Power effects on implicit prejudice and stereotyping: The role of intergroup face processing.
Schmid, Petra C; Amodio, David M
2017-04-01
Power is thought to increase discrimination toward subordinate groups, yet its effect on different forms of implicit bias remains unclear. We tested whether power enhances implicit racial stereotyping, in addition to implicit prejudice (i.e., evaluative associations), and examined the effect of power on the automatic processing of faces during implicit tasks. Study 1 showed that manipulated high power increased both forms of implicit bias, relative to low power. Using a neural index of visual face processing (the N170 component of the ERP), Study 2 revealed that power affected the encoding of White ingroup vs. Black outgroup faces. Whereas high power increased the relative processing of outgroup faces during evaluative judgments in the prejudice task, it decreased the relative processing of outgroup faces during stereotype trait judgments. An indirect effect of power on implicit prejudice through enhanced processing of outgroup versus ingroup faces suggested a potential link between face processing and implicit bias. Together, these findings demonstrate that power can affect implicit prejudice and stereotyping as well as early processing of racial ingroup and outgroup faces.
The Impact of Power on Information Processing Depends on Cultural Orientation
Torelli, Carlos J.; Shavitt, Sharon
2011-01-01
Two studies show that different culturally based concepts of interpersonal power have distinct implications for information processing. People with a vertical individualist (VI) cultural orientation view power in personalized terms (power is for gaining status over and recognition by others), whereas people with a horizontal collectivist (HC) cultural orientation view power in socialized terms (power is for benefitting and helping others). The distinct goals associated with these power concepts are served by different mindsets, such as stereotyping others versus learning the individuating needs of others. Therefore, for high-VI individuals, making personalized power salient increases stereotyping in processing product information. That is, they recognize better information that is congruent with their prior product expectations, relative to their recognition of incongruent information. In contrast, for high-HC people, making socialized power salient increases individuating processes, characterized by better memory for incongruent information. PMID:21779130
Simplified power processing for ion-thruster subsystems
NASA Technical Reports Server (NTRS)
Wessel, F. J.; Hancock, D. J.
1983-01-01
A design for a greatly simplified power-processing unit (SPPU) for the 8-cm diameter mercury-ion-thruster subsystem is discussed. This SPPU design will provide a tenfold reduction in parts count, a decrease in system mass and cost, and an increase in system reliability compared to the existing power-processing unit (PPU) used in the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem. The simplifications achieved in this design will greatly increase the attractiveness of ion propulsion in near-term and future spacecraft propulsion applications. A description of a typical ion-thruster subsystem is given. An overview of the thruster/power-processor interface requirements is given. Simplified thruster power processing is discussed.
Alpha power increases in right parietal cortex reflects focused internal attention
Benedek, Mathias; Schickel, Rainer J.; Jauk, Emanuel; Fink, Andreas; Neubauer, Aljoscha C.
2014-01-01
This study investigated the functional significance of EEG alpha power increases, a finding that is consistently observed in various memory tasks and specifically during divergent thinking. It was previously shown that alpha power is increased when tasks are performed in mind—e.g., when bottom-up processing is prevented. This study aimed to examine the effect of task-immanent differences in bottom-up processing demands by comparing two divergent thinking tasks, one intrinsically relying on bottom-up processing (sensory-intake task) and one that is not (sensory-independence task). In both tasks, stimuli were masked in half of the trials to establish conditions of higher and lower internal processing demands. In line with the hypotheses, internal processing affected performance and led to increases in alpha power only in the sensory-intake task, whereas the sensory-independence task showed high levels of task-related alpha power in both conditions. Interestingly, conditions involving focused internal attention showed a clear lateralization with higher alpha power in parietal regions of the right hemisphere. Considering evidence from fMRI studies, right-parietal alpha power increases may correspond to a deactivation of the right temporoparietal junction, reflecting an inhibition of the ventral attention network. Inhibition of this region is thought to prevent reorienting to irrelevant stimulation during goal-driven, top-down behavior, which may serve the executive function of task shielding during demanding cognitive tasks such as idea generation and mental imagery. PMID:24561034
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
Stimulus Load and Oscillatory Activity in Higher Cortex
Kornblith, Simon; Buschman, Timothy J.; Miller, Earl K.
2016-01-01
Exploring and exploiting a rich visual environment requires perceiving, attending, and remembering multiple objects simultaneously. Recent studies have suggested that this mental “juggling” of multiple objects may depend on oscillatory neural dynamics. We recorded local field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal cortex while monkeys maintained variable numbers of visual stimuli in working memory. Behavior suggested independent processing of stimuli in each hemifield. During stimulus presentation, higher-frequency power (50–100 Hz) increased with the number of stimuli (load) in the contralateral hemifield, whereas lower-frequency power (8–50 Hz) decreased with the total number of stimuli in both hemifields. During the memory delay, lower-frequency power increased with contralateral load. Load effects on higher frequencies during stimulus encoding and lower frequencies during the memory delay were stronger when neural activity also signaled the location of the stimuli. Like power, higher-frequency synchrony increased with load, but beta synchrony (16–30 Hz) showed the opposite effect, increasing when power decreased (stimulus presentation) and decreasing when power increased (memory delay). Our results suggest roles for lower-frequency oscillations in top-down processing and higher-frequency oscillations in bottom-up processing. PMID:26286916
Single crystals and nonlinear process for outstanding vibration-powered electrical generators.
Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel
2006-04-01
This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.
Volberg, Gregor; Goldhacker, Markus; Hanslmayr, Simon
2016-01-01
Abstract The method of loci is one, if not the most, efficient mnemonic encoding strategy. This spatial mnemonic combines the core cognitive processes commonly linked to medial temporal lobe (MTL) activity: spatial and associative memory processes. During such processes, fMRI studies consistently demonstrate MTL activity, while electrophysiological studies have emphasized the important role of theta oscillations (3–8 Hz) in the MTL. However, it is still unknown whether increases or decreases in theta power co-occur with increased BOLD signal in the MTL during memory encoding. To investigate this question, we recorded EEG and fMRI separately, while human participants used the spatial method of loci or the pegword method, a similarly associative but nonspatial mnemonic. The more effective spatial mnemonic induced a pronounced theta power decrease source localized to the left MTL compared with the nonspatial associative mnemonic strategy. This effect was mirrored by BOLD signal increases in the MTL. Successful encoding, irrespective of the strategy used, elicited decreases in left temporal theta power and increases in MTL BOLD activity. This pattern of results suggests a negative relationship between theta power and BOLD signal changes in the MTL during memory encoding and spatial processing. The findings extend the well known negative relation of alpha/beta oscillations and BOLD signals in the cortex to theta oscillations in the MTL. PMID:28101523
Investigation into the absorptivity change in metals with increased laser power
NASA Astrophysics Data System (ADS)
Blidegn, M. Sc. K.; Olsen, Flemming O.
1997-04-01
At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.
NASA Astrophysics Data System (ADS)
Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu
2018-06-01
A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.
Modulation of α power and functional connectivity during facial affect recognition.
Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan
2013-04-03
Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.
Lin, Yuan-Pin; Duann, Jeng-Ren; Chen, Jyh-Horng; Jung, Tzyy-Ping
2010-04-21
This study explores the electroencephalographic (EEG) correlates of emotional experience during music listening. Independent component analysis and analysis of variance were used to separate statistically independent spectral changes of the EEG in response to music-induced emotional processes. An independent brain process with equivalent dipole located in the fronto-central region exhibited distinct δ-band and θ-band power changes associated with self-reported emotional states. Specifically, the emotional valence was associated with δ-power decreases and θ-power increases in the frontal-central area, whereas the emotional arousal was accompanied by increases in both δ and θ powers. The resultant emotion-related component activations that were less interfered by the activities from other brain processes complement previous EEG studies of emotion perception to music.
NASA Technical Reports Server (NTRS)
Moore, Kevin D.
2017-01-01
Trying to get your experiment aboard ISS? You likely will need power. Many enditem providers do. ISS Plug-In Plan (IPiP) supports power and data for science, Payloads (or Utilization), vehicle systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Yet limited resources and increasing requirements continue to influence decisions on deployment of ISS end items. Given the fluid launch schedule and the rapidly- increasing number of end item providers requiring power support, the focus of the Plug-In Plan has evolved from a simple FIFO recommendation to provide power to end item users, to anticipating future requirements by judicious development and delivery of support equipment (cables, power supplies, power strips, and alternating current (AC) power inverters), employing innovative deployment strategies, and collaborating on end item development. This paper describes the evolution of the ISS Program Office, Engineering Directorate, Flight Operations Directorate (FOD), International Partners and the end item provider relationship and how collaboration successfully leverages unique requirements with limited on- board equipment and resources, tools and processes which result in more agile integration, and describes the process designed for the new ISS end item provider to assure that their power requirements will be met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool
Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormousmore » loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.« less
Contingency Analysis Post-Processing With Advanced Computing and Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin
Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less
Ioannides, Andreas A.; Liu, Lichan; Poghosyan, Vahe; Kostopoulos, George K.
2017-01-01
We used tomographic analysis of MEG signals to characterize regional spectral changes in the brain at sleep onset and during light sleep. We identified two key processes that may causally link to loss of consciousness during the quiet or “core” periods of NREM1. First, active inhibition in the frontal lobe leads to delta and theta spectral power increases. Second, activation suppression leads to sharp drop of spectral power in alpha and higher frequencies in posterior parietal cortex. During NREM2 core periods, the changes identified in NREM1 become more widespread, but focal increases also emerge in alpha and low sigma band power in frontal midline cortical structures, suggesting reemergence of some monitoring of internal and external environment. Just before spindles and K-complexes (KCs), the hallmarks of NREM2, we identified focal spectral power changes in pre-frontal cortex, mid cingulate, and areas involved in environmental and internal monitoring, i.e., the rostral and sub-genual anterior cingulate. During both spindles and KCs, alpha and low sigma bands increases. Spindles emerge after further active inhibition (increase in delta power) of the frontal areas responsible for environmental monitoring, while in posterior parietal cortex, power increases in low and high sigma bands. KCs are correlated with increase in alpha power in the monitoring areas. These specific regional changes suggest strong and varied vigilance changes for KCs, but vigilance suppression and sharpening of cognitive processing for spindles. This is consistent with processes designed to ensure accurate and uncorrupted memory consolidation. The changes during KCs suggest a sentinel role: evaluation of the salience of provoking events to decide whether to increase processing and possibly wake up, or to actively inhibit further processing of intruding influences. The regional spectral patterns of NREM1, NREM2, and their dynamic changes just before spindles and KCs reveal an edge effect facilitating the emergence of spindles and KCs and defining the precise loci where they might emerge. In the time domain, the spindles are seen in widespread areas of the cortex just as reported from analysis of intracranial data, consistent with the emerging consensus of a differential topography that depends on the kind of memory stored. PMID:28670270
Optimization of Wireless Transceivers under Processing Energy Constraints
NASA Astrophysics Data System (ADS)
Wang, Gaojian; Ascheid, Gerd; Wang, Yanlu; Hanay, Oner; Negra, Renato; Herrmann, Matthias; Wehn, Norbert
2017-09-01
Focus of the article is on achieving maximum data rates under a processing energy constraint. For a given amount of processing energy per information bit, the overall power consumption increases with the data rate. When targeting data rates beyond 100 Gb/s, the system's overall power consumption soon exceeds the power which can be dissipated without forced cooling. To achieve a maximum data rate under this power constraint, the processing energy per information bit must be minimized. Therefore, in this article, suitable processing efficient transmission schemes together with energy efficient architectures and their implementations are investigated in a true cross-layer approach. Target use cases are short range wireless transmitters working at carrier frequencies around 60 GHz and bandwidths between 1 GHz and 10 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Choi, Hagyoung
2013-11-07
In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradationmore » test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.« less
NASA Astrophysics Data System (ADS)
Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.
2017-08-01
High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.
All-solution-processed PbS quantum dot solar modules
NASA Astrophysics Data System (ADS)
Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee
2015-05-01
A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a
Improvement for enhancing effectiveness of universal power system (UPS) continuous testing process
NASA Astrophysics Data System (ADS)
Sriratana, Lerdlekha
2018-01-01
This experiment aims to enhance the effectiveness of the Universal Power System (UPS) continuous testing process of the Electrical and Electronic Institute by applying work scheduling and time study methods. Initially, the standard time of testing process has not been considered that results of unaccurate testing target and also time wasting has been observed. As monitoring and reducing waste time for improving the efficiency of testing process, Yamazumi chart and job scheduling theory (North West Corner Rule) were applied to develop new work process. After the improvements, the overall efficiency of the process possibly increased from 52.8% to 65.6% or 12.7%. Moreover, the waste time could reduce from 828.3 minutes to 653.6 minutes or 21%, while testing units per batch could increase from 3 to 4 units. Therefore, the number of testing units would increase from 12 units up to 20 units per month that also contribute to increase of net income of UPS testing process by 72%.
Sun, G Y; Chen, M Q; Huang, Y W
2017-01-01
The thin-layer drying behavior of the municipal sewage sludge in a laboratory-scale hot air forced convective dryer assisted with air-borne ultrasound was investigated in between 70 and 130°C hot air temperatures. The drying kinetics in the convective process alone were compared to that for ultrasound-assist process at three ultrasound powers (30, 90, 150W). The average drying rates within whole drying temperature range at ultrasound powers of 30, 90 and 150W increased by about 22.6%, 27.8% and 32.2% compared with the convective drying alone (without ultrasound). As the temperature increasing from 70°C to 130°C, there were maximum increasing ratios for the effective moisture diffusivities of the sewage sludge in both falling rate periods at ultrasonic power of 30W in comparison with other two high powers. In between the ultrasound powers of 0 and 30W, the effect of the power on the drying rate was significant, while its effect was not obvious over 30W. Therefore, the low ultrasonic power can be just set in the drying process. The values of the apparent activation energy in the first falling rate period were down from 13.52 to 12.78kJmol -1 , and from 17.21 to 15.10kJmol -1 for the second falling rate period with increasing the ultrasonic power from 30 to 150W. The values of the apparent activation energy in two falling rate periods with the ultrasound-assist were less than that for the hot air convective drying alone. Copyright © 2016 Elsevier B.V. All rights reserved.
Banis, Stella; Geerligs, Linda; Lorist, Monicque M.
2014-01-01
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943
The Influence of Temporal Resolution Power and Working Memory Capacity on Psychometric Intelligence
ERIC Educational Resources Information Center
Troche, Stefan J.; Rammsayer, Thomas H.
2009-01-01
According to the temporal resolution power (TRP) hypothesis, higher TRP as reflected by better performance on psychophysical timing tasks accounts for faster speed of information processing and increased efficiency of information processing leading to better performance on tests of psychometric intelligence. An alternative explanation of…
NASA Astrophysics Data System (ADS)
Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.
2013-02-01
We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.
Snyder, Adam C.; Foxe, John J.
2010-01-01
Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
Distributed processing for features improvement in real-time portable medical devices.
Mercado, Erwin John Saavedra
2008-01-01
Portable biomedical devices are being developed and incorporated in daily life. Nevertheless, their standalone capacity is diminished due to the lack of processing power required to face such duties as for example, signal artifacts robustness in EKG monitor devices. The following paper presents a multiprocessor architecture made from simple microcontrollers to provide an increase in processing performance, power consumption efficiency and lower cost.
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.
Hydrogen dissociation in the deposition of GaN films with ECR-PECVD process
NASA Astrophysics Data System (ADS)
Fu, S. L.; Wang, C. A.; Ding, L. C.; Qin, Y. X.
2018-05-01
The hydrogen dissociation and its effect on the GaN film growth in the ECR-PECVD process are investigated in this paper. We use N2 and trimethylgallium (TMG) as N and Ga sources respectively in the ECR- PECVD process. The results show that the rate of hydrogen dissociation increases with the microwave power and it becomes higher at high microwave power (> 500 W). However, this population increase of the H species dissociated from the TMG gas in ECR plasma is not enough to change the growth condition from Ga-rich to N-rich.
All-solution-processed PbS quantum dot solar modules.
Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee
2015-05-21
A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.
High Power, High Energy Density Lithium-Ion Batteries
2010-11-29
cells and to provide affordable Lithium - Ion battery packs for the combat and tactical vehicle systems. - To address the manufacturing processes that will...reduce cost of lithium - ion battery packs by one half through the improvement of manufacturing process to enhance production consistency and increase the production yield of high power lithium-ion cells.
Data processing and optimization system to study prospective interstate power interconnections
NASA Astrophysics Data System (ADS)
Podkovalnikov, Sergei; Trofimov, Ivan; Trofimov, Leonid
2018-01-01
The paper presents Data processing and optimization system for studying and making rational decisions on the formation of interstate electric power interconnections, with aim to increasing effectiveness of their functioning and expansion. The technologies for building and integrating a Data processing and optimization system including an object-oriented database and a predictive mathematical model for optimizing the expansion of electric power systems ORIRES, are described. The technology of collection and pre-processing of non-structured data collected from various sources and its loading to the object-oriented database, as well as processing and presentation of information in the GIS system are described. One of the approaches of graphical visualization of the results of optimization model is considered on the example of calculating the option for expansion of the South Korean electric power grid.
Numerical simulation of residual stress in laser based additive manufacturing process
NASA Astrophysics Data System (ADS)
Kalyan Panda, Bibhu; Sahoo, Seshadev
2018-03-01
Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.
Is power-space a continuum? Distance effect during power judgments.
Jiang, Tianjiao; Zhu, Lei
2015-12-01
Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Application of Spatial Models in Making Location Decisions of Wind Power Plant in Poland
NASA Astrophysics Data System (ADS)
Płuciennik, Monika; Hełdak, Maria; Szczepański, Jakub; Patrzałek, Ciechosław
2017-10-01
In this paper,we explore the process of making decisions on the location of wind power plants in Poland in connection with a gradually increasing consumption of energy from renewable sources and the increase of impact problems of such facilities. The location of new wind power plants attracts much attention, and both positive and negative publicity. Visualisations can be of assistance when choosing the most advantageous location for a plant, as three-dimensional variants of the facility to be constructed can be prepared. This work involves terrestrial laser scanning of an existing wind power plant and 3D modelling followed by. The model could be subsequently used in visualisation of real terrain, with special purpose in local land development plan. This paper shows a spatial model of a wind power plant as a new element of a capital investment process in Poland. Next, we incorporate the model into an undeveloped site, intended for building a wind farm, subject to the requirements for location of power plants.
Stabilization of gas turbine unit power
NASA Astrophysics Data System (ADS)
Dolotovskii, I.; Larin, E.
2017-11-01
We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.
Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility
NASA Astrophysics Data System (ADS)
Fajrin, F.; Kusnanik, N. W.; Wijono
2018-01-01
High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.
NASA Astrophysics Data System (ADS)
Nhu Y, Do
2018-03-01
Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the most important elements in power module design, especially for high power densities, where couplings are increased. In this paper, an automatic design process using a genetic algorithm is presented. Some practical considerations are introduced in the optimization of the layout design of the module. This paper presents a process for automatic layout design for high power density modules. Detailed GA implementations are introduced both for outer loop and inner loop. As verified by a design example, the results of the automatic design process presented here are better than those from manualmore » design and also better than the results from a popular design software. This automatic design procedure could be a major step toward improving the overall performance of future layout design.« less
Xie, Yuanjun; Feng, Zhengquan; Xu, Yuanyuan; Bian, Chen; Li, Min
2016-10-28
A putative functional role for alpha oscillations in working memory remains controversial. However, recent evidence suggests that such oscillation may reflect distinct phases of working memory processing. The present study investigated alpha band (8-13Hz) activity during the maintenance stage of working memory using a modified Sternberg working memory task. Our results reveal that alpha power was concentrated primarily in the occipital cortex and was decreased during the early stage of maintenance (0-600ms), and subsequently increased during the later stage of maintenance (1000-1600ms). We suggest that reduced alpha power may be involved in focused attention during the working memory maintenance, whereas increased alpha power may reflect suppression of visual stimuli to facilitate internal processing related to the task. This interpretation is generally consistent with recent reports suggesting that variations in alpha power are associated with the representation and processing of information in the discrete time intervals during the working memory maintenance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Processing of TV broadcast, Class A TV... Rules Applicable to All Broadcast Stations § 73.3572 Processing of TV broadcast, Class A TV broadcast... considered minor only if the change(s) will not increase the signal range of the Class A TV, low power TV or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Processing of TV broadcast, Class A TV... Rules Applicable to All Broadcast Stations § 73.3572 Processing of TV broadcast, Class A TV broadcast... considered minor only if the change(s) will not increase the signal range of the Class A TV, low power TV or...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Processing of TV broadcast, Class A TV... Rules Applicable to All Broadcast Stations § 73.3572 Processing of TV broadcast, Class A TV broadcast... considered minor only if the change(s) will not increase the signal range of the Class A TV, low power TV or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Processing of TV broadcast, Class A TV... Rules Applicable to All Broadcast Stations § 73.3572 Processing of TV broadcast, Class A TV broadcast... considered minor only if the change(s) will not increase the signal range of the Class A TV, low power TV or...
Power and Performance Trade-offs for Space Time Adaptive Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino
Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementationmore » on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.« less
Computational Process Modeling for Additive Manufacturing
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2014-01-01
Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.
The influence of vertical motor responses on explicit and incidental processing of power words.
Jiang, Tianjiao; Sun, Lining; Zhu, Lei
2015-07-01
There is increasing evidence demonstrating that power judgment is affected by vertical information. Such interaction between vertical space and power (i.e., response facilitation under space-power congruent conditions) is generally elicited in paradigms that require participants to explicitly evaluate the power of the presented words. The current research explored the possibility that explicit evaluative processing is not a prerequisite for the emergence of this effect. Here we compared the influence of vertical information on a standard explicit power evaluation task with influence on a task that linked power with stimuli in a more incidental manner, requiring participants to report whether the words represented people or animals or the font of the words. The results revealed that although the effect is more modest, the interaction between responses and power is also evident in an incidental task. Furthermore, we also found that explicit semantic processing is a prerequisite to ensure such an effect. Copyright © 2015 Elsevier Inc. All rights reserved.
Heat input and accumulation for ultrashort pulse processing with high average power
NASA Astrophysics Data System (ADS)
Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart
2018-05-01
Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.
Coskun, Aynur Aydin; Türker, Yavuz Özhan
2012-03-01
The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.
Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A
2008-11-15
We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.
Müller, M M; Gruber, T; Keil, A
2000-12-01
Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.
A study of increasing radical density and etch rate using remote plasma generator system
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook
2013-09-01
To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.
Reliability of Wireless Sensor Networks
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2014-01-01
Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553
The complete project will greatly increase the sustainability of small gasoline and/or diesel powered generators that are currently used to supplement or replace an unreliable power grid. This phase will develop the feedstock processing equipment needed to produce syngas bio-...
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
Design and Control of Integrated Systems for Hydrogen Production and Power Generation
NASA Astrophysics Data System (ADS)
Georgis, Dimitrios
Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.
Development of beam leaded low power logic circuits
NASA Technical Reports Server (NTRS)
Smith, B. W.; Malone, F.
1972-01-01
The technologies of low power TTL and beam lead processing were merged into a single product family. This family offers the power and thermal advantages of low power(54L), while providing the additional reliability advantages of beam leads. The reduction in the power and heat levels also allows the system designer to take advantage, through beam lead, multichip assemblies, of increased package density to reduce system size and weight.
NASA Astrophysics Data System (ADS)
Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June
2018-03-01
A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.
Power processing units for high power solar electric propulsion
NASA Astrophysics Data System (ADS)
Frisbee, Robert H.; Das, Radhe S.; Krauthamer, Stanley
An evaluation of high-power processing units (PPUs) for multimegawatt solar electric propulsion (SEP) vehicles using advanced ion thrusters is presented. Significant savings of scale are possible for PPUs used to supply power to ion thrusters operating at 0.1 to 1.5 MWe per thruster. The PPU specific mass is found to be strongly sensitive to variations in the ion thruster's power per thruster and moderately sensitive to variations in the thruster's screen voltage due to varying the I(sp) of the thruster. Each PPU consists of a dc-to-dc converter to increase the voltage from the 500 V dc of the photovoltaic power system to the 5 to 13 kV dc required by the ion thrusters.
Drijvers, Linda; Mulder, Kimberley; Ernestus, Mirjam
2016-02-01
Reduced forms like yeshay for yesterday often occur in conversations. Previous behavioral research reported a processing advantage for full over reduced forms. The present study investigated whether this processing advantage is reflected in a modulation of alpha (8-12Hz) and gamma (30+Hz) band activity. In three electrophysiological experiments, participants listened to full and reduced forms in isolation (Experiment 1), sentence-final position (Experiment 2), or mid-sentence position (Experiment 3). Alpha power was larger in response to reduced forms than to full forms, but only in Experiments 1 and 2. We interpret these increases in alpha power as reflections of higher auditory cognitive load. In all experiments, gamma power only increased in response to full forms, which we interpret as showing that lexical activation spreads more quickly through the semantic network for full than for reduced forms. These results confirm a processing advantage for full forms, especially in non-medial sentence position. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Lu, Qingshuang; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai; Wang, Yang
2017-03-01
AZ31B Magnesium (Mg) and Ti-6Al-4V titanium (Ti) alloys with Ni coating were joined by laser welding-brazing process using AZ92 Mg based filler. The influence of laser power on microstructure and mechanical properties were investigated. Ni coating was found to significantly promote good wetting-spreading ability of molten filler on the Ti sheet. Acceptable joints without obvious defects were obtained within a relatively wide processing window. In the process metallurgical bonding was achieved by the formation of Ti3Al phase at direct irradiation zone and Al-Ni phase followed by a layer of Mg-Al-Ni ternary compound adjacent to the fusion zone at the intermediate zone. The thickness of reaction layers increased slowly with the increasing laser power. The tensile-shear test indicated that joints produced at the laser power of 1300 W reached 2387 N fracture load, representing 88.5% joint efficiency with respect to the Mg base metal. The corresponding failure occurred in the fusion zone of the Mg base metal, while joints fractured at the interface at lower/higher laser power due to the crack or excessive intermetallic compound (IMC) formation along the interface.
Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding
NASA Astrophysics Data System (ADS)
Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong
2018-05-01
Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.
Food and processing residues in California: resource assessment and potential for power generation.
Matteson, Gary C; Jenkins, B M
2007-11-01
The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.
Typical calculation and analysis of carbon emissions in thermal power plants
NASA Astrophysics Data System (ADS)
Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang
2018-03-01
On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.
Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk
2018-01-01
In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.
Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit
2016-04-01
As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.
Research on the welding process of aluminum alloy based on high power fiber laser
NASA Astrophysics Data System (ADS)
Zhang, Jian; Zhang, Wei; Pan, Xiaoming; Huang, Shanshi; Liu, Wenwen
2017-08-01
To research the formation and variation principle of the weld seam and molten pool for aluminum alloy high power fiber laser welding, the welding experiments for 5052 aluminum alloy were carried out. The influences of laser power, scanning velocity and protection gas on the welding process were systematically researched. The results show that with the increase of power and scanning velocity, the depth to width ratio first increases and then decreases. The ratio reaches the maximum value at 2.6 KW and 30 mm/s, respectively. When the power located at 2.6 KW to 2.8 KW or the velocity located at 25 mm/s to 30 mm/s, stable deep penetration welding can be obtained. The weld seam shows relative flat appearance and the molten pool presents typical "T shape" topography. Moreover, the protection gas also influences the appearance of the weld seam. Using the independently designed fixture, the quality of the weld seam can be well improved.
Cognitive strategies in the mental rotation task revealed by EEG spectral power.
Gardony, Aaron L; Eddy, Marianna D; Brunyé, Tad T; Taylor, Holly A
2017-11-01
The classic mental rotation task (MRT; Shepard & Metzler, 1971) is commonly thought to measure mental rotation, a cognitive process involving covert simulation of motor rotation. Yet much research suggests that the MRT recruits both motor simulation and other analytic cognitive strategies that depend on visuospatial representation and visual working memory (WM). In the present study, we investigated cognitive strategies in the MRT using time-frequency analysis of EEG and independent component analysis. We scrutinized sensorimotor mu (µ) power reduction, associated with motor simulation, parietal alpha (pα) power reduction, associated with visuospatial representation, and frontal midline theta (fmθ) power enhancement, associated with WM maintenance and manipulation. µ power increased concomitant with increasing task difficulty, suggesting reduced use of motor simulation, while pα decreased and fmθ power increased, suggesting heightened use of visuospatial representation processing and WM, respectively. These findings suggest that MRT performance involves flexibly trading off between cognitive strategies, namely a motor simulation-based mental rotation strategy and WM-intensive analytic strategies based on task difficulty. Flexible cognitive strategy use may be a domain-general cognitive principle that underlies aptitude and spatial intelligence in a variety of cognitive domains. We close with discussion of the present study's implications as well as future directions. Published by Elsevier Inc.
Cerebral oscillatory activity during simulated driving using MEG.
Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro
2014-01-01
We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between "passive viewing" and "active driving." "Passive viewing" was the baseline, and oscillatory differences during "active driving" showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition.
Materials interface engineering for solution-processed photovoltaics.
Graetzel, Michael; Janssen, René A J; Mitzi, David B; Sargent, Edward H
2012-08-16
Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.
