Science.gov

Sample records for increased radiation resistance

  1. Increase in bacteriophage radiation resistance as a result of enhanced expression of stress systems in host cells

    SciTech Connect

    Verbenko, V.N.; Kalinin, V.L.

    1995-12-01

    By means of polyacrylamide gel electrophoresis (PAGE) of proteins from radiation-resistant Gam{sup r} mutants of Escherichia coli, it was shown that induction and elimination of RecA protein in these mutants are kinetically more rapid than in wild type cells, and heat-shock proteins (HSP) are hyperproduced even at a normal temperature (32{degrees}C). {gamma}- and UV-irradiated bacteriophages were used to study the results of simultaneous enhanced expression of two stress repair systems. Radiation-resistant mutants are similar to wild type cells in their ability to reactivate phages {Lambda}cI, {phi}80 vir, and T4D inactivated by {gamma}-rays and UV-light. W-reactivation of {gamma}-irradiated phages {Lambda} and {phi}80 is respectively 1.5 and 1.2 times higher in Gam{sup r} cells in which maximal W-reactivation was observed at wide range of doses (from 300 to 2000 Gy), whereas in wild type cells the peak C of W-reactivation was registered at doses of 400 to 450 Gy. The phage {Lambda}, {gamma}-irradiated upon adsorption on the cells of a radiation-resistant mutant, was two times more resistant to {gamma}-rays (DMF = 2 at LD{sub 10}) than when irradiated upon adsorption on wild type cells. Postirradiation degradation of the phage {Lambda} DNA, when irradiated within Gam{sup r} cells, was significantly lower than in wild type cells, and preirradiation of the cells decreased phage DNA degradation (12% in Gam{sup r} cells and 30% in wild-type cells). The role of an increased HSP level and expression of SOS-regulon in radiation resistance and possible interaction of stress systems in bacterial cells are discussed. 18 refs., 6 figs.

  2. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  3. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  4. Mechanisms of plant resistance to increased solar ultraviolet-B radiation. Final report

    SciTech Connect

    Teramura, A.H.; Sullivan, J.H.

    1988-05-01

    Since the major conclusions of the project are being disseminated via the scientific literature, the final report consists of a compilation of 11 articles and manuscripts on the effects of ultraviolet-B radiation (UVB) on soybean growth and yield, stress interactions with UVB, and effects of UVB on seedling growth in conifers (the Pinaceae). The effects of UVB on soybeans under field and greenhouse conditions, and under water stress, drought stress and phosphorus deficiency were studied. Soybean yields, seed quality, and physiology, including seed fatty acid and sterol composition, were determined.

  5. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9.

    PubMed

    Yan, Li; Xu, Guoxiong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan; Li, Xuan

    2013-09-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The aim of this study was to establish a radiation-resistant lung cancer cell line, to evaluate whether CpG oligodeoxyribonucleotide (CpG-ODN) 7909 could increase its radiosensitivity and to explore the relevant mechanisms. The radioresistant cell line, referred to as R-A549, was generated by reduplicative fractionated irradiation from the human lung adenocarcinoma cell line A549. The radioresistance of R-A549 cells were confirmed by the Cell Counting Kit-8 (CCK-8), cell viability assay, and clonogenic assay. Cell growth kinetics, morphological feature, and radiosensitivity were compared between the original A549 cells and R-A549 cells treated with or without CpG-ODN 7909 or radiation. To further explore the potential mechanisms of radiosensitivity, the cell cycle distributions and the expression of Toll-like receptor 9 (TLR-9) were examined by Western blot and flow cytometry. The R-A549 cell line was generated and its radioresistance was further confirmed. CpG-ODN 7909 was found to increase much more radiosensitivity of R-A549 cells under combined treatments with CpG-ODN 7909 and radiation compared with its control group without any treatments. They presented their respective D0 1.33 ± 0.20 Gy versus 1.76 ± 0.25 Gy with N 3.44 ± 1.01 versus 4.96 ± 0.32. Further, there was a larger cell population of R-A549 cells under combined treatment in the G2/M phase compared with the control group after treatment with CpG-ODN7909 or radiation alone at 24 and 48 hour. The expression level of TLR-9 in R-A549 cells was found higher than in A549 cells. These results suggested that CpG-ODN 7909 increased the radiosensitivity of R-A549 cells, which might be mediated via the upregulated TLR-9 and prolonged cell cycle arrest in the G2/M phase compared with A549 cells.

  6. Intrinsic radiation resistance in human chondrosarcoma cells

    SciTech Connect

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A. . E-mail: joseph-buckwalter@uiowa.edu

    2006-07-28

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16{sup ink4a}, one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16{sup ink4a} contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16{sup ink4a} expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16{sup ink4a} expression on chondrosarcoma cell resistance to low-dose {gamma}-irradiation (1-5 Gy). p16{sup ink4a} expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16{sup ink4a} transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16{sup ink4a} plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.

  7. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling.

    PubMed

    Weston, Victoria J; Austen, Belinda; Wei, Wenbin; Marston, Eliot; Alvi, Azra; Lawson, Sarah; Darbyshire, Philip J; Griffiths, Mike; Hill, Frank; Mann, Jill R; Moss, Paul A H; Taylor, A Malcolm R; Stankovic, Tatjana

    2004-09-01

    To investigate possible causes of the variable response to treatment in pediatric B-precursor acute lymphoblastic leukemia (ALL) and to establish potential novel therapeutic targets, we used ionizing radiation (IR) exposure as a model of DNA damage formation to identify tumors with resistance to p53-dependent apoptosis. Twenty-one of 40 ALL tumors responded normally to IR, exhibiting accumulation of p53 and p21 proteins and cleavage of caspases 3, 7, and 9 and of PARP1. Nineteen tumors exhibited apoptotic resistance and lacked PARP1 and caspase cleavage; although 15 of these tumors had normal accumulation of p53 and p21 proteins, examples exhibited abnormal expression of TRAF5, TRAF6, and cIAP1 after IR, suggesting increased NF-kappaB prosurvival signaling as the mechanism of apoptotic resistance. The presence of a hyperactive PARP1 mutation in one tumor was consistent with such increased NF-kappaB activity. PARP1 inhibition restored p53-dependent apoptosis after IR in these leukemias by reducing NF-kappaB DNA binding and transcriptional activity. In the remaining 4 ALL tumors, apoptotic resistance was associated with a TP53 mutation or with defective activation of p53. We conclude that increased NF-kappaB prosurvival signaling is a frequent mechanism by which B-precursor ALL tumors develop apoptotic resistance to IR and that PARP1 inhibition may improve the DNA damage response of these leukemias.

  8. Head Resistance Due to Radiators

    NASA Technical Reports Server (NTRS)

    Kleinschmidt, R V; Parsons, S R

    1920-01-01

    Part 1 deals with the head resistance of a number of common types of radiator cores at different speeds in free air, as measured in the wind tunnel at the bureau of standards. This work was undertaken to determine the characteristics of various types of radiator cores, and in particular to develop the best type of radiator for airplanes. Some 25 specimens of core were tested, including practically all the general types now in use, except the flat plate type. Part 2 gives the results of wind tunnel tests of resistance on a model fuselage with a nose radiator. Part 3 presents the results of preliminary tests of head resistance of a radiator enclosed in a streamlined casing. Special attention is given to the value of wing radiator and of the radiator located in the open, especially when it is provided with a properly designed streamlined casing.

  9. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    SciTech Connect

    Matthews, Q; Lum, JJ; Isabelle, M; Harder, S; Jirasek, A; Brolo, AG

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  10. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  11. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  12. Radiation resistance of acinetobacter spp.

    NASA Astrophysics Data System (ADS)

    Whitby, James L.

    1995-02-01

    The radiation resistance of 78 different strains of Acinetobacter sp. 42 from clinical isolates and 36 from other sources were compared with 15 clinical isolates and 12 other strains from Denmark. None of the Canadian strains was as resistant as resistant-enhanced Danish strains. Four strains had D 10 values of 3.1-3.6 kGy. Irradiated and unirradiated cells from all strains grew well, when cultured in Trypticase-Soy Broth at 30°C. Most cultures grew after overnight incubation. It was concluded that there would be no difficulty in detecting these strains, using ISO methodology for establishing the radiation sterilization dose for devices.

  13. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  14. Gravitational radiation resistance, radiation damping and field fluctuations

    NASA Astrophysics Data System (ADS)

    Schaefer, G.

    1981-03-01

    Application is made of two different generalized fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalizations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance.

  15. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions.

    PubMed

    Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L

    2015-05-01

    Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions.

  16. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  17. Resistance of Marine Bacterioneuston to Solar Radiation

    PubMed Central

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-01-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for γ-proteobacteria and 14% and 8% for α-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the γ-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria. PMID:16151115

  18. Resistance of marine bacterioneuston to solar radiation.

    PubMed

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-09-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for gamma-proteobacteria and 14% and 8% for alpha-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the gamma-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria.

  19. Targeting Notch to overcome radiation resistance.

    PubMed

    Yahyanejad, Sanaz; Theys, Jan; Vooijs, Marc

    2016-02-16

    Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies.

  20. Targeting Notch to overcome radiation resistance

    PubMed Central

    Yahyanejad, Sanaz; Theys, Jan; Vooijs, Marc

    2016-01-01

    Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies. PMID:26713603

  1. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  2. Fires increase Amazon forest productivity through increases in diffuse radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Spracklen, D. V.; Mercado, L.; Reddington, C. L.; Haywood, J. M.; Ellis, R. J.; Phillips, O. L.; Artaxo, P.; Bonal, D.; Restrepo Coupe, N.; Butt, N.

    2015-06-01

    Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156 Tg C a-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60 Tg C a-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests.

  3. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  4. Archway for Radiation and Micrometeorite Occurrence Resistance

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.

    2012-01-01

    The environmental conditions of the Moon require mitigation if a long-term human presence is to be achieved for extended periods of time. Radiation, micrometeoroid impacts, high-velocity debris, and thermal cycling represent threats to crew, equipment, and facilities. For decades, local regolith has been suggested as a candidate material to use in the construction of protective barriers. A thickness of roughly 3m is sufficient protection from both direct and secondary radiation from cosmic rays and solar protons; this thickness is sufficient to reduce radiation exposure even during solar flares. NASA has previously identified a need for innovations that will support lunar habitats using lightweight structures because the reduction of structural mass translates directly into additional up and down mass capability that would facilitate additional logistics capacity and increased science return for all mission phases. The development of non-pressurized primary structures that have synergy with the development of pressurized structures is also of interest. The use of indigenous or in situ materials is also a well-known and active area of research that could drastically improve the practicality of human exploration beyond low-Earth orbit. The Archway for Radiation and Micrometeorite Occurrence Resistance (ARMOR) concept is a new, multifunctional structure that acts as radiation shielding and micrometeorite impact shielding for long-duration lunar surface protection of humans and equipment. ARMOR uses a combination of native regolith and a deployed membrane jacket to yield a multifunctional structure. ARMOR is a robust and modular system that can be autonomously assembled on-site prior to the first human surface arrival. The system provides protection by holding a sufficiently thick (3 m) archshaped shell of local regolith around a central cavity. The regolith is held in shape by an arch-shaped jacket made of strong but deployable material. No regolith processing is

  5. Ionizing radiation increases systemic nanoparticle tumor accumulation

    PubMed Central

    Giustini, A.J.; Petryk, A.A.; Hoopes, P.J.

    2012-01-01

    Nanoparticle-based therapies are currently being explored for both the imaging and treatment of primary and metastatic cancers. Effective nanoparticle cancer therapy requires significant accumulations of nanoparticles within the tumor environment. Various techniques have been used to improve tumor nanoparticle uptake and biodistribution. Most notable of these techniques are the use of tumor-specific-peptide-conjugated nanoparticles and chemical modification of the nanoparticles with immune-evading polymers. Another strategy for improving the tumor uptake of the nanoparticles is modification of the tumor microenvironment with a goal of enhancing the enhanced permeability and retention effect inherent to solid tumors. We demonstrate a two-fold increase in the tumor accumulation of systemically delivered iron oxide nanoparticles following a single, 15 Gy radiation dose in a syngeneic mouse breast tumor model. This increase in nanoparticle tumor accumulation correlates with a radiation-induced decrease in tumor interstitial pressure and a subsequent increase in vascular permeability. PMID:22633900

  6. Ethanologenic bacteria with increased resistance to furfural

    DOEpatents

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  7. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  8. Resistance and Cooling Power of Various Radiators

    NASA Technical Reports Server (NTRS)

    Smith, R H

    1928-01-01

    This reports combines the wind tunnel results of radiator tests made at the Navy Aerodynamical Laboratory in Washington during the summers of 1921, 1925, and 1926. In all, 13 radiators of various types and capacities were given complete tests for figure of merit. Twelve of these were tested for resistance to water flow and a fourteenth radiator was tested for air resistance alone, its heat dissipating capacity being known. All the tests were conducted in the 8 by 8 foot tunnel, or in its 4 by 8 foot restriction, by the writer and under conditions as nearly the same as possible. That is to say, as far as possible, the general arrangement and condition of the apparatus, the observation intervals, the ratio of water flow per unit of cooling surface, the differential temperatures, and the air speeds were the same for all.

  9. Radiation resistivity of polyacenaphthylene-grafted polyethylene

    NASA Astrophysics Data System (ADS)

    Hayakawa, Kiyoshi; Kawase, Kaoru; Yamakita, Hiromi

    Thin poly (ethylene-g-acenaphthylene) films prepared by the vapor-phase grafting method were subjected to the γ-irradiation in air, and various changes in tensile and structural properties of the film were investigated by comparing with those of the untreated or crosslinked polyethylene film. Polyethylene got to lose its inherent necking property by oxidative degradation and to be brittle-fractured by the irradiation dose less than 100 Mrad in air. The polyacenaphthylene-grafted polyethylenes (extent of grafting, ˜ 54 by {100( P-P°) }/{P°}), however, kept their ductility up to 200 Mrad or more, and the rate of increase in elastic modulus as well as yield strength with the increasing irradiation dose was considerably lower than that of untreated or crosslinked polyethylene. The effect of the grafting extent, and that of the irradiation dose-rate on the fracture energy were also examined. The weight increase of polyethylene due to the oxygen consumption and the resulting formation of carbonyl group which proceeded proportionally with the irradiation dose were remarkably suppressed by the grafting, whereas the double bond formation seemed to be unaffected by it. The grafted film held the original content of gel fraction unchanged during the irradiation in air, but the average molecular weight of the sol fraction decreased gradually. Meanwhile, the gel fraction of the crosslinked polyethylene was degenerated by a small dose of irradiation. The analysis of gaseous products revealed the formation of water, methanol, acetaldehyde and so forth from the irradiated grafted film. The grafting procedure and the subsequent irradiation of the grafted film did not affect the degree of crystallinity of the backbone polyethylene. The role played by the grafted polyacenaphthylene for endowing the radiation resistivity to polyethylene and its inherent limitation in effect were discussed from the structural point of view of the grafted film.

