1.4%. Thrust increased proportionally with the thicknesses examined, reaching a comparable increase of 1.4% by a trailing edge thickness of 15%c. Decreasing inboard twist only acted to increase thrust without increasing power capture any further at U infinity = 11 m/s. While increasing inboard blade twist decreased power, but decreased thrust at even a higher rate. Vortex generators were not successively configured to significantly improve power capture in this study. Two of the three configurations examined actually decreased power capture and increased the separation region. The results found in this study are not believed to be representative of a properly sized and located array of VGs. The presence of the nose cone and nacelle body at the hub of the rotor is found to have a minimal effect on the power and thrust of the overall rotor. The downstream wake structure however is changed by the nacelle, potentially useful for wake tailoring when turbines are closely spaced together.
NASA Astrophysics Data System (ADS)
Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.
2017-11-01
More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.
Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system
NASA Astrophysics Data System (ADS)
Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang
2018-02-01
The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.
Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model
NASA Astrophysics Data System (ADS)
Zhao, Erdong; Li, Shangqi
2017-08-01
As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.
Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J
2011-01-03
Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and productionmore » capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.« less
NASA Astrophysics Data System (ADS)
Kapur, Pawan
The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.