NASA Astrophysics Data System (ADS)
Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya
2017-11-01
In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.
3D thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2017-10-01
In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
Microstructure and corrosion behavior of laser processed NiTi alloy.
Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K
2015-12-01
Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malek, A. K.; Muhammad, H. I.; Rosmaini, A.; Alaa, A. S.; Falah, A. M.
2017-09-01
Development and improvement process are essential to the companies and factories of various kinds and this necessity is related aspects of cost, time and risk that can be avoided, these aspects are available at the nuclear power stations essential demands cannot be ignored. The lean management technique is one of the recent trends in the management system. Where the lean management is stated as the system increases the customer value and reduces the wastage process in an industry or in a power plants. Therefore, there is an urgent necessity to ensure the development and improvement in nuclear power plants in the pre-established in process of being established and stage of the management and production. All of these stages according to the study are closely related to the necessity operationalize and apply lean manufacturing practices that these applications are ineffective and clear contribution to reduce costs and control of production processes and the process of reducing future risks that could be exposed to the station.
Takada, Katsuko; Ishii, Akira; Matsuo, Takashi; Nakamura, Chika; Uji, Masato; Yoshikawa, Takahiro
2018-02-15
Obesity is a major public health problem in modern society. Appetitive behavior has been proposed to be partially driven by unconscious decision-making processes and thus, targeting the unconscious cognitive processes related to eating behavior is essential to develop strategies for overweight individuals and obese patients. Here, we presented food pictures below the threshold of awareness to healthy male volunteers and examined neural activity related to appetitive behavior using magnetoencephalography. We found that, among participants who did not recognize food pictures during the experiment, an index of heart rate variability assessed by electrocardiography (low-frequency component power/high-frequency component power ratio, LF/HF) just after picture presentation was increased compared with that just before presentation, and the increase in LF/HF was negatively associated with the score for cognitive restraint of food intake. In addition, increased LF/HF was negatively associated with increased alpha band power in Brodmann area (BA) 47 caused by food pictures presented below the threshold of awareness, and level of cognitive restraint was positively associated with increased alpha band power in BA13. Our findings may provide valuable clues to the development of methods assessing unconscious regulation of appetite and offer avenues for further study of the neural mechanisms related to eating behavior.
Eggeman, A S; London, A; Midgley, P A
2013-11-01
Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong
2017-06-01
This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.
Origin and Consequences of the Relationship between Protein Mean and Variance
Vallania, Francesco Luigi Massimo; Sherman, Marc; Goodwin, Zane; Mogno, Ilaria; Cohen, Barak Alon; Mitra, Robi David
2014-01-01
Cell-to-cell variance in protein levels (noise) is a ubiquitous phenomenon that can increase fitness by generating phenotypic differences within clonal populations of cells. An important challenge is to identify the specific molecular events that control noise. This task is complicated by the strong dependence of a protein's cell-to-cell variance on its mean expression level through a power-law like relationship (σ2∝μ1.69). Here, we dissect the nature of this relationship using a stochastic model parameterized with experimentally measured values. This framework naturally recapitulates the power-law like relationship (σ2∝μ1.6) and accurately predicts protein variance across the yeast proteome (r2 = 0.935). Using this model we identified two distinct mechanisms by which protein variance can be increased. Variables that affect promoter activation, such as nucleosome positioning, increase protein variance by changing the exponent of the power-law relationship. In contrast, variables that affect processes downstream of promoter activation, such as mRNA and protein synthesis, increase protein variance in a mean-dependent manner following the power-law. We verified our findings experimentally using an inducible gene expression system in yeast. We conclude that the power-law-like relationship between noise and protein mean is due to the kinetics of promoter activation. Our results provide a framework for understanding how molecular processes shape stochastic variation across the genome. PMID:25062021
Power play in the supercontinuum spectra of saturable nonlinear media
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.
2014-04-01
We investigate the role of pump power in the generation of supercontinua spectra induced by modulational instability (MI) in saturable nonlinear media (SNL). First, we analyze the dynamics of MI in the SNL using linear stability analysis. We then deal with the generation of a broadband spectrum by virtue of the instability process, and identify the unique behavior of MI in the SNL system. Unlike the case of Kerr-type nonlinearity, the so-called critical modulational frequency (CMF) does not monotonically increase, but behaves in a unique way, such that the increase in power increases the CMF up to the saturation power, and a further increase in power decreases the CMF. This behavior is identified to be unusual in the context of MI and thus makes the study of MI and supercontinuum generation (SCG) of interest. In order to confirm the above stated behavior in relation to SCG, we numerically analyzed the SCG using a split-step Fourier method, and the results confirm that at input power equal to saturation power, phase matching occurs at a short distance relative to other power levels and leads to a maximum enhancement of SCG in certain SNL materials.
Bureau of Reclamation Hydropower Lease of Power Privilege: Case Studies and Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Taylor L.; Levine, Aaron L.; McLaughlin, Kathleen
This report analyzes the U.S. Bureau of Reclamation's (Reclamation) lease of power privilege (LOPP) regulatory process for a nonfederal entity to use a Reclamation jurisdictional dam or conduit for power generation. Recent federal initiatives encouraging hydropower development at federally-owned facilities coupled with Reclamation's hydroelectric potential has led to an increased interest in powering Reclamation dams and conduits through the LOPP process. During the last five years, 23 of the 36 total LOPP projects (76 MW) have been initiated and are at some phase of the development process. Resource assessments analyzed in this report identify over 360 MW of hydroelectric potentialmore » at Reclamation-owned dams and conduits. This report provides considerations from Reclamation staff involved in the LOPP regulatory process and developers that have received an LOPP and are currently generating hydropower at a Reclamation dam or conduit. The authors also analyze LOPP regulatory processing timelines before and after the implementation of federal initiatives to streamline the LOPP process and provide case studies of hydropower projects that have obtained an LOPP.« less
The kinetics of composite particle formation during mechanical alloying
NASA Technical Reports Server (NTRS)
Aikin, B. J. M.; Courtney, T. H.
1993-01-01
The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.
High density operation for reactor-relevant power exhaust
NASA Astrophysics Data System (ADS)
Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors
2015-08-01
With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.
Simulation evaluation of capacitor bank impact on increasing supply current for alumunium production
NASA Astrophysics Data System (ADS)
Hasan, S.; Badra, K.; Dinzi, R.; Suherman
2018-03-01
DC current supply to power the electrolysis process in producing aluminium at PT Indonesia Asahan Aluminium (Persero) is about 193 kA. At this condition, the load voltage regulator (LVR) transformer generates 0.89 lagging power factor. By adding the capacitor bank to reduce the harmonic distortion, it is expected that the supply current will increase. This paper evaluates capacitor bank installation impact on the system by using ETAP 12.0 simulation. It has been obtained that by installing 90 MVAR capacitor bank in the secondary part of LVR, the power factor is corrected about 8% and DC current increases about 13.5%.
NASA Astrophysics Data System (ADS)
Pakmanesh, M. R.; Shamanian, M.
2018-02-01
In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.
Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals
Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan
2017-01-01
Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350
Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.
Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan
2017-10-16
Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.
High-energy, high-rate materials processing
NASA Astrophysics Data System (ADS)
Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.
1987-12-01
The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wille, H.; Bertholdt, H.O.; Operschall, H.
Efforts to reduce occupational radiation exposure during inspection and repair work in nuclear power plants turns steadily increasing attention to the decontamination of systems and components. Due to the advanced age of nuclear power plants resulting in increasing dose rates, the decontamination of components, or rather of complete systems, or loops to protect operating and inspection personnel becomes demanding. Besides, decontaminating complete primary loops is in many cases less difficult than cleaning large components. Based on experience gained in nuclear power plants, an outline of two different decontamination methods performed recently are given. For the decontamination of complete systems ormore » loops, Kraftwerk Union AG has developed CORD, a low-concentration process. For the decontamination performance of a subsystem, such as the steam generator (SG) channel heads of a pressurized water reactor or the recirculation loops of a boiling water reactor the automated mobile decontamination appliance is used. The electrochemical decontamination process is primarily applicable for the treatment of specially limited surface areas.« less
CPICOR{trademark}: Clean power from integrated coal-ore reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintrell, R.; Miller, R.N.; Harbison, E.J.
1997-12-31
The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less
Dynamics of Postcombustion CO2 Capture Plants: Modeling, Validation, and Case Study
2017-01-01
The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant. PMID:28413256
Low complexity lossless compression of underwater sound recordings.
Johnson, Mark; Partan, Jim; Hurst, Tom
2013-03-01
Autonomous listening devices are increasingly used to study vocal aquatic animals, and there is a constant need to record longer or with greater bandwidth, requiring efficient use of memory and battery power. Real-time compression of sound has the potential to extend recording durations and bandwidths at the expense of increased processing operations and therefore power consumption. Whereas lossy methods such as MP3 introduce undesirable artifacts, lossless compression algorithms (e.g., flac) guarantee exact data recovery. But these algorithms are relatively complex due to the wide variety of signals they are designed to compress. A simpler lossless algorithm is shown here to provide compression factors of three or more for underwater sound recordings over a range of noise environments. The compressor was evaluated using samples from drifting and animal-borne sound recorders with sampling rates of 16-240 kHz. It achieves >87% of the compression of more-complex methods but requires about 1/10 of the processing operations resulting in less than 1 mW power consumption at a sampling rate of 192 kHz on a low-power microprocessor. The potential to triple recording duration with a minor increase in power consumption and no loss in sound quality may be especially valuable for battery-limited tags and robotic vehicles.
Cerebral oscillatory activity during simulated driving using MEG
Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro
2014-01-01
We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between “passive viewing” and “active driving.” “Passive viewing” was the baseline, and oscillatory differences during “active driving” showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition. PMID:25566017
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill
Yin, Zixin; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing
2017-01-01
The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70–80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw. PMID:28773243
Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill.
Yin, Zixin; Peng, Yuxing; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing
2017-07-31
The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70-80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw.
A numerical investigation of a thermodielectric power generation system
NASA Astrophysics Data System (ADS)
Sklar, Akiva A.
The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that consists of four processes; the first process is a charging process, during which an electric field is applied to a thermodielectric material, causing it to acquire electrical charge on its surface (this process is analogous to the isentropic compression process of a Brayton cycle). The second process is a heating process in which the temperature of the dielectric material is increased via heat transfer from an external source. During this process, the thermodielectric material is forced to eject a portion of its surface charge because its charge storing capability decreases as the temperature increases; the ejected charge is intended for capture by external circuitry connected to the thermodielectric material, where it can be routed to an electrochemical storage device or an electromechanical device requiring high voltage direct current. The third process is a discharging process, during which the applied electric field is reduced to its initial strength (analogous to the isentropic expansion process of a Brayton cycle). The final process is a cooling process in which the temperature of the dielectric material is decreased via heat transfer from an external source, returning it to its initial temperature. Previously, predicting the performance of a thermodielectric power generator was hindered by a poor understanding of the material's thermodynamic properties and the effect unsteady heat transfer losses have on system performance. In order to improve predictive capabilities in this study, a thermodielectric equation of state was developed that relates the strength of the applied electric field, the amount of surface charge stored by the thermodielectric material, and its temperature. This state equation was then used to derive expressions for the material's thermodynamic states (internal energy, entropy), which were subsequently used to determine the optimum material properties for power generation. Next, a numerical simulation code was developed to determine the heat transfer capabilities of a micro-scale parallel plate heat recuperator (MPPHR), a device designed specifically to (a) provide the unsteady heating and cooling necessary for thermodielectric power generation and (b) minimize the unsteady heat transfer losses of the system. The simulation code was used to find the optimum heat transfer and heat recuperation regimes of the MPPHR. The previously derived thermodynamic equations that describe the behavior of the thermodielectric materials were then incorporated into the model for the walls of the parallel plate channel in the numerical simulation code, creating a tool capable of determining the thermodynamic performance of an MTDPG, in terms of the thermal efficiency, percent Carnot efficiency, and energy/power density. A detailed parameterization of the MTDPG with the simulation code yielded the critical non-dimensional numbers that determine the relationship between the heat exchange/recuperation abilities of the flow and the power generation capabilities of the thermodielectric materials. These relationships were subsequently used to optimize the performance of an MTDPG with an operating temperature range of 300--500 °K. The optimization predicted that the MTDPG could provide a thermal efficiency of 29.7 percent with the potential to reach 34 percent. These thermal efficiencies correspond to 74.2 and 85 percent of the Carnot efficiency, respectively. The power density of this MTDPG depends on the operating frequency and can exceed 1,000,000 W/m3.
NASA Astrophysics Data System (ADS)
Lindstrom, Erik Vilhelm Mathias
Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit operations, utilizing high sulfidity green liquor pretreatment, PSAQ with auto-causticization, or converting the process to mini-sulfide sulfite-AQ.
NASA Astrophysics Data System (ADS)
Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya
2011-03-01
For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.
Cortical oscillations and entrainment in speech processing during working memory load.
Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten
2018-02-02
Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Design and characterization of high-speed CMOS pseudo-LVDS transceivers
NASA Astrophysics Data System (ADS)
Kondratenko, S. V.
2016-02-01
High-speed transceiver for on-board systems of data collection and processing need to meet additional requirements, such as low power consumption and increased radiation hardness. It is therefore necessary to compare and search for alternative variants of transceivers on the physical layer, where high transfer speed is not achieved at the cost of a significant increase in power consumption or a limitation of transmission distance by the size of a printed circuit board. For on-board applications, it is also necessary to solve the problem of increasing the radiation hardness without going to expensive types of technology. In this paper, we studied some variants of implementation of pseudo-LVDS transceivers and analyzed their achievable quantitative characteristics. According to the results of calculations and analysis of the literature, specialized transceivers of this type, intended for the manufacture or manufactured according to the bulk CMOS technology processes in the range of 250-80 nm, can provide data speeds up to 6 Gbps at a specific power consumption of less than 4 mW/Gbps.
Wang, Zhenjun; Xu, Yuanming
2017-07-01
With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hai Huang; Ben Spencer; Jason Hales
2014-10-01
A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to themore » formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.« less
NASA Technical Reports Server (NTRS)
Carrier, J.; Land, S.; Buysse, D. J.; Kupfer, D. J.; Monk, T. H.
2001-01-01
The effects of age and gender on sleep EEG power spectral density were assessed in a group of 100 subjects aged 20 to 60 years. We propose a new statistical strategy (mixed-model using fixed-knot regression splines) to analyze quantitative EEG measures. The effect of gender varied according to frequency, but no interactions emerged between age and gender, suggesting that the aging process does not differentially influence men and women. Women had higher power density than men in delta, theta, low alpha, and high spindle frequency range. The effect of age varied according to frequency and across the night. The decrease in power with age was not restricted to slow-wave activity, but also included theta and sigma activity. With increasing age, the attenuation over the night in power density between 1.25 and 8.00 Hz diminished, and the rise in power between 12.25 and 14.00 Hz across the night decreased. Increasing age was associated with higher power in the beta range. These results suggest that increasing age may be related to an attenuation of homeostatic sleep pressure and to an increase in cortical activation during sleep.
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Hurrell, Michael J.
2017-01-01
Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.
Fuel cells provide a revenue-generating solution to power quality problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.M. Jr.
Electric power quality and reliability are becoming increasingly important as computers and microprocessors assume a larger role in commercial, health care and industrial buildings and processes. At the same time, constraints on transmission and distribution of power from central stations are making local areas vulnerable to low voltage, load addition limitations, power quality and power reliability problems. Many customers currently utilize some form of premium power in the form of standby generators and/or UPS systems. These include customers where continuous power is required because of health and safety or security reasons (hospitals, nursing homes, places of public assembly, air trafficmore » control, military installations, telecommunications, etc.) These also include customers with industrial or commercial processes which can`t tolerance an interruption of power because of product loss or equipment damage. The paper discusses the use of the PC25 fuel cell power plant for backup and parallel power supplies for critical industrial applications. Several PC25 installations are described: the use of propane in a PC25; the use by rural cooperatives; and a demonstration of PC25 technology using landfill gas.« less
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei
2018-04-20
This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.
Effect of flow rate and concentration difference on reverse electrodialysis system
NASA Astrophysics Data System (ADS)
Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong
2013-11-01
Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.
Beyond reliability to profitability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, T.H.; Mitchell, J.S.
1996-07-01
Reliability concerns have controlled much of power generation design and operations. Emerging from a strictly regulated environment, profitability is becoming a much more important concept for today`s power generation executives. This paper discusses the conceptual advance-view power plant maintenance as a profit center, go beyond reliability, and embrace profitability. Profit Centered Maintenance begins with the premise that financial considerations, namely profitability, drive most aspects of modern process and manufacturing operations. Profit Centered Maintenance is a continuous process of reliability and administrative improvement and optimization. For the power generation executives with troublesome maintenance programs, Profit Centered Maintenance can be the blueprintmore » to increased profitability. It requires the culture change to make decisions based on value, to reengineer the administration of maintenance, and to enable the people performing and administering maintenance to make the most of available maintenance information technology. The key steps are to optimize the physical function of maintenance and to resolve recurring maintenance problems so that the need for maintenance can be reduced. Profit Centered Maintenance is more than just an attitude it is a path to profitability, be it resulting in increased profits or increased market share.« less
Factors influencing equipment selection in electron beam processing
NASA Astrophysics Data System (ADS)
Barnard, J. W.
2003-08-01
During the eighties and nineties accelerator manufacturers dramatically increased the beam power available for high-energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain per unit costs low for treatment. This philosophy runs counter to certain present-day realities of the sterilization business as well as conditions influencing accelerator selection in other electron beam applications. Recent experience in machine selection is described and factors affecting choice are presented.
Dzhebrailova, T D; Korobeĭnikova, I I; Rudneva, L P
2014-09-01
EEG spectral power was calculated in 24 students (18-21 years) with different levels of motivation and anxiety (tested by Spielberger) in two experimental conditions: during the common educational process and the examination stress. Before examination tests, in subjects with high motivation and anxiety level the relative delta activity power increased in right frontal (F4) brain areas. In students with medium motivation immediately before an examination the relative beta2-activity power increased in right frontal (F4) brain areas. It is suggested that delta oscillati- ons reflect activity of the defensive motivational system, whereas beta2 oscillations may be associated with the achievement motivation.
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
Ultra-low-power wearable biopotential sensor nodes.
Yazicioglu, R F; Torfs, T; Penders, J; Romero, I; Kim, H; Merken, P; Gyselinckx, B; Yoo, H J; Van Hoof, C
2009-01-01
This paper discusses ultra-low-power wireless sensor nodes intended for wearable biopotential monitoring. Specific attention is given to mixed-signal design approaches and their impact on the overall system power dissipation. Examples of trade-offs in power dissipation between analog front-ends and digital signal processing are also given. It is shown how signal filtering can further reduce the internal power consumption of a node. Such power saving approaches are indispensable as real-life tests of custom wireless ECG patches reveal the need for artifact detection and correction. The power consumption of such additional features has to come from power savings elsewhere in the system as the overall power budget cannot increase.
Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise
NASA Astrophysics Data System (ADS)
Morita, Satoru
2018-05-01
Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.
Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon
2013-10-01
Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying
2017-09-01
The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss
NASA Technical Reports Server (NTRS)
Delgado, Irebert; Hurrell, Michael
2017-01-01
Windage power loss in high-speed gearboxes result in efficiency losses and increased heating due to drag on the gear teeth. Meshed spur gear windage power loss test results are presented at ambient oil inlet temperatures both with and without shrouding. The rate of windage power loss is observed to increase above 10,000 ft.min., gear surface speed, similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 ft.min., decreasing power loss by 10 at 25,000 ft.min. The need for gearbox oil drain slots limits the effectiveness of shrouding on reducing windage power loss. Also, windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for the unshrouded meshed spur gears are 7x more than losses determined from unshrouded single spur gear tests. A 6x to 12x increase in windage power is observed comparing shrouded single spur gear data with shrouded meshed spur gear data. Based on this preliminary study additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss of meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed for optimizing gearbox shrouds for minimum windage power loss.
Temporal Dynamics of Proactive and Reactive Motor Inhibition
Liebrand, Matthias; Pein, Inga; Tzvi, Elinor; Krämer, Ulrike M.
2017-01-01
Proactive motor inhibition refers to endogenous preparatory mechanisms facilitating action inhibition, whereas reactive motor inhibition is considered to be a sudden stopping process triggered by external signals. Previous studies were inconclusive about the temporal dynamics of involved neurocognitive processes during proactive and reactive motor control. Using electroencephalography (EEG), we investigated the time-course of proactive and reactive inhibition, measuring event-related oscillations and event-related potentials (ERPs). Participants performed in a cued go/nogo paradigm with cues indicating whether the motor response might or might not have to be inhibited. Based on the dual mechanisms of control (DMC) framework by Braver, we investigated the role of attentional effects, motor preparation in the sensorimotor cortex and prefrontal cognitive control mechanisms, separating effects before and after target onset. In the cue-target interval, proactive motor inhibition was associated with increased attention, reflected in reduced visual alpha power and an increased contingent negative variation (CNV). At the same time, motor inhibition was modulated by reduced sensorimotor beta power. After target onset, proactive inhibition resulted in an increased N1, indicating allocation of attention towards relevant stimuli, increased prefrontal beta power and a modulation of sensorimotor mu activity. As in previous studies, reactive stopping of motor actions was associated with increased prefrontal beta power and increased sensorimotor beta activity. The results stress the relevance of attentional mechanisms for proactive inhibition and speak for different neurocognitive mechanisms being involved in the early preparation for and in later implementation of motor inhibition. PMID:28496405
The Iterative Research Cycle: Process-Based Model Evaluation
NASA Astrophysics Data System (ADS)
Vrugt, J. A.
2014-12-01
The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex physics based models that simulate a myriad of processes at different spatial and temporal scales. Reconciling these high-order system models with perpetually larger volumes of field data is becoming more and more difficult, particularly because classical likelihood-based fitting methods lack the power to detect and pinpoint deficiencies in the model structure. In this talk I will give an overview of our latest research on process-based model calibration and evaluation. This approach, rooted in Bayesian theory, uses summary metrics of the calibration data rather than the data itself to help detect which component(s) of the model is (are) malfunctioning and in need of improvement. A few case studies involving hydrologic and geophysical models will be used to demonstrate the proposed methodology.
Process Development--Tungsten Hemispheres.
1980-04-01
pumping down to 25 microns before adding power to the molybdenum heating element. After 25 microns have been reached, power was applied and a temperature ...were formed in latter March, 1979. The initial discs were formed at a temperature of 750OF since Vought conducted tests showing that ductility increased...from 27.4%0 at ambient temperature to 41% at 750 0 F. The forming process planning instructions were changed from 650OF to 750 0 F. Five of the 32
The effects of message recipients' power before and after persuasion: a self-validation analysis.
Briñol, Pablo; Petty, Richard E; Valle, Carmen; Rucker, Derek D; Becerra, Alberto
2007-12-01
In the present research, the authors examined the effect of a message recipient's power on attitude change and introduced a new mechanism by which power can affect social judgment. In line with prior research that suggested a link between power and approach tendencies, the authors hypothesized that having power increases confidence relative to being powerless. After demonstrating this link in Experiment 1, in 4 additional studies, they examined the role of power in persuasion as a function of when power is infused into the persuasion process. On the basis of the idea that power validates whatever mental content is accessible, they hypothesized that power would have different effects on persuasion depending on when power was induced. Specifically, the authors predicted that making people feel powerful prior to a message would validate their existing views and thus reduce the perceived need to attend to subsequent information. However, it was hypothesized that inducing power after a message has been processed would validate one's recently generated thoughts and thus influence the extent to which people rely upon their thoughts in determining their attitudes. (c) 2007 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.
Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.
Heat pipe cooling of power processing magnetics
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Chester, M.
1979-01-01
The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.
Power of theta waves in the EEG of human subjects increases during recall of haptic information.
Grunwald, M; Weiss, T; Krause, W; Beyer, L; Rost, R; Gutberlet, I; Gertz, H J
1999-02-05
Several studies have reported a functional relationship between spectral power within the theta-band of the EEG (theta-power) and memory load while processing visual or semantic information. We investigated theta power during the processing of different complex haptic stimuli using a delayed recall design. The haptic explorations consisted of palpating the structure of twelve sunken reliefs with closed eyes. Subjects had to reproduce each relief by drawing it 10 s after the end of the exploration. The relationship between mean theta power and mean exploration time was analysed using a regression model. A linear relationship was found between the exploration time and theta power over fronto-central regions (Fp1, Fp2, F3, F7, F8, Fz, C3) directly before the recall of the relief. This result is interpreted in favour of the hypothesis that fronto-central theta power of the EEG correlates with the load of working memory independent of stimulus modality.
The Utility of EEG Band Power Analysis in the Study of Infancy and Early Childhood
Saby, Joni N.; Marshall, Peter J.
2012-01-01
Research employing electroencephalographic (EEG) techniques with infants and young children has flourished in recent years due to increased interest in understanding the neural processes involved in early social and cognitive development. This review focuses on the functional characteristics of the alpha, theta, and gamma frequency bands in the developing EEG. Examples of how analyses of EEG band power have been applied to specific lines of developmental research are also discussed. These examples include recent work on the infant mu rhythm and action processing, frontal alpha asymmetry and approach-withdrawal tendencies, and EEG power measures in the study of early psychosocial adversity. PMID:22545661
I can, I do, and so I like: From power to action and aesthetic preferences.
Woltin, Karl-Andrew; Guinote, Ana
2015-12-01
The current work tested the hypothesis that power increases reliance on experiences of motor fluency in forming aesthetic preferences. In 4 experiments, participants reported their aesthetic preferences regarding a variety of targets (pictures, movements, objects, and letters). Experiments 1, 2, and 3 manipulated power and motor fluency (via motoric resonance, extraocular muscle training, and dominant hand restriction). Experiment 4 manipulated power and assessed chronic interindividual differences in motor fluency. Across these experiments, power consistently increased reliance on motor fluency in aesthetic preference judgments. This finding was not mediated by differences in mood, judgment certainty, perceived task-demands or task-enjoyment, and derived from the use of motor simulations rather than from power differences in the acquisition of motor experiences. This is the first demonstration suggesting that power changes the formation of preference judgments as a function of motor fluency experiences. The implications of this research for the links between power and action, as well as the understanding of fluency processes are discussed. (c) 2015 APA, all rights reserved).
Enhancement of low power CO2 laser cutting process for injection molded polycarbonate
NASA Astrophysics Data System (ADS)
Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.
2017-11-01
Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.
DOT National Transportation Integrated Search
2017-06-30
The ever-increasing processing speed and computational power of computers and simulation systems has led to correspondingly larger, more sophisticated representations of evacuation traffic processes. Today, micro-level analyses can be conducted for m...
NASA Astrophysics Data System (ADS)
Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki
Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.
Authorities' Coercive and Legitimate Power: The Impact on Cognitions Underlying Cooperation
Hofmann, Eva; Hartl, Barbara; Gangl, Katharina; Hartner-Tiefenthaler, Martina; Kirchler, Erich
2017-01-01
The execution of coercive and legitimate power by an authority assures cooperation and prohibits free-riding. While coercive power can be comprised of severe punishment and strict monitoring, legitimate power covers expert, and informative procedures. The perception of these powers wielded by authorities stimulates specific cognitions: trust, relational climates, and motives. With four experiments, the single and combined impact of coercive and legitimate power on these processes and on intended cooperation of n1 = 120, n2 = 130, n3 = 368, and n4 = 102 student participants is investigated within two exemplary contexts (tax contributions, insurance claims). Findings reveal that coercive power increases an antagonistic climate and enforced compliance, whereas legitimate power increases reason-based trust, a service climate, and voluntary cooperation. Unexpectedly, legitimate power is additionally having a negative effect on an antagonistic climate and a positive effect on enforced compliance; these findings lead to a modification of theoretical assumptions. However, solely reason-based trust, but not climate perceptions and motives, mediates the relationship between power and intended cooperation. Implications for theory and practice are discussed. PMID:28149286
Process modelling of biomass conversion to biofuels with combined heat and power.
Sharma, Abhishek; Shinde, Yogesh; Pareek, Vishnu; Zhang, Dongke
2015-12-01
A process model has been developed to study the pyrolysis of biomass to produce biofuel with heat and power generation. The gaseous and solid products were used to generate heat and electrical power, whereas the bio-oil was stored and supplied for other applications. The overall efficiency of the base case model was estimated for conversion of biomass into useable forms of bio-energy. It was found that the proposed design is not only significantly efficient but also potentially suitable for distributed operation of pyrolysis plants having centralised post processing facilities for production of other biofuels and chemicals. It was further determined that the bio-oil quality improved using a multi-stage condensation system. However, the recycling of flue gases coming from combustor instead of non-condensable gases in the pyrolyzer led to increase in the overall efficiency of the process with degradation of bio-oil quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
THz quantum cascade lasers with wafer bonded active regions.
Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K
2012-10-08
We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.
Renewable Energy Zone (REZ) Transmission Planning Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nathan
A REZ is a geographical area that enables the development of profitable, cost-effective, grid-connected renewable energy (RE). The REZ Transmission Planning Process is a proactive approach to plan, approve, and build transmission infrastructure connecting REZs to the power system which helps to increase the share of solar, wind and other RE resources in the power system while maintaining reliability and economics, and focuses on large-scale wind and solar resources that can be developed in sufficient quantities to warrant transmission system expansion and upgrades.