  10. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  11. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing microorganisms. Eradification techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation- based sterilization processes. Due to their resistance to a variety of perturbations, the non-spore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-spore-forming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/sq m), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  12. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  13. Three Cases of Levodopa-Resistant Parkinsonism After Radiation Therapy

    PubMed Central

    Mehanna, Raja; Jimenez-Shahed, Joohi; Itin, Ilia

    2016-01-01

    Case series Patients: Male, 77 • Female, 44 • Male, 9 Final Diagnosis: Radiation induced parkinsonism Symptoms: Slowness Medication: — Clinical Procedure: — Specialty: Neurology Objective: Unusual or unexpected effect of treatment Background: Unequivocal brain radiation-induced parkinsonism has so far been reported in only in two pediatric patients. However, with the rising incidence rates for brain tumors in industrialized countries and the consequential increased exposure to cranial radiotherapy, clinicians might become more exposed to this entity. Case Report: Three patients were treated for intraparenchymal brain tumor with resection, chemotherapy, and whole brain radiation. One patient developed leukoencephalopathy and parkinsonism within one year of treatment, one developed it seven years after treatment completion, and one developed dementia, parkinsonism and cerebral infracts 40 years after whole brain radiation. Brain MRIs and a DaTscan were obtained. All patients failed a trial of carbidopa/levodopa. We suggest that the brain radiation exposure was responsible for levodopa resistant parkinsonism, cognitive decline, and diffuse leukoencephalopathy. Conclusions: Although rare, radiation therapy-induced parkinsonism might be responsible for levodopa-resistant parkinsonism. PMID:27909286

  14. Gamma radiation resistance of spin Seebeck devices

    NASA Astrophysics Data System (ADS)

    Yagmur, A.; Uchida, K.; Ihara, K.; Ioka, I.; Kikkawa, T.; Ono, M.; Endo, J.; Kashiwagi, K.; Nakashima, T.; Kirihara, A.; Ishida, M.; Saitoh, E.

    2016-12-01

    Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma (γ) rays with the total dose of around 3 × 105 Gy in order to investigate the γ-radiation resistance of the devices. To demonstrate this, Pt/Ni0.2Zn0.3Fe2.5O4/Glass and Pt/Bi0.1Y2.9Fe5O12/Gd3Ga5O12 SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the γ-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.

  15. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  16. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  17. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance

    PubMed Central

    Wright, Gary; Ward, John M.; Dartnell, Lewis R.

    2015-01-01

    Abstract Extreme radiation–resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at −79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Key Words: Extremophiles—Halomonas sp.—Antarctica—Mars—Ionizing radiation—Cosmic rays. Astrobiology 15, 1076–1090. PMID:26684506

  18. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1977-01-01

    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  19. Experiments on the resistance of airplane wheels and radiators

    NASA Technical Reports Server (NTRS)

    1924-01-01

    Experiments were made on the resistance of four airplane wheels of different sizes and coverings and two Lamblin radiators. The results show the important influence of the wheel coverings. The closing of a shutter, which was fitted to one of the radiators, considerably lessened the resistance.

  20. Radiation resistance of endohedral metallofullerenols under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Szhogina, A. A.; Shilin, V. A.; Sedov, V. P.; Lebedev, V. T.

    2016-07-01

    The endohedral metallofullerenols Me@C2 n (OH)38-40 + C2 n (OH)38-40 ( Me = Tb, Sc, Gd, Fe, Pr, Mo) have been obtained and their radiation resistance under irradiation by a neutron flux of 8 × 1013 cm-2 s-1 has been studied. The factors affecting the radiation resistance of endohedral metallofullerenols are discussed.

  1. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria

    PubMed Central

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-01-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. PMID:28188144

  2. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  3. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  4. Radiation and Heat Resistance of Moraxella-Acinetobacter in Meats

    DTIC Science & Technology

    1978-01-23

    growth 7 Vacuum packaging and impact on growth of resistant isolates .... 7 Effect of fat content of meat on radiation and heat resistance of...approximately 10 cells per ml. Storage for culture main- tenance after growth was at 3-5*C. Vacuum packaging and impact on growth of resistant isolates...sensitive to reduced oxygen occur- ring with vacuum packaging of foods (Maxcy et al., 1976). Furthermore, most of the radiation-resiscant M-A were

  5. The role of depressed metabolism in increased radio resistance

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    Studies are presented of the physiology of depressed metabolism, radio-resistance in depressed metabolic states, comparative aspects of depressed metabolism, and gastrointestinal responses to ionizing radiation. Specific data cover helium-cold induced hypothermia in white rats and hamsters, and radiation responses and intestinal absorption in the gerbil.

  6. Radiation Resistant Vanadium-Graphene Nanolayered Composite

    PubMed Central

    Kim, Youbin; Baek, Jinwook; Kim, Sunghwan; Kim, Sangmin; Ryu, Seunghwa; Jeon, Seokwoo; Han, Seung Min

    2016-01-01

    Ultra high strength V-graphene nanolayers were developed for the first time that was demonstrated to have an excellent radiation tolerance as revealed by the He+ irradiation study. Radiation induced hardening, evaluated via nanopillar compressions before and after He+ irradiation, is significantly reduced with the inclusion of graphene layers; the flow stresses of V-graphene nanolayers with 110 nm repeat layer spacing showed an increase of 25% while pure V showed an increase of 88% after He+ dosage of 13.5 dpa. The molecular dynamics simulations confirmed that the graphene interface can spontaneously absorb the nearby crystalline defects that are produced from a collision cascade, thereby enhancing the lifetime of the V-graphene nanolayers via this self-healing effect. In addition, the impermeability of He gas through the graphene resulted in suppression of He bubble agglomerations that in turn reduced embrittlement. In-situ SEM compression also showed the ability of graphene to hinder crack propagation that suppressed the failure. PMID:27098407

  7. Radiation Resistant Vanadium-Graphene Nanolayered Composite

    NASA Astrophysics Data System (ADS)

    Kim, Youbin; Baek, Jinwook; Kim, Sunghwan; Kim, Sangmin; Ryu, Seunghwa; Jeon, Seokwoo; Han, Seung Min

    2016-04-01

    Ultra high strength V-graphene nanolayers were developed for the first time that was demonstrated to have an excellent radiation tolerance as revealed by the He+ irradiation study. Radiation induced hardening, evaluated via nanopillar compressions before and after He+ irradiation, is significantly reduced with the inclusion of graphene layers; the flow stresses of V-graphene nanolayers with 110 nm repeat layer spacing showed an increase of 25% while pure V showed an increase of 88% after He+ dosage of 13.5 dpa. The molecular dynamics simulations confirmed that the graphene interface can spontaneously absorb the nearby crystalline defects that are produced from a collision cascade, thereby enhancing the lifetime of the V-graphene nanolayers via this self-healing effect. In addition, the impermeability of He gas through the graphene resulted in suppression of He bubble agglomerations that in turn reduced embrittlement. In-situ SEM compression also showed the ability of graphene to hinder crack propagation that suppressed the failure.

  8. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Shilin, V. A.; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A.

    2016-07-01

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C60 and C70 fullerenes and C60(OH)30 and C70(OH)30 fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C2 n endometallofullerenes is lower than that of the corresponding Gd@C2 n (OH)38 fullerenols. The radiation resistance of mixtures of Me@C2 n (OH)38 ( Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C60(OH)30 is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  9. Radiation-resistant polymer-based photonics for space applications

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, B.; Repak, Paul L.; Brost, George A.; Pirich, Andrew R.; Craig, Douglas M.; Le, Dang T.; Cardimona, David A.; Fetterman, Harold R.; Tsap, Boris; Castaneda, Carlos M.; Barto, Richard R.; Zeng, Tingying; Wood, David; Claus, Richard O.

    2004-10-01

    Empirical data regarding the radiation induced responses of Mach Zehnder interferometric electro-optic polymer based modulators (PBMs) operating at 1310 and 1550 nm and broadband InP quantum dot (QD) polymer photodetectors (PPDs) operating into the near infrared (NIR) are reported. Modulators composed of spun-on materials and hybrid electostatically self assembled (ESA) and spun-on NLO materials are examined for changes to their half-wave voltage and insertion losses following a gamma-ray total dose of 163 krad(Si) and irradiation by 25.6 MeV protons at a fluence of ~1011 cm-2. Pre- and post- irradiation responses of ESA grown polymer detectors using InP QDs are examined for photovoltage degradation and aging effects. The data indicates and excellent potential for developing polymer based photonic (PBP) devices with increased radiation resistance suitable for transition to photonic space applications.

  10. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  11. Biology of Extreme Radiation Resistance: The Way of Deinococcus radiodurans

    PubMed Central

    Krisko, Anita; Radman, Miroslav

    2013-01-01

    The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage. A well-protected functional proteome ensures cell recovery from extensive radiation damage to other cellular constituents by molecular repair and turnover processes, including an efficient repair of disintegrated DNA. Therefore, cell death correlates with radiation-induced protein damage, rather than DNA damage, in both robust and standard species. From the reviewed biology of resistance to radiation and other sources of oxidative damage, we conclude that the impact of protein damage on the maintenance of life has been largely underestimated in biology and medicine. PMID:23818498

  12. Radiation Resistance and Injury of Yersinia enterocolitica

    PubMed Central

    El-Zawahry, Yehia A.; Rowley, D. B.

    1979-01-01

    The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25°C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and −30°C, the D value of strain IP107 was 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at −20°C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at −20°C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at −20°C, nor did storage at −20°C alter the cell's resistance to irradiation at 25°C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36°C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36°C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5°C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36°C for 1 day than at 5°C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation. PMID:570017

  13. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  14. Radiation Effects of Commercial Resistive Random Access Memories

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.

  15. Electrical resistivity of radiation disordered oxide BaNb sub 4 O sub 6

    SciTech Connect

    Davydov, S.A.; Goshchitskii, B.N.; Karkin, A.E.; Mirmelstein, A.V.; Voronin, V.I.; Parkhomenko, V.D. ); Zubkov, V.G.; Perelyaev, V.N.; Berger, I.F.; Kontzevaya, I.A. )

    1990-07-01

    The effect of radiation disorder on the electrical resistivity of the metallic non-superconducting BaNb{sub 4}O{sub 6} oxide has been investigated. It is shown that variation of electrical resistivity {rho} of this compound under disorder is typical of metallic systems, i.e. residual resistivity increases linearly with defect concentration while the temperature dependence of {rho} changes slightly. Such a behavior qualitatively differs from the previously observed unusual behavior of HTSC with similar crystal structure.

  16. Development of radiation resistant electrical cable insulations

    NASA Technical Reports Server (NTRS)

    Lee, B. S.; Soo, P.; Mackenzie, D. R.

    1994-01-01

    Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.

  17. Towards understanding the extreme radiation resistance of Ustilago maydis.

    PubMed

    Holloman, William K; Schirawski, Jan; Holliday, Robin

    2007-12-01

    Ustilago maydis is a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation. The molecular mechanisms underlying this resistance are as yet unknown. The recently determined genome sequence was examined for clues to the radiation resistance, focusing on proteins in homologous recombination, but there was little that was unusual about them. Furthermore, by comparison, its recombinational repair system seems to be only minimally related to the extended synthesis-dependent DNA strand-annealing system of Deinococcus radiodurans. Thus, consideration should be given to the possibility that incremental structural changes in repair proteins or their elevated expression are the basis for the extreme radiation resistance in U. maydis. Evolution of a system enabling the survival of U. maydis under such conditions could be a secondary consequence of adaptation to an environment of continual genotoxic stress encountered in its habitat.

  18. Longevity, oxygen toxicity and radiation-enhanced resistance to oxygen in tribolium confusum

    SciTech Connect

    Lee, Y.J.

    1985-01-01

    Sublethal doses of ionizing radiation increase longevity in a variety of insects suggesting that irradiation may retard the age-dependent decline of physiological functions. There have been no systematic investigations of the response of irradiated populations to stress, however. The authors have demonstrated that resistance of adult flour beetles, Tribolium confusum, to oxygen poisoning declines progressively with age. They have examined oxygen resistance of irradiated populations of T. confusum as a function of age at irradiation, of time after irradiation, and of radiation dose and of dose-modifying factors. Shortly after gamma-irradiation, flour beetles exhibited a decline in resistance to oxygen toxicity. Then, about two weeks after irradiation, the LD/sub 50/ exposure time in pure oxygen was much greater than that of nonirradiated beetles, and this enhanced resistance persisted for about 6 months. The magnitude of the enhancement was a function of dose, decreased with increasing age at irradiation, and was modified by radiation factors. Sublethal irradiation under anoxia, at low dose rate, or with dose fractionation reduced the development of oxygen resistance to approximately the same degree that it reduced acute radiation lethality . Radiation-enhanced resistance to stress may be an important factor in the increased longevity of irradiated insects.

  19. Gamma radiation induced resistivity changes in Iron

    NASA Astrophysics Data System (ADS)

    Tundwal, Ambika; Kumar, V.; Datta, A.

    2017-03-01

    Monte Carlo Code JA-IPU is used for estimation of Frenkel pairs and their effect on change of resistivity of Iron on irradiation by gamma spectrum of Co60. The Code includes three cascade processes of incident gamma, produced electrons and recoiled atoms and simulation of the lattice structure of the target material. Change in experimentally measured resistivity of Iron is found to vary with number of Frenkel pairs as (x - 1) ln N d .

  20. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun

    2016-11-29

    The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms

  1. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    SciTech Connect

    Aravindan, Natarajan; Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen; Natarajan, Mohan

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  2. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  3. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    SciTech Connect

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  4. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    DOE PAGES

    Sun, C.; Zheng, S.; Wei, C. C.; ...

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size ofmore » ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.« less

  5. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    NASA Astrophysics Data System (ADS)

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  6. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments.

    PubMed

    Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  7. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    PubMed Central

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments. PMID:25588326

  8. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  9. Metal-nanotube composites as radiation resistant materials

    NASA Astrophysics Data System (ADS)

    González, Rafael I.; Valencia, Felipe; Mella, José; van Duin, Adri C. T.; So, Kang Pyo; Li, Ju; Kiwi, Miguel; Bringa, Eduardo M.