Kamarajan, Chella; Pandey, Ashwini K.; Chorlian, David B.; Manz, Niklas; Stimus, Arthur T.; Anokhin, Andrey P.; Bauer, Lance O.; Kuperman, Samuel; Kramer, John; Bucholz, Kathleen K.; Schuckit, Marc A.; Hesselbrock, Victor M.; Porjesz, Bernice
2015-01-01
Background Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. Methods EROs were recorded during a monetary gambling task (MGT) in 12–25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. Results HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. Conclusions As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders. PMID:26580209
Kamarajan, Chella; Pandey, Ashwini K; Chorlian, David B; Manz, Niklas; Stimus, Arthur T; Anokhin, Andrey P; Bauer, Lance O; Kuperman, Samuel; Kramer, John; Bucholz, Kathleen K; Schuckit, Marc A; Hesselbrock, Victor M; Porjesz, Bernice
2015-01-01
Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. EROs were recorded during a monetary gambling task (MGT) in 12-25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders.
The effects of neurofeedback on oscillatory processes related to tinnitus.
Hartmann, Thomas; Lorenz, Isabel; Müller, Nadia; Langguth, Berthold; Weisz, Nathan
2014-01-01
Although widely used, no proof exists for the feasibility of neurofeedback for reinstating the disordered excitatory-inhibitory balance, marked by a decrease in auditory alpha power, in tinnitus patients. The current study scrutinizes the ability of neurofeedback to focally increase alpha power in auditory areas in comparison to the more common rTMS. Resting-state MEG was measured before and after neurofeedback (n = 8) and rTMS (n = 9) intervention respectively. Source level power and functional connectivity were analyzed with a focus on the alpha band. Only neurofeedback produced a significant decrease in tinnitus symptoms and-more important for the context of the study-a spatially circumscribed increase in alpha power in right auditory regions. Connectivity analysis revealed higher outgoing connectivity in a region ultimately neighboring the area in which power increases were observed. Neurofeedback decreases tinnitus symptoms and increases alpha power in a spatially circumscribed manner. In addition, compared to a more established brain stimulation-based intervention, neurofeedback is a promising approach to renormalize the excitatory-inhibitory imbalance putatively underlying tinnitus. This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback.
NASA Astrophysics Data System (ADS)
Hadi Sutrisno, Himawan
2018-03-01
In densely populated settlements, fires often occur and cause losses. In some instances, the process of the occurrence of fires takes place so quickly that to reduce and avoid the occurrence of a fire disaster effort is required in accordance with the existing environmental condition. Fire fighter motorcycle by using motorcycle scooter-matic is considered suitable as one alternative to combating fire hazard in densely populated residential settlements. The use of motorcycle engines as the driving force of the pump often leads to unstable and not optimum power. Thus, the water spray on the centrifugal pump also becomes not maximum. To increase the engine power at scooter-matic engine idle rotation (700-2000 rpm), then the flying roller replacement with certain mass weight becomes an option. By selecting a 10 to 14 gram flying roller mass, the power analysis using a dynotest engine produces several variations. Of the calculation, the mass of a 14 gram flying roller provides a significant increase in motor power on the upper rotation. Meanwhile, on the lower power rotation using a flying roller with a mass of 10 grams provides an increase in power compared to a standard flying roller on a scooter matic motor engine. As a reference to the use of scooter-matic motor power as the pump power, the result of use of the flying roller with a mass of 10 grams becomes the best option.
Task-specific Aspects of Goal-directed Word Generation Identified via Simultaneous EEG-fMRI.
Shapira-Lichter, Irit; Klovatch, Ilana; Nathan, Dana; Oren, Noga; Hendler, Talma
2016-09-01
Generating words according to a given rule relies on retrieval-related search and postretrieval control processes. Using fMRI, we recently characterized neural patterns of word generation in response to episodic, semantic, and phonemic cues by comparing free recall of wordlists, category fluency, and letter fluency [Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, U.S.A., 110, 4950-4955, 2013]. Distinct selectivity for each condition was evident, representing discrete aspects of word generation-related memory retrieval. For example, the precuneus, implicated in processing spatiotemporal information, emerged as a key contributor to the episodic condition, which uniquely requires this information. Gamma band is known to play a central role in memory, and increased gamma power has been observed before word generation. Yet, gamma modulation in response to task demands has not been investigated. To capture the task-specific modulation of gamma power, we analyzed the EEG data recorded simultaneously with the aforementioned fMRI, focusing on the activity locked to and immediately preceding word articulation. Transient increases in gamma power were identified in a parietal electrode immediately before episodic and semantic word generation, however, within a different time frame relative to articulation. Gamma increases were followed by an alpha-theta decrease in the episodic condition, a gamma decrease in the semantic condition. This pattern indicates a task-specific modulation of the gamma signal corresponding to the specific demands of each word generation task. The gamma power and fMRI signal from the precuneus were correlated during the episodic condition, implying the existence of a common cognitive construct uniquely required for this task, possibly the reactivation or processing of spatiotemporal information.
NASA Astrophysics Data System (ADS)
Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.
2015-01-01
The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilov, L. V., E-mail: danleon84@mail.ru; Petukhov, A. A.; Mikhailova, M. P.
2016-06-15
The electroluminescent properties of a light-emitting diode n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with high potential barriers are studied in the temperature range of 290–470 K. An atypical temperature increase in the power of the long-wavelength luminescence band with an energy of 0.3 eV is experimentally observed. As the temperature increases to 470 K, the optical radiation power increases by a factor of 1.5–2. To explain the extraordinary temperature dependence of the radiation power, the recombination and carrier transport processes are theoretically analyzed in the heterostructure under study.
ERIC Educational Resources Information Center
Tucciarone, Kristy
2016-01-01
This study investigates how universities can increase the effectiveness of the search process by featuring in their advertisements expert and celebrity endorsers who attended the institution. How can universities gain the attention of prospective students using the star power of experts and celebrities? Experts and celebrities promoting a…
Examination of Teacher Observation Dynamics: Role of Observer Effort on Teacher Growth
ERIC Educational Resources Information Center
Bury, Michael Shaun
2017-01-01
This study examined the teacher observation cycle to understand the effect of observer knowledge, observer effort, observer power, and school culture on teachers' perceptions of whether the observation process helped them grow, implement strategies, or increase student learning. The concepts of power and expertise were defined by blending the…
Factors That Impact Teacher Power in Decision-Making in U.S. Public Schools: A Multilevel Analysis
ERIC Educational Resources Information Center
Wang, Yuling
2015-01-01
The teacher empowerment process emphasizes professional development and participation (i.e., increasing professional status, skills, knowledge and providing the opportunity to participate in decision-making); however, whether these efforts eventually lead to the realization of teacher power remains a critical concern, especially considering that…
NASA Astrophysics Data System (ADS)
Fu, Yao; Zhang, Xian-Cheng; Sui, Jian-Feng; Tu, Shan-Tung; Xuan, Fu-Zhen; Wang, Zheng-Dong
2015-04-01
The aim of this paper was to develop a one-step in situ method to synthesize the TiN reinforced Al metallic matrix composite coatings on Ti6Al4V alloy. In this method, the Al powder and nitrogen gas were simultaneously fed into feeding nozzle during a laser nitriding process. The microstructure, microhardness and sliding wear resistance of TiN/Al coatings synthesized at different laser powers in laser nitriding were investigated. Results showed that the crack- and pore-free coatings can be made through the proposed method. However, the morphologies and distribution of TiN dendrites and wear resistance of coatings were strongly dependent on laser power used in nitriding. With increasing the laser power, the amount and density of massive TiN dendritic structure in the coating decreased and the elongated and narrow dendrites increased, leading to the increment of wear resistance of coating. When the laser power is high, the convectional flow pattern of the melt pool can be seen near the bottom of pool.
A new framework to increase the efficiency of large-scale solar power plants.
NASA Astrophysics Data System (ADS)
Alimohammadi, Shahrouz; Kleissl, Jan P.
2015-11-01
A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.
Emotion processing in Parkinson's disease: an EEG spectral power study.
Yuvaraj, R; Murugappan, M; Omar, Mohd Iqbal; Ibrahim, Norlinah Mohamed; Sundaraj, Kenneth; Mohamad, Khairiyah; Satiyan, M
2014-07-01
Although an emotional deficit is a common finding in Parkinson's disease (PD), its neurobiological mechanism on emotion recognition is still unknown. This study examined the emotion processing deficits in PD patients using electroencephalogram (EEG) signals in response to multimodal stimuli. EEG signals were investigated on both positive and negative emotions in 14 PD patients and 14 aged-matched normal controls (NCs). The relative power (i.e., ratio of EEG signal power in each frequency band compared to the total EEG power) was computed over three brain regions: the anterior (AF3, F7, F3, F4, F8 and AF4), central (FC5 and FC6) and posterior (T7, P7, O1, O2, P8 and T8) regions for theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-60 Hz) frequency sub-bands, respectively. Behaviorally, PD patients showed decreased performance in classifying emotional stimuli as measured by subjective ratings. EEG power at theta, alpha, beta, and gamma bands in all regions were significantly different between the NC and PD groups during both the emotional tasks, with p-values less than 0.05. Furthermore, an increase of relative spectral powers in the theta and gamma bands and a decrease of relative powers in the alpha and beta bands were observed for PD patients compared with NCs during emotional information processing. The results suggest the possibility of the existence of a distinctive neurobiological substrate of PD patients during emotional information processing. Also, these distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients.
Prospects for energy recovery during hydrothermal and biological processing of waste biomass.
Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L
2017-02-01
Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interactive brain shift compensation using GPU based programming
NASA Astrophysics Data System (ADS)
van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf
2009-02-01
Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.
Power and energy dissipation in subsequent return strokes as predicted by a new return stroke model
NASA Technical Reports Server (NTRS)
Cooray, Vernon
1991-01-01
Recently, Cooray introduced a new return stroke model which is capable of predicting the temporal behavior of the return stroke current and the return stroke velocity as a function of the height along the return stroke channel. The authors employed this model to calculate the power and energy dissipation in subsequent return strokes. The results of these calculations are presented here. It was concluded that a large fraction of the total energy available for the dart leader-subsequent stroke process is dissipated in the dart leader stage. The peak power per unit length dissipated in a subsequent stroke channel element decreases with increasing height of that channel element from ground level. For a given channel element, the peak power dissipation increases with increasing current in that channel element. The peak electrical power dissipation in a typical subsequent return stroke is about 1.5 times 10(exp 11) W. The energy dissipation in a subsequent stroke increases with increasing current in the return stroke channel, and for a typical subsequent stroke, the energy dissipation per unit length is about 5.0 times 10(exp 3) J/m.
EEG Dynamics Reflect the Distinct Cognitive Process of Optic Problem Solving
She, Hsiao-Ching; Jung, Tzyy-Ping; Chou, Wen-Chi; Huang, Li-Yu; Wang, Chia-Yu; Lin, Guan-Yu
2012-01-01
This study explores the changes in electroencephalographic (EEG) activity associated with the performance of solving an optics maze problem. College students (N = 37) were instructed to construct three solutions to the optical maze in a Web-based learning environment, which required some knowledge of physics. The subjects put forth their best effort to minimize the number of convexes and mirrors needed to guide the image of an object from the entrance to the exit of the maze. This study examines EEG changes in different frequency bands accompanying varying demands on the cognitive process of providing solutions. Results showed that the mean power of θ, α1, α2, and β1 significantly increased as the number of convexes and mirrors used by the students decreased from solution 1 to 3. Moreover, the mean power of θ and α1 significantly increased when the participants constructed their personal optimal solution (the least total number of mirrors and lens used by students) compared to their non-personal optimal solution. In conclusion, the spectral power of frontal, frontal midline and posterior theta, posterior alpha, and temporal beta increased predominantly as the task demands and task performance increased. PMID:22815800
Laser-shock damage of iron-based materials
NASA Astrophysics Data System (ADS)
Chu, Jinn P.; Banas, Grzegorz; Lawrence, Frederick V.; Rigsbee, James M.; Elsayed-Ali, Hani E.
1993-05-01
The effects of laser shock processing on the microstructure and mechanical properties of the manganese (1 percent C and 14 percent Mn) steels have been low carbon (0.04 wt. percent C) and Hadfield studied. Laser shock processing was performed with a 1.054 micrometers wavelength Nd-phosphate laser operating in a pulse mode (600 ps pulse length and up to 200 J energy) with power densities above 10 to the 11th power W/cm2. Shock waves were generated by volume expansion of the plasma formed when the material was laser irradiated. Maximum shock wave intensities were obtained using an energy-absorbing black paint coating without a plasma-confining overlay. Maximum modification of compressive residual stresses were achieved when laser shock processing induced deformation occurred without melting. Mechanical properties were improved through modifying the microstructure by laser shock processing. High density arrays of dislocations (greater than 10 to the 11th power/cm2) were generated in low carbon steel by high strain-rate deformation of laser shock processing, resulting in surface hardness increases of 30 to 80 percent. In austenitic Hadfield steel, laser shock processing caused extensive formation of Epsilon-hcp martensite (35 vol. percent), producing increases of 50 to 130 percent in surface hardness. The laser shock processing strengthening effect in Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to presence of the Epsilon-hcp martensite.
The Future Impact of Wind on BPA Power System Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less
Electrophysiological spatiotemporal dynamics during implicit visual threat processing.
DeLaRosa, Bambi L; Spence, Jeffrey S; Shakal, Scott K M; Motes, Michael A; Calley, Clifford S; Calley, Virginia I; Hart, John; Kraut, Michael A
2014-11-01
Numerous studies have found evidence for corticolimbic theta band electroencephalographic (EEG) oscillations in the neural processing of visual stimuli perceived as threatening. However, varying temporal and topographical patterns have emerged, possibly due to varying arousal levels of the stimuli. In addition, recent studies suggest neural oscillations in delta, theta, alpha, and beta-band frequencies play a functional role in information processing in the brain. This study implemented a data-driven PCA based analysis investigating the spatiotemporal dynamics of electroencephalographic delta, theta, alpha, and beta-band frequencies during an implicit visual threat processing task. While controlling for the arousal dimension (the intensity of emotional activation), we found several spatial and temporal differences for threatening compared to nonthreatening visual images. We detected an early posterior increase in theta power followed by a later frontal increase in theta power, greatest for the threatening condition. There was also a consistent left lateralized beta desynchronization for the threatening condition. Our results provide support for a dynamic corticolimbic network, with theta and beta band activity indexing processes pivotal in visual threat processing. Published by Elsevier Inc.
Oscillatory correlates of autobiographical memory.
Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E
2015-03-01
Recollection of events from one's own life is referred to as autobiographical memory. Autobiographical memory is an important part of our self. Neuroimaging findings link self-referential processes with the default mode network (DMN). Much evidence coming primarily from functional magnetic resonance imaging studies shows that autobiographical memory and DMN have a common neural base. In this study, electroencephalographic data collected in 47 participants during recollection of autobiographical episodes were analyzed using temporal and spatial independent component analyses in combination with source localization. Autobiographical remembering was associated with an increase of spectral power in alpha and beta and a decrease in delta band. The increase of alpha power, as estimated by sLORETA, was most prominent in the posterior DMN, but was also observed in visual and motor cortices, prompting an assumption that it is associated with activation of DMN and inhibition of irrelevant sensory and motor areas. In line with data linking delta oscillations with aversive states, decrease of delta power was more pronounced in episodes associated with positive emotions, whereas episodes associated with negative emotions were accompanied by an increase of delta power. Vividness of recollection correlated positively with theta oscillations. These results highlight the leading role of alpha oscillations and the DMN in the processes accompanying autobiographical remembering. Copyright © 2014 Elsevier B.V. All rights reserved.
Implantable electronics: emerging design issues and an ultra light-weight security solution.
Narasimhan, Seetharam; Wang, Xinmu; Bhunia, Swarup
2010-01-01
Implantable systems that monitor biological signals require increasingly complex digital signal processing (DSP) electronics for real-time in-situ analysis and compression of the recorded signals. While it is well-known that such signal processing hardware needs to be implemented under tight area and power constraints, new design requirements emerge with their increasing complexity. Use of nanoscale technology shows tremendous benefits in implementing these advanced circuits due to dramatic improvement in integration density and power dissipation per operation. However, it also brings in new challenges such as reliability and large idle power (due to higher leakage current). Besides, programmability of the device as well as security of the recorded information are rapidly becoming major design considerations of such systems. In this paper, we analyze the emerging issues associated with the design of the DSP unit in an implantable system. Next, we propose a novel ultra light-weight solution to address the information security issue. Unlike the conventional information security approaches like data encryption, which come at large area and power overhead and hence are not amenable for resource-constrained implantable systems, we propose a multilevel key-based scrambling algorithm, which exploits the nature of the biological signal to effectively obfuscate it. Analysis of the proposed algorithm in the context of neural signal processing and its hardware implementation shows that we can achieve high level of security with ∼ 13X lower power and ∼ 5X lower area overhead than conventional cryptographic solutions.
Lasers for industrial production processing: tailored tools with increasing flexibility
NASA Astrophysics Data System (ADS)
Rath, Wolfram
2012-03-01
High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.
Advanced Hydrogen Liquefaction Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Joseph; Kromer, Brian; Neu, Ben
2011-09-28
The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased themore » understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.« less
Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.
Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu
2007-03-10
To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.
Yoga Poses Increase Subjective Energy and State Self-Esteem in Comparison to ‘Power Poses’
Golec de Zavala, Agnieszka; Lantos, Dorottya; Bowden, Deborah
2017-01-01
Research on beneficial consequences of yoga focuses on the effects of yogic breathing and meditation. Less is known about the psychological effects of performing yoga postures. The present study investigated the effects of yoga poses on subjective sense of energy and self-esteem. The effects of yoga postures were compared to the effects of ‘power poses,’ which arguably increase the sense of power and self-confidence due to their association with interpersonal dominance (Carney et al., 2010). The study tested the novel prediction that yoga poses, which are not associated with interpersonal dominance but increase bodily energy, would increase the subjective feeling of energy and therefore increase self-esteem compared to ‘high power’ and ‘low power’ poses. A two factorial, between participants design was employed. Participants performed either two standing yoga poses with open front of the body (n = 19), two standing yoga poses with covered front of the body (n = 22), two expansive, high power poses (n = 21), or two constrictive, low power poses (n = 20) for 1-min each. The results showed that yoga poses in comparison to ‘power poses’ increased self-esteem. This effect was mediated by an increased subjective sense of energy and was observed when baseline trait self-esteem was controlled for. These results suggest that the effects of performing open, expansive body postures may be driven by processes other than the poses’ association with interpersonal power and dominance. This study demonstrates that positive effects of yoga practice can occur after performing yoga poses for only 2 min. PMID:28553249
Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing
NASA Astrophysics Data System (ADS)
Choi, Young-Hwan; Ryu, Han-Youl
2018-04-01
We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.
Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray
NASA Astrophysics Data System (ADS)
Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu
2013-06-01
A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.
Sensitivity Studies for In-Situ Automated Tape Placement of Thermoplastic Composites
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Marchello, Joseph M.
2004-01-01
This modeling effort seeks to improve the interlaminate bond strength of thermoplastic carbon composites produced by the in-situ automated tape placement (ATP) process. An existing high productivity model is extended to lower values of the Peclet number that correspond to the present operating conditions of the Langley ATP robot. (The Peclet number is the dimensionless ratio of inertial to diffusive heat transfer.) In sensitivity studies, all of the process and material parameters are individually varied. The model yields the corresponding variations in the effective bonding time (EBT) referred to the glass transition temperature. According to reptation theory, the interlaminate bond strength after wetting occurs is proportional to the one-fourth power of EBT. The model also computes the corresponding variations in the thermal input power (TIP) and the mass and volumetric process rates. Process studies show that a 10 percent increase in the consolidation length results in a 20 percent increase in EBT and a 5 percent increase in TIP. A surprising result is that a 10 K decrease in the tooling temperature results in a 25 percent increase in EBT and an 8 percent increase in TIP. Material studies show that a 10 K decrease in glass transition temperature results in an 8 percent increase in EBT and a 8 percent decrease in TIP. A 20 K increase in polymer degradation temperature results in a 23 percent increase in EBT with no change in TIP.
Magnetoplasmadynamic Thruster Workshop
NASA Technical Reports Server (NTRS)
1991-01-01
On May 16, 1991, the NASA Headquarters Propulsion, Power, and Energy Division and the NASA Lewis Research Center Low Thrust Propulsion Branch hosted a workshop attended by key experts in magnetoplasmadynamic (MPD) thrusters and associated sciences. The scope was limited to high power MPD thrusters suitable for major NASA space exploration missions, and its purpose was to initiate the process of increasing the expectations and prospects for MPD research, primarily by increasing the level of cooperation, interaction, and communication between parties within the MPD community.
The effect of zealots on the rate of consensus achievement in complex networks
NASA Astrophysics Data System (ADS)
Kashisaz, Hadi; Hosseini, S. Samira; Darooneh, Amir H.
2014-05-01
In this study, we investigate the role of zealots on the result of voting process on both scale-free and Watts-Strogatz networks. We observe that inflexible individuals are very effective in consensus achievement and also in the rate of ordering process in complex networks. Zealots make the magnetization of the system to vary exponentially with time. We obtain that on SF networks, increasing the zealots' population, Z, exponentially increases the rate of consensus achievement. The time needed for the system to reach a desired magnetization, shows a power-law dependence on Z. As well, we obtain that the decay time of the order parameter shows a power-law dependence on Z. We also investigate the role of zealots' degree on the rate of ordering process and finally, we analyze the effect of network's randomness on the efficiency of zealots. Moving from a regular to a random network, the re-wiring probability P increases. We show that with increasing P, the efficiency of zealots for reducing the consensus achievement time increases. The rate of consensus is compared with the rate of ordering for different re-wiring probabilities of WS networks.
Institutional Authority and Traces of Intergenerational Conflict
ERIC Educational Resources Information Center
Tufan, Ismail; Kilic, Sultan; Tokgoz, Nimet; Howe, Jurgen; Yaman, Hakan
2010-01-01
While society's level of education increases in a modernization process, the knowledge monopoly is taken over by the young. Increasing demand on knowledge attained through organized education leads to increasing power by the young. In the modernizing society of Turkey, this kind of struggle will occur between intellectual groups. Results of this…
NASA Astrophysics Data System (ADS)
Alabdulkarem, Abdullah
Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Richard C.
2009-09-01
This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential ofmore » PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.« less
Anomalous Fluctuations in Autoregressive Models with Long-Term Memory
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Honjo, Haruo
2015-10-01
An autoregressive model with a power-law type memory kernel is studied as a stochastic process that exhibits a self-affine-fractal-like behavior for a small time scale. We find numerically that the root-mean-square displacement Δ(m) for the time interval m increases with a power law as mα with α < 1/2 for small m but saturates at sufficiently large m. The exponent α changes with the power exponent of the memory kernel.
On-chip temperature-based digital signal processing for customized wireless microcontroller
NASA Astrophysics Data System (ADS)
Farhah Razanah Faezal, Siti; Isa, Mohd Nazrin Md; Harun, Azizi; Nizam Mohyar, Shaiful; Bahari Jambek, Asral
2017-11-01
Increases in die size and power density inside system-on-chip (SoC) design have brought thermal issue inside the system. Uneven heat-up and increasing in temperature offset on-chip has become a major factor that can limits the system performance. This paper presents the design and simulation of a temperature-based digital signal processing for modern system-on-chip design using the Verilog HDL. This design yields continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Altera Quartus Software v. 14. With system above, microcontroller can achieve nominal power dissipation and operation is within the temperature range due to the incorporate of an interrupt-based system.
The Efficiency and the Scalability of an Explicit Operator on an IBM POWER4 System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present an evaluation of the efficiency and the scalability of an explicit CFD operator on an IBM POWER4 system. The POWER4 architecture exhibits a common trend in HPC architectures: boosting CPU processing power by increasing the number of functional units, while hiding the latency of memory access by increasing the depth of the memory hierarchy. The overall machine performance depends on the ability of the caches-buses-fabric-memory to feed the functional units with the data to be processed. In this study we evaluate the efficiency and scalability of one explicit CFD operator on an IBM POWER4. This operator performs computations at the points of a Cartesian grid and involves a few dozen floating point numbers and on the order of 100 floating point operations per grid point. The computations in all grid points are independent. Specifically, we estimate the efficiency of the RHS operator (SP of NPB) on a single processor as the observed/peak performance ratio. Then we estimate the scalability of the operator on a single chip (2 CPUs), a single MCM (8 CPUs), 16 CPUs, and the whole machine (32 CPUs). Then we perform the same measurements for a chache-optimized version of the RHS operator. For our measurements we use the HPM (Hardware Performance Monitor) counters available on the POWER4. These counters allow us to analyze the obtained performance results.
An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing
NASA Astrophysics Data System (ADS)
Wang, Zifei; Glesk, Ivan; Chen, Lawrence R.
2018-02-01
The nonlinear optical loop mirror (NOLM) has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK) signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ)-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.
NASA Astrophysics Data System (ADS)
Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen
2018-02-01
The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.
A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures
NASA Astrophysics Data System (ADS)
Fuh, Che A.; Wu, Wei; Wang, Chuji
2017-11-01
A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.
NASA Astrophysics Data System (ADS)
Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.
2017-02-01
A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.
NASA Astrophysics Data System (ADS)
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2018-02-01
Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.
Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.
Bing Xu; Yude Pan; Alain F. Plante; Kevin McCullough; Richard Birdsey
2017-01-01
Process-based models are a powerful approach to test our understanding of biogeochemical processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances, and land-use change on ecological processes...
The interaction of spacecraft high voltage power systems with the space plasma environment
NASA Technical Reports Server (NTRS)
Domitz, S.; Grier, N. T.
1974-01-01
Research work has shown that the interaction of a spacecraft and its high voltage power systems with the space plasma environment can result in harmful power loss and damage to insulators and metal surfaces. Insulator and solar panel tests were performed and flight tests are planned. High voltage power processing equipment was shown to be affected by power loss, and by transients due to plasma interactions. Power loss was determined to be roughly proportional to the square of the voltage and increases approximately as the square root of the area. Kapton, Teflon, and glass were found to be satisfactory insulating materials and it is concluded that for large space power stations should consider the effect of large pinhole currents.
Graphene-based terahertz photodetector by noise thermometry technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ming-Jye, E-mail: mingjye@asiss.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan; Wang, Ji-Wun
2014-01-20
We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 4–6 GHz span has been achieved.
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN
2017-12-01
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Oxstrand, Johanna H.; Le Blanc, Katya L.
The work management process in current fleets of national nuclear power plants is so highly dependent on large technical staffs and quality of work instruction, i.e., paper-based, that this puts nuclear energy at somewhat of a long-term economic disadvantage and increase the possibility of human errors. Technologies like mobile portable devices and computer-based procedures can play a key role in improving the plant work management process, thereby increasing productivity and decreasing cost. Automated work packages are a fundamentally an enabling technology for improving worker productivity and human performance in nuclear power plants work activities because virtually every plant work activitymore » is accomplished using some form of a work package. As part of this year’s research effort, automated work packages architecture is identified and an initial set of requirements identified, that are essential and necessary for implementation of automated work packages in nuclear power plants.« less
Molding process for imidazopyrrolone polymers
NASA Technical Reports Server (NTRS)
Johnson, C. L. (Inventor)
1973-01-01
A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.
NASA Astrophysics Data System (ADS)
Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi
2018-03-01
In this paper, we describe a trade-off between spatial resolution and power consumption in an LC oscillator-based CMOS biosensor, which can detect biomolecules by observing the resonance frequency shift due to changes in the complex permittivity of the biomolecules. The optimal operating frequency and improvement in the image resolution of the sensor output require a reduction in the size of the inductor. However, it is necessary to increase the transconductance of the cross-coupling transistor to achieve the oscillation condition, although the power consumption increases. We confirmed the trade-off between the spatial resolution and the power consumption of this sensor using SPICE simulation. A test chip was fabricated using a 65 nm CMOS process, and the transition in the peak frequency and the power consumption were measured. When the outer diameter of the inductor was 46 µm, the power consumption was 31.2 mW, which matched well with the simulation results.
Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.
Schmidt, Brandy; Hinman, James R; Jacobson, Tara K; Szkudlarek, Emily; Argraves, Melissa; Escabí, Monty A; Markus, Etan J
2013-04-03
Hippocampal theta oscillations are postulated to support mnemonic processes in humans and rodents. Theta oscillations facilitate encoding and spatial navigation, but to date, it has been difficult to dissociate the effects of volitional movement from the cognitive demands of a task. Therefore, we examined whether volitional movement or cognitive demands exerted a greater modulating factor over theta oscillations during decision-making. Given the anatomical, electrophysiological, and functional dissociations along the dorsal-ventral axis, theta oscillations were simultaneously recorded in the dorsal and ventral hippocampus in rats trained to switch between place and motor-response strategies. Stark differences in theta characteristics were found between the dorsal and ventral hippocampus in frequency, power, and coherence. Theta power increased in the dorsal, but decreased in the ventral hippocampus, during the decision-making epoch. Interestingly, the relationship between running speed and theta power was uncoupled during the decision-making epoch, a phenomenon limited to the dorsal hippocampus. Theta frequency increased in both the dorsal and ventral hippocampus during the decision epoch, although this effect was greater in the dorsal hippocampus. Despite these differences, ventral hippocampal theta was responsive to the navigation task; theta frequency, power, and coherence were all affected by cognitive demands. Theta coherence increased within the dorsal hippocampus during the decision-making epoch on all three tasks. However, coherence selectively increased throughout the hippocampus (dorsal to ventral) on the task with new hippocampal learning. Interestingly, most results were consistent across tasks, regardless of hippocampal-dependent learning. These data indicate increased integration and cooperation throughout the hippocampus during information processing.
Microwave irradiation biodiesel processing of waste cooking oil
NASA Astrophysics Data System (ADS)
Motasemi, Farough; Ani, Farid Nasir
2012-06-01
Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.
Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice
2012-05-01
Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.
Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B.; Pandey, Ashwini K.; Roopesh, Bangalore N.; Porjesz, Bernice
2013-01-01
Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task which involved outcomes of either loss or gain of an amount (10¢ or 50¢) that was bet. Event-related theta band (3.0–7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200–500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current Source Density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition as compared to controls who manifested stronger and focused midline sources. Further, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. PMID:21520344
Irradiation pretreatment for coal desulfurization
NASA Technical Reports Server (NTRS)
Hsu, G. C.
1979-01-01
Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.
A fiber optic sensor for noncontact measurement of shaft speed, torque, and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
A fiber optic sensor for noncontact measurement of shaft speed, torque and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
Using theta and alpha band power to assess cognitive workload in multitasking environments.
Puma, Sébastien; Matton, Nadine; Paubel, Pierre-V; Raufaste, Éric; El-Yagoubi, Radouane
2018-01-01
Cognitive workload is of central importance in the fields of human factors and ergonomics. A reliable measurement of cognitive workload could allow for improvements in human machine interface designs and increase safety in several domains. At present, numerous studies have used electroencephalography (EEG) to assess cognitive workload, reporting the rise in cognitive workload to be associated with increases in theta band power and decreases in alpha band power. However, results have been inconsistent with some failing to reach the required level of significance. We hypothesized that the lack of consistency could be related to individual differences in task performance and/or to the small sample sizes in most EEG studies. In the present study we used EEG to assess the increase in cognitive workload occurring in a multitasking environment while taking into account differences in performance. Twenty participants completed a task commonly used in airline pilot recruitment, which included an increasing number of concurrent sub-tasks to be processed from one to four. Subjective ratings, performances scores, pupil size and EEG signals were recorded. Results showed that increases in EEG alpha and theta band power reflected increases in the involvement of cognitive resources for the completion of one to three subtasks in a multitasking environment. These values reached a ceiling when performances dropped. Consistent differences in levels of alpha and theta band power were associated to levels of task performance: highest performance was related to lowest band power. Copyright © 2017 Elsevier B.V. All rights reserved.
Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.
Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin
2013-09-01
Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Conflict processing in the anterior cingulate cortex constrains response priming.
Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T
2010-05-01
A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.
To the theory of high-power gyrotrons with uptapered resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbrajs, O.; Nusinovich, G. S.
In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimizationmore » of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.« less
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
Gallium nitride vertical power devices on foreign substrates: a review and outlook
NASA Astrophysics Data System (ADS)
Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás
2018-07-01
Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.
Multi-mode multi-band power amplifier module with high low-power efficiency
NASA Astrophysics Data System (ADS)
Xuguang, Zhang; Jie, Jin
2015-10-01
Increasingly, mobile communications standards require high power efficiency and low currents in the low power mode. This paper proposes a fully-integrated multi-mode and multi-band power amplifier module (PAM) to meet these requirements. A dual-path PAM is designed for high-power mode (HPM), medium-power mode (MPM), and low-power mode (LPM) operations without any series switches for different mode selection. Good performance and significant current saving can be achieved by using an optimized load impedance design for each power mode. The PAM is tapeout with the InGaP/GaAs heterojunction bipolar transistor (HBT) process and the 0.18-μm complementary metal-oxide semiconductor (CMOS) process. The test results show that the PAM achieves a very low quiescent current of 3 mA in LPM. Meanwhile, across the 1.7-2.0 GHz frequency, the PAM performs well. In HPM, the output power is 28 dBm with at least 39.4% PAE and -40 dBc adjacent channel leakage ratio 1 (ACLR1). In MPM, the output power is 17 dBm, with at least 21.3% PAE and -43 dBc ACLR1. In LPM, the output power is 8 dBm, with at least 18.2% PAE and -40 dBc ACLR1. Project supported by the National Natural Science Foundation of China (No. 61201244).
Zhang, Peizhi; Zhu, Zhiwei; Sun, Da-Wen
2018-05-31
Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.
Bipolar plates for PEM fuel cells
NASA Astrophysics Data System (ADS)
Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.
The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.
The economics of energy from animal manure for greenhouse gas mitigation
NASA Astrophysics Data System (ADS)
Ghafoori, Emad
2007-12-01
Anaerobic digestion (AD) has significant economies of scale, i.e. per unit processing costs decrease with increasing size. The economics of AD to produce biogas and in turn electric power in farm or feedlot based units as well as centralized plants is evaluated for two settings in Alberta: a mixed farming area, Red Deer County, and an area of concentrated beef cattle feedlots, Lethbridge County. A centralized plant drawing manure from 61 sources in the mixed farming area could produce power at a cost of 218 MWh-1 (2005 US). A centralized plant drawing manure from 560,000 beef cattle in Lethbridge County, can produce power at a cost of 138 MWh-1. Digestate processing, if commercially available, shifts the balance in favor of centralized processing. At larger scales, pipelines could be used to deliver manure to a centralized plant and return the processed digestate back to the manure source for spreading. Pipeline transport of beef cattle manure is more economic than truck transport for the manure produced by more than 90,000 animals. Pipeline transport of digestate is more economic when manure from more than 21,000 beef cattle is available and two-way pipelining of manure plus digestate is more economic when manure from more than 29,000 beef cattle is available. The value of carbon credits necessary to make AD profitable in a mixed farming region is also calculated based on a detailed analysis of manure and digestate transport and processing costs at an AD plant. Carbon emission reductions from power generation are calculated for displacement of power from coal and natural gas. The required carbon credit to cover the cost of AD processing of manure is greater than 150 per tonne of CO2. These results show that AD treatment of manure from mixed farming areas is not economic given current values of carbon credits. Power from biogas has a high cost relative to current power prices and to the cost of power from other large scale renewable sources. Power from biogas would need to be justified by other factors than energy value alone, such as phosphate, pathogen or odor control.
Unusual Attenuation Recovery Process After Fiber Optic Cable Irradiation
NASA Astrophysics Data System (ADS)
Konečná, Z.; Plaček, V.; Havránek, P.
2017-11-01
At present, the number of optical cables in nuclear power plants has been increasing. Fiber optic cables are commonly used at nuclear power plants in instrumentation and control systems but they are usually used in environments without radiation. Nevertheless, currently, the number of applications in NPP containment with radiation is increasing. One of the most prevalent effects of radiation exposure is an increase of signal attenuation (signal loss). This is the result of fiber darkening due to radiation exposure and it is the main limitation factor in application of fiber optics in radiation environment. However, after the irradiation, the fiber optics go through a “recovery process” during which the optical properties improve again; i.e. attenuation decreases. However, we have found cable, where the expected healing process after few days changed its trend and the attenuation increased again to a value well above the attenuation just after the irradiation. This paper describes experiments that were carried out to explain this unusual recovery behaviour.
Sidebottom, D L; Tran, Tri D
2010-11-01
Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt % sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, ϕ, consisting of noninteracting, monodisperse sugar clusters whose size increases ϕ(1/3) followed by an aggregation stage, active at concentrations above about ϕ=40%, where cluster-cluster contact first occurs.
Enhancing power density of biophotovoltaics by decoupling storage and power delivery
NASA Astrophysics Data System (ADS)
Saar, Kadi L.; Bombelli, Paolo; Lea-Smith, David J.; Call, Toby; Aro, Eva-Mari; Müller, Thomas; Howe, Christopher J.; Knowles, Tuomas P. J.
2018-01-01
Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m-2, a value five times that for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flow-based design that allowed independent optimization of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturization of active elements and flow control for decoupled operation and independent optimization of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
Processes and Power in School Budgeting across Four Large Urban School Districts.
ERIC Educational Resources Information Center
Goertz, Margaret E.; Hess, G. Alfred, Jr.
1998-01-01
Uses data from four cities (Chicago, Fort Worth, New York, and Rochester) to explore schools' budgetary and personnel discretion under school-based budgeting; how resource-allocation decisions are made; and factors influencing expenditure decisions. A school-based-budgeting process may increase stakeholder involvement and satisfaction without…
Development of Emotional Face Processing in Premature and Full-Term Infants.
Carbajal-Valenzuela, Cintli Carolina; Santiago-Rodríguez, Efraín; Quirarte, Gina L; Harmony, Thalía
2017-03-01
The rate of premature births has increased in the past 2 decades. Ten percent of premature birth survivors develop motor impairment, but almost half exhibit later sensorial, cognitive, and emotional disabilities attributed to white matter injury and decreased volume of neuronal structures. The aim of this study was to test the hypothesis that premature and full-term infants differ in their development of emotional face processing. A comparative longitudinal study was conducted in premature and full-term infants at 4 and 8 months of age. The absolute power of the electroencephalogram was analyzed in both groups during 5 conditions of an emotional face processing task: positive, negative, neutral faces, non-face, and rest. Differences between the conditions of the task at 4 months were limited to rest versus non-rest comparisons in both groups. Eight-month-old term infants had increases ( P ≤ .05) in absolute power in the left occipital region at the frequency of 10.1 Hz and in the right occipital region at 3.5, 12.8, and 16.0 Hz when shown a positive face in comparison with a neutral face. They also showed increases in absolute power in the left occipital region at 1.9 Hz and in the right occipital region at 2.3 and 3.5 Hz with positive compared to non-face stimuli. In contrast, positive, negative, and neutral faces elicited the same responses in premature infants. In conclusion, our study provides electrophysiological evidence that emotional face processing develops differently in premature than in full-term infants, suggesting that premature birth alters mechanisms of brain development, such as the myelination process, and consequently affects complex cognitive functions.
Electricity generation from bio-treatment of sewage sludge with microbial fuel cell.
Jiang, Junqiu; Zhao, Qingliang; Zhang, Jinna; Zhang, Guodong; Lee, Duu-Jong
2009-12-01
A two-chambered microbial fuel cell (MFC) with potassium ferricyanide as its electron acceptor was utilized to degrade excess sewage sludge and to generate electricity. Stable electrical power was produced continuously during operation for 250 h. Total chemical oxygen demand (TCOD) of sludge was reduced by 46.4% when an initial TCOD was 10,850 mg/l. The MFC power output did not significantly depend on process parameters such as substrate concentration, cathode catholyte concentration, and anodic pH. However, the MFC produced power was in close correlation with the soluble chemical oxygen demand (SCOD) of sludge. Furthermore, ultrasonic pretreatment of sludge accelerated organic matter dissolution and, hence, TCOD removal rate in the MFC was increased, but power output was insignificantly enhanced. This study demonstrates that this MFC can generate electricity from sewage sludge over a wide range of process parameters.
The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less
Parallel processing methods for space based power systems
NASA Technical Reports Server (NTRS)
Berry, F. C.
1993-01-01
This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.
Effect of fossil fuels on the parameters of CO2 capture.
Nagy, Tibor; Mizsey, Peter
2013-08-06
The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.
EEG alpha power and creative ideation☆
Fink, Andreas; Benedek, Mathias
2014-01-01
Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals’ creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity. PMID:23246442
... global population has increased and our reliance on fossil fuels (such as coal, oil and natural gas) ... agricultural sources for the gas, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, N. F. H; Hussain, N. S. Mohamed; Awang, R.
2013-11-27
Amorphous carbon nitride (a-CN{sub x}) thin films were deposited using radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique. A set of a-CN{sub x} thin films were prepared using pure methane (CH{sub 4}) gas diluted with nitrogen (N{sub 2}) gas. The rf power was varied at 50, 60, 70, 80, 90 and 100 W. These films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The effects of rf power and thermal annealing on the chemical bonding and morphology of these samples were studied. Surface profilometer was used to measure film thickness. Fourier transformmore » infra-red spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) measurements were used to determine their chemical bonding and morphology respectively. The deposition rate of the films increased constantly with increasing rf power up to 80W, before decreasing with further increase in rf power. Fourier transform infra-red spectroscopy (FTIR) studies showed a systematic change in the spectra and revealed three main peaks included C-N, C=N, C=C and C≡N triple bond. C=N and C≡N bonds decreased with increased C-N bonds after thermal annealing process. The FESEM images showed that the structure is porous for as-deposited and covered by granule-like grain structure after thermal annealing process was done. The resistance of the a-CN{sub x} thin film changed from 23.765 kΩ to 5.845 kΩ in the relative humidity range of 5 to 92 % and the film shows a good response and repeatability as a humidity sensing materials. This work showed that rf power and thermal annealing has significant effects on the chemical bonding and surface morphology of the a-CN{sub x} films and but yield films which are potential candidate as humidity sensor device.« less
Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution.
Feng, Jingwei; Zheng, Zheng; Luan, Jingfei; Li, Kunquan; Wang, Lianhong; Feng, Jianfang
2009-05-30
Degradation of diuron in aqueous solution by gas-liquid hybrid discharge was investigated for the first time. The effect of output power intensity, pH value, Fe(2+) concentration, Cu(2+) concentration, initial conductivity and air flow rate on the degradation efficiency of diuron was examined. The results showed that the degradation efficiency of diuron increased with increasing output power intensity and increased with decreasing pH values. In the presence of Fe(2+), the degradation efficiency of diuron increased with increasing Fe(2+) concentration. The degradation efficiency of diuron was decreased during the first 4 min and increased during the last 10 min with adding of Cu(2+). Decreasing the initial conductivity and increasing the air flow rate were favorable for the degradation of diuron. Degradation of diuron by gas-liquid hybrid discharge fitted first-order kinetics. The pH value of the solution decreased during the reaction process. Total organic carbon removal rate increased in the presence of Fe(2+) or Cu(2+). The generated Cl(-1), NH(4)(+), NO(3)(-), oxalic acid, acetic acid and formic acid during the degradation process were also detected. Based on the detected Cl(-1) and other intermediates, a possible degradation pathway of diuron was proposed.
NASA Technical Reports Server (NTRS)
Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.
1974-01-01
A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.
Infrared drying of strawberry.
Adak, Nafiye; Heybeli, Nursel; Ertekin, Can
2017-03-15
The effects of different drying conditions, such as infrared power, drying air temperature and velocity, on quality of strawberry were evaluated. Drying time decreased with increased infrared power, air temperature and velocity. An increase in power from 100W to 300W, temperature from 60 to 80°C and velocity from 1.0m.s -1 to 2.0m.s -1 decreased fruit color quality index. For total phenol and anthocyanin content, 300W, 60°C, and 1.0m.s -1 were superior to the other experimental conditions. The drying processes increased N, P and K and decreased Ca, Mg, Fe, Mn, Zn and Cu contents. The optimal conditions to preserve nutrients in infrared drying of strawberry were 200W, 100°C and 1.5m.s -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.
EEG alpha activity during imagining creative moves in soccer decision-making situations.
Fink, Andreas; Rominger, Christian; Benedek, Mathias; Perchtold, Corinna M; Papousek, Ilona; Weiss, Elisabeth M; Seidel, Anna; Memmert, Daniel
2018-06-01
This study investigated task-related changes of EEG alpha power while participants were imagining creative moves in soccer decision-making situations. After presenting brief video clips of a soccer scene, participants had to imagine themselves as the acting player and to think either of a creative/original or an obvious/conventional move (control condition) that might lead to a goal. Performance of the soccer task generally elicited comparatively strong alpha power decreases at parietal and occipital sites, indicating high visuospatial processing demands. This power decrease was less pronounced in the creative vs. control condition, reflecting a more internally oriented state of information processing characterized by more imaginative mental simulation rather than stimulus-driven bottom-up processing. In addition, more creative task performance in the soccer task was associated with stronger alpha desynchronization at left cortical sites, most prominently over motor related areas. This finding suggests that individuals who generated more creative moves were more intensively engaged in processes related to movement imagery. Unlike the domain-specific creativity measure, individual's trait creative potential, as assessed by a psychometric creativity test, was globally positively associated with alpha power at all cortical sites. In investigating creative processes implicated in complex creative behavior involving more ecologically valid demands, this study showed that thinking creatively in soccer decision-making situations recruits specific brain networks supporting processes related to visuospatial attention and movement imagery, while the relative increase in alpha power in more creative conditions and in individuals with higher creative potential might reflect a pattern relevant across different creativity domains. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
In situ consolidation of offshore petroleum well structural casings by electrokinetic methods
NASA Astrophysics Data System (ADS)
Wrixon, Robert Christopher
Offshore drilling operations encounter cement wash-out problems while setting the initial structural casing (0--200 ft depth) due to the soft, unconsolidated nature of the sea-bed. Structural casings set by alternative methods have failed in up to 50% of cases due to insufficient frictional bearing capacity. This dissertation presents a method of increasing the bearing capacity of a jet-drilled or slick-drilled casing in-situ by applying a potential difference such that the casing is anodic compared to a remote cathode. It has been shown experimentally that clayey formations will swell and stick to a simulated anodic casing by the combined electrokinetic processes of electroosmosis and electrophoresis. Any cavities around the "casing" are eliminated and the formation is flush against the metal surface, increasing bearing capacity. The formation around the "casing" dries out due to electroosmotic migration of water away from the anode, increasing the shear strength of the surrounding soil. Corrosion products at the anode can further increase the soil shear strength by a process known as electrochemical hardening. This investigation has shown that the bearing capacity of anodic casings can potentially be increased by a factor of up to 1,000% in soft clays and silty clays. The existence of an optimal level of electrokinetic consolidation, beyond which the soil shear strength begins to degrade, has been demonstrated. The difficulties of applying electrokinetic methods to saline soil environments have been addressed and the process has been shown to be successful, as long as the requisite electric field strength is maintained. The efficiency of the electrokinetic consolidation technique has been shown to be affected by the soil water content, soil mineralogy, power supplied, time of treatment and the choice of anode material. Experiments in marine sediment show that increases in bearing capacities of about 300% can be achieved at optimal treatment conditions. With likely current and power restrictions, increases of 50% to 100% are realistic. This level of increase still makes offshore electrokinetic casing consolidation a viable process, given that it is attainable quickly and at a modest power requirement and given the enormous cost of a structural casing collapse.
NASA Astrophysics Data System (ADS)
Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.
2015-03-01
Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.
Advanced development of a programmable power processor
NASA Technical Reports Server (NTRS)
Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.
1980-01-01
The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.
PLATE: Powerful Learning and Teaching Environments
ERIC Educational Resources Information Center
Housand, Angela
2009-01-01
The environment has a profound effect on the ability of students to regulate their behavior or disposition and effectively engage in the learning processes. Active engagement is important because it increases performance. Certain types of environmental structures actually increase students' ability to be agents of their own learning. These…
Gaussian Processes for Prediction of Homing Pigeon Flight Trajectories
NASA Astrophysics Data System (ADS)
Mann, Richard; Freeman, Robin; Osborne, Michael; Garnett, Roman; Meade, Jessica; Armstrong, Chris; Biro, Dora; Guilford, Tim; Roberts, Stephen
2009-12-01
We construct and apply a stochastic Gaussian Process (GP) model of flight trajectory generation for pigeons trained to home from specific release sites. The model shows increasing predictive power as the birds become familiar with the sites, mirroring the animal's learning process. We show how the increasing similarity between successive flight trajectories can be used to infer, with increasing accuracy, an idealised route that captures the repeated spatial aspects of the bird's flight. We subsequently use techniques associated with reduced-rank GP approximations to objectively identify the key waypoints used by each bird to memorise its idiosyncratic habitual route between the release site and the home loft.
Spendlove, Zoey
2018-05-01
For more than two decades, international healthcare crises and ensuing political debates have led to increasing professional governance and regulatory policy reform. Governance and policy reforms, commonly representing a shift from embodied trust in professionals to state enforceable trust, have challenged professional power and self-regulatory privileges. However, controversy remains as to whether such policies do actually shift the balance of power and what the resulting effects of policy introduction would be. This paper explores the roll-out and operationalisation of revalidation as medical regulatory reform within a United Kingdom National Health Service hospital from 2012 to 2013, and its impact upon professional power. Revalidation policy was subject to the existing governance and management structures of the organisation, resulting in the formal policy process being shaped at the local level. This paper explores how the disorganised nature of the organisation hindered rather than facilitated robust processes of professional governance and regulation, fostering formalistic rather than genuine professional engagement with the policy process. Formalistic engagement seemingly assisted the medical profession in retaining self-regulatory privileges whilst maintaining professional power over the policy process. The paper concludes by challenging the concept of state enforceable trust and the theorisation that professional groups are effectively regulated and controlled by means of national and organisational objectives, such as revalidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
High voltage requirements and issues for the 1990's. [for spacecraft power supplies
NASA Technical Reports Server (NTRS)
Dunbar, W. G.; Faymon, K. A.
1984-01-01
The development of high-power high-voltage space systems will require advances in power generation and processing. The systems must be reliable, adaptable, and durable for space mission success. The issues, which must be resolved in order to produce a high power system, are weight and volume reduction of components and modules and the creation of a reliable high repetition pulse power processor. Capacitor energy density must be increased by twice the present capacity and packaging must be reduced by a factor of 10 to 20 times. The packaging must also protect the system from interaction with the natural space environment and the induced environment, produced from spacecraft systems and environment interaction.
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
Chip-based electronics in 2010 consumed about 10% of the world's total electric power of ˜2 TW. We have seen throughout the book that all segments, processing, memory and communication, are expected to increase their performance or bandwidth by three orders of magnitude in the decade until 2020. If this progress would be realized, the world semiconductor revenue could grow by 50-100%, and the ICT industry by 43-66% in this decade (Fig. 6.1). Progress sustained at these levels certainly depends on investments and qualified manpower, but energy has become another roadblock almost overnight. In this chapter, we touch upon the life-cycle energy of chips by assessing the energy of Si wafer manufacturing, needed to bring the chips to life, and the power efficiencies in their respective operations. An outstanding segment of power-hungry chip operations is that of operating data centers, often called server farms. Their total operating power was ˜36 GW in 2010, and we look at their evolution under the prospect of a 1,000× growth in performance by 2020. One feasible scenario is that we succeed in improving the power efficiency of Processing 1,000×, Memory 1,000×, Communication 100×, within a decade. In this case, the total required power for the world's data centers would still increase 4× to 144 GW by 2020, equivalent to 40% of the total electrical power available in all of Europe. The power prospects for mobile/wireless as well as long-line cable/radio/satellite are equally serious. Any progression by less than the factors listed above will lead to economic growth smaller than the projections given above. This demands clearly that sustainable nanoelectronics must be minimum-energy (femtojoule) electronics.
Rominger, Christian; Papousek, Ilona; Perchtold, Corinna M; Weber, Bernhard; Weiss, Elisabeth M; Fink, Andreas
2018-02-13
This study investigated EEG activity in the upper alpha band during the well-known Picture Completion Task of the Torrance Test of Creative Thinking (TTCT), a widely used creative ideation task in the figural domain. The application of a sophisticated computerized version of the TTCT facilitating the online assessment and digitalizing of participant's drawings allowed to separate two central stages of the creative ideation process (i.e., idea generation and idea elaboration). During idea generation, the participants' task was to generate an initial draft of an original and creative completion of the presented abstract lines and figures of the TTCT. During idea elaboration, the participants were required to mentally improve the originality of the initially generated idea/draft. Creative ideation in this figural task was generally associated with comparatively strong desynchronization of upper alpha power over parietal and occipital sites, indicating high visual/figural processing demands. Interestingly, the stage of idea elaboration was accompanied by a relative increase of upper alpha power at parietal and occipital sites compared to the stage of idea generation, indicating heightened top-down processing demands. Furthermore, task performance was associated with relative increases of upper alpha power at frontal sites and relative decreases at centro-temporal sites from the stage of idea generation to idea elaboration. This association suggests the importance of increased inhibitory control over stimulus-based bottom-up information and motor imagery in order to achieve more creative outputs. Taken together these findings add to the relevant literature in that they a) extend research on the relationship between EEG alpha activity and creativity to the figural domain, and b) support a multistage view of creative ideation, involving cognitive control and mental imagery as important components of creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.
2017-10-01
Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.
Operations Studies of the Gyrotrons on DIII-D
NASA Astrophysics Data System (ADS)
Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio
2017-10-01
The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.
Kaushal, Navita; Nair, Deepti; Gozal, David; Ramesh, Vijay
2012-01-01
Sleep is an important physiological process underlying maintenance of physical, mental and emotional health. Consequently, sleep deprivation (SD) is associated with adverse consequences and increases the risk for anxiety, immune, and cognitive disorders. SD is characterized by increased energy expenditure responses and sleep rebound upon recovery that are regulated by homeostatic processes, which in turn are influenced by stress. Since all previous studies on SD were conducted in a setting of social isolation, the impact of the social contextual setting is unknown. Therefore, we used a relatively stress-free SD paradigm in mice to assess the impact of social isolation on sleep, wakefulness and delta electroencephalogram (EEG) power during non-rapid eye movement (NREM) sleep. Paired or isolated C57BL/6J adult chronically-implanted male mice were exposed to SD for 6 hours and telemetric polygraphic recordings were conducted, including 18 hours recovery. Recovery from SD in the paired group showed a significant decrease in wake and significant increase in NREM sleep and rapid eye movement (REM), and a similar, albeit less robust response occurred in the isolated mice. Delta power during NREM sleep was increased in both groups immediately following SD, but paired mice exhibited significantly higher delta power throughout the dark period. The increase in body temperature and gross motor activity observed during the SD procedure was decreased during the dark period. In both open field and elevated plus maze tests, socially isolated mice showed significantly higher anxiety than paired mice. The homeostatic processes altered by SD are differentially affected in paired and isolated mice, suggesting that the social context of isolation stress may adversely affect the quantity and quality of sleep in mice. PMID:22498175
Effects of rf power on chemical composition and surface roughness of glow discharge polymer films
NASA Astrophysics Data System (ADS)
Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing
2016-03-01
The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
Farabi, Sarah S; Prasad, Bharati; Quinn, Lauretta; Carley, David W
2014-01-15
To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG.
NASA Astrophysics Data System (ADS)
Chintalapudi, V. S.; Sirigiri, Sivanagaraju
2017-04-01
In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.
Using a Multicore Processor for Rover Autonomous Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin; Estlin, Tara; Clement, Bradley; Springer, Paul
2011-01-01
Multicore processing promises to be a critical component of future spacecraft. It provides immense increases in onboard processing power and provides an environment for directly supporting fault-tolerant computing. This paper discusses using a state-of-the-art multicore processor to efficiently perform image analysis onboard a Mars rover in support of autonomous science activities.
1979-12-01
The Marine Corps Tactical Command and Control System (MTACCS) is expected to provide increased decision making speed and power through automated ... processing and display of data which previously was processed manually. The landing Force Organizational Systems Study (LFOSS) has challenged Marines to
NASA Astrophysics Data System (ADS)
Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal
2018-02-01
Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.;
2016-01-01
Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrow, Ken; Hedman, Bruce
Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and themore » tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of facilities involved, and the geographic distribution. (2) Data Center Energy Use Trends--a discussion of energy use and expected energy growth and the typical energy consumption and uses in data centers. (3) CHP Applicability--Potential configurations, CHP case studies, applicable equipment, heat recovery opportunities (cooling), cost and performance benchmarks, and power reliability benefits (4) CHP Drivers and Hurdles--evaluation of user benefits, social benefits, market structural issues and attitudes toward CHP, and regulatory hurdles. (5) CHP Paths to Market--Discussion of technical needs, education, strategic partnerships needed to promote CHP in the IT community.« less
NASA Astrophysics Data System (ADS)
Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh
2018-02-01
In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.
Strength of Gamma Rhythm Depends on Normalization
Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.
2013-01-01
Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427
NASA Astrophysics Data System (ADS)
Singla, Rohit; Chowdhury, Kanchan
2017-02-01
Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.
Organic transistors manufactured using inkjet technology with subfemtoliter accuracy
Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Zschieschang, Ute; Klauk, Hagen; Someya, Takao
2008-01-01
A major obstacle to the development of organic transistors for large-area sensor, display, and circuit applications is the fundamental compromise between manufacturing efficiency, transistor performance, and power consumption. In the past, improving the manufacturing efficiency through the use of printing techniques has inevitably resulted in significantly lower performance and increased power consumption, while attempts to improve performance or reduce power have led to higher process temperatures and increased manufacturing cost. Here, we lift this fundamental limitation by demonstrating subfemtoliter inkjet printing to define metal contacts with single-micrometer resolution on the surface of high-mobility organic semiconductors to create high-performance p-channel and n-channel transistors and low-power complementary circuits. The transistors employ an ultrathin low-temperature gate dielectric based on a self-assembled monolayer that allows transistors and circuits on rigid and flexible substrates to operate with very low voltages. PMID:18362348
Effects of Muslims praying (Salat) on EEG gamma activity.