    2016-07-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  10. Research of radiation resistant Er doped fiber for space detection

    NASA Astrophysics Data System (ADS)

    Huang, Jian-ping; Zhang, Ge; Wang, Pu-pu; Li, Run-dong; Jiang, Cong; Xiao, Chun

    2016-11-01

    In this paper, erbium doped fibers for space detection are researched for feature of radiation resistance. Fibers with different coated carbon are hydrogen loaded and radiated, and too thick of carbon layer around fiber would not bring best radiation-resistant performance, since thick carbon layer would make the entering of hydrogen difficult. We also research the duration of saturated hydrogen loading under the high and low temperature respectively, and it's found that the fibers' photo sensitivities tend to be flat after some days. Hydrogen is reloaded into the fibers which have been loaded once, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings. Loss and wave width changes are also researched under different radiation dose.

  11. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  12. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  13. Terahertz radiation increases genomic instability in human lymphocytes.

    PubMed

    Korenstein-Ilan, Avital; Barbul, Alexander; Hasin, Pini; Eliran, Alon; Gover, Avraham; Korenstein, Rafi

    2008-08-01

    Terahertz radiation is increasingly being applied in new and evolving technologies applied in areas such as homeland security and medical imaging. Thus a timely assessment of the potential hazards and health effects of occupational and general population exposure to THz radiation is required. We applied continuous-wave (CW) 0.1 THz radiation (0.031 mW/ cm(2)) to dividing lymphocytes for 1, 2 and 24 h and examined the changes in chromosome number of chromosomes 1, 10, 11 and 17 and changes in the replication timing of their centromeres using interphase fluorescence in situ hybridization (FISH). Chromosomes 11 and 17 were most vulnerable (about 30% increase in aneuploidy after 2 and 24 h of exposure), while chromosomes 1 and 10 were not affected. We observed changes in the asynchronous mode of replication of centromeres 11, 17 and 1 (by 40%) after 2 h of exposure and of all four centromeres after 24 h of exposure (by 50%). It is speculated that these effects are caused by radiation-induced low-frequency collective vibrational modes of proteins and DNA. Our results demonstrate that exposure of lymphocytes in vitro to a low power density of 0.1 THz radiation induces genomic instability. These findings, if verified, may suggest that such exposure may result in an increased risk of cancer.

  14. Modeling of secondary radiation damage in LIGA PMMA resist exposure

    NASA Astrophysics Data System (ADS)

    Ting, Aili

    2003-01-01

    Secondary radiation during LIGA PMMA resist exposure adversely affects feature definition, sidewall taper and overall sidewall offset. Additionally, it can degrade the resist adjacent to the substrate, leading to the loss of free-standing features through undercutting during resist development or through mechanical failure of the degraded material. The source of this radiation includes photoelectrons, Auger electrons, fluorescence photons, etc. Sandia"s Integrated Tiger Series (ITS), a coupled electron/photon Monte Carlo transport code, was used to compute dose profiles within 1 to 2 microns of the absorber edge and near the interface of the resist with a metallized substrate. The difficulty of sub-micron resolution requirement was overcome by solving a few local problems having carefully designed micron-scale geometries. The results indicate a 2-μm dose transition region near the absorber edge resulting from PMMA"s photoelectrons. This region leads to sidewall offset and to tapered sidewalls following resist development. The results also show a dose boundary layer of around 1 μm near the substrate interface due to electrons emitted from the substrate metallization layer. The maximum dose at the resist bottom under the absorber can be very high and can lead to feature loss during development. This model was also used to investigate those resist doses resulting from multi-layer substrate.

  15. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    SciTech Connect

    Hopwood, L.E.; Moulder, J.E. )

    1989-11-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance.

  16. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  17. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect

    Makarova, Kira S.; Omelchenko, Marina; Gaidamakova, Elena; Matrosova, Vera; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla L.; Copeland, A; Kim, Edwin; Land, Miriam L; Mavromatis, K; Pitluck, Samual; Richardson, P M; Detter, J. Chris; Brettin, Tom; Saunders, Elizabeth H; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M; Wolf, Yuri; Sorokin, Alexei; Gerasimova, Anna; Gelfand, Mikhail; Fredrickson, James K; Koonin, Eugene; Daly, Michael

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  18. [Shielding ability of lead loaded radiation resistant gloves].

    PubMed

    Kawano, T; Ebihara, H

    1990-02-01

    The shielding ability of radiation resistant gloves was examined. The gloves are made of lead loaded (as PbO2) polyvinyl chloride resin and are about 0.4 mm in thickness (70 mg/cm2). Eleven test pieces were sampled from each of three gloves (total 33) and the transmission rates for radiations (X-ray or gamma-ray) through the test pieces were measured with radiation sources, 99mTc, 57Co, 133Ba, 133Xe and 241Am. The differences of the transmission rates for radiations by the positions of the gloves were smaller than 15%, and the differences by three gloves were smaller than 5% in the case of 60 keV and 141 keV radiations. The average transmission rates for radiations in the 33 test pieces were about 40% for 30 keV radiation, about 90% for 80 keV and 140 keV radiations. The shielding characteristic of the gloves is equivalent to about 0.026 mm thick lead plate.

  19. Pathology effects at radiation doses below those causing increased mortality

    NASA Technical Reports Server (NTRS)

    Carnes, Bruce A.; Gavrilova, Natalia; Grahn, Douglas

    2002-01-01

    Mortality data from experiments conducted at the Argonne National Laboratory (ANL) on the long-term effects of external whole-body irradiation on B6CF(1) mice were used to investigate radiation-induced effects at intermediate doses of (60)Co gamma rays or fission-spectrum neutrons either delivered as a single exposure or protracted over 60 once-weekly exposures. Kaplan-Meier analyses were used to identify the lowest dose in the ANL data (within radiation quality, pattern of exposure, and sex) at which radiation-induced mortality caused by primary tumors could be detected (approximately 1-2 Gy for gamma rays and 10-15 cGy for neutrons). Doses at and below these levels were then examined for radiation-induced shifts in the spectrum of pathology detected at death. To do this, specific pathology events were pooled into larger assemblages based on whether they were cancer, cardiovascular disease or non-neoplastic diseases detected within the lungs and pleura, liver and biliary tract, reproductive organs, or urinary tract. Cancer and cardiovascular disease were further subdivided into categories based on whether they caused death, contributed to death, or were simply observed at death. Counts of how often events falling within each of these combined pathology categories occurred within a mouse were then used as predictor variables in logistic regression to determine whether irradiated mice could be distinguished from control mice. Increased pathology burdens were detected in irradiated mice at doses lower than those causing detectable shifts in mortality-22 cGy for gamma rays and 2 cGy for neutrons. These findings suggest that (1) models based on mortality data alone may underestimate radiation effects, (2) radiation may have adverse health consequences (i.e. elevated health risks) even when mortality risks are not detected, and (3) radiation-induced pathologies other than cancer do occur, and they involve multiple organ systems.

  20. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  1. Modified developer increases line resolution in photosensitive resist

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Standard developer solution is mixed with dipropyl carbonate. This reduces swelling in the photosensitive resist and permits application of relatively thick films with minimal pinhole formation and increased line resolution.

  2. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  3. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    SciTech Connect

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  4. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Jeong, Seok Hoon

    2011-01-01

    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship. PMID:22028150

  5. Thin N-I-P radiation resistant solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1983-01-01

    Several sets of N-I-P sola cells were fabricated from high resistivity silicon to test the effectiveness of various methods for hardening these devices against radiation. Different substrate materials were used to provide information on the effects of dopant concentration, silicon type, and the presence of oxygen. In some cells, P-type float-zone refined silicon of 800, 8000 and 15,000 omega-cm resistivity was used to provide a basis for studying resistivity and purity effects. In other cells, N-type silicon (approximately 800 omega-cm) was used to allow a comparison of dopant type. Oxygen-rich, crucible-grown, silicon (approximately 100 omega-cm, p-type) will provide information on purity effects and defect gettering. Lithium was introduced into different types of silicon to determine if mobile ions can reduce radiation induced defects in high resistivity material. Thin cells (2 mil) were fabricated to study the effects of cell thickness and carrier injection on radiation damage. The electrical characteristics of the different sets of cells were measured, analyzed, and compared prior to shipment of the cells to NASA/Lewis for irradiation.

  6. Urinary Phthalates and Increased Insulin Resistance in Adolescents

    PubMed Central

    Spanier, Adam J.; Sathyanarayana, Sheela; Attina, Teresa M.; Blustein, Jan

    2013-01-01

    BACKGROUND Di-2-ethylhexylphthalate (DEHP) is an environmental chemical commonly found in processed foods. Phthalate exposures, in particular to DEHP, have been associated with insulin resistance in adults, but have not been studied in adolescents. METHODS: Using cross-sectional data from 766 fasting 12- to 19-year-olds in the 2003–2008 NHANES, we examined associations of phthalate metabolites with continuous and categorical measures of homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Controlling for demographic and behavioral factors, diet, continuous age, BMI category, and urinary creatinine, for each log (roughly threefold) increase in DEHP metabolites, a 0.27 increase (95% confidence interval 0.14–0.40; P < .001) in HOMA-IR was identified. Compared with the first tertile of DEHP metabolite in the study population (14.5% insulin resistant), the third tertile had 21.6% prevalence (95% confidence interval 17.2%–26.0%; P = .02). Associations persisted despite controlling for bisphenol A, another endocrine-disrupting chemical commonly found in foods, and HOMA-IR and insulin resistance were not significantly associated with metabolites of lower molecular weight phthalates commonly found in cosmetics and other personal care products. CONCLUSIONS: Urinary DEHP concentrations were associated with increased insulin resistance in this cross-sectional study of adolescents. This study cannot rule out the possibility that insulin-resistant children ingest food with higher phthalate content, or that insulin-resistant children excrete more DEHP. PMID:23958772

  7. Development of resistant materials to beam impact and radiation damage

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Kokawa, Hiroyuki; Okamura, Hiroshi; Kawasaki, Akira; Yamamura, Tsutomu; Hara, Nobuyoshi; Akao, Noboru; Futakawa, Masatoshi; Kikuchi, Kenji

    2006-09-01

    Materials that have strong resistance to both beam impact (or shock-wave) and radiation damage are required for the beam target of an intense accelerator and space applications. Recently, Futakawa et al. found in their experiments that Kolsterising specimens have a stronger resistance to pitting than SS316 CW. A similar effect can be expected for other hardening treatments, and new material development is hopeful. Accordingly, we have started the development of high-performance materials by organizing the project team from KEK, JAEA and universities. In this paper, the scope of the project is introduced. Recent topics involve the development of intergranular crack (IGC)-resistant austenitic stainless-steel, AlN-TiN ceramics and cladding techniques of thin tantalum or CrN film on a tungsten target by means of a molten-salt method and ion-beam-enhanced deposition. New observations on corrosion resistance are presented.

  8. Human Genetic Marker for Resistance to Radiation and Chemicals

    SciTech Connect

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  9. Solution Radioactivated by Hadron Radiation Can Increase Sister Chromatid Exchanges

    PubMed Central

    Maeda, Junko; Yurkon, Charles R.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Kato, Sayaka; Brents, Colleen A.; Uesaka, Mitsuru; Fujimori, Akira; Kitamura, Hisashi; Kato, Takamitsu A.

    2015-01-01

    When energetic particles irradiate matter, it becomes activated by nuclear reactions. Radioactivation induced cellular effects are not clearly understood, but it could be a part of bystander effects. This investigation is aimed at understanding the biological effects from radioactivation in solution induced by hadron radiation. Water or phosphate buffered saline was activated by being exposed to hadron radiation including protons, carbon- and iron-ions. 1 mL of radioactivated solution was transferred to flasks with Chinese hamster ovary (CHO) cells cultured in 5 mL of complete media. The induction of sister chromatid exchanges (SCE) was used to observe any increase in DNA damage responses. The energy spectrum and the half-lives of the radioactivation were analyzed by NaI scintillation detector in order to identify generated radionuclides. In the radioactivated solution, 511 keV gamma-rays were observed, and their half-lives were approximately 2 min, 10 min, and 20 min. They respectively correspond to the beta+ decay of 15O, 13N, and 11C. The SCE frequencies in CHO cells increased depending on the amount of radioactivation in the solution. These were suppressed with a 2-hour delayed solution transfer or pretreatment with dimethyl sulfoxide (DMSO). Our results suggest that the SCE induction by radioactivated solution was mediated by free radicals produced by the annihilated gamma-rays. Since the SCE induction and DMSO modulation are also reported in radiation-induced bystander effects, our results imply that radioactivation of the solution may have some contribution to the bystander effects from hadron radiation. Further investigations are required to assess if radioactivation effects would attribute an additional level of cancer risk of the hadron radiation therapy itself. PMID:26657140

  10. Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Arrigo, Kevin R.; van Dijken, Gert L.

    2004-05-01

    Satellite remote sensing of both surface solar ultraviolet radiation (UVR) and chlorophyll over two decades shows that biologically significant ultraviolet radiation increases began to occur over the Southern Ocean three years before the ozone ``hole'' was discovered. Beginning in October 1983, the most frequent occurrences of enhanced UVR over phytoplankton-rich waters occurred in the Weddell Sea and Indian Ocean sectors of the Southern Ocean, impacting 60% of the surface biomass by the late 1990s. These results suggest two reasons why more serious impacts to the base of the marine food web may not have been detected by field experiments: (1) the onset of UVR increases several years before dedicated field work began may have impacted the most sensitive organisms long before such damage could be detected, and (2) most biological field work has so far not taken place in Antarctic waters most extensively subjected to enhanced UVR.

  11. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  12. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    PubMed Central

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  13. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  14. Plankton, antarctic food chain base, respond to increased ultraviolet radiation

    SciTech Connect

    Dybas, C.

    1992-12-01

    With the growth of the austral spring ozone hole phytoplankton in antarctic waters beneath the depleted ozone layer are now being exposed to twice the amount of ultraviolet radiation as organisms outside the hole. This briefly describes the results of a major study examining this issue. A significant observation was a decrease in phytoplankton production by a minimum of 6-12 percent. Implications for other life forms are discussed briefly along with the effects of increased UV light on the whole ecosystem.

  15. Draft Genome Sequence of Kocuria rhizophila RF, a Radiation-Resistant Soil Isolate.

    PubMed

    Mehrabadi, Jalil Fallah; Mirzaie, Amir; Ahangar, Nahid; Rahimi, Arian; Rokni-Zadeh, Hassan

    2016-03-10

    Kocuria rhizophila RF, a soil isolate from Iran, is a radiation-resistant bacterium. Only a limited amount of genomic information for radiation-resistant bacteria is currently available. Here, we report the draft genome sequence of this bacterium, providing knowledge to aid in the discovery of the genomic basis of its resistance to radiation.