Doufesh, Hazem; Ibrahim, Fatimah; Safari, Mohammad
2016-08-01
This study investigates the difference of mean gamma EEG power between actual and mimic Salat practices in twenty healthy Muslim subjects. In the actual Salat practice, the participants were asked to recite and performing the physical steps in all four stages of Salat; whereas in the mimic Salat practice, they were instructed to perform only the physical steps without recitation. The gamma power during actual Salat was statistically higher than during mimic Salat in the frontal and parietal regions in all stages. In the actual Salat practice, the left hemisphere exhibited significantly higher mean gamma power in all cerebral regions and all stages, except the central-parietal region in the sitting position, and the frontal area in the bowing position. Increased gamma power during Salat, possibly related to an increase in cognitive and attentional processing, supports the concept of Salat as a focus attention meditation. Copyright © 2016 Elsevier Ltd. All rights reserved.
[The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].
Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi
2013-01-01
The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.
The First Israeli Hydro-Electric Pumped Storage Power Plant Gilboa PSPP
NASA Astrophysics Data System (ADS)
Maruzewski, P., Dr.; Sautereau, T.; Sapir, Y.; Barak, H.; Hénard, F.; Blaix, J.-C.
2016-11-01
The Israeli Public Utilities Authority, PUA, decided to increase the instantaneous power available on the grid by adding Pumped Storage Power Plants, PSPP, to the existing generation capacity. PSP Investments Ltd. is a private investor that decided to develop the Gilboa PSPP. Its capacity is 300MWe. The project performance has to comply with PUA regulation for PSPP, and with all relevant Israeli laws and IECo standards. This paper itemizes an overview of the Gilboa PSPP through short summaries of units’ components from design step to manufacturing processes.
Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications
2011-12-01
stabilization. Therefore, most of the flowrates used in this study are conditions that are too high for unassisted stabilization; however, a few low power non...dramatically increased as highly reactive air interacts with the fuel. At powers exceeding 400 mA, the OH P re m ix ed F la m e S in gl e A ve ra ge N...energetic enhancement of the combustion chemistry as show in Figure 9. The plasma generation process can be achieved with minimal power , as a high electric
NASA Astrophysics Data System (ADS)
Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.
2017-03-01
The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.
Power Management in Regenerative Life Support Systems
NASA Technical Reports Server (NTRS)
Crawford, Sekou; Pawlowski, Christopher; Finn, Cory; Mead, Susan C. (Technical Monitor)
1999-01-01
Effective management of power can reduce the cost of launch and operation of regenerative life support systems. Variations in power may be quite severe and may manifest as surges or spikes, While the power plant may have some ability to deal with these variations, with batteries for example, over-capacity is expensive and does nothing to address the fundamental issue of excessive demand. Because the power unit must be sized to accommodate the largest demand, avoiding power spikes has the potential to reduce the required size of the power plant while at the same time increasing the dependability of the system. Scheduling of processors can help to reduce potential power spikes. However, not all power-consuming equipment is easily scheduled. Therefore, active power management is needed to further decrease the risk of surges or spikes. We investigate the use of a hierarchical scheme to actively manage power for a model of a regenerative life support system. Local level controllers individually determine subsystem power usage. A higher level controller monitors overall system power and detects surges or spikes. When a surge condition is detected, the higher level controller conducts an 'auction' and describes subsystem power usage to re-allocate power. The result is an overall reduction in total power during a power surge. The auction involves each subsystem making a 'bid' to buy or sell power based on local needs. However, this re-allocation cannot come at the expense of life support function. To this end, participation in the auction is restricted to those processes meeting certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated. We present a simulation model and discuss some of our results.
Scharinger, Christian; Soutschek, Alexander; Schubert, Torsten; Gerjets, Peter
2017-01-01
According to theoretical accounts, both, N-back and complex span tasks mainly require working memory (WM) processing. In contrast, simple span tasks conceptually mainly require WM storage. Thus, conceptually, an N-back task and a complex span task share more commonalities as compared to a simple span task. In the current study, we compared an N-back task, a complex operation span task (Ospan), and a simple digit span task (Dspan) by means of typical WM load-related measures of the Electroencephalogram (EEG) like the parietal alpha and beta frequency band power, the frontal theta frequency band power, and the P300 amplitude, to examine whether these tasks would show commonalities or differences in WM processing-load. We expected that increasing WM-load would generally lead to a decreased alpha and beta frequency band power, an increased theta frequency band power, and a decreased P300 amplitude. Yet, based on the conceptual considerations, we hypothesized that the outcomes of these measures would be more comparable between the N-back and the Ospan as compared to the Dspan. Our hypotheses were partly confirmed. The N-back and the Ospan showed timely more prolonged alpha frequency band power effects as compared to the Dspan. This might indicate higher demands on WM processing in the former two tasks. The theta frequency band power and the P300 amplitude were most pronounced in the N-back task as compared to both span tasks. This might indicate specific demands on cognitive control in the N-back task. Additionally, we observed that behavioral performance measures correlated with changes in EEG alpha power of the N-back and the Ospan, yet not of the Dspan. Taken together, the hypothesized conceptual commonalities between the N-back task and the Ospan (and, for the Dspan, differences) were only partly confirmed by the electrophysiological WM load-related measures, indicating a potential need for reconsidering the theoretical accounts on WM tasks and the value of a closer link to electrophysiological research herein. PMID:28179880
Scharinger, Christian; Soutschek, Alexander; Schubert, Torsten; Gerjets, Peter
2017-01-01
According to theoretical accounts, both, N -back and complex span tasks mainly require working memory (WM) processing. In contrast, simple span tasks conceptually mainly require WM storage. Thus, conceptually, an N -back task and a complex span task share more commonalities as compared to a simple span task. In the current study, we compared an N -back task, a complex operation span task (Ospan), and a simple digit span task (Dspan) by means of typical WM load-related measures of the Electroencephalogram (EEG) like the parietal alpha and beta frequency band power, the frontal theta frequency band power, and the P300 amplitude, to examine whether these tasks would show commonalities or differences in WM processing-load. We expected that increasing WM-load would generally lead to a decreased alpha and beta frequency band power, an increased theta frequency band power, and a decreased P300 amplitude. Yet, based on the conceptual considerations, we hypothesized that the outcomes of these measures would be more comparable between the N -back and the Ospan as compared to the Dspan. Our hypotheses were partly confirmed. The N -back and the Ospan showed timely more prolonged alpha frequency band power effects as compared to the Dspan. This might indicate higher demands on WM processing in the former two tasks. The theta frequency band power and the P300 amplitude were most pronounced in the N -back task as compared to both span tasks. This might indicate specific demands on cognitive control in the N -back task. Additionally, we observed that behavioral performance measures correlated with changes in EEG alpha power of the N -back and the Ospan, yet not of the Dspan. Taken together, the hypothesized conceptual commonalities between the N -back task and the Ospan (and, for the Dspan, differences) were only partly confirmed by the electrophysiological WM load-related measures, indicating a potential need for reconsidering the theoretical accounts on WM tasks and the value of a closer link to electrophysiological research herein.
High power density yeast catalyzed microbial fuel cells
NASA Astrophysics Data System (ADS)
Ganguli, Rahul
Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
Alfimova, M V; Uvarova, L G
2008-06-01
EEG correlates of impairments in the processing of emotiogenic information which might reflect a genetic predisposition to schizophrenia were sought by studying the dynamics of EEG rhythm powers on presentation of neutral and emotional words in 36 patients with schizophrenia, 50 of their unaffected first-degree relatives, and 47 healthy subjects without any inherited predisposition to psychoses. In controls, passive hearing of neutral words produced minimal changes in cortical rhythms, predominantly in the form of increases in the power levels of slow and fast waves, while perception of emotional words was accompanied by generalized reductions in the power of the alpha and beta(1) rhythms and regionally specific suppression of theta and beta(2) activity. Patients and their relatives demonstrated reductions in power of alpha and beta(1) activity, with an increase in delta power on hearing both groups of words. Thus, differences in responses to neutral and emotional words in patients and their relatives were weaker, because of increased reactions to neutral words. These results may identify EEG reflections of pathology of involuntary attention, which is familial and, evidently, inherited in nature. No reduction in reactions to emotiogenic stimuli was seen in patients' families.
Food systems transformations, ultra-processed food markets and the nutrition transition in Asia.
Baker, Phillip; Friel, Sharon
2016-12-03
Attracted by their high economic growth rates, young and growing populations, and increasingly open markets, transnational food and beverage corporations (TFBCs) are targeting Asian markets with vigour. Simultaneously the consumption of ultra-processed foods high in fat, salt and glycaemic load is increasing in the region. Evidence demonstrates that TFBCs can leverage their market power to shape food systems in ways that alter the availability, price, nutritional quality, desirability and ultimately consumption of such foods. This paper describes recent changes in Asian food systems driven by TFBCs in the retail, manufacturing and food service sectors and considers the implications for population nutrition. Market data for each sector was sourced from Euromonitor International for four lower-middle income, three upper-middle income and five high-income Asian countries. Descriptive statistics were used to describe trends in ultra-processed food consumption (2000-2013), packaged food retail distribution channels (1999-2013), 'market transnationalization' defined as the market share held by TFBCs relative to domestic firms (2004-2013), and 'market concentration' defined as the market share and thus market power held by the four leading firms (2004-2013) in each market. Ultra-processed food sales has increased rapidly in most middle-income countries. Carbonated soft drinks was the leading product category, in which Coca-Cola and PepsiCo had a regional oligopoly. Supermarkets, hypermarkets and convenience stores were becoming increasingly dominant as distribution channels for packaged foods throughout the region. Market concentration was increasing in the grocery retail sector in all countries. Food service sales are increasing in all countries led by McDonalds and Yum! Brands. However, in all three sectors TFBCs face strong competition from Asian firms. Overall, the findings suggest that market forces are likely to be significant but variable drivers of Asia's nutrition transition. The carbonated soft drink market is the most highly concentrated and likely to be most harmful to population nutrition. The grocery retail sector is, in terms of increasing market concentration and thus market power, likely to be the most important driver of ongoing food systems change and ultra-processed food sales in the region. Given it's rapid growth, the food service sector will also contribute significantly to ongoing dietary change.
Plasma catalytic reforming of methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberg, L.; Cohn, D.R.; Rabinovich, A.
1998-08-01
Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can bemore » efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.« less
Simulation of deleterious processes in a static-cell diode pumped alkali laser
NASA Astrophysics Data System (ADS)
Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.
2014-02-01
The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Use of reclaimed water for power plant cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J. A.; Environmental Science Division
2007-10-16
Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of watermore » to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.« less
A New Image Processing and GIS Package
NASA Technical Reports Server (NTRS)
Rickman, D.; Luvall, J. C.; Cheng, T.
1998-01-01
The image processing and GIS package ELAS was developed during the 1980's by NASA. It proved to be a popular, influential and powerful in the manipulation of digital imagery. Before the advent of PC's it was used by hundreds of institutions, mostly schools. It is the unquestioned, direct progenitor or two commercial GIS remote sensing packages, ERDAS and MapX and influenced others, such as PCI. Its power was demonstrated by its use for work far beyond its original purpose, having worked several different types of medical imagery, photomicrographs of rock, images of turtle flippers and numerous other esoteric imagery. Although development largely stopped in the early 1990's the package still offers as much or more power and flexibility than any other roughly comparable package, public or commercial. It is a huge body or code, representing more than a decade of work by full time, professional programmers. The current versions all have several deficiencies compared to current software standards and usage, notably its strictly command line interface. In order to support their research needs the authors are in the process of fundamentally changing ELAS, and in the process greatly increasing its power, utility, and ease of use. The new software is called ELAS II. This paper discusses the design of ELAS II.
Madkou, Sherif; Melnichu, Iurii; Choukourov, Andrei; Krakovsky, Ivan; Biederman, Hynek; Schönhals, Andreas
2016-04-28
In recent years, highly cross-linked plasma polymers have started to unveil their potential in numerous biomedical applications in thin-film form. However, conventional diagnostic methods often fail due to their diverse molecular dynamics conformations. Here, glassy dynamics and the melting transition of thin PEO-like plasma assisted deposited (ppPEO) films (thickness 100 nm) were in situ studied by a combination of specific heat spectroscopy, utilizing a pJ/K sensitive ac-calorimeter chip, and composition analytical techniques. Different cross-linking densities were obtained by different plasma powers during the deposition of the films. Glassy dynamics were observed for all values of the plasma power. It was found that the glassy dynamics slows down with increasing the plasma power. Moreover, the underlying relaxation time spectra broaden indicating that the molecular motions become more heterogeneous with increasing plasma power. In a second set of the experiment, the melting behavior of the ppPEO films was studied. The melting temperature of ppPEO was found to decrease with increasing plasma power. This was explained by a decrease of the order in the crystals due to formation of chemical defects during the plasma process.
Forbes, Chad E; Leitner, Jordan B
2014-10-01
Stereotype threat, a situational pressure individuals experience when they fear confirming a negative group stereotype, engenders a cascade of physiological stress responses, negative appraisals, and performance monitoring processes that tax working memory resources necessary for optimal performance. Less is known, however, about how stereotype threat biases attentional processing in response to performance feedback, and how such attentional biases may undermine performance. Women received feedback on math problems in stereotype threatening compared to stereotype-neutral contexts while continuous EEG activity was recorded. Findings revealed that stereotype threatened women elicited larger midline P100 ERPs, increased phase locking between anterior cingulate cortex and dorsolateral prefrontal cortex (two regions integral for attentional processes), and increased power in left fusiform gyrus in response to negative feedback compared to positive feedback and women in stereotype-neutral contexts. Increased power in left fusiform gyrus in response to negative feedback predicted underperformance on the math task among stereotype threatened women only. Women in stereotype-neutral contexts exhibited the opposite trend. Findings suggest that in stereotype threatening contexts, neural networks integral for attention and working memory are biased toward negative, stereotype confirming feedback at very early speeds of information processing. This bias, in turn, plays a role in undermining performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire
NASA Astrophysics Data System (ADS)
Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian
2018-03-01
Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.
Demonstration of passive saturable absorber by utilizing MWCNT-ABS filament as starting material
NASA Astrophysics Data System (ADS)
Zuikafly, S. N. F.; Ahmad, F.; Ibrahim, M. H.; Latif, A. A.; Harun, S. W.
2017-06-01
This work demonstrated a stable passively Q-switched laser with the employment MWCNTs dispersed in acrylonitrile butadiene styrene (ABS) resin (MWCNTs-ABS) based filament as passive saturable absorber. The simple fabrication process of the SA is further explained, started from the process of extruding the filament through a 3D printer nozzle at 210 °C to reduce the diameter from 1.75 mm to 200 μm. It is then weighed to about 25 mg and mixed with 1 ml acetone before sonicated for 5 minutes to dissolve the ABS. The resultant MWCNTs-acetone suspension is dropped on a glass slide to be characterized using Field-Emission Scanning Electron Microscope (FESEM) and Raman spectroscopy. It is also drop-casted on the end of a fiber ferrule to be integrated in the laser cavity. The proposed work revealed that the laser oscillated at about 1558 nm with threshold input pump power of 22.54 mW and maximum input pump power of 108.8 mW. The increase in pump power resulted in the increase in repetition rate where the pulse train increases from 8.96 kHz to 39.34 kHz while the pulse width decreases from 33.58 μs to 5.14 μs. The generated pulsed laser yields a maximum of 1.01 mW and 5.53 nJ of peak power and pulse energy respectively. The signal-to-noise ratio of 40 dB indicates that the generated pulse is stable.
Interaction of repetitively pulsed high energy laser radiation with matter
NASA Astrophysics Data System (ADS)
Hugenschmidt, M.
1986-05-01
Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.
Phase locked loop synchronization for direct detection optical PPM communication systems
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1985-01-01
Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.
Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.
2011-01-01
Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics
NASA Astrophysics Data System (ADS)
Trinchenko, A. A.; Paramonov, A. P.
2017-10-01
Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...
2017-06-12
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.
2017-09-01
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.
NASA Astrophysics Data System (ADS)
Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.
2016-05-01
Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.
Menzies, Kevin
2014-08-13
The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Feasibility of eyes open alpha power training for mental enhancement in elite gymnasts.
Dekker, Marian K J; van den Berg, Berber R; Denissen, Ad J M; Sitskoorn, Margriet M; van Boxtel, Geert J M
2014-01-01
This study focuses on a novel, easy to use and instruction-less method for mental training in athletes. Previous findings suggest that particular mental capacities are needed for achieving peak performance; including attentional control, focus, relaxation and positive affect. Electroencephalography (EEG) alpha brain activity has been associated with neural inhibition during processes of selective attention, for improving efficiency in information processing. Here we hypothesised that eyes open alpha power training by music teaches athletes to (1) learn to self-regulate their brain activity, and (2) learn to increase their baseline alpha power, herewith improving mental capacities such as focusing the allocation of attention. The study was double-blind and placebo-controlled. Twelve elite gymnasts were either given eyes open alpha power training or random beta power training (controls). Results indicate small improvements in sleep quality, mental and physical shape. In our first attempt at getting a grip on mental capacities in athletes, we think this novel training method can be promising. Because gymnastics is one of the most mentally demanding sports, we value even small benefits for the athlete and consider them indicative for future research.
Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas
NASA Astrophysics Data System (ADS)
Tomasi, C.; Baratieri, M.; Bosio, B.; Arato, E.; Baggio, P.
The coupling of renewable energy sources and innovative power generation technologies is of topical interest to meet demands for increased power generation and cleaner environmental performance. Accordingly, biomass is receiving considerable attention as a partial substitute for fossil fuels, as it is more environmentally friendly and provides a profitable way of disposing of waste. In addition, fuel cells are perceived as most promising electrical power generation systems. Today, many plants combining these two concepts are under study; they differ in terms of biomass type and/or power plant configuration. Even if the general feasibility of such applications has been demonstrated, there are still many associated problems to be resolved. This study examines a plant configuration based on a molten carbonate fuel cell (MCFC) and a recirculated fluidized-bed reactor which has been applied to the thermal conversion of many types of biomass. Process analysis is conducted by simulating the entire plant using a commercial code. In particular, an energy assessment is studied by taking account of the energy requirements of auxiliary equipment and the possibility of utilizing the exhaust gases for cogeneration.
Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser
NASA Astrophysics Data System (ADS)
Abel, W.; Wallter, B.
1984-03-01
The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.
High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.
Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2015-11-16
Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies.
A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty
NASA Astrophysics Data System (ADS)
Ohmi, Masataro; Mori, Hiroyuki
In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.
Technique for etching monolayer and multilayer materials
Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert
2015-10-06
A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pulusani, Praneeth R.
As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading transformers, lack of energy supply, and higher utility costs.
Processing of sputter targets using current activated pressure assisted densification
NASA Astrophysics Data System (ADS)
Chaney, Neil Russell
Thin Film deposition is a process that has been around since the beginning of the twentieth century and has become an integral part of the microfabrication and nanofabrication industries. Sputter deposition is a method of physical vapor deposition (PVD) in which a target is bombarded with ions and atoms are ejected and deposited as a thin film on a substrate. Despite extensive research on the direct process of sputtering thin films from targets to substrates, not much work has been done on studying the effect of processing on the microstructure of a target. In the first part of this work, the development of a PVD chamber is explored along with a few modifications and improvements developed along the way. A multiple process PVD chamber was equipped with three different types of PVD processes: sputtering, evaporation, and electron-beam deposition. In the second part of this work, the effect of processing of sputter targets on deposited films is explored. Multiple targets of Copper and yttria stabilized zirconia were produced using CAPAD. The effect of the processing on the microstructure of the targets was determined. The targets were then sputtered into films to study the effects of the target grain size on their properties. The effect of power and pressure were also measured. Increased power led to increased deposition rates while higher vacuum caused deposition rates to decrease.
Study of the possibility of thermal utilization of contaminated water in low-power boilers
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.
2017-09-01
The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.
NASA Astrophysics Data System (ADS)
Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.
2018-06-01
Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI + 10 J cm‑2, and ALI + 20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.
Effects of laser power density and initial grain size in laser shock punching of pure copper foil
NASA Astrophysics Data System (ADS)
Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin
2018-06-01
The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.
ERIC Educational Resources Information Center
King, Roger
2010-01-01
This article analyzes policy convergence and the adoption of globalizing models by higher education states, a process we describe, following Thatcher (2007), as policy internationalization. This refers to processes found in many policy domains and which increasingly are exemplified in tertiary education systems too. The focus is on governmental…
Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas
2017-12-01
In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.
Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.
Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar
2004-03-01
The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can be halved when ultrasound is employed to promote dyeing. Scanning electron microscopy analysis of the cross section of the dyed leather indicates that fiber structure is not affected due to the use of ultrasound under the given process conditions. The present study clearly demonstrates that ultrasound can be used as a tool to improve the rate of exhaustion of dye, reduce pollution load in the spent effluent liquor, and improve the quality of leather produced. The study also offered provision to employ optimum levels of chemicals and increases percentage exhaustion for a given time, thereby limiting the pollution load in the tannery effluent, which is of great social concern.
Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process
NASA Astrophysics Data System (ADS)
Tan, S. T.; Umar, A. A.; Yahaya, M.; Yap, C. C.; Salleh, M. M.
2013-04-01
One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.
Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang
2012-11-01
Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Advanced, High Power, Next Scale, Wave Energy Conversion Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekhiche, Mike; Dufera, Hiz; Montagna, Deb
2012-10-29
The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressedmore » cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities formore » enterprise-wide optimization, including planning, scheduling, and supply chain technologies.« less
Micromagnetics on high-performance workstation and mobile computational platforms
NASA Astrophysics Data System (ADS)
Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.
2015-05-01
The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.
The role of graphics super-workstations in a supercomputing environment
NASA Technical Reports Server (NTRS)
Levin, E.
1989-01-01
A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms).
PURPA 210 avoided cost rates: Economic and implementation issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devine, M.D.; Chartock, M.A.; Gunn, E.M.
The purpose of Section 210 of the Public Utilities Regulatory Policies Act (PURPA) was to promote the utilization of waste and renewable fuels and cogeneration processes for increasing electric power supplies. It represents a radical change in policy by allowing financially unregulated parties to generate power in ''qualifying facilities'' and by requiring utilities to purchase this power at the utilities' marginal (or ''avoided'') cost. PURPA 210 has clearly had a major impact as measured by the actual and proposed number of new qualifying facilities; however, implementation has been difficult due to the adversarial nature of the process for negotiating ormore » setting the avoided cost rates. This paper reviews the pertinent PURPA rules and regulations, analyzes the status of current avoided cost rates that have been established, and discusses implementation issues and options for resolving those issues.« less
The influence of dew point during annealing on the power loss of electrical steel sheets
NASA Astrophysics Data System (ADS)
Broddefalk, Arvid; Jenkins, Keith; Silk, Nick; Lindenmo, Magnus
Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 °C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.
Modern process designs for very high NGL recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, A.J.; Tomlinson, T.R.; Johnson, G.L.
1999-07-01
Typical margins between NGL and sales gas can justify consideration of very high NGL recovery from natural gas but traditionally, very high percentage recovery of propane or ethane has led to disproportionally high incremental power consumption and hence expensive compressors. Recent technical advances in the process design of cryogenic gas processing plants and in the equipment they se have led to a new breed of flowsheets that can cost-effectively give propane recoveries of as high as 99%. The high NGL recovery achievable with modern plants is economically possible due to their high thermodynamic efficiency. This is mainly because they usemore » the refrigeration available from the process more effectively and so recover more NGL. A high pressure rectification step can further improve NGL recovery economically, especially on larger plants. This residual NGL content would normally remain in the sales gas on a conventional turboexpander plant. Improved recovery of NGL can be obtained with little or no increase in sales gas compression power compared to conventional plants by judicious use of heat exchanger area. With high feed gas pressure and particularly with dense phase operation, the use of two expanders in series for feed gas let-down gives good process efficiency and relatively low specific power per ton of NGL recovered. Use of two expanders also avoids excessive liquid flows in the expander exhaust, thus improving the performance and reliability of the turboexpander system. The techniques discussed in the paper can be employed on revamps to improve NGL recovery. Improved process performance relies heavily on the use of efficient, multistream plant-fin exchangers and these can be easily added to an existing facility to increase NGL production.« less
Weld bead profile of laser welding dissimilar joints stainless steel
NASA Astrophysics Data System (ADS)
Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.
2017-10-01
During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.
Habibi, E; Zare, M; Barkhordari, A; Mirmohammadi, Sj; Halvani, Ghh
2008-12-28
The aim of this study was to identify the hazards, evaluate their risk factors and determine the measure for promotion of the process and reduction of accidents in the chemical unit of the power station. In this case and qualitative study, HAZOP technique was used to recognize the hazards and problems of operations on the chemical section at power station. Totally, 126 deviations were documented with various causes and consequences. Ranking and evaluation of identified risks indicate that the majority of deviations were categorized as "acceptable" and less than half of that were "unacceptable". The highest calculated risk level (1B) related to both the interruption of acid entry to the discharge pumps and an increased density of the acid. About 27% of the deviations had the lowest risk level (4B). The identification of hazards by HAZOP indicates that it could, systemically, assess and criticize the process of consumption or production of acid and alkali in the chemical unit of power plant.
NASA Astrophysics Data System (ADS)
Yoshida, Minori; Miyaji, Kousuke
2018-04-01
A start-up charge pump circuit for an extremely low input voltage (V IN) is proposed and demonstrated. The proposed circuit uses an inverter level shifter to generate a 2V IN voltage swing to the gate of both main NMOS and PMOS power transistors in a charge pump to reduce the channel resistance. The proposed circuit is fully implemented in a standard 0.18 µm CMOS process, and the measurement result shows that a minimum input voltage of 190 mV is achieved and output power increases by 181% compared with the conventional forward-body-bias scheme at a 300 mV input voltage. The proposed scheme achieves a maximum efficiency of 59.2% when the input voltage is 390 mV and the output current is 320 nA. The proposed circuit is suitable as a start-up circuit in ultralow power energy harvesting power management applications to boost-up from below threshold voltage.
Minnesota agripower project. Quarterly report, April--June 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baloun, J.
The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and providemore » steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.« less
An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems
Osseiran, Adam
2017-01-01
The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses. PMID:29125586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan
With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less
Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan; ...
2018-01-01
With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
Distributed renewable power from biomass and other waste fuels
NASA Astrophysics Data System (ADS)
Lyons, Chris
2012-03-01
The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.
Pulsed corona generation using a diode-based pulsed power generator
NASA Astrophysics Data System (ADS)
Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.
2003-10-01
Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.
A Complete Procedure for Predicting and Improving the Performance of HAWT's
NASA Astrophysics Data System (ADS)
Al-Abadi, Ali; Ertunç, Özgür; Sittig, Florian; Delgado, Antonio
2014-06-01
A complete procedure for predicting and improving the performance of the horizontal axis wind turbine (HAWT) has been developed. The first process is predicting the power extracted by the turbine and the derived rotor torque, which should be identical to that of the drive unit. The BEM method and a developed post-stall treatment for resolving stall-regulated HAWT is incorporated in the prediction. For that, a modified stall-regulated prediction model, which can predict the HAWT performance over the operating range of oncoming wind velocity, is derived from existing models. The model involves radius and chord, which has made it more general in applications for predicting the performance of different scales and rotor shapes of HAWTs. The second process is modifying the rotor shape by an optimization process, which can be applied to any existing HAWT, to improve its performance. A gradient- based optimization is used for adjusting the chord and twist angle distribution of the rotor blade to increase the extraction of the power while keeping the drive torque constant, thus the same drive unit can be kept. The final process is testing the modified turbine to predict its enhanced performance. The procedure is applied to NREL phase-VI 10kW as a baseline turbine. The study has proven the applicability of the developed model in predicting the performance of the baseline as well as the optimized turbine. In addition, the optimization method has shown that the power coefficient can be increased while keeping same design rotational speed.
NASA Astrophysics Data System (ADS)
Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao
The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.
Spacecraft Impacts with Advanced Power and Electric Propulsion
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Oleson, Steven R.
2000-01-01
A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.
Rainfall and Sheet Power Equation for Interrill Erosion on Steep Hillslope
NASA Astrophysics Data System (ADS)
Shin, S.; Park, S.; Pierson, F. B.; Al-Hamdan, O. Z.; Williams, C. J.
2012-12-01
Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equations that combine the influence of both rainfall and runoff have been proposed by several researchers. However most approaches to modeling interrill erosion have been based on statistical relationships given the inherent complexity in derivation of broadly-applicable physically-based erosion parameters. In this study, a rainfall and sheet power equation to evaluate interrill sediment yields (Qs) was derived from the sum of rainfall power and sheet power expressed by rainfall intensity: Qs=a(cosθ/L){α sinθ ∑ I(t)^(11/9)+β tanθ^(1/2) ∑ (1-fr(t))^(5/3) I(t)^(5/3)}^b, where I(t) is rainfall intensity, θ is slope angle, fr(t) is infiltration rate, a, b, α, and β are coefficients, sinθ I(t)^(11/9) is the rainfall power term, and tanθ^(1/2) (1-fr(t))^(5/3) I(t)^(5/3) is the sheet power term. The rainfall power ratio and sheet power ratio decreased and increased with increased rainfall intensity, respectively. The sheet power term depended greatly on infiltration rate controlled by rainfall intensity, vegetation cover, and soil condition. The rainfall and sheet power equation assuming that α and β is 0 was evaluated using field data from plots on steep hillslopes and showed the better correlation with sediment yields than rainfall kinetic energy, runoff discharge, or interrill equations based on rainfall intensity and runoff discharge founded in the literature. This equation successfully explained physical processes for soil erosion that rainfall power is dominant under low rainfall and sheet power is dominant under heavy rainfall. Additional experimental data is needed to assess coefficients of the power equation to determine the relative quantities of rainfall power and sheet power and to evaluate the erosion efficiency of interactions between raindrop impact and sheet flow and soil erodibility. Acknowledgements: This work was supported by a grant (Code#'08 RTIP B-01) from Regional Technology Innovation Program funded by Ministry of Land, Transport and Maritime Affairs of Korean government.;
Differential effects of ongoing EEG beta and theta power on memory formation
Scholz, Sebastian; Schneider, Signe Luisa
2017-01-01
Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459
Dynamic oscillatory processes governing cued orienting and allocation of auditory attention
Ahveninen, Jyrki; Huang, Samantha; Belliveau, John W.; Chang, Wei-Tang; Hämäläinen, Matti
2013-01-01
In everyday listening situations, we need to constantly switch between alternative sound sources and engage attention according to cues that match our goals and expectations. The exact neuronal bases of these processes are poorly understood. We investigated oscillatory brain networks controlling auditory attention using cortically constrained fMRI-weighted magnetoencephalography/ electroencephalography (MEG/EEG) source estimates. During consecutive trials, subjects were instructed to shift attention based on a cue, presented in the ear where a target was likely to follow. To promote audiospatial attention effects, the targets were embedded in streams of dichotically presented standard tones. Occasionally, an unexpected novel sound occurred opposite to the cued ear, to trigger involuntary orienting. According to our cortical power correlation analyses, increased frontoparietal/temporal 30–100 Hz gamma activity at 200–1400 ms after cued orienting predicted fast and accurate discrimination of subsequent targets. This sustained correlation effect, possibly reflecting voluntary engagement of attention after the initial cue-driven orienting, spread from the temporoparietal junction, anterior insula, and inferior frontal (IFC) cortices to the right frontal eye fields. Engagement of attention to one ear resulted in a significantly stronger increase of 7.5–15 Hz alpha in the ipsilateral than contralateral parieto-occipital cortices 200–600 ms after the cue onset, possibly reflecting crossmodal modulation of the dorsal visual pathway during audiospatial attention. Comparisons of cortical power patterns also revealed significant increases of sustained right medial frontal cortex theta power, right dorsolateral prefrontal cortex and anterior insula/IFC beta power, and medial parietal cortex and posterior cingulate cortex gamma activity after cued vs. novelty-triggered orienting (600–1400 ms). Our results reveal sustained oscillatory patterns associated with voluntary engagement of auditory spatial attention, with the frontoparietal and temporal gamma increases being best predictors of subsequent behavioral performance. PMID:23915050
NASA Astrophysics Data System (ADS)
Huo, Chunqing; Lundin, Daniel; Raadu, Michael A.; Anders, André; Tomas Gudmundsson, Jon; Brenning, Nils
2014-04-01
The onset and development of self-sputtering (SS) in a high power impulse magnetron sputtering (HiPIMS) discharge have been studied using a plasma chemical model and a set of experimental data, taken with an aluminum target and argon gas. The model is tailored to duplicate the discharge in which the data are taken. The pulses are long enough to include both an initial transient and a following steady state. The model is used to unravel how the internal discharge physics evolves with pulse power and time, and how it is related to features in the discharge current-voltage-time characteristics such as current densities, maxima, kinks and slopes. The connection between the self-sputter process and the discharge characteristics is quantified and discussed in terms of three parameters: a critical target current density Jcrit based on the maximum refill rate of process (argon) gas above the target, an SS recycling factor ΠSS-recycle, and an approximation \\tilde{\\alpha} of the probabilities of ionization of species that come from the target (both sputtered metal and embedded argon atoms). For low power pulses, discharge voltages UD ⩽ 380 V with peak current densities below ≈ 0.2 A cm-2, the discharge is found to be dominated by process gas sputtering. In these pulses there is an initial current peak in time, associated with partial gas rarefaction, which is followed by a steady-state-like plateau in all parameters similar to direct current magnetron sputtering. In contrast, high power pulses, with UD ⩾ 500 V and peak current densities above JD ≈ 1.6 A cm-2, make a transition to a discharge mode where SS dominates. The transition is found not to be driven by process gas rarefaction which is only about 10% at this time. Maximum gas rarefaction is found later in time and always after the initial peak in the discharge current. With increasing voltage, and pulse power, the discharge can be described as following a route where the role of SS increases in four steps: process gas sputtering, gas-sustained SS, self-sustained SS and SS runaway. At the highest voltage, 1000 V, the discharge is very close to, but does not go into, the SS runaway mode. This absence of runaway is proposed to be connected to an unexpected finding: that twice ionized ions of the target species play almost no role in this discharge, not even at the highest powers. This reduces ionization by secondary-emitted energetic electrons almost to zero in the highest power range of the discharge.
Why power matters: creating a foundation of mutual support in couple relationships.
Knudson-Martin, Carmen
2013-03-01
Research shows that equal power helps couples create intimacy and relationship success. However, though couples increasingly desire equal relationships, cultural models of mutual support are not well developed. Clinicians often approach heterosexual couple therapy as though partners are inherently equal, thus reinforcing unacknowledged gender inequities. This article examines research that shows why power imbalances are destructive to intimate relationships and focuses on four gender-related aspects of mutual support: (a) shared relational responsibility, (b) mutual vulnerability, (c) mutual attunement, and (d) shared influence. Case examples illustrate how socio-emotional attunement, interrupting the flow of power, and introducing alternative relational experience help couple therapists identify and address power disparities in these important relational processes. Encouraging the powerful person to take relational initiative and introducing alternative gender discourse are especially important. © FPI, Inc.
Intersectional perspective in elderly care.
Cuesta, Marta; Rämgård, Margareta
2016-01-01
Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care) the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions) and interrelates them to processes of power (objective dimension). This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees' well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.). The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1) Intersectionality, knowledge, and experiences of professionalism; 2) Intersectionality, knowledge, and experiences of collaboration; and 3) Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee's self-confidence, in a positive way.
Intersectional perspective in elderly care
Cuesta, Marta; Rämgård, Margareta
2016-01-01
Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care) the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions) and interrelates them to processes of power (objective dimension). This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees’ well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.). The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1) Intersectionality, knowledge, and experiences of professionalism; 2) Intersectionality, knowledge, and experiences of collaboration; and 3) Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee's self-confidence, in a positive way. PMID:27167554
A study of the effectiveness and energy efficiency of ultrasonic emulsification.
Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O
2017-12-20
Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.
Reconfigurable Computing for Computational Science: A New Focus in High Performance Computing
2006-11-01
in the past decade. Researchers are regularly employing the power of large computing systems and parallel processing to tackle larger and more...complex problems in all of the physical sciences. For the past decade or so, most of this growth in computing power has been “free” with increased...the scientific computing community as a means to continued growth in computing capability. This paper offers a glimpse of the hardware and
NASA Astrophysics Data System (ADS)
Zlobina, I. V.; Muldasheva, G. K.; Bekrenev, N. V.
2016-11-01
Here are shown the results of the effect of the microwave electromagnetic field frequency 2450 MHz and the power density 4-5, 17-18, and 30-32 W/cm3 on properties of composite materials, reinforced plastics, and additive rubber. It is found that the microwave processing with the specific power 17-18 W/cm3 increases the duration of the operation of a rod carbon construction under a load by 1.5-4.5 times. The endurance of rods made of MBS plastics increases by 2-3 times under load. The yielding of sealing rubber after the treatment in the microwave electromagnetic field increases from 18 to 70% with the applied load. This increases the stability of the specimen characteristics after putting them at temperatures from -25 to +40°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Love, Lonnie J; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure, the primary application being fluid powered robotics. The fundamental challenge was part complexity. ORNL s new additive manufacturing technologies (e-beam, laser and ultrasonic deposition) enables freeform manufacturing using conventional metal alloys with excellent mechanical properties. Themore » combination of these two technologies, miniaturized fluid power and additive manufacturing, can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost. This paper focuses on the impact additive manufacturing can have on new forms of fluid power components and systems. We begin with a description of additive manufacturing processes, highlighting the strengths and weaknesses of each technology. Next we describe fundamental results of material characterization to understand the design and mechanical limits of parts made with the e-beam process. A novel design approach is introduced that enables integration of fluid powered actuation with mechanical structure. Finally, we describe a proof-of-principle demonstration: an anthropomorphic (human-like) hydraulically powered hand with integrated power supply and actuation.« less
Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less
Critical reflexivity in financial markets: a Hawkes process analysis
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Bercot, Nicolas; Bouchaud, Jean-Philippe
2013-10-01
We model the arrival of mid-price changes in the E-mini S&P futures contract as a self-exciting Hawkes process. Using several estimation methods, we find that the Hawkes kernel is power-law with a decay exponent close to -1.15 at short times, less than ≈ 103 s, and crosses over to a second power-law regime with a larger decay exponent ≈-1.45 for longer times scales in the range [ 103,106 ] seconds. More importantly, we find that the Hawkes kernel integrates to unity independently of the analysed period, from 1998 to 2011. This suggests that markets are and have always been close to criticality, challenging a recent study which indicates that reflexivity (endogeneity) has increased in recent years as a result of increased automation of trading. However, we note that the scale over which market events are correlated has decreased steadily over time with the emergence of higher frequency trading.
Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.
Müller, Viktor; Lindenberger, Ulman
2012-07-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.
Parameter analysis on the ultrasonic TSV-filling process and electrochemical characters
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Ren, Xinyu; Wang, Yan; Zeng, Peng; Zhou, Zhaohua; Xiao, Hongbin; Zhu, Wenhui
2017-10-01
As one of the key technologies in 3D packaging, through silicon via (TSV) interconnection technology has become a focus recently. In this paper, an electrodeposition method for TSV filling with the assistance of ultrasound and additives are introduced. Two important parameters i.e. current density and ultrasonic power are studied for TSV filling process and electrochemical properties. It is found that ultrasound can improve the quality of TSV-filling and change the TSV-filling mode. The experimental results also indicate that the filling rate enhances more significantly with decreasing current density under ultrasonic conditions than under silent conditions. In addition, according to the voltammetry curve, the increase of ultrasonic power can significantly increase the current density of cupric reduction, and decrease the thickness of diffusion layer. So that the reduction speed of copper ions is accelerated, resulting in a higher TSV-filling rate.
Wellmann, Peter J
2017-11-17
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.
2017-01-01
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530
Power-dependent speciation of volatile organic compounds in aircraft exhaust
NASA Astrophysics Data System (ADS)
Beyersdorf, Andreas J.; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Blake, Donald R.; Timko, Michael T.; Anderson, Bruce E.
2012-12-01
As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust. Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust. Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C1-C9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the aircraft, possibly due to the sampling of transient emissions such as engine start-up and power changes. A large portion of the measured emissions (27-42% by mass) in the plume samples was made up of hazardous air pollutants (HAPs) with oxygenated compounds being most significant.
Key issues in theoretical and functional pneumatic design
NASA Astrophysics Data System (ADS)
Xu, Z. G.; Yang, D. Y.; Liu, W. M.; Liu, T. T.
2017-10-01
This paper studies the energy release of the pneumatic engine in different thermodynamic processes, the isothermal process is the highest power output process, while adiabatic process is the lowest energy output process, and the energy release of the pneumatic engine is a multi-state thermodynamic process between them. Therefore heat exchanging should be increased between the pneumatic engine and the outer space, the gas expansion process in the cylinder should be as close as possible to the isothermal process. Heat exchange should be increased between the cylinder and the external spaces. Secondly, the fin structure is studied to increase the heat exchanging between the cylinder body and the outside space. The upper part has fin structures and the lower cylinder has no fin structure, this structure improved the working efficiency of pneumatic engine. Finally the cam and the hydraulic bottle of pneumatic engines are designed. Simulation and theoretical calculation are used to the analysis of the whole structure, which lay the foundation for the manufacturing and design of the pneumatic engines.
The water-energy-climate nexus: Resources and policy outlook for aquifers in Mexico
NASA Astrophysics Data System (ADS)
Scott, Christopher A.
2011-06-01
Three interlinked processes drive groundwater balances in diverse regions globally: (1) groundwater-irrigation intensification, (2) electrical energy supply for agriculture, and (3) climatic variability. Mexico's water-energy-climate nexus offers generic lessons because of its water scarcity and institutional reforms followed in other emerging economies. This paper analyzes data for 280 aquifers in Mexico, all registered water users, population projections, 2010-2100 precipitation and temperature projections for A1B and A2 emissions scenarios from 15 general circulation models, and 1999-2009 agricultural electricity use. Under A2 emissions, aquifers with negative balances will increase from 92 to 130 in number between 2010 and 2100, and the national groundwater deficit will increase by 21.3 km3. Under A2 and medium-variant population growth (which peaks midcentury), negative-balance aquifers will increase from 92 to 133, and the national groundwater deficit will increase by 22.4 km3. Agricultural power pricing offers a nexus-based policy tool to address aquifer depletion, an opportunity that was lost with the 2003 reduction in nighttime tariffs. Under A2, medium-variant population, and simulated 2% real annual increases in agricultural power tariffs, negative-balance aquifers will increase from 92 to 111, and the national groundwater deficit will increase by 17.5 km3 between 2010 and 2100. Regulatory and user-based groundwater management initiatives indicate growing awareness of aquifer depletion; however, the long-term outlook points to continued depletion. This raises the need to harness nexus-based policy options, i.e., increasing agricultural power tariffs, eliminating reduced nighttime tariffs, enforcing legislation linking groundwater extraction to power use, and limiting new power connections for groundwater wells.
Clean Restructuring: Design Elements for Low Carbon Wholesale Markets and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Countries around the world are in various stages of power system reform and restructuring to more effectively meet development goals and decarbonization commitments. Changes in social dynamics, technology, business models, and environmental goals are increasing pressure for countries to consider improvements to their power systems. This brochure overviews the 21st Century Power Partnerships thought leadership report that explores the clean restructuring pathway in depth, envisions an end state, and articulates three main areas of consideration for decision makers embarking on a clean restructuring process. The report also details case studies from Germany, Denmark, and Mexico.
Scaling of data communications for an advanced supercomputer network
NASA Technical Reports Server (NTRS)
Levin, E.; Eaton, C. K.; Young, Bruce
1986-01-01
The goal of NASA's Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations and by remote communication to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. The implications of a projected 20-fold increase in processing power on the data communications requirements are described.
Santos, Valéria O; Rodrigues, Sueli; Fernandes, Fabiano A N
2018-05-01
This work has examined the influence of ultrasonic processing on acerola juice and its influence in the stability of the juice and in the availability of vitamins B, C, E, and pro-vitamin A. The study has evaluated the changes in these quality parameters resulting from changes on ultrasonic power density, processing time and temperature. Ultrasound application increased the availability of pro-vitamin A and vitamins B₃, B₅, C and E in the juice by releasing them from the apoenzymes to which they are bound and by improving the homogeneity of the juice. The retention of the major vitamins in acerola juice (vitamins A and C) was higher when lower temperatures (10 to 20 °C) and mild ultrasound power density (2000 to 3000 W/L) were applied.
Power feasibility of implantable digital spike-sorting circuits for neural prosthetic systems.
Zumsteg, Zachary S; Ahmed, Rizwan E; Santhanam, Gopal; Shenoy, Krishna V; Meng, Teresa H
2004-01-01
A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that several state-of-the-art spike sorting algorithms implemented in modern CMOS VLSI processes are expected to be power realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu Henry; Tate, Zeb; Abhyankar, Shrirang
The power grid has been evolving over the last 120 years, but it is seeing more changes in this decade and next than it has seen over the past century. In particular, the widespread deployment of intermittent renewable generation, smart loads and devices, hierarchical and distributed control technologies, phasor measurement units, energy storage, and widespread usage of electric vehicles will require fundamental changes in methods and tools for the operation and planning of the power grid. The resulting new dynamic and stochastic behaviors will demand the inclusion of more complexity in modeling the power grid. Solving such complex models inmore » the traditional computing environment will be a major challenge. Along with the increasing complexity of power system models, the increasing complexity of smart grid data further adds to the prevailing challenges. In this environment, the myriad of smart sensors and meters in the power grid increase by multiple orders of magnitude, so do the volume and speed of the data. The information infrastructure will need to drastically change to support the exchange of enormous amounts of data as smart grid applications will need the capability to collect, assimilate, analyze and process the data, to meet real-time grid functions. High performance computing (HPC) holds the promise to enhance these functions, but it is a great resource that has not been fully explored and adopted for the power grid domain.« less
2015-01-01
The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-01-01
The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.
Power calculation of grading device in desintegrator
NASA Astrophysics Data System (ADS)
Bogdanov, V. S.; Semikopenko, I. A.; Vavilov, D. V.
2018-03-01
This article describes the analytical method of measuring the secondary power consumption, necessitated by the installation of a grading device in the peripheral part of the grinding chamber in the desintegrator. There is a calculation model for defining the power input of the disintegrator increased by the extra power demand, required to rotate the grading device and to grind the material in the area between the external row of hammers and the grading device. The work has determined the inertia moments of a cylindrical section of the grading device with armour plates. The processing capacity of the grading device is adjusted to the conveying capacity of the auger feeder. The grading device enables one to increase the concentration of particles in the peripheral part of the grinding chamber and the amount of interaction between particles and armour plates as well as the number of colliding particles. The perforated sections provide the output of the ground material with the proper size granules, which together with the effects of armour plates, improves the efficiency of grinding. The power demand to rotate the grading device does not exceed the admissible value.
Compression in wearable sensor nodes: impacts of node topology.
Imtiaz, Syed Anas; Casson, Alexander J; Rodriguez-Villegas, Esther
2014-04-01
Wearable sensor nodes monitoring the human body must operate autonomously for very long periods of time. Online and low-power data compression embedded within the sensor node is therefore essential to minimize data storage/transmission overheads. This paper presents a low-power MSP430 compressive sensing implementation for providing such compression, focusing particularly on the impact of the sensor node architecture on the compression performance. Compression power performance is compared for four different sensor nodes incorporating different strategies for wireless transmission/on-sensor-node local storage of data. The results demonstrate that the compressive sensing used must be designed differently depending on the underlying node topology, and that the compression strategy should not be guided only by signal processing considerations. We also provide a practical overview of state-of-the-art sensor node topologies. Wireless transmission of data is often preferred as it offers increased flexibility during use, but in general at the cost of increased power consumption. We demonstrate that wireless sensor nodes can highly benefit from the use of compressive sensing and now can achieve power consumptions comparable to, or better than, the use of local memory.
A parallel implementation of an off-lattice individual-based model of multicellular populations
NASA Astrophysics Data System (ADS)
Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe
2015-07-01
As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.
NASA Astrophysics Data System (ADS)
Langan, John
1996-10-01
The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)
NASA Astrophysics Data System (ADS)
Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.
2013-12-01
In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.
Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.
Gingerich, Daniel B; Mauter, Meagan S
2015-07-21
Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.
A 2.4-GHz Energy-Efficient Transmitter for Wireless Medical Applications.
Qi Zhang; Peng Feng; Zhiqing Geng; Xiaozhou Yan; Nanjian Wu
2011-02-01
A 2.4-GHz energy-efficient transmitter (TX) for wireless medical applications is presented in this paper. It consists of four blocks: a phase-locked loop (PLL) synthesizer with a direct frequency presetting technique, a class-B power amplifier, a digital processor, and nonvolatile memory (NVM). The frequency presetting technique can accurately preset the carrier frequency of the voltage-controlled oscillator and reduce the lock-in time of the PLL synthesizer, further increasing the data rate of communication with low power consumption. The digital processor automatically compensates preset frequency variation with process, voltage, and temperature. The NVM stores the presetting signals and calibration data so that the TX can avoid the repetitive calibration process and save the energy in practical applications. The design is implemented in 0.18- μm radio-frequency complementary metal-oxide semiconductor process and the active area is 1.3 mm (2). The TX achieves 0-dBm output power with a maximum data rate of 4 Mb/s/2 Mb/s and dissipates 2.7-mA/5.4-mA current from a 1.8-V power supply for on-off keying/frequency-shift keying modulation, respectively. The corresponding energy efficiency is 1.2 nJ/b·mW and 4.8 nJ/b· mW when normalized to the transmitting power.
Ultrafast disk technology enables next generation micromachining laser sources
NASA Astrophysics Data System (ADS)
Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk
2013-02-01
Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.
NASA Astrophysics Data System (ADS)
Pinson, Pierre
2016-04-01
The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
NASA Astrophysics Data System (ADS)
Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.
NASA Astrophysics Data System (ADS)
Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz
2018-04-01
Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, S., E-mail: suman.mech09@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com
Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR)more » cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.« less
Thermal power and heat energy of cloud-to-ground lightning process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuejuan; Yuan, Ping; Xue, Simin
2016-07-15
A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with themore » peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.« less
Toward energy harvesting using active materials and conversion improvement by nonlinear processing.
Guyomar, Daniel; Badel, Adrien; Lefeuvre, Elie; Richard, Claude
2005-04-01
This paper presents a new technique of electrical energy generation using mechanically excited piezoelectric materials and a nonlinear process. This technique, called synchronized switch harvesting (SSH), is derived from the synchronized switch damping (SSD), which is a nonlinear technique previously developed to address the problem of vibration damping on mechanical structures. This technique results in a significant increase of the electromechanical conversion capability of piezoelectric materials. Comparatively with standard technique, the electrical harvested power may be increased above 900%. The performance of the nonlinear processing is demonstrated on structures excited at their resonance frequency as well as out of resonance.
Life cycle assessment of sewage sludge co-incineration in a coal-based power station.
Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei
2013-09-01
A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Powerful glow discharge excilamp
Tarasenko, Victor F.; Panchenko, Aleksey N.; Skakun, Victor S.; Sosnin, Edward A.; Wang, Francis T.; Myers, Booth R.; Adamson, Martyn G.
2002-01-01
A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.
Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.
Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian
2016-11-10
An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.
Characterizing and analyzing ramping events in wind power, solar power, load, and netload
Cui, Mingjian; Zhang, Jie; Feng, Cong; ...
2017-04-07
Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less
Augmentation of the space station module power management and distribution breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Hall, David K.; Lollar, Louis F.
1991-01-01
The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, Sriram; Grenat, Aaron; Naffziger, Samuel
Power management techniques can be effective at extracting more performance and energy efficiency out of mature systems on chip (SoCs). For instance, the peak performance of microprocessors is often limited by worst case technology (Vmax), infrastructure (thermal/electrical), and microprocessor usage assumptions. Performance/watt of microprocessors also typically suffers from guard bands associated with the test and binning processes as well as worst case aging/lifetime degradation. Similarly, on multicore processors, shared voltage rails tend to limit the peak performance achievable in low thread count workloads. In this paper, we describe five power management techniques that maximize the per-part performance under the before-mentionedmore » constraints. Using these techniques, we demonstrate a net performance increase of up to 15% depending on the application and TDP of the SoC, implemented on 'Bristol Ridge,' a 28-nm CMOS, dual-core x 86 accelerated processing unit.« less
Interactions between thalamic and cortical rhythms during semantic memory recall in human
NASA Astrophysics Data System (ADS)
Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.
2002-04-01
Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.
A power compensated differential scanning calorimeter for protein stability characterization
Wang, Shuyu; Yu, Shifeng; Siedler, Michael; ...
2017-10-07
This study presented a power compensated MEMS differential scanning calorimeter (DSC) for protein stability characterization. In this microfabricated sensor, PDMS (Polydimethylsiloxane) and polyimide were used to construct the adiabatic chamber (1 μL) and temperature sensitive vanadium oxide was used as the thermistor material. A power compensation system was implemented to maintain the sample and reference at the same temperature. The resolution study and step response characterization indicated the high sensitivity (6 V/W) and low noise level (60 μk) of the device. The test with IgG1 antibody (mAb1) samples showed clear phase transitions and the data was confirmed to be reasonablemore » by comparing it with the results of commercial DSC’s test. Finally, this device used ~1uL sample amount and could complete the scanning process in 4 min, significantly increasing the throughput of the bimolecular thermodynamics study like drug formulation process.« less
Weinberger, Norman M; Miasnikov, Alexandre A; Bieszczad, Kasia M; Chen, Jemmy C
2013-09-01
Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n=16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4-15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Weinberger, Norman M.; Miasnikov, Alexandre A.; Bieszczad, Kasia M.; Chen, Jemmy C.
2013-01-01
Gamma oscillations (~30–120 Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n = 16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4–15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. PMID:23669065
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2017-01-01
A thermal design concept of using propylene loop heat pipes to minimize survival heater power for NASA's Evolutionary Xenon Thruster power processing units is presented. It reduces the survival heater power from 183 W to 35 W per power processing unit. The reduction is 81%.
NASA Astrophysics Data System (ADS)
Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai
2018-03-01
Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.
Park, Doo-Heum; Ha, Jee Hyun; Ryu, Seung-Ho; Yu, Jaehak; Shin, Chul-Jin
2015-10-01
Electroencephalographic (EEG) patterns during sleep are markedly different from those measured during the waking state, but the process of falling asleep is not fully understood in terms of biochemical and neurophysiological aspects. We sought to investigate EEG changes that occur during the transitional period from wakefulness to sleep in a 3-dimensional manner to gain a better understanding of the physiological meaning of sleep for the brain. We examined EEG 3-dimensionally using LORETA (low-resolution electromagnetic tomography), to localize the brain region associated with changes that occur during the sleep onset period (SOP). Thirty-channel EEG was recorded in 61 healthy subjects. EEG power spectra and intracortical standardized LORETA were compared between 4 types of 30-second states, including the wakeful stage, transition stage, early sleep stage 1, and late sleep stage 1. Sleep onset began with increased delta and theta power and decreased alpha-1 power in the occipital lobe, and increased theta power in the parietal lobe. Thereafter, global reductions of alpha-1 and alpha-2 powers and greater increases of theta power in the occipito-parietal lobe occurred. As sleep became deeper in sleep stage 1, beta-2 and beta-3, powers decreased mainly in the frontal lobe and some regions of the parieto-temporo-limbic area. These findings suggest that sleep onset includes at least 3 steps in a sequential manner, which include an increase in theta waves in the posterior region of the brain, a global decrease in alpha waves, and a decrease in beta waves in the fronto-central area. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R
2012-06-06
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.
NASA Astrophysics Data System (ADS)
Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.
2017-11-01
Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-01-01
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473
Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes.
Cotillas, Salvador; Llanos, Javier; Castro-Ríos, Katherin; Taborda-Ocampo, Gonzalo; Rodrigo, Manuel A; Cañizares, Pablo
2016-11-01
This work focuses on the disinfection actual urban wastewater by the combination of ultrasound (US) irradiation and electrodisinfection with Dimensionally Stable Anodes (DSA). First, the inactivation of Escherichia coli (E. coli) during the sonochemical disinfection was studied at increasing ultrasound power. Results showed that it was not possible to achieve a complete disinfection, even at the highest US power (200 W) dosed by the experimental device used. Next, the electrodisinfection with DSA anodes at different current densities was studied, finding that it was necessary a minimum current density of 11.46 A m(-2) to reach the complete disinfection. Finally, an integrated sonoelectrodisinfection process was studied. Results showed a synergistic effect when coupling US irradiation with DSA electrodisinfection, with a synergy coefficient higher than 200% of the disinfection rate attained for the highest US power applied. In this process, hypochlorite and chloramines were identified as the main reagents for the disinfection process (neither chlorate nor perchlorate were detected), and the presence of trihalomethanes was far below acceptable values. Confirming this synergistic effect with DSA anodes opens the door to novel efficient disinfection processes, limiting the occurrence of hazardous disinfection by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-07-14
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.
NASA Astrophysics Data System (ADS)
Krokhin, G.; Pestunov, A.
2017-11-01
Exploitation conditions of power stations in variable modes and related changes of their technical state actualized problems of creating models for decision-making and state recognition basing on diagnostics using the fuzzy logic for identification their state and managing recovering processes. There is no unified methodological approach for obtaining the relevant information is a case of fuzziness and inhomogeneity of the raw information about the equipment state. The existing methods for extracting knowledge are usually unable to provide the correspondence between of the aggregates model parameters and the actual object state. The switchover of the power engineering from the preventive repair to the one, which is implemented according to the actual technical state, increased the responsibility of those who estimate the volume and the duration of the work. It may lead to inadequacy of the diagnostics and the decision-making models if corresponding methodological preparations do not take fuzziness into account, because the nature of the state information is of this kind. In this paper, we introduce a new model which formalizes the equipment state using not only exact information, but fuzzy as well. This model is more adequate to the actual state, than traditional analogs, and may be used in order to increase the efficiency and the service period of the power installations.