  16. Draft Genome Sequence of Kocuria rhizophila RF, a Radiation-Resistant Soil Isolate

    PubMed Central

    Mehrabadi, Jalil Fallah; Mirzaie, Amir; Ahangar, Nahid; Rahimi, Arian

    2016-01-01

    Kocuria rhizophila RF, a soil isolate from Iran, is a radiation-resistant bacterium. Only a limited amount of genomic information for radiation-resistant bacteria is currently available. Here, we report the draft genome sequence of this bacterium, providing knowledge to aid in the discovery of the genomic basis of its resistance to radiation. PMID:26966202

  17. The resistive bolometer for radiated power measurement on EAST

    SciTech Connect

    Duan, Y. M.; Hu, L. Q.; Mao, S. T.; Chen, K. Y.; Lin, S. Y.; Collaboration: EAST Diagnostics Team

    2012-09-15

    The resistive bolometer system has been successfully employed on experimental advanced superconducting tokamak for the first time to measure the radiated power of plasma. The bolometer detectors are based on 4 {mu}m thick Pt absorbers deposited on 1.5 {mu}m thick SiN membranes. The system consists of 3 cameras with a total of 48 channels. The detector and the system setup are described in detail. The detector calibration and typical measurement results are presented as well.

  18. Radiation Resistance of Fluorite-Structured Nuclear Oxides

    SciTech Connect

    Garrido, Frederico; Moll, Sandra; Thome, Lionel; Vincent, Laetitia; Nowicki, Lech; Sattonnay, Gaeel

    2009-03-10

    Fluorite-structure oxides are radiation-resistant materials making them ideal candidates for uses as nuclear fuels or as inert matrices for actinide transmutation. The radiation tolerance of urania and cubic zirconia single crystals was investigated by external ion irradiation in predominating domains of electronic and nuclear stopping of bombarding particles. Damage kinetics show that the behavior of the two investigated fluorite-type oxides is almost the same: (i) at low-energy a two-stage disordering process is exhibited--first a ballistic step due to the formation of radiation-induced defects and second a crystal fragmentation induced by the formation of gas bubbles at large concentration-; (ii) at high energy a one-stage damage kinetics associated with the formation of ion tracks whose overlapping at high fluence results in the formation of nanometer-sized domains with a small disorientation.

  19. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines.

    PubMed

    Ouakad, M; Vanaerschot, M; Rijal, S; Sundar, S; Speybroeck, N; Kestens, L; Boel, L; De Doncker, S; Maes, I; Decuypere, S; Dujardin, J-C

    2011-09-01

    Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

  20. Increasing antimicrobial resistance and narrowing therapeutics in typhoidal salmonellae.

    PubMed

    Kaurthe, Jaspal

    2013-03-01

    Multidrug-resistant typhoid fever (MDRTF) is a major public health problem in developing countries and is an emerging problem in the developed world. Because of the difficulties in preventing typhoid by public health measures or immunization in developing countries, great reliance is placed on antimicrobial chemotherapy. The treatment should commence as soon as the clinical diagnosis is made rather than after the results of antimicrobial susceptibility tests but the existence of MDRTF poses a serious clinical dilemma in the selection of empiric antimicrobial therapy. With the widespread emergence and spread of strains resistant to chloramphenicol, ampicillin and trimethoprim, ciprofloxacin became the drug of choice for the treatment of typhoid fever. However, of late the efficacy of fluoroquinolones too has been questioned, mainly due to increasing reports of increasing defervescence time and poor patient response. This indicates that the organism has begun to develop resistance to fluoroquinolones, and is corroborated by a steady increase in Minimum Inhibitory Concentration (MIC) of ciprofloxacin. The therapeutics of ciprofloxacin-resistant enteric fever narrows down to third- and fourth-generation cephalosporins and azithromycin. However, the emergence of extended-spectrum b-lactamases (ESBLs) in typhoidal Salmonellae poses a new challenge and would greatly limit the therapeutic options leaving only tigecycline and carbepenems as secondary antimicrobial drugs. This increasing resistance is alarming and emphasizes the need of effective preventive measures to control typhoid and to limit the unnecessary use of antibiotics.

  1. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    NASA Astrophysics Data System (ADS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  2. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  3. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening.

    PubMed

    Kimme-Smith, C; Bassett, L W; Gold, R H; Chow, S

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  4. Theory of the high base resistivity n(+)pp(+) silicon solar cell and its application to radiation damage effects

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Weinberg, I.

    1985-01-01

    Particulate radiation in space is a principal source of silicon solar cell degradation, and an investigation of cell radiation damage at higher base resistivities appears to have implication toward increasing solar cell and, therefore, useful satellite lifetimes in the space environment. However, contrary to expectations, it has been found that for cells with resistivities of 84 and 1250 ohm cm, the radiation resistance decreases as cell base resistivity increases. An analytical solar-cell computer model was developed with the objective to determine the reasons for this unexpected behavior. The present paper has the aim to describe the analytical model and its use in interpreting the behavior, under irradiation, of high-resistivity solar cells. Attention is given to boundary conditions at the space-charge region edges, cell currents, cell voltages, the generation of the theoretical I-V characteristic, experimental results, and computer calculations.

  5. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment.

    PubMed Central

    Hastings, J W; Holzapfel, W H; Niemand, J G

    1986-01-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp., one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four references strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO2, and N2). Organisms exhibited the highest death rate (lowest D10 values [doses required to reduce the logarithm of the bacterial population by 1] ) under CO2 packaging conditions, but resistance to irradiation was increased under N2. The D10 values of the isolates were generally greater than those of the reference strains. The D10 values were also higher (approximately two times) in meat than in semisynthetic growth medium. PMID:3096207

  6. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    SciTech Connect

    Choi, Seungho; Ku, Ja-Lok

    2011-08-26

    Highlights: {yields} MELK expression significantly increased when the cells are exposed to radiation or 5-FU. {yields} Suppression of MELK caused cell cycle changes and decrease in proliferation. {yields} Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  7. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA

    SciTech Connect

    Chu, G.; Chang, E. )

    1990-05-01

    Cancer treatment with the drug cisplatin is often thwarted by the emergence of drug-resistant cells. To study this phenomenon, the authors identified two independent cellular factors that recognize cisplatin-damaged DNA. One of the two factors, designated XPE binding factor, is deficient in complementation group E of xeroderma pigmentosum, an inherited disease characterized by defective repair of DNA damaged by ultraviolet radiation, cisplatin, and other agents. Human tumor cell lines selected for resistance to cisplatin showed more efficient DNA repair and increased expression of XPE binding factor. These results suggest that XPE binding factor may be responsible, at least in part, for the development of cisplatin resistance in human tumors and that the mechanism may be increased DNA repair.

  8. Increased OLED radiative efficiency using a directive optical antenna.

    PubMed

    McDaniel, S; Blair, S

    2010-08-02

    We investigate the improvement in efficiency of organic light emitting diodes/displays (OLEDs) by embedding a typical OLED structure within a metallic patch grating resonator. A patch grating resonator is similar to the more familiar Fabry-Perot resonator, except that one mirror of the resonator is a metallic patch grating with a pitch approximately lambda /2 that reduces lateral propagation of radiative emission. FDTD simulations of the proposed structure indicate a potential 71% increase in emitted power over that of a reference OLED structure, and an additional 5% gain from adding an ITO spacer adjacent to the metallic electrode layer (for a total 76% increase). Implementation of this structure requires little to no modification of the OLED manufacturing process.

  9. Sealing Force Increasing of ACM Gasket through Electron Beam Radiation

    NASA Astrophysics Data System (ADS)

    dos Santos, D. J.; Batalha, G. F.

    2011-01-01

    Rubber is an engineering material largely used as sealing parts, in form of O-rings, solid gaskets and liquid gaskets, materials applied in liquid state with posterior vulcanization and sealing. Stress relaxation is a rubber characteristic which impacts negatively in such industrial applications (rings and solid gaskets). This work has the purpose to investigate the use of electron beam radiation (EB) as a technology able to decrease the stress relaxation in acrylic rubber (ACM), consequently increasing the sealing capability of this material. ACM samples were irradiated with dose of 100 kGy and 250 kGy, its behavior was comparatively investigated using, dynamic mechanical analysis (DMA) and compression stress relaxation (CSR) experiments. The results obtained by DMA shown an increase of Tg and changes in dynamic mechanical behavior.

  10. Plant adaptogens increase lifespan and stress resistance in C. elegans.

    PubMed

    Wiegant, F A C; Surinova, S; Ytsma, E; Langelaar-Makkinje, M; Wikman, G; Post, J A

    2009-02-01

    Extracts of plant adaptogens such as Eleutherococcus senticosus (or Acanthopanax senticosus) and Rhodiola rosea can increase stress resistance in several model systems. We now show that both extracts also increase the mean lifespan of the nematode C. elegans in a dose-dependent way. In at least four independent experiments, 250 microg/ml Eleutherococcus (SHE-3) and 10-25 microg/ml Rhodiola (SHR-5) significantly increased life span between 10 and 20% (P < 0.001), increased the maximum lifespan with 2-3 days and postponed the moment when the first individuals in a population die, suggesting a modulation of the ageing process. With higher concentrations, less effect was observed, whereas at the highest concentrations tested (2500 microg/ml Eleutherococcus and 250 microg/ml Rhodiola) a lifespan shortening effect was observed of 15-25% (P < 0.001). Both adaptogen extracts were also able to increase stress resistance in C. elegans: against a relatively short heat shock (35 degrees C during 3 h) as well as chronic heat treatment at 26 degrees C. An increase against chronic oxidative stress conditions was observed in mev-1 mutants, and during exposure of the wild type nematode to paraquat (10 mM) or UV stress, be it less efficiently. Concerning the mode of action: both adaptogens induce translocation of the DAF-16 transcription factor from the cytoplasm into the nucleus, suggesting a reprogramming of transcriptional activities favoring the synthesis of proteins involved in stress resistance (such as the chaperone HSP-16) and longevity. Based on these observations, it is suggested that adaptogens are experienced as mild stressors at the lifespan-enhancing concentrations and thereby induce increased stress resistance and a longer lifespan.

  11. Resistance of platelet proteins to effects of ionizing radiation

    SciTech Connect

    Prodouz, K.N.; Habraken, J.W.; Moroff, G. )

    1990-12-01

    Gamma irradiation of blood components prevents lymphocyte-induced graft-versus-host disease after transfusion in immunocompromised individuals. In this report we demonstrate the resistance of blood platelet proteins to gamma radiation-induced protein cleavage and aggregate formation when platelet concentrates were treated with a dose of 5000 rad. Results of one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total platelet protein and cytoskeletal protein preparations indicate that platelet proteins are neither cleaved nor cross-linked under these conditions of irradiation. These results support those of a previous study that documented the lack of any adverse effect of 5000 rad gamma radiation on in vitro platelet properties.

  12. Modulating Radiation Resistance: Novel Protection Paradigms Based on Defenses against Ionizing Radiation in the Extremophile Deinococcus radiodurans

    DTIC Science & Technology

    2010-05-10

    cellular damge caused by ionizing radiation and ultraviolet light. Deinococcus radiodurans; Lactobacillus plantarurn; cyanobacteria ; radiation...6 3. K. S. Makarova and MICHAEL J. DALY (2010) Comparative genomics of stress response systems in Deinococcus bacteria. Bacterial Stress Responses...In Press) Abstract | The prospect of comparative genomics resolving the seemingly paradoxical mechanism of extreme radiation resistance in

  13. Radiation resistance of electro-optic polymer-based modulators

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-05-01

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation.

  14. Thermal instability of a radiative and resistive coronal plasma

    NASA Technical Reports Server (NTRS)

    Sparks, L.; Van Hoven, G.

    1988-01-01

    Thermal instability is believed to determine the evolution and formation of cool structures in the solar atmosphere such as the transition region and prominences (or filaments). The linear modes that arise in a sheared, force-free, magnetic field due to thermal instability are studied numerically. Previous studies have considered separately modes that arise due to the effects of radiation, compression, anisotropic thermal conduction, and ohmic heating. Here the results of such studies are integrated, first by presenting simple arguments that illustrate the essential physics of ideal, sheared-field, condensation modes, and second by showing numerically how finite resistivity affects the condensational instability in parameter regimes applicable to the solar corona.

  15. Does EMT Contribute to Radiation Resistance in Human Breast Cancer?

    DTIC Science & Technology

    2012-08-01

    to radiation. For this we will use a CDH1 (E-cadherin gene) expression vector from OriGene Technologies Inc. This vector has the cDNA for CDH1 ...control vector, we will excise out the CDH1 gene and use the re-ligated backbone vector to prepare cells stably expressing the control vector. The...MDA-MB-231 cells with the pTet- On-Advanced vector and select G418 resistant cells. We will insert the cDNA for CDH1 into the pTRE- Tight vector and

  16. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  17. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Silverman, Joseph

    1995-09-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, The carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases.

  18. Increased Vascular Resistance with Hemoglobin-Based Oxygen Carriers

    DTIC Science & Technology

    1993-01-01

    vascular resistance. Swine resuscitated with otofHb exhibited the rapid onset of marked systemic hypertension . The blood pressure rose within seconds...virtual absence of red blood cells (3), hemoglobin solutions have produced hypertension irn animals or have not supported an increase in cardiac output...with blood volume expansion. Half of all the humans administered hemoglobin in published trials demonstrated hypertension (4), and a recent human

  19. Development of High-Fiber-Volume, Radiation-Resistant, Hig-Pressure Laminates for Cryogenic Applications

    SciTech Connect

    R. P. Reed

    2001-04-15

    Three new composite laminates have been developed for use as structural supports, thermal insulation in cryogenic and radiation environments. Boron-free, woven glass cloth has been preimpregnated with three types of resin systems. The organic resin systems are multifunctional and are much less sensitive to radiation than the epoxy systems used in G-10CR and G-11CR. The laminates are fabricated by curing the preimpregnated glass cloth under high pressure to produce higher glass content (70-74 vol. %). Higher glass content is beneficial because (1) it increases the laminate strength and stiffness; (2) it leads to more isotropic composite properties; and (3) it increases the overall radiation resistance because half and the amount of organic resin content is used. The cost of at least one of the laminates is comparable to that of G-10CR. Elastic, short-beam shear, thermal contraction, and flexural properties have been measured.

  20. Increasing pesticide-resistant ectoparasitic infections may increase pesticide poisoning risks in children.

    PubMed

    Diaz, James H

    2008-01-01

    Head louse and scabies mite infestations are common among pre-school and school-age children, and topical pesticides are frequently prescribed to treat such conditions. Ectoparasite resistance to the safest and most commonly prescribed pyrethrin/pyrethroid pesticides for ectoparasitic infections has, however, been increasing since the 1980s. The increasing resistance of these arthropods to the safest pesticides may lead to greater use of more toxic, alternative pesticides to control infestations and to prevent institutional outbreaks. MEDLINE and Cochrane searches, 1966-2008, were conducted to assess the impact of increasing pesticide resistance on prescribing practices for ectoparasitic infections and to describe the evolving global epidemiology of pediatric poisonings by more toxic pediculicides and miticides, including carbamates, organochlorines, and organophosphates. Pharmacists, physicians, and poison control personnel should be fully informed about increasing pesticide resistance among the most commonly encountered ectoparasites of children and the institutionalized and be prepared to prevent and to treat accidental home and institutional pesticide poisonings with more toxic pesticides.

  1. Down-regulation of PERK enhances resistance to ionizing radiation

    SciTech Connect

    Oommen, Deepu Prise, Kevin M.

    2013-11-08

    Highlights: •PERK enhances the sensitivity of cancer cells to ionizing radiation. •Down-regulation of PERK results in enhanced DNA repair. •Ionizing radiation-induced apoptosis is inhibited in PERK-down regulated cancer cells. -- Abstract: Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.

  2. Synergistic interaction between UVB radiation and temperature increases susceptibility to parasitic infection in a fish

    PubMed Central

    Cramp, Rebecca L.; Reid, Stefanie; Seebacher, Frank; Franklin, Craig E.

    2014-01-01

    Levels of UVB radiation (UVB) and mean temperatures have increased substantially over recent decades in many regions of the world. Both stressors independently can compromise immune function, disease resistance and fitness in fish. The impact of UVB can also be exacerbated by interactions with environmental temperatures. In this paper, we test the hypothesis that UVB and temperature act synergistically to influence patterns of energy consumption and susceptibility to disease. We exposed mosquitofish, Gambusia holbrooki, to a factorial design of low and high UVB levels and low (18°C) and high (25°C) temperatures. The combination of high UVB and high temperature interacted synergistically to suppress metabolism and exacerbate infection intensity by the fish pathogen whitespot (Ichtyhophthirius multifiliis). Given the rapid changes in the thermal environment globally, the interaction between UVB and temperatures on energy use and disease resistance could pose significant problems for aquatic animal health in the context of both pre-existing and emerging diseases. PMID:25252833

  3. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains.

  4. Method for increased sensitivity of radiation detection and measurement

    DOEpatents

    Miller, Steven D.

    1994-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  5. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications.

    PubMed

    Thomas, Jérémie; Myara, Mikhaël; Troussellier, Laurent; Burov, Ekaterina; Pastouret, Alain; Boivin, David; Mélin, Gilles; Gilard, Olivier; Sotom, Michel; Signoret, Philippe

    2012-01-30

    We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

  6. Risk assessment for the harmful effects of UVB radiation on the immunological resistance to infectious diseases.

    PubMed Central

    Goettsch, W; Garssen, J; Slob, W; de Gruijl, F R; Van Loveren, H

    1998-01-01

    Risk assessment comprises four steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. In this study, the effects of increased ultraviolet B(UVB, 280-315 nm) radiation on immune functions and the immunological resistance to infectious diseases in rats were analyzed according to this strategy. In a parallelogram approach, nonthreshold mathematical methods were used to estimate the risk for the human population after increased exposure to UVB radiation. These data demonstrate, using a worst-case strategy (sensitive individuals, no adaptation), that exposure for approximately 90 min (local noon) at 40 degrees N in July might lead to 50% suppression of specific T-cell mediated responses to Listeria monocytogenes in humans who were not preexposed to UVB (i.e., not adapted). Additionally, a 5% decrease in the thickness of the ozone layer might shorten this exposure time by approximately 2.5%. These data demonstrate that UVB radiation, at doses relevant to outdoor exposure, may affect the specific cellular immune response to Listeria bacteria in humans. Whether this will also lead to a lowered resistance (i.e.,increased pathogenic load) in humans is not known, although it was demonstrated that UVB-induced immunosuppression in rats was sufficient to increase the pathogenic load. Epidemiology studies are needed to validate and improve estimates for the potential effects of increased UVB exposure on infectious diseases in humans. Images Figure 1 Figure 2 PMID:9435148

  7. Low-temperature radiation-resistant material for ball-bearing retainers

    NASA Technical Reports Server (NTRS)

    Desau, P. O.; Emmons, W. F.

    1970-01-01

    Radiation resistant material, made of polyimide polymers and S-glass cloth, is used in ball bearing retainers for extreme environments. Material displays satisfactory wear resistance, lubricity, and stability. Results of comparative tests with fluorocarbon materials are given.

  8. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong

    2016-01-01

    ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501

  9. Radiation-resistant B-1 cells: A possible initiating cells of neoplastic transformation.

    PubMed

    Guimarães-Cunha, Caroline Ferreira; Alvares-Saraiva, Anuska Marcelino; de Souza Apostolico, Juliana; Popi, Ana Flavia

    2016-07-01

    The role of B-1 cells in the hyperproliferative hematologic disease has been described. Several reports bring evidences that B-1 cells are the main cell population in the chronic lymphatic leukemia. It is also described that these cells have an important involvement in the lupus erythematous systemic. The murine model used to investigate both disease models is NZB/NZW. Data from literature point that mutation in micro-RNA 15a and 16 are the responsible for the B-1 hyperplasia in these mice. Interestingly, it was demonstrated that NZB/NZW B-1 cells are radioresistant, contrariwise to observe in other mouse lineage derived B-1 cells and B-2 cells. However, some reports bring evidences that a small percentage of B-1 cells in healthy mice are also able to survive to irradiation. Herein, we aim to investigate the malignant potential of ionizing-radiation resistant B-1 cells in vitro. Our main goal is to establish a model that mimics the neoplastic transformation originate to a damage exposure of DNA, and not only related to intrinsic mutations. Data shown here demonstrated that radiation-resistant B-1 cells were able to survive long periods in culture. Further, these cells show proliferation index increase in relation to non-irradiated B-1 cells. In addition, radiation resistant B-1 cells showed hyperploid, morphologic alterations, increased induction of apoptosis after anti-IgM stimulation. Based on these results, we could suggest that radiation resistant B-1 cells showed some modifications in that could be related to induction of malignant potential.

  10. Modification of silicone sealant to improve gamma radiation resistance, by addition of protective agents

    NASA Astrophysics Data System (ADS)

    González-Pérez, Giovanni; Burillo, Guillermina

    2013-09-01

    Poly (dimethylsiloxane) (PDMS) sealant (SS) was modified with the addition of different protective compounds to conserve its physical-chemical properties during gamma irradiation. 2-Vinyl naphthalene (2-VN), bisphenol-A (BPA) and poly (vinyl carbazole) (PVK) were used to evaluate radiation protection through the crosslinking effect of radiation. The samples were irradiated with doses from 100 kGy to 500 kGy at room temperature in air, with a 60Co gamma source, and the changes in molecular weight, thermal behavior, elastic properties and infrared spectra (FTIR-ATR) absorbance analysis were determined. The molecular weight of unmodified silicone sealant increases with the absorbed dose because of crosslinking as predominant effect. However, the crosslinking effect was inhibited with the addition of protective agent due to the aromatic compounds present. Modified silicone sealant films present better radiation resistance than unmodified system.

  11. Energetics and the resistive tearing mode - Effects of Joule heating and radiation

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1983-01-01

    The contribution of energy flux to the dynamics of magnetic field reconnection is analytically studied in order to determine the influence of Joule heating and radiation on the linear development of the tearing instability in slab geometry. A temperature-dependent Coulomb-like resistivity is used to provide the coupling between the dynamics and the energy equation. Analytical expressions are derived for the growth rates utilizing constant-psi and long-wavelength approximations. The solutions indicate the occurrence of several modes in addition to the usual tearing mode, several of which have relatively slow, complex growth rates. At large values of the magnetic Reynolds number, there are at least two modes with purely exponential growth when the radiative loss decreases with increasing temperature. If the radiation is neglected, the Joule heating alone also results in two modes with real, positive growth at large S. Below a particular value of S, all the modes are generally stabilized.

  12. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  13. Sensitivity of global climate model simulations to increased stomatal resistance and CO{sub 2} increases

    SciTech Connect

    Henderson-Sellers, A.; McGuffie, K.; Gross, C.

    1995-07-01

    Increasing levels of atmospheric CO{sub 2} will not only modify climate, they will also likely increase the water-use efficiency of plants by decreasing stomatal openings. The effect of the imposition of {open_quotes}doubled stomatal resistance{close_quotes} on climate is investigated in off-line simulations with the Biosphere-Atmosphere Transfer Scheme (BATS) and in two sets of global climate model simulations: for present-day and doubled atmospheric CO{sub 2} concentrations. The anticipated evapotranspiration decrease is seen most clearly in the boreal forests in the summer although, for the present-day climate (but not at 2 x CO{sub 2}), there are also noticeable responses in the tropical forests in South America. In the latitude zone 44{degrees}N to 58{degrees}N, evapotranspiration decreases by -15 W m{sup 2}, temperatures increase by =2 K, and the sensible heat flux by +15 W m{sup {minus}2}. Soil moisture is often, but less extensively, increased, which can cause increases in runoff. The responses at 2 x CO{sub 2} are larger in the 44{degrees}N to 58{degrees}N zone than elsewhere. Globally, the impact of imposing a doubled stomatal resistance in the present-day climate is an increase in the annually averaged surface air temperature of 0.13 K and a reduction in total precipitation of -0.82%. If both the atmospheric CO{sub 2} content and the stomatal resistance are doubled, the global response in surface air temperature and precipitation are +2.72 K and +5.01% compared with +2.67 K and + 7.73% if CO{sub 2} is doubled but stomatal resistance remains unchanged as in the usual {open_quotes}greenhouse{close_quotes} experiment. Doubling stomatal resistance as well as atmospheric CO{sub 2} results in increased soil moisture in northern midlatitudes in summer. 40 refs.. 17 figs., 5 tabs.

  14. Assessment of Resistance of Bacillus Horneckiae Endospores to UV Radiation and Function of Their Extraneous Layer in Resistance

    NASA Technical Reports Server (NTRS)

    Zachariah, Malcolm M.; Vaishampayan, Parag

    2011-01-01

    Spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. The spore's resistance might be due to their metabolically dormant state, and/or by the presence of a series of protective structures that encase the interior-most compartment, the core, which houses the spore chromosome. These spores have multiple layers surrounding the cell that are not found in vegetative cells, and some species have an outer layer of proteins and glycoproteins termed the "exosporium" or a fibrous "extraneous layer" (EL). Bacillus horneckiae is an EL-producing novel sporeformer isolated from a Phoenix spacecraft assembly clean room, and it has previously demonstrated resistance to UV radiation up to 1000 J/m(sup 2). The EL appears to bind B. horneckiae spores into large aggregations, or biofilms, and may confer some UV resistance to the spores. Multiple culturing and purification schemes were tried to achieve high purity spores because vegetative cells would skew UV resistance results. An ethanol-based purification scheme produced high purity spores. Selective removal of the EL from spores was attempted with two schemes: a chemical extraction method and physical extraction (sonication). Results from survival rates in the presence and absence of the external layer will provide a new understanding of the role of biofilms and passive resistance that may favor survival of biological systems in aggressive extra-terrestrial environments. The chemical extraction method decreased viable counts of spores and lead to an inconclusive change UV resistance relative to non-extracted spores. The physical extraction method lead to non-aggregated spores and did not alter viability; however, it produced UV resistance profiles similar to non-extracted spores. In addition to the EL-removal study, samples of B. horneckiae spores dried on

  15. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  16. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance

    PubMed Central

    Lowe, Kevin; Alvarez, Diego F.; King, Judy A.; Stevens, Troy

    2010-01-01

    Objective Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Design Prospective, randomized, controlled study. Setting Research laboratory. Subjects One hundred twenty male CD40 rats. Interventions To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Measurements Static and dynamic lung mechanics and hemodynamics were measured continuously. Main Results Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased pressure over time sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Conclusions Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure. PMID:20400904

  17. Low-salt diet increases insulin resistance in healthy subjects.

    PubMed

    Garg, Rajesh; Williams, Gordon H; Hurwitz, Shelley; Brown, Nancy J; Hopkins, Paul N; Adler, Gail K

    2011-07-01

    Low-salt (LS) diet activates the renin-angiotensin-aldosterone and sympathetic nervous systems, both of which can increase insulin resistance (IR). We investigated the hypothesis that LS diet is associated with an increase in IR in healthy subjects. Healthy individuals were studied after 7 days of LS diet (urine sodium <20 mmol/d) and 7 days of high-salt (HS) diet (urine sodium >150 mmol/d) in a random order. Insulin resistance was measured after each diet and compared statistically, unadjusted and adjusted for important covariates. One hundred fifty-two healthy men and women, aged 39.1 ± 12.5 years (range, 18-65) and with body mass index of 25.3 ± 4.0 kg/m(2), were included in this study. Mean (SD) homeostasis model assessment index was significantly higher on LS compared with HS diet (2.8 ± 1.6 vs 2.4 ± 1.7, P < .01). Serum aldosterone (21.0 ± 14.3 vs 3.4 ± 1.5 ng/dL, P < .001), 24-hour urine aldosterone (63.0 ± 34.0 vs 9.5 ± 6.5 μg/d, P < .001), and 24-hour urine norepinephrine excretion (78.0 ± 36.7 vs 67.9 ± 39.8 μg/d, P < .05) were higher on LS diet compared with HS diet. Low-salt diet was significantly associated with higher homeostasis model assessment index independent of age, sex, blood pressure, body mass index, serum sodium and potassium, serum angiotensin II, plasma renin activity, serum and urine aldosterone, and urine epinephrine and norepinephrine. Low-salt diet is associated with an increase in IR. The impact of our findings on the pathogenesis of diabetes and cardiovascular disease needs further investigation.

  18. Adropin deficiency is associated with increased adiposity and insulin resistance.

    PubMed

    Ganesh Kumar, K; Zhang, Jingying; Gao, Su; Rossi, Jari; McGuinness, Owen P; Halem, Heather H; Culler, Michael D; Mynatt, Randall L; Butler, Andrew A

    2012-07-01

    Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoR(a)) in hyperinsulinemic-euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance.

  19. Adropin Deficiency Is Associated With Increased Adiposity and Insulin Resistance

    PubMed Central

    Kumar, K. Ganesh; Zhang, Jingying; Gao, Su; Rossi, Jari; McGuinness, Owen P.; Halem, Heather H.; Culler, Michael D.; Mynatt, Randall L.; Butler, Andrew A.

    2014-01-01

    Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoRa) in hyperinsulinemic–euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance. PMID:22318315

  20. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance.