Austin, Peter C; Schuster, Tibor; Platt, Robert W
2015-10-15
Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.
Laser Brazing Characteristics of Al to Brass with Zn-Based Filler
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai
2018-05-01
Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.
Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo
2013-10-25
The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters
Doubleday, Kate; Choi, Beomseok; Maksimovic, Dragan; ...
2016-06-17
Large commercial photovoltaic (PV) systems can experience regular and predictable energy loss due to both inter-row shading and reduced diffuse irradiance in tightly spaced arrays. This article investigates the advantages of replacing bypass diodes with submodule-integrated DC-DC converters (subMICs) to mitigate these losses. Yearly simulations of commercial-scale PV systems were conducted considering a range of row-to-row pitches. In the limit case of array spacing (unity ground coverage), subMICs can confer a 7% increase in annual energy output and peak energy density (kW h/m 2). Simulation results are based on efficiency assumptions experimentally confirmed by prototype submodule differential power-processing converters.
NASA Astrophysics Data System (ADS)
Paramasivan, K.; Das, Sandip; Marimuthu, Sundar; Misra, Dipten
2018-06-01
The aim of this experimental study is to identify and characterize the response related to the effects of process parameters in terms of bending angle for micro-bending of AISI 304 sheet using a low power Nd:YVO4 laser source. Numerical simulation is also carried out through a coupled thermo-mechanical formulation with finite element method using COMSOL MULTIPHYSICS. The developed numerical simulation indicates that bending is caused by temperature gradient mechanism in the present investigation involving laser micro-bending. The results of experiment indicate that bending angle increases with laser power, number of irradiations, and decreases with increase in scanning speed. Moreover, average bending angle increases with number of laser passes and edge effect, defined in terms of relative variation of bending angle (RBAV), decreases monotonically with the number of laser scans. The substrate is damaged over a width of about 80 μm due to the high temperatures experienced during laser forming at a low scanning speed.
Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting.
Lallart, Mickaël; Garbuio, Lauric; Richard, Claude; Guyomar, Daniel
2010-01-01
The purpose of this paper is to propose a new scheme for piezoelectric energy harvesting optimization. The proposed enhancement relies on a new topology for inverting the voltage across a single capacitor with reduced losses. The increase of the inversion quality allows a much more effective energy harvesting process using the so-called synchronized switch harvesting on inductor (SSHI) nonlinear technique. It is shown that the proposed architecture, based on a 2-step inversion, increases the harvested power by a theoretical factor up to square root of 2 (i.e., 40% gain) compared with classical SSHI, allowing an increase of the harvested power by a factor greater than 1000% compared with the standard energy harvesting technique for realistic values of inversion components. The proposed circuit, using only 4 digital switches and an intermediate capacitor, is also ultra-low power, because the inversion circuit does not require any external energy and the command signals are very simple.
1980-12-01
thousand tons by the year 2040. Much of this increased consumption will be lime used in flue gas desulfurization . A. Market Areas In addition to local...increased consumption will result from lime consumed in lime and limestone flue gas desulfur - ization (FGD) installation processes. During the period 2000...is the use of lime and limestone in flue gas desulfu- rization processes. Lime scrubbers for power plants and other industrial plants have also
Pellizzer, Giuseppe; Zesiger, Pascal
2009-03-01
Children from 8 to 12 years of age drew figure-eights and ellipses at a self-chosen tempo on a digitizing tablet. Global aspects (perimeter and average speed) and local aspects (relation between instantaneous speed and curvature) of performance were analyzed across age groups and types of figures. We tested the predictions of the transformation model, which is based on the hypothesis that changing the intended direction of movement is a time-consuming process that affects the evolution in time of the movement trajectory, and compared how well it fitted the data relative to the power law. We found that the relation between speed and curvature was typically better described by the transformation model than by the power law. However, the power law provided a better description when ellipses were drawn at a fast speed. The analyses of the parameters of the transformation model indicate that processing speed increased linearly with age. In addition, the results suggest that the effects of the spring-like properties of the arm were noticeable when ellipses were drawn at a fast speed. This study indicates that both biomechanical properties and central processes have an effect on the kinematics of continuous movements and particularly on the relation between speed and curvature. However, their relative importance varies with the type of figure and average movement speed. In conclusion, the results support the hypothesis that a time-consuming process of transformation of the intended direction of movement is operating during the production of continuous movements and that this process increases in speed between 8 to 12 years of age.
Temperature and leakage aware techniques to improve cache reliability
NASA Astrophysics Data System (ADS)
Akaaboune, Adil
Decreasing power consumption in small devices such as handhelds, cell phones and high-performance processors is now one of the most critical design concerns. On-chip cache memories dominate the chip area in microprocessors and thus arises the need for power efficient cache memories. Cache is the simplest cost effective method to attain high speed memory hierarchy and, its performance is extremely critical for high speed computers. Cache is used by the microprocessor for channeling the performance gap between processor and main memory (RAM) hence the memory bandwidth is frequently a bottleneck which can affect the peak throughput significantly. In the design of any cache system, the tradeoffs of area/cost, performance, power consumption, and thermal management must be taken into consideration. Previous work has mainly concentrated on performance and area/cost constraints. More recent works have focused on low power design especially for portable devices and media-processing systems, however fewer research has been done on the relationship between heat management, Leakage power and cost per die. Lately, the focus of power dissipation in the new generations of microprocessors has shifted from dynamic power to idle power, a previously underestimated form of power loss that causes battery charge to drain and shutdown too early due the waste of energy. The problem has been aggravated by the aggressive scaling of process; device level method used originally by designers to enhance performance, conserve dissipation and reduces the sizes of digital circuits that are increasingly condensed. This dissertation studies the impact of hotspots, in the cache memory, on leakage consumption and microprocessor reliability and durability. The work will first prove that by eliminating hotspots in the cache memory, leakage power will be reduced and therefore, the reliability will be improved. The second technique studied is data quality management that improves the quality of the data stored in the cache to reduce power consumption. The initial work done on this subject focuses on the type of data that increases leakage consumption and ways to manage without impacting the performance of the microprocessor. The second phase of the project focuses on managing the data storage in different blocks of the cache to smooth the leakage power as well as dynamic power consumption. The last technique is a voltage controlled cache to reduce the leakage consumption of the cache while in execution and even in idle state. Two blocks of the 4-way set associative cache go through a voltage regulator before getting to the voltage well, and the other two are directly connected to the voltage well. The idea behind this technique is to use the replacement algorithm information to increase or decrease voltage of the two blocks depending on the need of the information stored on them.
Nuclear power propulsion system for spacecraft
NASA Astrophysics Data System (ADS)
Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.
2015-12-01
The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-16
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-01-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
NASA Astrophysics Data System (ADS)
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc
2018-02-01
Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.
Computers for Manned Space Applications Base on Commercial Off-the-Shelf Components
NASA Astrophysics Data System (ADS)
Vogel, T.; Gronowski, M.
2009-05-01
Similar to the consumer markets there has been an ever increasing demand in processing power, signal processing capabilities and memory space also for computers used for science data processing in space. An important driver of this development have been the payload developers for the International Space Station, requesting high-speed data acquisition and fast control loops in increasingly complex systems. Current experiments now even perform video processing and compression with their payload controllers. Nowadays the requirements for a space qualified computer are often far beyond the capabilities of, for example, the classic SPARC architecture that is found in ERC32 or LEON CPUs. An increase in performance usually demands costly and power consuming application specific solutions. Continuous developments over the last few years have now led to an alternative approach that is based on complete electronics modules manufactured for commercial and industrial customers. Computer modules used in industrial environments with a high demand for reliability under harsh environmental conditions like chemical reactors, electrical power plants or on manufacturing lines are entered into a selection procedure. Promising candidates then undergo a detailed characterisation process developed by Astrium Space Transportation. After thorough analysis and some modifications, these modules can replace fully qualified custom built electronics in specific, although not safety critical applications in manned space. This paper focuses on the benefits of COTS1 based electronics modules and the necessary analyses and modifications for their utilisation in manned space applications on the ISS. Some considerations regarding overall systems architecture will also be included. Furthermore this paper will also pinpoint issues that render such modules unsuitable for specific tasks, and justify the reasons. Finally, the conclusion of this paper will advocate the implementation of COTS based electronics for a range of applications within specifically adapted systems. The findings in this paper are extrapolated from two reference computer systems, both having been launched in 2008. One of those was a LEON-2 based computer installed onboard the Columbus Orbital Facility while the other system consisted mainly of a commercial Power-PC module that was modified for a launch mounted on the ICC pallet in the Space Shuttle's cargo bay. Both systems are currently upgraded and extended for future applications.
NASA Astrophysics Data System (ADS)
Yang, Xuguang; Wang, Lei
In this paper, the magnetic field effects on natural convection of power-law non-Newtonian fluids in rectangular enclosures are numerically studied by the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). To maintain the locality of the LBM, a local computing scheme for shear rate is used. Thus, all simulations can be easily performed on the Graphics Processing Unit (GPU) using NVIDIA’s CUDA, and high computational efficiency can be achieved. The numerical simulations presented here span a wide range of thermal Rayleigh number (104≤Ra≤106), Hartmann number (0≤Ha≤20), power-law index (0.5≤n≤1.5) and aspect ratio (0.25≤AR≤4.0) to identify the different flow patterns and temperature distributions. The results show that the heat transfer rate is increased with the increase of thermal Rayleigh number, while it is decreased with the increase of Hartmann number, and the average Nusselt number is found to decrease with an increase in the power-law index. Moreover, the effects of aspect ratio have also investigated in detail.
Will lawyering strangle democratic capitalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberman, L.H.
1978-01-01
Excessive reliance on intervention through the legal process, an expression of governmental power, is seen as a threat to capitalism because the legal process is less responsive to public will. The increasing use of the courts to resolve social and economic issues is partly a result of the complex legislative process. Judges have become more receptive to public-interest issues and have broadened the definition of their jurisdiction. The transference of interests into rights in the public mind eventually leads to authoritarian resolutions and a loss of democracy. The new power of law has attracted talent away from business and intomore » legal services to the detriment of economic growth and vitality. Lawyers benefit from the expansion of the legal process, although they fail to relate the economic ramifications of free access to the courts with the principles of capitalism and democracy. Lawyers are urged to help find a solution to the dilemma before the legal process becomes too unwieldy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung
2015-08-15
Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P{sub 2 MHz} = 2 MHz) and high (P{sub 13.56 MHz} = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF{sub 4} (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers frommore » 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P{sub 13.56 MHz}; however, it shows opposite trends with P{sub 2 MHz}. It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant.« less
High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction
Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2015-01-01
Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21th harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies. PMID:26567536
Design of Interline Unified Power Quality Conditioner for Power Quality Disturbances using Simulink
NASA Astrophysics Data System (ADS)
Kumaraswamy, G.; Reddy, Y. Rajasekhar; Harikrishna, Ch.
2012-10-01
Proliferation of electronic equipment in commercial and industrial processes has resulted in increasingly sensitive electrical loads to be fed from power distribution system which introduce contamination to voltage and current waveforms at the point of common coupling of industrial loads. The unified power quality conditioner (UPQC) is connected between two different feeders (lines), hence this method of connection of the UPQC is called as Interline UPQC (IUPQC).This paper proposes a new connection for a UPQC to improve the power quality of two feeders in a distribution system. Interline Unified Power Quality Conditioner (IUPQC), specifically aims at the integration of series VSC and Shunt VSC to provide high quality power supply by means of voltage sag/swell compensation, harmonic elimination and power factor correction in a power distribution network, so that improved power quality can be made available at the point of common coupling. The structure, control and capability of the IUPQC are discussed in this paper. The efficiency of the proposed configuration has been verified through simulation using MATLAB/ SIMULINK.
Study on integration potential of gas turbines and gas engines into parabolic trough power plants
NASA Astrophysics Data System (ADS)
Vogel, Tobias; Oeljeklaus, Gerd; Görner, Klaus
2017-06-01
Hybrid power plants represent an important intermediate step on the way to an energy supply structure based substantially on renewable energies. Natural gas is the preferred fossil fuel for hybridization of solar thermal power plants, due to its low specific CO2-emission and technical advantages by means of integration into the power plant process. The power plant SHAMS ONE serves as an exemplary object of this study. In order to facilitate peaker gas turbines in an economical way to a combined cycle approach, with the SGT-400 an industrial gas turbine of the 10-20 MWel class have been integrated into the base case power plant. The concept has been set up, to make use of the gas turbine waste heat for power generation and increasing the overall power plant efficiency of the hybrid power plant at the same time. This concept represents an alternative to the widely used concept of combined cycle power plants with solar heat integration. Supplementary, this paper also dedicates the alternative to use gas engines instead of gas turbines.
Linking the micro and macro: L-H transition dynamics and threshold physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.
2015-03-15
The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less
Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.
Kalantarian, Haik; Sideris, Costas; Mortazavi, Bobak; Alshurafa, Nabil; Sarrafzadeh, Majid
2017-03-01
The objective of this paper is to describe and evaluate an algorithm to reduce power usage and increase battery lifetime for wearable health-monitoring devices. We describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data processing between the wearable device and mobile application as a function of desired classification accuracy. By making the correct offloading decision based on current system parameters, we show that we are able to reduce system power by as much as 20%. We demonstrate that computation offloading can be applied to real-time monitoring systems, and yields significant power savings. Making correct offloading decisions for health monitoring devices can extend battery life and improve adherence.
The AgESGUI geospatial simulation system for environmental model application and evaluation
USDA-ARS?s Scientific Manuscript database
Practical decision making in spatially-distributed environmental assessment and management is increasingly being based on environmental process-based models linked to geographical information systems (GIS). Furthermore, powerful computers and Internet-accessible assessment tools are providing much g...
How can monthly to seasonal forecasts help to better manage power systems? (Invited)
NASA Astrophysics Data System (ADS)
Dubus, L.; Troccoli, A.
2013-12-01
The energy industry increasingly depends on weather and climate, at all space and time scales. This is especially true in countries with volunteer renewable energies development policies. There is no doubt that Energy and Meteorology is a burgeoning inter-sectoral discipline. It is also clear that the catalyst for the stronger interaction between these two sectors is the renewed and fervent interest in renewable energies, especially wind and solar power. Recent progress in meteorology has led to a marked increase in the knowledge of the climate system and in the ability to forecast climate on monthly to seasonal time scales. Several studies have already demonstrated the effectiveness of using these forecasts for energy operations, for instance for hydro-power applications. However, it is also obvious that scientific progress on its own is not sufficient to increase the value of weather forecasts. The process of integration of new meteorological products into operational tools and decision making processes is not straightforward but it is at least as important as the scientific discovery. In turn, such integration requires effective communication between users and providers of these products. We will present some important aspects of energy systems in which monthly to seasonal forecasts can bring useful, if not vital, information, and we will give some examples of encouraging energy/meteorology collaborations. We will also provide some suggestions for a strengthened collaboration into the future.
Langmuir Probe Measurements of Inductively Coupled Plasma in CF4/AR/O2 Mixtures
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya
2001-01-01
Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i)), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad lip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.
Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya
2001-01-01
Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF (radio frequency) power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad dip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.
Basic dye decomposition kinetics in a photocatalytic slurry reactor.
Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming
2006-09-01
Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.
An embedded processor for real-time atmoshperic compensation
NASA Astrophysics Data System (ADS)
Bodnar, Michael R.; Curt, Petersen F.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.
2009-05-01
Imaging over long distances is crucial to a number of defense and security applications, such as homeland security and launch tracking. However, the image quality obtained from current long-range optical systems can be severely degraded by the turbulent atmosphere in the path between the region under observation and the imager. While this obscured image information can be recovered using post-processing techniques, the computational complexity of such approaches has prohibited deployment in real-time scenarios. To overcome this limitation, we have coupled a state-of-the-art atmospheric compensation algorithm, the average-bispectrum speckle method, with a powerful FPGA-based embedded processing board. The end result is a light-weight, lower-power image processing system that improves the quality of long-range imagery in real-time, and uses modular video I/O to provide a flexible interface to most common digital and analog video transport methods. By leveraging the custom, reconfigurable nature of the FPGA, a 20x speed increase over a modern desktop PC was achieved in a form-factor that is compact, low-power, and field-deployable.
Co-Simulation for Advanced Process Design and Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen E. Zitney
2009-01-01
Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less
Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate
NASA Astrophysics Data System (ADS)
Genna, S.; Leone, C.; Tagliaferri, V.
2017-02-01
Infrared (IR) light propagation in semicrystalline polymers involves mechanisms such as reflection, transmission, absorption and internal scattering. These different rates determine either the interaction mechanism, either the temperatures reached in the IR heating processes. Consequently, the knowledge of these rates is fundamental in the development of IR heating processes in order to avoid the polymer's damage and to increase the process energy efficiency. Aim of this work is to assess a simple procedure to determine the rates of absorbed, reflected, transmitted and scattered energy in the case of an unfilled High Density Polyethylene (HDPE) plate. Experimental tests were performed by exposing a HDPE plate, 3 mm in thickness, to a diode laser source, working at the fundamental wavelength of 975 nm. The transmitted power was measured by power meter, the reflected one by applying the Beer-Lambert law to sample of different thickness. IR thermal images were adopted to measure the absorbed ratio. The scattered ratio was measured by energetic balance, as difference between the incoming power and the other ratios. Finally, IR thermal images were adopted to measure the scattered ratio and to validate the procedure.
NASA Astrophysics Data System (ADS)
Shi, Wangying; Han, Minfang
2017-09-01
A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.
This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels aremore » increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.« less
Sommers, Christopher H; Fan, Xuetong
2002-11-01
Ionizing radiation can be used to pasteurize ready-to-eat (RTE) meat products. Thermal processing of RTE meats that contain dextrose results in the production of antioxidants that may interfere with ionizing radiation pasteurization of RTE meat products. Beef bologna was manufactured with dextrose concentrations of 0, 2, 4, 6, and 8%. Antioxidant activity, as measured by the Ferric Reducing Antioxidant Power assay, increased with dextrose concentration but was unaffected by ionizing radiation. Lipid oxidation increased significantly in irradiated bologna (4 kGy) that contained dextrose. Hunter color analysis indicated that the addition of dextrose reduced the ionizing radiation-induced loss of redness (a-value) but promoted the loss of brightness (L-value). The radiation resistance, D10-value, of Listeria monocytogenes that was surface-inoculated onto bologna slices was not affected by dextrose concentration. L. monocytogenes strains isolated from RTE meats after listeriosis outbreaks were utilized. Increased antioxidant activity generated by thermal processing of dextrose in fine emulsion sausages does not present a barrier to radiation pasteurization of RTE meats. However, a high dextrose concentration in combination with gamma irradiation increases lipid oxidation significantly.
The Exact Art and Subtle Science of DC Smelting: Practical Perspectives on the Hot Zone
NASA Astrophysics Data System (ADS)
Geldenhuys, Isabel J.
2017-02-01
Increasingly, sustainable smelting requires technology that can process metallurgically complex, low-grade, ultra-fine and waste materials. It is likely that more applications for direct current (DC) technology will inevitably follow in the future as DC open-arc furnaces have some wonderful features that facilitate processing of a variety of materials in an open-arc open-bath configuration. A DC open-arc furnace allows for optimization and choice of chemistry to benefit the process, rather than being constrained by the electrical or physical properties of the material. In a DC configuration, the power is typically supplied by an open arc, providing relative independence and thus an extra degree of freedom. However, if the inherent features of the technology are misunderstood, much of the potential may never be realised. It is thus important to take cognisance of the freedom an operator will have as a result of the open arc and ensure that operating strategies are implemented. This extra degree of freedom hands an operator a very flexible tool, namely virtually unlimited power. Successful open-arc smelting is about properly managing the balance between power and feed, and practical perspectives on the importance of power and feed balance are presented to highlight this aspect as the foundation of proper open-arc furnace control.
Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado - Gobatto, Fúlvia Barros
2015-01-01
The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications. PMID:25994386
Modern Radar Techniques for Geophysical Applications: Two Examples
NASA Technical Reports Server (NTRS)
Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.
2005-01-01
The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.
Sewage sludge drying process integration with a waste-to-energy power plant.
Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C
2015-08-01
Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trends in high power laser applications in civil engineering
NASA Astrophysics Data System (ADS)
Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori
2005-03-01
This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.
NASA Astrophysics Data System (ADS)
Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros
2015-05-01
The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.
Ojha, Kumari Shikha; Kerry, Joseph P; Alvarez, Carlos; Walsh, Des; Tiwari, Brijesh K
2016-07-01
The objective of this study was to investigate the efficacy of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrasound power level (0-68.5 W) and sonication time (0-9 min) at 20 °C were assessed against the growth of L. sakei using a Microplate reader over a period of 24h. The L. sakei growth data showed a good fit with the Gompertz model (R(2)>0.90; SE<0.042). Second order polynomial models demonstrated the effect of ultrasonic power and sonication time on the specific growth rate (SGR, μ, h(-1)) and lag phase (λ, h). A higher SGR and a shorter lag phase were observed at low power (2.99 W for 5 min) compared to control. Conversely, a decrease (p<0.05) in SGR with an increase in lag phase was observed with an increase in ultrasonic power level. Cell-free extracts obtained after 24h fermentation of ultrasound treated samples showed antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella typhimurium at lower concentrations compared to control. No significant difference (p<0.05) among treatments was observed for lactic acid content after a 24h fermentation period. This study showed that both stimulation and retardation of L. sakei is possible, depending on the ultrasonic power and sonication time employed. Hence, fermentation process involving probiotics to develop functional food products can be tailored by selection of ultrasound processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Distinct slow and fast cortical theta dynamics in episodic memory retrieval.
Pastötter, Bernhard; Bäuml, Karl-Heinz T
2014-07-01
Brain oscillations in the theta frequency band (3-8 Hz) have been shown to be critically involved in human episodic memory retrieval. In prior work, both positive and negative relationships between cortical theta power and retrieval success have been reported. This study examined the hypothesis that slow and fast cortical theta oscillations at the edges of the traditional theta frequency band are differentially related to retrieval success. Scalp EEG was recorded in healthy human participants as they performed a cued-recall episodic memory task. Slow (~3 Hz) and fast (~7 Hz) theta oscillations at retrieval were examined as a function of whether an item was recalled or not and as a function of the items' output position at test. Recall success typically declines with output position, due to increases in interference level. The results showed that slow theta power was positively related but fast theta power was negatively related to retrieval success. Concurrent positive and negative episodic memory effects for slow and fast theta oscillations were dissociable in time and space, showing different time courses and different spatial locations on the scalp. Moreover, fast theta power increased from early to late output positions, whereas slow theta power was unaffected by items' output position. Together with prior work, the results suggest that slow and fast theta oscillations have distinct functional roles in episodic memory retrieval, with slow theta oscillations being related to processes of recollection and conscious awareness, and fast theta oscillations being linked to processes of interference and interference resolution. Copyright © 2014 Elsevier Inc. All rights reserved.
Influence of hydrothermal processing on functional properties and grain morphology of finger millet.
Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G
2015-03-01
Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.
NASA Astrophysics Data System (ADS)
Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana
For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.
Power processing systems for ion thrusters.
NASA Technical Reports Server (NTRS)
Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.
1972-01-01
The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.
Gender, Power, and Intimate Partner Violence: A Study on Couples From Rural Malawi
Conroy, Amy A.
2013-01-01
Gender-based power imbalances are perhaps the most compelling underlying explanation for intimate partner violence (IPV) among women in sub-Saharan Africa. However, an overemphasis on female victimization results in an incomplete understanding of men’s experiences as victims and the broader dyadic context in which violence occurs. This study examines the role of three domains of relationship power (power resources, processes, and outcomes) on sexual and physical IPV victimization in a unique sample of 466 young couples from Malawi. Two power resources were studied, namely, income and education level. Power processes were captured with a measure of couple communication and collaboration called unity. Power outcomes included a measure of relationship dominance (male dominated or female-dominated/egalitarian). Multilevel logistic regression using the Actor Partner Interpersonal Model framework was used to test whether respondent and partner data were predictive of IPV. The findings show that unity and male dominance were salient power factors that influenced young people’s risk for sexual IPV. Unity had a stronger protective effect on sexual IPV for women than for men. Involvement in a male-dominated relationship increased the risk of sexual IPV for women, but decreased the risk for men. The findings also showed that education level and unity were protective against physical IPV for both men and women. Contrary to what was expected, partner data did not play a role in the respondent’s experience of IPV. The consistency of these findings with the literature, theory, and study limitations are discussed. PMID:24227592
Gender, power, and intimate partner violence: a study on couples from rural Malawi.
Conroy, Amy A
2014-03-01
Gender-based power imbalances are perhaps the most compelling underlying explanation for intimate partner violence (IPV) among women in sub-Saharan Africa. However, an overemphasis on female victimization results in an incomplete understanding of men's experiences as victims and the broader dyadic context in which violence occurs. This study examines the role of three domains of relationship power (power resources, processes, and outcomes) on sexual and physical IPV victimization in a unique sample of 466 young couples from Malawi. Two power resources were studied, namely, income and education level. Power processes were captured with a measure of couple communication and collaboration called unity. Power outcomes included a measure of relationship dominance (male dominated or female-dominated/egalitarian). Multilevel logistic regression using the Actor Partner Interpersonal Model framework was used to test whether respondent and partner data were predictive of IPV. The findings show that unity and male dominance were salient power factors that influenced young people's risk for sexual IPV. Unity had a stronger protective effect on sexual IPV for women than for men. Involvement in a male-dominated relationship increased the risk of sexual IPV for women, but decreased the risk for men. The findings also showed that education level and unity were protective against physical IPV for both men and women. Contrary to what was expected, partner data did not play a role in the respondent's experience of IPV. The consistency of these findings with the literature, theory, and study limitations are discussed.
NASA Astrophysics Data System (ADS)
Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.
2004-05-01
A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .
Research on the Test of Transmission Line Galloping
NASA Astrophysics Data System (ADS)
Zhang, Lichun; Li, Qing; lv, Zhongbin; Ji, Kunpeng; Liu, Bin
2018-03-01
The load of iced transmission line and the load generated by galloping after the conductor are covered by ice all may cause severe circuit faults, such as tripping, conductor breaking, armor clamp damage and even tower collapse, thus severely threatening running safety of power system. The generation and development processes of galloping of power transmission line is very complicated, and numerous factors may influence the galloping excitation, such as environmental factors, terrain factors and structural parameters of power transmission line; in which, the ice covering of conductor is one of necessary factors causing galloping. Therefore, researches on ice covering increasing test of different types of conductors under different meteorological conditions have been conducted in large-sized multi-functional phytotron, thus obtaining the relation curve of ice covering increasing of conductor along with time under different conditions, and analyzing factors influencing increasing of ice covering. The research result shows that under the same ice covering conditions, the increasing of ice covering of conductor with small diameter is relatively rapid; both environmental temperature and wind speed have obvious influence on increasing of ice covering of conductor, and the environmental temperature will decide the type of ice covering of conductor surface. Meanwhile, after wind tunnel tests targeting conductors with different ice covering shapes, pneumatic stability loss characteristics of conductors with different ice shapes have been obtained. Research results have important scientific reference value for revealing the mechanism of galloping of iced power transmission line, and have relatively high engineering practicability value for promoting realization of early warning system for galloping of iced power transmission line.
Gendered power in cultural contexts: Part I. Immigrant couples.
Maciel, Jose A; Van Putten, Zanetta; Knudson-Martin, Carmen
2009-03-01
Immigration is a world-wide phenomenon and practitioners are increasingly called on to work with issues related to it. The authors examine the experience of couples who are immigrants to the United States in regard to gender and power issues. Although the study limited participation to one religious group in order to hold that aspect of culture and gender attitudes constant, the experiences of these couples help to make visible the link between microlevel couple interaction and larger social processes. The results show how the couples manage a delicate balance between the push for gender change and avoiding too much conflict as male power is challenged.
Graded junction termination extensions for electronic devices
NASA Technical Reports Server (NTRS)
Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)
2006-01-01
A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.
Graded junction termination extensions for electronic devices
NASA Technical Reports Server (NTRS)
Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)
2007-01-01
A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.
Accelerators for E-beam and X-ray processing
NASA Astrophysics Data System (ADS)
Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.
2002-03-01
During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.
A comparison between fuel cells and other alternatives for marine electric power generation
NASA Astrophysics Data System (ADS)
Welaya, Yousri M. A.; El Gohary, M. Morsy; Ammar, Nader R.
2011-06-01
The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.
Heat and mass transfer and hydrodynamics in swirling flows (review)
NASA Astrophysics Data System (ADS)
Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.
2017-02-01
Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.
Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.
Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled bymore » CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.« less
Optimizing Data Centre Energy and Environmental Costs
NASA Astrophysics Data System (ADS)
Aikema, David Hendrik
Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use rose by 20--30W. Estimates of how migration was likely to impact other services used in current cloud environments were derived.
A regenerative process for carbon dioxide removal and hydrogen production in IGCC
NASA Astrophysics Data System (ADS)
Hassanzadeh Khayyat, Armin
Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling results indicate that more than 90 percent purification of hydrogen is achievable, either by increasing the activity of the sorbent towards water-gas shift reaction or by mixing the sorbent bed with a commercialized water-gas shift catalyst. The preliminary economical evaluation of the MgO-based process indicates that this process can be economically viable compared to the commercially available WGS/Selexol(TM) processes.