    PubMed

    Verduzco, Daniel; Lloyd, Mark; Xu, Liping; Ibrahim-Hashim, Arig; Balagurunathan, Yoganand; Gatenby, Robert A; Gillies, Robert J

    2015-01-01

    Hypoxia in tumors correlates with greater risk of metastases, increased invasiveness, and resistance to systemic and radiation therapy. The evolutionary dynamics that links specific adaptations to hypoxia with these observed tumor properties have not been well investigated. While some tumor populations may experience fixed hypoxia, cyclical and stochastic transitions from normoxia to hypoxia are commonly observed in vivo. Although some phenotypic adaptations to this cyclic hypoxia are likely reversible, we hypothesize that some adaptations may become fixed through mutations promoted by hypoxia-induced genomic instability. Here we seek to identify genetic alterations and corresponding stable phenotypes that emerge following cyclic hypoxia. Although these changes may originate as adaptations to this specific environmental stress, their fixation in the tumor genome may result in their observation in tumors from regions of normoxia, a condition known as pseudohypoxia. We exposed several epithelial cell lines to 50 cycles of hypoxia-normoxia, followed by culture in normoxia over a period of several months. Molecular analyses demonstrated permanent changes in expression of several oncogenes and tumor-suppressors, including p53, E-cadherin, and Hif-1α. These changes were associated with increased resistance to multiple cytotoxins, increased survival in hypoxia and increased anchorage-independent growth. These results suggest cycles of hypoxia encountered in early cancers can select for specific and stable genotypic and phenotypic properties that persist even in normoxic conditions, which may promote tumor progression and resistance to therapy.

  1. RAD18 mediates resistance to ionizing radiation in human glioma cells

    SciTech Connect

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi Yue, Wu

    2014-02-28

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.

  2. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    PubMed Central

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  3. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

    PubMed

    Kumar, Pavan; Ortiz, Erandi Vargas; Garrido, Etzel; Poveda, Katja; Jander, Georg

    2016-09-01

    Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

  4. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  5. Radiation Resistance of XLPE Nano-dielectrics for Advanced Reactor Applications

    SciTech Connect

    Duckworth, Robert C; Polyzos, Georgios; Paranthaman, Mariappan Parans; Aytug, Tolga; Leonard, Keith J; Sauers, Isidor

    2014-01-01

    Recently there has been renewed interest in nuclear reactor safety, particularly as commercial reactors are approaching 40 years service and lifetime extensions are considered, as well as for new reactor building projects around the world. The materials that are currently used in cabling for instrumentation, reactor control, and communications include cross-linked polyethylene (XLPE), ethylene propylene rubber (EPR), polyvinyl chloride (PVC), neoprene, and chlorosulfonated polyethylene. While these materials show suitable radiation tolerance in laboratory tests, failures before their useful lifetime occur due to the combined environmental effects of radiation, temperature and moisture, or operation under abnormal conditions. In addition, the extended use of commercial reactors beyond their original service life places a greater demand on insulating materials to perform beyond their current ratings in these nuclear environments. Nanocomposite materials that are based on XLPE and other epoxy resins incorporating TiO2, MgO, SiO2, and Al2O3 nanoparticles are being fabricated using a novel in-situ method established at ORNL to demonstrate materials with increased resistance to radiation. As novel nanocomposite dielectric materials are developed, characterization of the non-irradiated and irradiated nanodielectrics will lead to a knowledge base that allow for dielectric materials to be engineered with specific nanoparticle additions for maximum benefit to wide-variety of radiation environments found in nuclear reactors. This paper presents the initial findings on the development of XLPE-based SiO2 nano-composite dielectrics in the context of electrical performance and radiation degradation.

  6. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  7. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-07-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  8. Cerium clustering and radiation damage resistance in aluminophosphate and silicophosphate glasses

    NASA Astrophysics Data System (ADS)

    Rygel, Jennifer Lynn

    Cerium oxide is a well-known additive for increasing resistance to radiation damage in glass by preventing electrons and holes freed by irradiation from becoming trapped at defect sites and inducing optical absorption bands which can severely darken the glass. Phosphate glasses provide a unique opportunity for studying radiation damage resistance due to their high rare-earth solubility, ˜25 mol%. Two series of glasses, nominally AlP3O9-CeP 3O9 and CeP3O9-SiP2O 7, were synthesized to investigate structure-property relationships in a range of compositions near the metaphosphate. The presence of cerium clustering, or sharing of oxygen between cerium cations, was predicted using the chain fragment cluster model, an extension of earlier models for rare-earth phosphate glasses. Using the atom% composition determined by XPS from vacuum fracture surfaces, and cation coordination measured by Ce K-edge EXAFS, 29Si CPMG NMR, and 27Al MAS NMR, it was determined that clustering occurs for glasses containing ≥ 14 mol% Ce2O3 in the aluminophosphate glass series and ≥ 18 mol% Ce2O3 in the silicophosphate glass series. Many measured properties have been observed to correlate with the presence or absence of cerium clustering, cluster size, or other concomitant structural changes, including: visible coloration, density, refractive index, Ce3+ photoluminescence, and Ce3+ paramagnetic resonance. Additionally, radiation damage resistance was identified in the aluminophosphate and silicophosphate glasses which were predicted to have clustered cerium cations through the absence of radiation-induced phosphorus-related paramagnetic defects. This resistance is attributed to a structural implication of clustering. Specifically, cerium cations will be in close proximity to defect precursor sites at the concentrations required for clustering and are thus able to prevent localization of electrons and holes on those sites. Finally, irradiation-induced optical absorption was measured in all

  9. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments.

  10. Genetics of resistance to the African trypanosomes. IV. Resistance of radiation chimeras to Trypanosoma rhodesiense infection

    SciTech Connect

    DeGee, A.L.; Mansfield, J.M.

    1984-08-01

    The cellular bases of resistance to the African trypanosomes were examined in inbred mice. As part of these studies, reciprocal bone marrow cell transplants were performed between H-2 compatible mice which differ in relative resistance to Trypanosoma brucei rhodesiense infection. Relatively resistant C57BL/10 mice, intermediate A.By mice, and least resistant C3H.SW mice that were reconstituted after lethal irradiation with syngeneic bone marrow cells displayed resistance and immunity characteristic of the homologous donor strain. When C57BL/10 mice were reconstituted with C3H.SW mouse bone marrow cells they retained the ability to produce antibodies to trypanosome surface antigen but the antibody titers were significantly reduced. Control of parasitemia and mean survival time were reduced in these chimeras, but differed significantly from C3H.SW mice. A. By mice that received cells from C57BL/10 donors exhibited antibody responses and survival times similar to the C57BL/10 mice. Survival times of A.By mice given syngeneic cells or C3H.SW cells were the same, but the antibody responses of A.By mice given C3H.SW cells were lower than those of A.By mice given syngeneic cells. C3H.SW mice reconstituted with C57BL/10 bone marrow cells were capable of making antibodies and controlling parasitemia, in marked contrast to the absence of such responses in C3H.SW mice reconstituted with syngeneic cells. Survival times, however, were indistinguishable from those of C3H.SW mice given syngeneic cells. Thus, resistance to T.B. rhodesiense was shown for the first time to depend on donor bone marrow derived cells as well as upon radiation-resistant cells/factors associated with host genetic background. Also, parasite-specific IgM antibody responses seem to be regulated by a mechanism which does not depend on bone marrow derived cells alone, and the presence of such immune responses is not linked to survival time.

  11. Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors

    SciTech Connect

    Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler; Livesay, Jake

    2012-07-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

  12. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed.

  13. Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Herrmann, T.; Dmitriev, I. A.; Kozlov, D. A.; Schneider, M.; Jentzsch, B.; Kvon, Z. D.; Olbrich, P.; Bel'kov, V. V.; Bayer, A.; Schuh, D.; Bougeard, D.; Kuczmik, T.; Oltscher, M.; Weiss, D.; Ganichev, S. D.

    2016-08-01

    We report on the study of terahertz radiation-induced MIRO-like oscillations of magnetoresistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions—effect of radiation helicity and the role of the edges—yielding crucial information for an understanding of the MIRO (microwave-induced resistance oscillations) origin. Moreover, we demonstrate that the range of materials exhibiting radiation-induced magneto-oscillations can be largely extended by using high-frequency radiation.

  14. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells.

    PubMed

    Lim, Yi Chieh; Roberts, Tara L; Day, Bryan W; Stringer, Brett W; Kozlov, Sergei; Fazry, Shazrul; Bruce, Zara C; Ensbey, Kathleen S; Walker, David G; Boyd, Andrew W; Lavin, Martin F

    2014-12-01

    Glioblastoma is deemed the most malignant form of brain tumour, particularly due to its resistance to conventional treatments. A small surviving group of aberrant stem cells termed glioma initiation cells (GICs) that escape surgical debulking are suggested to be the cause of this resistance. Relatively quiescent in nature, GICs are capable of driving tumour recurrence and undergo lineage differentiation. Most importantly, these GICs are resistant to radiotherapy, suggesting that radioresistance contribute to their survival. In a previous study, we demonstrated that GICs had a restricted double strand break (DSB) repair pathway involving predominantly homologous recombination (HR) associated with a lack of functional G1/S checkpoint arrest. This unusual behaviour led to less efficient non-homologous end joining (NHEJ) repair and overall slower DNA DSB repair kinetics. To determine whether specific targeting of the HR pathway with small molecule inhibitors could increase GIC radiosensitivity, we used the Ataxia-telangiectasia mutated inhibitor (ATMi) to ablate HR and the DNA-dependent protein kinase inhibitor (DNA-PKi) to inhibit NHEJ. Pre-treatment with ATMi prior to ionizing radiation (IR) exposure prevented HR-mediated DNA DSB repair as measured by Rad51 foci accumulation. Increased cell death in vitro and improved in vivo animal survival could be observed with combined ATMi and IR treatment. Conversely, DNA-PKi treatment had minimal impact on GICs ability to resolve DNA DSB after IR with only partial reduction in cell survival, confirming the major role of HR. These results provide a mechanistic insight into the predominant form of DNA DSB repair in GICs, which when targeted may be a potential translational approach to increase patient survival.

  15. National Alliance for Radiation Readiness: Leveraging Partnerships to Increase Preparedness.

    PubMed

    Blumenstock, James S; Allen, Meredith

    2016-02-01

    The National Alliance for Radiation Readiness (NARR) is an alliance of 16 national member organizations that have banded together to serve as the collective "voice of health" in radiological preparedness through: • participation in national dialogues on radiological emergency issues; • provision of thoughtful feedback on documents, policies, and guidelines; and • convening of partners to raise awareness of and resolve radiological emergency issues. NARR benefits from the intersection and interaction of public health, radiation control, healthcare, and emergency management professionals--all with an interest in bolstering the nation's preparedness for a radiological or nuclear incident. NARR is able to provide a unique perspective on radiological and nuclear preparedness by creating multi-disciplinary workgroups to develop guidance, recommendations, and provide subject matter feedback. NARR aims to build response and recovery capacity and capabilities by supporting the sharing of resources and tools, including technical methods and information through the development of an online clearinghouse. NARR also aims to identify and disseminate best practices, as well as define and educate on the roles and responsibilities of local, state, and federal government and the numerous agencies involved with the response to a radiological emergency.

  16. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  17. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    SciTech Connect

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  18. Increased susceptibility to radiofrequency radiation due to pharmacological agents

    SciTech Connect

    Jauchem, J.R.; Frei, M.R.; Heinmets, F.

    1984-11-01

    The effects of chlorpromazine, methysergide, and propranolol on thermal responses to 2.8 GHz radiofrequency radiation were examined in anesthetized rats. During intermittent exposure at an average power density of 60 mW/sq cm (specific absorption rate, 14 W/kg), when colonic temperature was not allowed to rise above 39.5 C, none of the pharmacological agents had any significant effects on thermal responses. When exposure was continued until lethal temperatures resulted, animals which were administered chlorpromazine, methysergide, or propranolol exhibited significantly shorter survival times than saline-treated animals. Propranolol administration caused the greatest decrease in survival time and resulted in a significantly lower lethal temperature than that which occurred in saline-treated animals. 29 references.

  19. Increase of Ionizing Radiation at the Pfotzer Maximum

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Carmichael-Coker, Michele

    2015-04-01

    Verso l'alto is a multi-disciplinary research and development project whose goal is to gain insight into the cosmic ray profile of the atmosphere and geolocation of terrestrial gamma-ray flashes (TGFs) over North Carolina, USA. This experiment is comprised of high-altitude weather balloons carrying radiation, pressure and temperature detectors. Eight successful balloon flights have been completed from October 2012-June 2014. Live tracking and telemetry of the flight is performed by an amateur radio communications payload, and beacon coordinates are uploaded to aprs.fi for real-time access online. We conclude that fluctuation peaks within the tropopause are due to the Pfotzer Maximum. Other statistically significant peaks within the time scale of minutes are observed. All data sets confirm peak counts within the Pfotzer Maximum, ranging from altitudes 13.4-22 km (44,146-72,441 feet).

  20. Altered radiation responses of breast cancer cells resistant to hormonal therapy.

    PubMed

    Luzhna, Lidiya; Lykkesfeldt, Anne E; Kovalchuk, Olga

    2015-01-30

    Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as tamoxifen or the selective ER down-regulators such as ICI 182,780) are key treatment regimens for hormone receptor-positive breast cancers. While these drugs are very effective in controlling ER-positive breast cancer, many tumors that initially respond well to treatment often acquire drug resistance, which is a major clinical problem. In clinical practice, hormonal therapy agents are commonly used in combination or sequence with radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor control and patient survival. However, tamoxifen treatment may render cancer cells less responsive to radiation therapy. Only a handful of data exist on the effects of radiation on cells resistant to hormonal therapy agents. These scarce data show that cells that were resistant to tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of cross-resistance to endocrine therapy and radiation therapy need to be established. Here, we for the first time examined and compared radiation responses of MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAMR-1 and ICI 182,780 resistant MCF-7/182R-6 cell lines. Specifically, we analyzed the radiation-induced changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle regulation. We found that the tamoxifen-resistant cell line in contrast to the parental and ICI 182,780-resistant cell lines displayed a significantly less radiation-induced decrease in the expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAMR-1 and MCF-7/182R-6 cells were less susceptible to radiation-induced apoptosis as compared to the parental line. These data indicate that tamoxifen-resistant breast cancer cells have a reduced sensitivity to radiation treatment. The current study may therefore serve as a

  1. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans.

    PubMed

    Vayndorf, Elena M; Lee, Siu Sylvia; Liu, Rui Hai

    2013-07-01

    Regular consumption of fruits and vegetables is associated with reduced risk of age-related functional decline and chronic diseases such as cancer and cardiovascular disease. These effects are primarily attributed to phytochemicals, plant compounds with a wide range of biological activities and health benefits. Apples, the top contributor of fruit phenolics in American diets, have high antioxidant, antiproliferative and chemopreventive activity in vitro and in vivo. However, little is known about their effects on aging. The objectives of this study were to determine the effects of whole apple phytochemical extracts on lifespan, healthspan and resistance to various stresses in vivo using C. elegans as a model. The mean and maximum lifespan of animals treated with 2.5, 5 and 10 mg/ml whole apple extracts increased significantly in a dose-dependent manner by up to 39 and 25%, respectively. Healthspan also significantly improved as indicated by improved motility and reduced lipofuscin accumulation. Animals pre-treated with whole apple extracts were more resistant to stresses such as heat, UV radiation, paraquat-induced oxidative stress, and pathogenic infection, suggesting that cellular defense and immune system functions also improved. Our findings indicate that, in C. elegans, whole apple extracts slow aging, extend lifespan, improve healthspan, and enhance resistance to stress.

  2. Near-surface silica does not increase radiative heat dissipation from plant leaves

    NASA Astrophysics Data System (ADS)

    Olof Björn, Lars; Li, Shaoshan

    2011-07-01

    It has been suggested that plants are able to increase radiative heat dissipation from their leaves by depositing near-surface silica, in this way increasing emissivity of infrared radiation and lowering leaf temperature. In order to test this theory, we have compared emissivity and radiative dissipation over the mid-infrared range 2.5-22.3 μm of leaves of plants that accumulate silica and plants that do not. Our data do not support the theory that accumulation of silica increases radiative heat dissipation by plant leaves.

  3. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses

    SciTech Connect

    Hoffmann, A.A.; Parsons, P.A. )

    1989-08-01

    Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, {sup 60}Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.

  4. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    SciTech Connect

    Daly, Michael J.; Gaidamakova, E; Matrosova, V; Vasilenko, A; Zhai, M; Venkateswaran, Amudhan; Hess, M; Omelchenko, M V.; Kostandarithes, Heather M.; Makarova, S; Wackett, L. P.; Fredrickson, Jim K.; Ghosal, D

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  5. Methods of increasing the erosion resistance of powder metallurgy steel

    SciTech Connect

    Kulu, P.A.

    1987-09-01

    The authors comparatively assess the effects of a variety of surface hardening methods--including carburizing, boriding, chromizing, and carbochromizing, as well as the flame, plasma arc, and detonation spraying of nickel and molybdenum coatings--on the wear, corrosion resistance, and pore structure of steel 45, and outline testing procedures used to arrive at their results.

  6. A Numerical Treatment of Anisotropic Radiation Fields Coupled with Relativistic Resistive Magnetofluids

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  7. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    SciTech Connect

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  8. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  9. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  10. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    SciTech Connect

    Rehani, M.

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  11. A study on measurement of radiation resistance of Pyronema domesticum sclerotia

    NASA Astrophysics Data System (ADS)

    Aoshuang, Y. Y.; Ailian, W. W.; Ying, Z. Z.

    2000-03-01

    Measurements of radiation resistance have been carried out using two strains of Pyronema domesticum which were isolated from Chinese cotton swab gauze. A "sand-washing" technique was developed to overcome the difficulties when harvesting sclerotia spores from cultured plates and preparing spore suspensions for further use. Three types of microbial preparations, spore suspension, inoculated cotton and spore dot, were exposed to gamma radiation. A dose-survival curve method and a fraction positive method were employed to determine radiation resistance. D 10 values derived from this study are within the range of 2.0-3.0 kGy. Concerns associated with the current study indicate that further work is needed.

  12. In Utero Estrogen Exposure Increases Antiestrogen Resistance by Inducing EMT

    DTIC Science & Technology

    2015-02-01

    line therapy in in utero EE2 exposed rats can prevent the development of TAM resistance. Briefly, pregnant Sprague Dawley dams (Harlan, USA) were fed ...day 10 and 20; after that all dams were fed control AIN93G diet. Pregnant dams gave birth to an average of 8 pups each in both treatment groups. All...year 2) from each of the treatment groups and treatment outcomes. Upon sacrifice, mammary glands, tumors, blood, liver , spleen, brain, ovary

  13. Failure of synthetic muramyl dipeptide to increase antibacterial resistance.

    PubMed Central

    Finger, H; Wirsing von König, C H

    1980-01-01

    Synthetic muranyl dipeptide, which potentiates antibody production and cellular immune responses at a dosage of 100 to 500 micrograms, did not enhance resistance to intravenous infection with a sublethal dose of 2 X 10(3) to 4 X 10(3) viable Listeria monocytogenes cells in mice when intraperitoneally injected either 20 min or 5 days before infection. Similarly, blockade of the mononuclear phagocyte system by dextran sulfate 500 could not be overcome by pretreatment with muramyl dipeptide. In contrast, dextran sulfate 500-induced loss of antibacterial resistance was found to be completely abolished by intraperitoneal injection of 3 X 10(9) killed Bordetella pertussis organisms when given 4 days before injection of dextran sulfate 500, i.e., 5 days before infection. B. pertussis were also effective in enhancing antibacterial resistance when administered 5 days before infection. The different behavior of the two adjuvants tested is assumed to be due to their different nonspecific proliferative capacities. Thus, B. pertussis are assumed to act by direct stimulation of the mononuclear phagocyte system whereas muramyl dipeptide does not. PMID:6155329

  14. Afatinib increases sensitivity to radiation in non-small cell lung cancer cells with acquired EGFR T790M mutation.

    PubMed

    Zhang, Shirong; Zheng, Xiaoliang; Huang, Haixiu; Wu, Kan; Wang, Bing; Chen, Xufeng; Ma, Shenglin

    2015-03-20

    Afatinib is a second-generation of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and has shown a significant clinical benefit in non-small cell lung cancer (NSCLC) patients with EGFR-activating mutations. However, the potential therapeutic effects of afatinib combining with other modalities, including ionizing radiation (IR), are not well understood. In this study, we developed a gefitinib-resistant cell subline (PC-9-GR) with a secondary EGFR mutation (T790M) from NSCLC PC-9 cells after chronic exposures to increasing doses of gefitinib. The presence of afatinib significantly increases the cell killing effect of radiation in PC-9-GR cells harboring acquired T790M, but not in H1975 cells with de novo T790M or in H460 cells that express wild-type EGFR. In PC-9-GR cells, afatinib remarkable blocks baseline of EGFR and ERK phosphorylations, and causes delay of IR-induced AKT phosphorylation. Afatinib treatment also leads to increased apoptosis and suppressed DNA damage repair in irradiated PC-9-GR cells, and enhanced tumor growth inhibition when combined with IR in PC-9-GR xenografts. Our findings suggest a potential therapeutic impact of afatinib as a radiation sensitizer in lung cancer cells harboring acquired T790M mutation, providing a rationale for a clinical trial with combination of afatinib and radiation in NSCLCs with EGFR T790M mutation.

  15. [Increased efficacy of radiation protection against fission neutrons using unithiol].

    PubMed

    Grachev, S A; Sverdlov, A G; Nikanorova, N G; Timoshenko, S I

    1999-01-01

    It was found that the combination of unithiol (Sodium salt of 2,3-dimercapto-1-propansulfonic acid) with cystamine and AET diminished their toxicity. The optimum ratio for the antitoxic effect is 0.5 molar equivalent of unithiol per radioprotective 1.0 equivalent of thiol. Animals withstand big doses of protectors well, that gives an opportunity to use increased amounts of cystamine and AET. In the experiments with circular irradiation of male (CBA x C57B1)F1 mice weighing 18-22 g with fission neutrons (the neutron mean energy was 0.85 MeV, the contribution of gamma-quanta to the total was 25%, dose rate was 14 cGy/min) it was shown that the combination of unithiol with cystamine and AET enhances their radioprotective effect: the DRF of cystamine (150 mg/kg)--1.1, and the DRF of the combination of cystamine (300 mg/kg) with unithiol (152 mg/kg)--1.2; the DRF of AET (150 mg/kg)--1.2, the DRF of the combination of AET (300 mg/kg) with unithiol--1.4. Thus, the enhancement of dose of the radioprotectors, which was made possible as a result of their combination with unithiol, leads to enhancement of efficacy of chemical protection against fission neutron irradiation as much as 10-20%. Efficacy of AET is found to be comparable to efficacy of this protector in conditions of X-rays irradiation.

  16. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release.

    PubMed

    Park, Moon-Taek; Kim, Min-Jung; Kang, Young-Hee; Choi, Soon-Young; Lee, Jae-Hoon; Choi, Jung-A; Kang, Chang-Mo; Cho, Chul-Koo; Kang, Seongman; Bae, Sangwoo; Lee, Yun-Sil; Chung, Hee Yong; Lee, Su-Jae

    2005-02-15

    The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with gamma-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with gamma-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy.

  17. Molecular and physiological strategies to increase aluminum resistance in plants.

    PubMed

    Inostroza-Blancheteau, Claudio; Rengel, Zed; Alberdi, Miren; de la Luz Mora, María; Aquea, Felipe; Arce-Johnson, Patricio; Reyes-Díaz, Marjorie

    2012-03-01

    Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.

  18. Radiation resistance of primary clonogenic blasts from children with acute lymphoblastic leukemia

    SciTech Connect

    Uckun, F.M. Childrens Cancer Group, Arcadia, CA ); Aeppli, D.; Song, C.W. )

    1993-11-15

    Detailed comparative analyses of the radiation sensitivity of primary clonogenic blasts from children with acute lymphoblastic leukemia (ALL) were performed to achieve a better understanding of clinical radiation resistance in ALL. The radiation sensitivity of primary clonogenic blasts from 74 children with newly diagnosed ALL was analyzed using leukemic progenitor cell (LPC) assays. Primary bone marrow blasts from all 74 patients were exposed to ionizing radiation and subsequently assayed for LPC-derived blast colony formation. Radiation survival curves of LPC were constructed for each of the newly diagnosed patients using computer programs for the single-hit multitarget as well as the linear quadratic models of cell survival. A marked interpatient variation in intrinsic radiation sensitivity was observed between LPC populations. The SF[sub 2] values ranged from 0.01 to 1.00. Patients were divided into groups according to their sex, age, WBC at diagnosis, cell cycle distribution of leukemic blasts, and immunophenotype. Only immunophenotype provided a significant correlation with the intrinsic radiation sensitivity of LPC. Patients with B-lineage ALL had higher SF[sub 2] and smaller [alpha] values than T-lineage ALL patients, consistent with greater intrinsic radiation resistance at the level of LPC. Notably, 43% of B-lineage ALL cases, but only 27% of T-lineage ALL cases had LPC with SF[sub 2] [ge] 0.5. Similarly, 66% of B-lineage ALL cases, but only 37% of T-lineage ALL cases had LPC with [alpha] values [le] 0.4 Gy[sup [minus]1]. Combining the two indicators of radiation resistance, they found that only 34% of the B-lineage ALL patients had none of the two parameters in the respective critical regions, while 63% of the T-lineage patients had none. In multivariate analyses, the immunophenotypic B-lineage affiliation was the only significant predictor of radiation resistance at the level of LPC. 42 refs., 1 fig., 2 tabs.

  19. Elevated Mutagenesis Does Not Explain the Increased Frequency of Antibiotic Resistant Mutants in Starved Aging Colonies

    PubMed Central

    Katz, Sophia; Hershberg, Ruth

    2013-01-01

    The frequency of mutants resistant to the antibiotic rifampicin has been shown to increase in aging (starved), compared to young colonies of Eschierchia coli. These increases in resistance frequency occur in the absence of any antibiotic exposure, and similar increases have also been observed in response to additional growth limiting conditions. Understanding the causes of such increases in the frequency of resistance is important for understanding the dynamics of antibiotic resistance emergence and spread. Increased frequency of rifampicin resistant mutants in aging colonies is cited widely as evidence of stress-induced mutagenesis (SIM), a mechanism thought to allow bacteria to increase mutation rates upon exposure to growth-limiting stresses. At the same time it has been demonstrated that some rifampicin resistant mutants are relatively fitter in aging compared to young colonies, indicating that natural selection may also contribute to increased frequency of rifampicin resistance in aging colonies. Here, we demonstrate that the frequency of mutants resistant to both rifampicin and an additional antibiotic (nalidixic-acid) significantly increases in aging compared to young colonies of a lab strain of Escherichia coli. We then use whole genome sequencing to demonstrate conclusively that SIM cannot explain the observed magnitude of increased frequency of resistance to these two antibiotics. We further demonstrate that, as was previously shown for rifampicin resistance mutations, mutations conferring nalidixic acid resistance can also increase fitness in aging compared to young colonies. Our results show that increases in the frequency of antibiotic resistant mutants in aging colonies cannot be seen as evidence of SIM. Furthermore, they demonstrate that natural selection likely contributes to increases in the frequency of certain antibiotic resistance mutations, even when no selection is exerted due to the presence of antibiotics. PMID:24244205

  20. A National Radiation Oncology Medical Student Clerkship Survey: Didactic Curricular Components Increase Confidence in Clinical Competency

    SciTech Connect

    Jagadeesan, Vikrant S.; Raleigh, David R.; Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J.; Golden, Daniel W.

    2014-01-01

    Purpose: Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. Methods and Materials: An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. Results: The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank–sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Conclusions: Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results

  1. Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression.

    PubMed

    Rajpurohit, Yogendra Singh; Desai, Shruti Sumeet; Misra, Hari Sharan

    2013-06-01

    Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.

  2. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    PubMed

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  3. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    PubMed Central

    Webb, Kimberly M.; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell. PMID:23209374

  4. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer.

    PubMed

    Moser, Justin C; Rawal, Malvika; Wagner, Brett A; Du, Juan; Cullen, Joseph J; Buettner, Garry R

    2013-01-01

    Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors.

  5. Increase in larval gut proteolytic activities and Bti resistance in the Dengue fever mosquito.

    PubMed

    Tetreau, Guillaume; Stalinski, Renaud; David, Jean-Philippe; Després, Laurence

    2013-02-01

    The bioinsecticide Bacillus thuringiensis var. israelensis (Bti) is increasingly used worldwide for mosquito control. Although no established resistance to Bti has been described in the field so far, a resistant Aedes aegypti strain (LiTOX strain) was selected in the laboratory using field-collected leaf litter containing Bti toxins. This selected strain exhibits a moderate resistance level to Bti, but a high resistance level to individual Cry toxins. As Bti contains four different toxins, generalist resistance mechanisms affecting mosquito tolerance to different toxins were expected in the resistant strain. In the present work, we show that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine-aminopeptidases, and carboxypeptidase A activities. These elevated proteolytic activities resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected. These results suggest that changes in proteolytic activities may contribute to Bti resistance in mosquitoes together with other mechanisms.

  6. Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins

    NASA Astrophysics Data System (ADS)

    Turgis, Mélanie; Stotz, Viviane; Dupont, Claude; Salmieri, Stéphane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.