Power Processing for a Conceptual Project Prometheus Electric Propulsion System
NASA Technical Reports Server (NTRS)
Scina, Joseph E., Jr.; Aulisio, Michael; Gerber, Scott S.; Hewitt, Frank; Miller, Leonard; Elbuluk, Malik; Pinero, Luis R. (Technical Monitor)
2005-01-01
NASA has proposed a bold mission to orbit and explore the moons of Jupiter. This mission, known as the Jupiter Icy Moons Orbiter (JIMO), would significantly increase NASA s capability to explore deep space by making use of high power electric propulsion. One electric propulsion option under study for JIMO is an ion propulsion system. An early version of an ion propulsion system was successfully used on NASA's Deep Space 1 mission. One concept for an ion thruster system capable of meeting the current JIMO mission requirement would have individual thrusters that are 16 to 25 kW each and require voltages as high as 8.0 kV. The purpose of this work is to develop power processing schemes for delivering the high voltage power to the spacecraft ion thrusters based upon a three-phase AC distribution system. In addition, a proposed DC-DC converter topology is presented for an ion thruster ancillary supply based upon a DC distribution system. All specifications discussed in this paper are for design convenience and are speculative in nature.
Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1980-01-01
Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.
Wealth Condensation and ``Corruption'' in a Toy Model
NASA Astrophysics Data System (ADS)
Johnston, D.; Burda, Z.; Jurkiewicz, J.; Kaminski, M.; Nowak, M. A.; Papp, G.; Zahed, I.
2005-09-01
We discuss the wealth condensation mechanism in a simple toy economy in which individual agent's wealths are distributed according to a Pareto power law and the overall wealth is fixed. The observed behaviour is the manifestation of a transition which occurs in Zero Range Processes (ZRPs) or ``balls in boxes'' models. An amusing feature of the transition in this context is that the condensation can be induced by increasing the exponent in the power law, which one might have naively assumed penalised greater wealths more.
Exploring Students' Ideas About Risks and Benefits of Nuclear Power Using Risk Perception Theories
NASA Astrophysics Data System (ADS)
Kılınç, Ahmet; Boyes, Edward; Stanisstreet, Martin
2013-06-01
Due to increased energy demand, Turkey is continuing to explore the possibilities of introducing nuclear power. Gaining acceptance from local populations, however, may be problematic because nuclear power has a negative image and risk perceptions are complicated by a range of psychological and cultural factors. In this study, we explore the views about nuclear power of school students from three locations in Turkey, two of which have been proposed as sites suitable for nuclear power plants. About half of the student cohort believed that nuclear power can supply continuous and sufficient electricity, but approximately three quarters thought that nuclear power stations could harm organisms, including humans, living nearby. Rather few students realized that adoption of nuclear power would help to reduce global warming and thereby limit climate change; indeed, three quarters thought that nuclear power would make global warming worse. There was a tendency for more students from the location most likely to have a nuclear power plant to believe negative characteristics of nuclear power, and for fewer students to believe positive characteristics. Exploration of the possible nuclear power programmes by Turkey offers an educational opportunity to understand the risk perceptions of students that affect their decision-making processes.
Development of thermal actuators with multi-locking positions
NASA Astrophysics Data System (ADS)
Luo, J. K.; Zhu, Y.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Miao, J. M.; Milne, W. I.
2006-04-01
To reduce power consumption and operation temperature for micro-thermal actuators, metal-based micro-mechanical locks with multi-locking positions were analyzed and fabricated. The micro-locks consist of two or three U-shaped thermal actuators. The devices were made by a single mask process using electroplated Ni as the active material. Tests showed that the metal based thermal actuators deliver a maximum displacement of ~20µm at a much lower temperature than that of Si-based actuators. However Ni-actuators showed a severe back bending, which increases with increasing applied power. The temperature to initiate the back bending is as low as ~240°C. Back bending increases the distance between the two actuators, and leads to locking function failure. For practical application, Ni-based thermal actuators must be operated below 200°C.
The production of the psychiatric subject: power, knowledge and Michel Foucault.
Roberts, Marc
2005-01-01
The issue of power has become increasingly important within psychiatry, psychotherapy and mental health nursing generally. This paper will suggest that the work of Michel Foucault, the French philosopher and historian, has much to contribute to the discussion about the nature, existence and exercise of power within contemporary mental health care. As well as examining his original and challenging account of power, Foucault's emphasis on the intimate relationship between power and knowledge will be explored within the context of psychiatry and mental health nursing. This is to say that the paper will investigate Foucault's account of how power and knowledge are central to the process by which human beings are 'made subjects' and therefore how 'psychiatric identities' are produced. In doing so, it will be suggested that Foucault's work can not only make a valuable contribution to contemporary discussions about power and knowledge, but can also provide a significant critique and reconceptualization of the theoretical foundations and associated diagnostic and therapeutic practices of psychiatry and mental health nursing.
Selective Laser Sintering of Nano Al2O3 Infused Polyamide
Warnakula, Anthony; Singamneni, Sarat
2017-01-01
Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220
A simplified close range photogrammetry method for soil erosion assessment
USDA-ARS?s Scientific Manuscript database
With the increased affordability of consumer grade cameras and the development of powerful image processing software, digital photogrammetry offers a competitive advantage as a tool for soil erosion estimation compared to other technologies. One bottleneck of digital photogrammetry is its dependency...
Glycerol combustion and emissions
With the growing capacity in biodiesel production and the resulting glut of the glycerol by-product, there is increasing interest in finding alternative uses for crude glycerol. One option may be to burn it locally for combined process heat and power, replacing fossil fuels and i...
Redefining the Principalship in Restructuring Schools.
ERIC Educational Resources Information Center
Murphy, Joseph
1994-01-01
Principals in restructuring schools are working in an increasingly turbulent policy environment that adds expectations but deletes little from their traditional roles. Two tasks form the basis of newly defined power relationships--delegating responsibilities and developing collaborative decision-making processes. Leading from the center means…
Image databases: Problems and perspectives
NASA Technical Reports Server (NTRS)
Gudivada, V. Naidu
1989-01-01
With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Valuing hydrological forecasts for a pumped storage assisted hydro facility
NASA Astrophysics Data System (ADS)
Zhao, Guangzhi; Davison, Matt
2009-07-01
SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.
Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.
Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong
2014-08-01
The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure. Copyright © 2014 Elsevier Ltd. All rights reserved.
On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power
NASA Astrophysics Data System (ADS)
Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.
1994-02-01
Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.
NASA Astrophysics Data System (ADS)
Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Sadykov, I. D.
2016-04-01
The paper outlines peculiarities of structure formation, phase and chemical composition in regard to heat content in molten electrode metal beads when pipe steel (steel 09G2S) welding using power sources with various energy characteristics. Mathematical calculations indicate an inverter power source provides minor heat content into the bead of electrode metal when welding. Experimental research has pointed at 4-9 % increase in impact strength of joints produced using an inverter power source in comparison with samples produced applying a diode rectifier. The following factors can possibly give rise to the increasing impact strength: difference in microstructures of weld joints, up to 50% shortening ferritic plates in metal of weld joint, change in dimensions of ferritic grains in the heat-affected zone by as much as 17.5 %, and decrease in the extent of heat-affected zone by 50%.
MacNeill, Leigha A; Ram, Nilam; Bell, Martha Ann; Fox, Nathan A; Pérez-Edgar, Koraly
2018-05-01
This study examined how timing (i.e., relative maturity) and rate (i.e., how quickly infants attain proficiency) of A-not-B performance were related to changes in brain activity from age 6 to 12 months. A-not-B performance and resting EEG (electroencephalography) were measured monthly from age 6 to 12 months in 28 infants and were modeled using logistic and linear growth curve models. Infants with faster performance rates reached performance milestones earlier. Infants with faster rates of increase in A-not-B performance had lower occipital power at 6 months and greater linear increases in occipital power. The results underscore the importance of considering nonlinear change processes for studying infants' cognitive development as well as how these changes are related to trajectories of EEG power. © 2018 The Authors. Child Development © 2018 Society for Research in Child Development, Inc.
Warped linear mixed models for the genetic analysis of transformed phenotypes
Fusi, Nicolo; Lippert, Christoph; Lawrence, Neil D.; Stegle, Oliver
2014-01-01
Linear mixed models (LMMs) are a powerful and established tool for studying genotype–phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction. PMID:25234577
Warped linear mixed models for the genetic analysis of transformed phenotypes.
Fusi, Nicolo; Lippert, Christoph; Lawrence, Neil D; Stegle, Oliver
2014-09-19
Linear mixed models (LMMs) are a powerful and established tool for studying genotype-phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction.
Trends and problems in development of the power plants electrical part
NASA Astrophysics Data System (ADS)
Gusev, Yu. P.
2015-03-01
The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.
Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.
1998-01-01
Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.
GaAs VLSI technology and circuit elements for DSP
NASA Astrophysics Data System (ADS)
Mikkelson, James M.
1990-10-01
Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs
Farabi, Sarah S.; Prasad, Bharati; Quinn, Lauretta; Carley, David W.
2014-01-01
Study Objectives: To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). Methods: EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Results: Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. Conclusions: This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG. Citation: Farabi SS; Prasad B; Quinn L; Carley DW. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome. J Clin Sleep Med 2014;10(1):49-56. PMID:24426820
High Available COTS Based Computer for Space
NASA Astrophysics Data System (ADS)
Hartmann, J.; Magistrati, Giorgio
2015-09-01
The availability and reliability factors of a system are central requirements of a target application. From a simple fuel injection system used in cars up to a flight control system of an autonomous navigating spacecraft, each application defines its specific availability factor under the target application boundary conditions. Increasing quality requirements on data processing systems used in space flight applications calling for new architectures to fulfill the availability, reliability as well as the increase of the required data processing power. Contrary to the increased quality request simplification and use of COTS components to decrease costs while keeping the interface compatibility to currently used system standards are clear customer needs. Data processing system design is mostly dominated by strict fulfillment of the customer requirements and reuse of available computer systems were not always possible caused by obsolescence of EEE-Parts, insufficient IO capabilities or the fact that available data processing systems did not provide the required scalability and performance.
Converging Intracranial Markers of Conscious Access
Gaillard, Raphaël; Dehaene, Stanislas; Adam, Claude; Clémenceau, Stéphane; Hasboun, Dominique; Baulac, Michel; Cohen, Laurent; Naccache, Lionel
2009-01-01
We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. PMID:19296722
Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter
NASA Astrophysics Data System (ADS)
Hugenschmidt, Manfred
1986-10-01
The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.
Reduced local field potential power in the medial prefrontal cortex by noxious stimuli.
Li, Ai-Ling; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo
2016-10-01
Nociceptive signals produced by noxious stimuli at the periphery reach the brain through ascending pathways. These signals are processed by various brain areas and lead to activity changes in those areas. The medial prefrontal cortex (mPFC) is involved in higher cognitive functions and emotional processing. It receives projections from brain areas involved in nociception. In this study, we investigated how nociceptive input from the periphery changes the local field potential (LFP) activity in the mPFC. Three different types of noxious stimuli were applied to the hind paw contralateral to the LFP recording site. They were transcutaneous electrical stimulations, mechanical stimuli and a chemical stimulus (formalin injection). High intensity transcutaneous stimulations (10V to 50V) and noxious mechanical stimulus (pinch) significantly reduced the LFP power during the stimulating period (p<0.05), but not the low intensity subcutaneous stimulations (0.1V to 5V) and other innocuous mechanical stimuli (brush and pressure). More frequency bands were inhibited with increased intensity of transcutaneous electrical stimulation, and almost all frequency bands were inhibited by stimulations at or higher than 30v. Pinch significantly reduced the power for beta band and formalin injection significantly reduced the power of alpha and beta band. Our data demonstrated the noxious stimuli-induced reduction of LFP power in the mPFC, which indicates the active processing of nociceptive information by the mPFC. Copyright © 2016 Elsevier Inc. All rights reserved.
Integrated Multi-process Microfluidic Systems for Automating Analysis
Yang, Weichun; Woolley, Adam T.
2010-01-01
Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343
Perry, Nicole B.; Swingler, Margaret M.; Calkins, Susan D.; Bell, Martha Ann
2015-01-01
Current theoretical conceptualizations of regulatory development suggest that attention processes and emotion regulation processes share common neurophysiological underpinnings and behavioral antecedents such that emotion regulation abilities may build upon early attentional skills. To further elucidate this proposed relationship, we tested whether early neurophysiological processes measured during an attention task in infancy predicted in-task attention behavior, and whether infant's attention behavior was subsequently associated with their ability to regulate emotion in early childhood (N=388). Results indicated that, greater EEG power change (from baseline to task) at medial frontal locations (F3 and F4) during an attention task at 10 months were associated with concurrent observed behavioral attention. Specifically, greater change in EEG power at the right frontal location (F4) was associated with more attention, and greater EEG power at the left frontal location (F3) was associated with less attention, indicating a potential right hemisphere specialization for attention processes already present in the first year of life. In addition, after controlling for 5-month attention behavior, increased behavioral attention at 10-months was negatively associated with children's observed frustration to emotional challenge at age 3. Finally, the indirect effects from 10-month EEG power change at F3 and F4 to 3-year emotion regulation via infants' 10-month behavioral attention were significant, suggesting that infant's attention behavior is one mechanism through which early neurophysiological activity is related to emotion regulation abilities in childhood. PMID:26381926
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong
2017-12-01
A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.
Generation capacity expansion planning in deregulated electricity markets
NASA Astrophysics Data System (ADS)
Sharma, Deepak
With increasing demand of electric power in the context of deregulated electricity markets, a good strategic planning for the growth of the power system is critical for our tomorrow. There is a need to build new resources in the form of generation plants and transmission lines while considering the effects of these new resources on power system operations, market economics and the long-term dynamics of the economy. In deregulation, the exercise of generation planning has undergone a paradigm shift. The first stage of generation planning is now undertaken by the individual investors. These investors see investments in generation capacity as an increasing business opportunity because of the increasing market prices. Therefore, the main objective of such a planning exercise, carried out by individual investors, is typically that of long-term profit maximization. This thesis presents some modeling frameworks for generation capacity expansion planning applicable to independent investor firms in the context of power industry deregulation. These modeling frameworks include various technical and financing issues within the process of power system planning. The proposed modeling frameworks consider the long-term decision making process of investor firms, the discrete nature of generation capacity addition and incorporates transmission network modeling. Studies have been carried out to examine the impact of the optimal investment plans on transmission network loadings in the long-run by integrating the generation capacity expansion planning framework within a modified IEEE 30-bus transmission system network. The work assesses the importance of arriving at an optimal IRR at which the firm's profit maximization objective attains an extremum value. The mathematical model is further improved to incorporate binary variables while considering discrete unit sizes, and subsequently to include the detailed transmission network representation. The proposed models are novel in the sense that the planning horizon is split into plan sub-periods so as to minimize the overall risks associated with long-term plan models, particularly in the context of deregulation.
Landguth, Erin L.; Gedy, Bradley C.; Oyler-McCance, Sara J.; Garey, Andrew L.; Emel, Sarah L.; Mumma, Matthew; Wagner, Helene H.; Fortin, Marie-Josée; Cushman, Samuel A.
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.
Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.-J.; Cushman, S.A.
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals. ?? 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Tian, Zhang; Yanfeng, Gong
2017-05-01
In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Feng, Cong
Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less
The National Carbon Capture Center at the Power Systems Development Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-12-30
The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh
2006-01-01
We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.
Simplified power processing for ion-thruster subsystems
NASA Technical Reports Server (NTRS)
Wessel, F. J.; Hancock, D. J.
1983-01-01
Compared to chemical propulsion, ion propulsion offers distinct payload-mass increases for many future low-thrust earth-orbital and deep-space missions. Despite this advantage, the high initial cost and complexity of ion-propulsion subsystems reduce their attractiveness for most present and near-term spacecraft missions. Investigations have, therefore, been conducted with the objective to attempt to simplify the power-processing unit (PPU), which is the single most complex and expensive component in the thruster subsystem. The present investigation is concerned with a program to simplify the design of the PPU employed in a 8-cm mercury-ion-thruster subsystem. In this program a dramatic simplification in the design of the PPU could be achieved, while retaining essential thruster control and subsystem operational flexibility.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.
2018-02-01
Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.
Brain dynamics that correlate with effects of learning on auditory distance perception.
Wisniewski, Matthew G; Mercado, Eduardo; Church, Barbara A; Gramann, Klaus; Makeig, Scott
2014-01-01
Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m) and far (30-m) distances. Listeners' accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC) processes identified in electroencephalographic (EEG) data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS) that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD) were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS). The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.
Brazhnik, Elena; Cruz, Ana V.; Avila, Irene; Wahba, Marian I.; Novikov, Nikolay; Ilieva, Neda M.; McCoy, Alex J.; Gerber, Colin; Walters, Judith. R.
2012-01-01
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of Parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, seven days after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8–25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25–40 Hz band with a peak frequency at 30–35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25–40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity. PMID:22674263
CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes
NASA Astrophysics Data System (ADS)
Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan
2018-03-01
Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.
Job Stress Reactivity and Work-Related Musculoskeletal Symptoms
2001-05-01
analogous to waste thermal warmth in a power plant ), they propose that increased processing demands (either physical or mental) placed upon a task...32 on the next page) MEDICAL Yes No Nonsteroidal anti-inflammatory drugs (e.g., Ibuprofen, Naproxen , Naprosyn) Oral steroids Local steroid
Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick
2017-09-01
Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Phenolic acids as bioindicators of fly ash deposit revegetation
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Djurdjevic; M. Mitrovic; P. Pavlovic
The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central partmore » of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.« less
Chirped-pulse coherent-OTDR with predistortion
NASA Astrophysics Data System (ADS)
Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan
2018-03-01
In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.
Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus.
Hart, John; Maguire, Mandy J; Motes, Michael; Mudar, Raksha Anand; Chiang, Hsueh-Sheng; Womack, Kyle B; Kraut, Michael A
2013-07-01
We propose that pre-supplementary motor area (pre-SMA)-thalamic interactions govern processes fundamental to semantic retrieval of an integrated object memory. At the onset of semantic retrieval, pre-SMA initiates electrical interactions between multiple cortical regions associated with semantic memory subsystems encodings as indexed by an increase in theta-band EEG power. This starts between 100-150 ms after stimulus presentation and is sustained throughout the task. We posit that this activity represents initiation of the object memory search, which continues in searching for an object memory. When the correct memory is retrieved, there is a high beta-band EEG power increase, which reflects communication between pre-SMA and thalamus, designates the end of the search process and resultant in object retrieval from multiple semantic memory subsystems. This high beta signal is also detected in cortical regions. This circuit is modulated by the caudate nuclei to facilitate correct and suppress incorrect target memories. Copyright © 2012 Elsevier Inc. All rights reserved.
Evidence, Power, and Policy Change in Community-Based Participatory Research
Tsui, Emma
2014-01-01
Meaningful improvements in health require modifying the social determinants of health. As policies are often underlying causes of the living conditions that shape health, policy change becomes a health goal. This focus on policy has led to increasing interest in expanding the focus of community-based participatory research (CBPR) to change not only communities but also policies. To best realize this potential, the relationship between evidence and power in policy change must be more fully explored. Effective action to promote policies that improve population health requires a deeper understanding of the roles of scientific evidence and political power in bringing about policy change; the appropriate scales for policy change, from community to global; and the participatory processes that best acknowledge the interplay between power and evidence. PMID:24228677
Battery-powered thin film deposition process for coating telescope mirrors in space
NASA Astrophysics Data System (ADS)
Sheikh, David A.
2016-07-01
Aluminum films manufactured in the vacuum of space may increase the broadband reflectance response of a space telescope operating in the EUV (50-nm to 115-nm) by eliminating absorbing metal-fluorides and metal-oxides, which significantly reduce aluminum's reflectance below 115-nm. Recent developments in battery technology allow small lithium batteries to rapidly discharge large amounts of energy. It is therefore conceivable to power an array of resistive evaporation filaments in a space environment, using a reasonable mass of batteries and other hardware. This paper presents modeling results for coating thickness as a function of position, for aluminum films made with a hexagonal array of battery powered evaporation sources. The model is based on measured data from a single battery-powered evaporation source.
Effects of aberrant gamma frequency oscillations on prepulse inhibition.
Jones, Nigel C; Anderson, Paul; Rind, Gil; Sullivan, Caley; van den Buuse, Maarten; O'Brien, Terence J
2014-10-01
Emerging literature implicates abnormalities in gamma frequency oscillations in the pathophysiology of schizophrenia, with hypofunction of N-methyl-D-aspartate (NMDA) receptors implicated as a key factor. Prepulse inhibition (PPI) is a behavioural measure of sensorimotor gating, which is disrupted in schizophrenia. We studied relationships between ongoing and sensory-evoked gamma oscillations and PPI using pharmacological interventions designed to increase gamma oscillations (ketamine, MK-801); reduce gamma oscillations (LY379268); or disrupt PPI (amphetamine). We predicted that elevating ongoing gamma power would lead to increased 'neural noise' in cortical circuits, dampened sensory-evoked gamma responses and disrupted behaviour. Wistar rats were implanted with EEG recording electrodes. They received ketamine (5 mg/kg), MK-801 (0.16 mg/kg), amphetamine (0.5 mg/kg), LY379268 (3 mg/kg) or vehicle and underwent PPI sessions with concurrent EEG recording. Ketamine and MK-801 increased the power of ongoing gamma oscillations and caused time-matched disruptions of PPI, while amphetamine marginally affected ongoing gamma power. In contrast, LY379268 reduced ongoing gamma power, but had no effect on PPI. The sensory gamma response evoked by the prepulse was reduced following treatment with all psychotomimetics, associating with disruptions in PPI. This was most noticeable following treatment with NMDA receptor antagonists. We found that ketamine and MK-801 increase ongoing gamma power and reduce evoked gamma power, both of which are related to disruptions in sensorimotor gating. This appears to be due to antagonism of NMDA receptors, since amphetamine and LY379268 differentially impacted these outcomes and possess different neuropharmacological substrates. Aberrant gamma frequency oscillations caused by NMDA receptor hypofunction may mediate the sensory processing deficits observed in schizophrenia.
Kinsey, K; Anderson, S J; Hadjipapas, A; Holliday, I E
2011-03-01
The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention. Copyright © 2010 Elsevier B.V. All rights reserved.
Accelerated design of bioconversion processes using automated microscale processing techniques.
Lye, Gary J; Ayazi-Shamlou, Parviz; Baganz, Frank; Dalby, Paul A; Woodley, John M
2003-01-01
Microscale processing techniques are rapidly emerging as a means to increase the speed of bioprocess design and reduce material requirements. Automation of these techniques can reduce labour intensity and enable a wider range of process variables to be examined. This article examines recent research on various individual microscale unit operations including microbial fermentation, bioconversion and product recovery techniques. It also explores the potential of automated whole process sequences operated in microwell formats. The power of the whole process approach is illustrated by reference to a particular bioconversion, namely the Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one for the production of optically pure lactones.
Flexibility of CCS Power Plants and Transport Systems
NASA Astrophysics Data System (ADS)
Nimtz, Michael; Krautz, Hans-Joachim
2013-04-01
Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.
Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry.
Pearse, Alexander; Schmitt, Thomas; Sahadeo, Emily; Stewart, David M; Kozen, Alexander; Gerasopoulos, Konstantinos; Talin, A Alec; Lee, Sang Bok; Rubloff, Gary W; Gregorczyk, Keith E
2018-05-22
Three-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring. All active battery components-electrodes, solid electrolyte, and current collectors-were deposited by atomic layer deposition (ALD) onto standard CMOS processable silicon wafers microfabricated to form arrays of deep pores with aspect ratios up to approximately 10. The cells utilize an electrochemically prelithiated LiV 2 O 5 cathode, a very thin (40-100 nm) Li 2 PO 2 N solid electrolyte, and a SnN x anode. The fabrication process occurs entirely at or below 250 °C, promising compatibility with a variety of substrates as well as integrated circuits. The multilayer battery structure enabled all-ALD solid-state cells to deliver 37 μAh/cm 2 ·μm (normalized to cathode thickness) with only 0.02% per-cycle capacity loss. Conformal fabrication of full cells over 3D substrates increased the areal discharge capacity by an order of magnitude while simulteneously improving power performance, a trend consistent with a finite element model. This work shows that the exceptional conformality of ALD, combined with conventional semiconductor fabrication methods, provides an avenue for the successful realization of long-sought 3D TSSBs which provide power performance scaling in regimes inaccessible to planar form factor cells.
Parallel, distributed and GPU computing technologies in single-particle electron microscopy
Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-01-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686
NASA Astrophysics Data System (ADS)
Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.
2016-09-01
The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.
Thermally assisted nanosecond laser generation of ferric nanoparticles
NASA Astrophysics Data System (ADS)
Kurselis, K.; Kozheshkurt, V.; Kiyan, R.; Chichkov, B.; Sajti, L.
2018-03-01
A technique to increase nanosecond laser based production of ferric nanoparticles by elevating temperature of the iron target and controlling its surface exposure to oxygen is reported. High power near-infrared laser ablation of the iron target heated up to 600 °C enhances the particle generation efficiency by more than tenfold exceeding 6 μg/J. Temporal and thermal dependencies of the particle generation process indicate correlation of this enhancement with the oxidative processes that take place on the iron surface during the per spot interpulse delay. Nanoparticles, produced using the heat-assisted ablation technique, are examined using scanning electron and transmission electron microscopy confirming the presence of 1-100 nm nanoparticles with an exponential size distribution that contain multiple randomly oriented magnetite nanocrystallites. The described process enables the application of high power lasers and facilitates precise, uniform, and controllable direct deposition of ferric nanoparticle coatings at the industry-relevant rates.
Parallel, distributed and GPU computing technologies in single-particle electron microscopy.
Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-07-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.
Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane
NASA Astrophysics Data System (ADS)
Osaka, Yugo; Kobayashi, Noriyuki; Razzak, M. A.; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko
Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility.
Children's feeding programs in Atlantic Canada: some Foucauldian theoretical concepts in action.
Dayle, Jutta B; McIntyre, Lynn
2003-07-01
Since 1989 the number of Canadian children depending on food banks has increased by more than 85%. To combat perceived hunger, breakfast and lunch programs have been initiated by localized volunteer efforts. This paper attempts to show the Foucauldian concepts of power, truths, space and time in action in feeding programs in Atlantic Canada. A potential 'relation of docility-utility' is imposed upon children by providers of feeding programs and ultimately the state. The 'power over life' or 'micro-physics of power' is accomplished through procedures that use food, rules, rewards, reinforcements, space, time, and truths. Children voluntarily subject themselves to this relation while reserving the power to resist through acts of defiance or by not attending at all. This ability to exercise one's agency allows for shifting power relations in the social dynamics of feeding programs. The potentially coercive nature of these relationships is embedded in the pleasurable environment generated by the feeding process.
Shifts in information processing level: the speed theory of intelligence revisited.
Sircar, S S
2000-06-01
A hypothesis is proposed here to reconcile the inconsistencies observed in the IQ-P3 latency relation. The hypothesis stems from the observation that task-induced increase in P3 latency correlates positively with IQ scores. It is hypothesised that: (a) there are several parallel information processing pathways of varying complexity which are associated with the generation of P3 waves of varying latencies; (b) with increasing workload, there is a shift in the 'information processing level' through progressive recruitment of more complex polysynaptic pathways with greater processing power and inhibition of the oligosynaptic pathways; (c) high-IQ subjects have a greater reserve of higher level processing pathways; (d) a given 'task-load' imposes a greater 'mental workload' in subjects with lower IQ than in those with higher IQ. According to this hypothesis, a meaningful comparison of the P3 correlates of IQ is possible only when the information processing level is pushed to its limits.
Pulsed Nd:YAG laser welding of cardiac pacemaker batteries with reduced heat input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerschbach, P.W.; Hinkley, D.A.
1997-03-01
The effects of Nd:YAG laser beam welding process parameters on the resulting heat input in 304L stainless steel cardiac pacemaker batteries have been studied. By careful selection of process parameters, the results can be used to reduce temperatures near glass-to-metal seals and assure hermeticity in laser beam welding of high reliability components. Three designed response surface experiments were used to compare welding performance with lenses of varying focal lengths. The measured peak temperatures at the glass-to-metal seals varied from 65 to 140 C (149 to 284 F) and depended strongly on the levels of the experimental factors. It was foundmore » that welds of equivalent size can be made with significantly reduced temperatures. The reduction in battery temperatures has been attributed to an increase in the melting efficiency. This increase is thought to be due primarily to increased travel speeds, which were facilitated by high peak powers and low pulse energies. For longer focal length lenses, weld fusion zone widths were found to be greater even without a corresponding increase in the size of the weld. It was also found that increases in laser beam irradiance either by higher peak powers or smaller spot sizes created deeper and larger welds. These gains were attributed to an increase in the laser energy transfer efficiency.« less
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1971-01-01
Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.
Multiple-objective optimization in precision laser cutting of different thermoplastics
NASA Astrophysics Data System (ADS)
Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.
2015-04-01
Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.