  7. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    PubMed

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ((14)C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  8. Indication of increasing solar ultraviolet-B radiation flux in alpine regions

    SciTech Connect

    Blumthaler, M.; Ambach, W. )

    1990-04-13

    Measurements at the Jungfraujoch High Mountain Station (Swiss Alps, 47{degree}N, 3,576 meters above sea level) indicate that there has been a slight increase of about 1% per year in the flux of solar ultraviolet-B radiation (290 to 330 nanometers) since 1981. A Robertson-Berger detector was used to measure solar erythemal radiation. The increase can be related to a long-term ozone depletion.

  9. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.; Worrest, R. C.

    1976-01-01

    Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.

  10. Fitness Cost of Resistance to Bt Cotton Linked with Increased Gossypol Content in Pink Bollworm Larvae

    PubMed Central

    Williams, Jennifer L.; Ellers-Kirk, Christa; Orth, Robert G.; Gassmann, Aaron J.; Head, Graham; Tabashnik, Bruce E.; Carrière, Yves

    2011-01-01

    Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins. PMID:21738799

  11. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  12. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    NASA Astrophysics Data System (ADS)

    Lee, Myong-Goo; Nho, Young Chang

    2001-04-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied.

  13. Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations.

    PubMed

    Tamburini, M; Liseykina, T V; Pegoraro, F; Macchi, A

    2012-01-01

    Polarization and radiation reaction (RR) effects in the interaction of a superintense laser pulse (I>10(23) W cm-2) with a thin plasma foil are investigated with three dimensional particle-in-cell (PIC) simulations. For a linearly polarized laser pulse, strong anisotropies such as the formation of two high-energy clumps in the plane perpendicular to the propagation direction and significant radiation reactions effects are observed. On the contrary, neither anisotropies nor significant radiation reaction effects are observed using circularly polarized laser pulses, for which the maximum ion energy exceeds the value obtained in simulations of lower dimensionality. The dynamical bending of the initially flat plasma foil leads to the self-formation of a quasiparabolic shell that focuses the impinging laser pulse strongly increasing its energy and momentum densities.

  14. The radiation resistance of thermoset plastics—V. Epoxy plastics

    NASA Astrophysics Data System (ADS)

    Gilfrich, H.-P.; Wilski, H.

    Flexural strength, impact strength and dielectric properties of an epoxy plastic (bispherol A-based epoxy resin cured with aromatic diamines) with inorganic fillers remained unchanged after irradiation at high dose rate up to 10 MGy. Measurements of heat deflection temperature and sol fraction indicated, however, a deterioration of the resin. The same results were obtained after irradiation in the presence of air at extremely low dose rate (irradiation time: 10 years). Electrical surface resistance and tracking resistance worsened after irradiation. In addition, both of these surface-dependent properties were markedly influenced by the dose rate.

  15. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    SciTech Connect

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C. )

    1989-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals.

  16. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Sung, Dahye; Lee, Junghoon; Kim, Yonghwan; Chung, Wonsub

    2015-12-01

    A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu2O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  17. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.

  18. Graphene damage effects on radiation-resistance and configuration of copper–graphene nanocomposite under irradiation: A molecular dynamics study

    PubMed Central

    Huang, Hai; Tang, Xiaobin; Chen, Feida; Liu, Jian; Li, Huan; Chen, Da

    2016-01-01

    Metal–graphene nanocomposite is a kind of potential radiation tolerant material. Graphene damage of the composite is inevitable within radiation environments. In this paper, two kinds of copper–graphene nanocomposite (CGNC) systems containing perfect graphene and prefabricated damage graphene, respectively, were adopted to expound the influences of graphene damage on the properties (radiation-resistance and configuration) of CGNC under irradiation by atomistic simulations. In the CGNC containing perfect graphene, the increasing graphene damage induced by the increase of the number of cascades, did not obviously impair the role of copper–graphene interface in keeping the properties of CGNC. In the CGNC containing prefabricated damage graphene, the properties of CGNC would significantly deteriorate once the radius of prefabricated damage exceeds 10 Å, and even stacking fault tetrahedral would occur in the CGNC. The results highlighted that prefabricated graphene damage have greater effects on the change of the properties of CGNC. Therefore, it is very necessary to maintain the structural integrity of graphene for improving the radiation-resistance and configuration of CGNC. PMID:27982109

  19. Graphene damage effects on radiation-resistance and configuration of copper–graphene nanocomposite under irradiation: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Tang, Xiaobin; Chen, Feida; Liu, Jian; Li, Huan; Chen, Da

    2016-12-01

    Metal–graphene nanocomposite is a kind of potential radiation tolerant material. Graphene damage of the composite is inevitable within radiation environments. In this paper, two kinds of copper–graphene nanocomposite (CGNC) systems containing perfect graphene and prefabricated damage graphene, respectively, were adopted to expound the influences of graphene damage on the properties (radiation-resistance and configuration) of CGNC under irradiation by atomistic simulations. In the CGNC containing perfect graphene, the increasing graphene damage induced by the increase of the number of cascades, did not obviously impair the role of copper–graphene interface in keeping the properties of CGNC. In the CGNC containing prefabricated damage graphene, the properties of CGNC would significantly deteriorate once the radius of prefabricated damage exceeds 10 Å, and even stacking fault tetrahedral would occur in the CGNC. The results highlighted that prefabricated graphene damage have greater effects on the change of the properties of CGNC. Therefore, it is very necessary to maintain the structural integrity of graphene for improving the radiation-resistance and configuration of CGNC.

  20. A New Perspective on Radiation Resistance Based on Deinococcus radiodurans

    DTIC Science & Technology

    2009-03-01

    scavenging enzymes51–53, and manganese supplementa‑ tion can restore the lifespan of short‑lived C . elegans mutants54. Mitochondria accumu‑ late high...1986). 48. Domain, F., Houot, L., Chauvat, F. & Cassier-Chauvat, C . Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is...damage. This damage is caused by reactive oxygen spe ‑ cies (ROS), the chemical agents that are principally responsible for cellular radiation damage11

  1. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005

    PubMed Central

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation. PMID:25678338

  2. On the radiation resistance of planar Gunn diodes with δ-doped layers

    SciTech Connect

    Obolenskaya, E. S. Churin, A. Yu.; Obolensky, S. V.; Murel, A. V.; Shashkin, V. I.

    2015-11-15

    The radiation resistance of planar Gunn diodes is investigated. Based on the results of measurements of the pulsed current–voltage characteristics and computer simulations it is shown that the use of δ layers of doping impurities contributes to the higher radiation resistance of planar diodes by an order of magnitude compared to conventional Gunn diodes. The results of this study make it possible to formulate methodical guidelines to reduce the amount of computational and experimental studies without a considerable decrease in their informativity.

  3. Effect of Ni content on thermal and radiation resistance of VVER RPV steel

    NASA Astrophysics Data System (ADS)

    Shtrombakh, Ya. I.; Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Fedotova, S. V.; Zhurko, D. A.; Krikun, E. V.

    2015-06-01

    In this paper thermal stability and radiation resistance of VVER-type RPV steels for pressure vessels of advanced reactors with different nickel content were studied. A complex of microstructural studies and mechanical tests of the steels in different states (after long thermal exposures, provoking embrittling heat treatment and accelerated neutron irradiation) was carried out. It is shown that nickel content (other things being equal) determines the extent of materials degradation under influence of operational factors: steels with a lower nickel concentration demonstrate a higher thermal stability and radiation resistance.

  4. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.

    PubMed

    Wally, Owen; Punja, Zamir K

    2010-01-01

    We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available. With an improved understanding of plant signaling pathways in response to a range of other pathogens, such as fungi, additional candidate genes for achieving resistance are being investigated. The potential for engineering plants for resistance against individual devastating diseases or for plants with resistance towards multiple pathogens is discussed in detail.

  5. Composites for Increased Wear Resistance: Current Achievements and Future Prospects

    NASA Technical Reports Server (NTRS)

    Lancaster, J. K.

    1984-01-01

    The various ways in which reductions in wear and/or friction can be achieved by the use of composite materials are reviewed. Reinforced plastics are emphasized and it is shown that fillers and fibers reduce wear via several mechanisms additional to their role of increasing overall mechanical strength, preferential transfer, counter face abrasion, preferential load support, or third-body formation on either the composite or its counterface. Examples are given from recent work on thin layer composites of the type widely used as dry bearings in aircraft flight control mechanisms. Developments in metal based composites and carbon-carbon composites for high energy brakes are discussed. The aspects which could benefit by increased fundamental understanding identified and the types of composites which appear to have greatest potential for further growth are indicated.

  6. Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Huang, Wei; Jiang, Shu-Bin; Li, Xiao-Yan; An, You; Li, Chuang; Gao, Xiao-Ling; Chen, Hong-Bing

    2017-01-01

    Ethylene propylene diene monomer (EPDM) compounds with good flame-retardant and γ-ray radiation resistant properties were prepared by adding complex flame retardants and phenathrene. The resultant EPDM formulations have a long time to ignition (TTI >46 s), a low peak heat release rate (PHRR 341 kW/m2) and a high limited oxygen index (LOI >30). Effects of γ-ray radiation on the resultant flame-retardant EPDM was investigated. The formulated EPDM is a crosslinking dominated polymer under γ-ray radiation. The γ-ray radiation resistant property of EPDM was enhanced by adding phenanthrene. Elongation at break of EPDM formulated with phenanthrene could retain 91% after being irradiated to 0.3 MGy and still retains 40% elongation even after being irradiated to 0.9 MGy, which is much better the control. It is expected that the formulated flame-retardant and radiation resistant EPDM materials could meet the requirements for use in radiation environments.

  7. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 mRad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  8. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  9. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression

    USGS Publications Warehouse

    Cope, R.B.; Fabacher, D.L.; Lieske, C.; Miller, C.A.

    2001-01-01

    The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 ?? 103 kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 k J/m2 have been reported to suppress murine splenic/ peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.

  10. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Dreyer, J.; Fan, X.; Kämpfer, B.; Kiselev, S.; Kotte, R.; Garcia, A. Laso; Malkevich, D.; Naumann, L.; Nedosekin, A.; Plotnikov, V.; Stach, D.; Sultanov, R.; Voloshin, K.

    2017-02-01

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  11. Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis

    SciTech Connect

    Sung, Hoon Ki; Morisada, Tohru; Cho, Chung-Hyun; Oike, Yuichi; Lee, Jayhun; Sung, Eon Ki; Chung, Jae Hoon; Suda, Toshio; Koh, Gou Young . E-mail: gykoh@kaist.ac.kr

    2006-06-30

    Radiation therapy is a widely used cancer treatment, but it is unable to completely block cancer metastasis. The lymphatic vasculature serves as the primary route for metastatic spread, but little is known about how lymphatic endothelial cells respond to radiation. Here, we show that lymphatic endothelial cells in the small intestine and peri-tumor areas are highly resistant to radiation injury, while blood vessel endothelial cells in the small intestine are relatively sensitive. Our results suggest the need for alternative therapeutic modalities that can block lymphatic endothelial cell survival, and thus disrupt the integrity of lymphatic vessels in peri-tumor areas.

  12. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis

    NASA Technical Reports Server (NTRS)

    Billi, D.; Friedmann, E. I.; Hofer, K. G.; Caiola, M. G.; Ocampo-Friedmann, R.

    2000-01-01

    The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.

  13. Ionizing-Radiation Resistance in the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis

    PubMed Central

    Billi, Daniela; Friedmann, E. Imre; Hofer, Kurt G.; Caiola, Maria Grilli; Ocampo-Friedmann, Roseli

    2000-01-01

    The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration. PMID:10742231

  14. UV-B radiation increases anthocyanin levels in cotyledons and inhibits the growth of common buckwheat seedlings.

    PubMed

    Dębski, Henryk; Szwed, Magdalena; Wiczkowski, WiesŁaw; Szawara-Nowak, Dorota; Bączek, Natalia; Horbowicz, Marcin

    2016-12-01

    The impact of short-term UV-B treatment on the content of individual flavonoids and photosynthetic pigments in cotyledons and the growth of common buckwheat (Fagopyrum esculentum Moench) seedlings was investigated. Seeds of four common buckwheat cultivars were germinated in darkness over a period of 4 days and acclimatized for 2 days under a 16/8 h light/dark photoperiod at 24/18 °C day/night, and exposure to 100-120 μmol ∙ m(-2) ∙ s(-1) of photosynthetically active radiation (PAR). Seedlings were divided into three batches, including two batches subjected to different doses of UV-B (5 W ∙ m(-2) and 10 W ∙ m(-2), one hour per day) for 5 days, and a control group exposed to PAR only. Exposure to UV-B increased anthocyanin levels in the cotyledons of all examined cultivars, it inhibited hypocotyl elongation, but did not affect the content of photosynthetic pigments. Flavone concentrations increased in cv. Red Corolla and Kora, remained constant in cv. Panda and decreased in cv. Hruszowska. Exposure to UV-B decreased rutin levels in cv. Hruszowska, but not in the remaining cultivars. Cultivars Hruszowska, Panda and Kora appeared to be less resistant to UV-B than Red Corolla. Higher resistance to UV-B radiation in Red Corolla can probably be attributed to its higher content of anthocyanins and rutin in comparison with the remaining cultivars.

  15. A possible radiation-resistant solar cell geometry using superlattices

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  16. Radiation degradation behavior of chlorine-containing vinyl copolymers. Search for improved electron-beam resists

    SciTech Connect

    Helbert, J.N.; Poindexter, E.H.; Pittman, C.U. Jr.; Chen, C.Y.

    1980-06-01

    Vinyl copolymers with high radiation degradation sensitivity have been synthesized by copolymerizing vinylidene chloride (VDC), CH/sub 2/ = CCl/sub 2/, with methyl methacrylate (MMA), methacrylonitrile, methyl ..cap alpha..-chloroacrylate, and dimethyl itaconate using emulsion techniques. In addition, copolymers of methyl ..cap alpha..-chloroacrylate with methyl methacrylate and poly(..cap alpha..-chloroacrylonitrile) were studied. Introduction of vinylidene chloride into methyl methacrylate polymers caused a sharp increase in G/sub s/ even at relatively low VDC incorporation. Upon 29% VDC incorporation, the G/sub s/ value increased from 1.3 (homopolymer of MMA) to 3.4. G/sub s/ was found to be a linear function of copolymer content for several systems, but G/sub x/ was not. At higher VDC levels, the increase in G/sub s/ was countered by increases in G/sub x/. At lower VDC levels, G/sub x/ was suppressed below the values predicted by a linear G/sub x/ dependence on composition for such systems as VDC/MMA, MCA/MMA, and ..cap alpha..-chloroacrylonitrile/MMA. The VDC/MMA copolymer (29% VDC) gave a sensitivity of 4.0 x 10/sup -5/ C/cm/sup 2/ to electron beam exposure using the 0% unexposed resist thickness loss criterion and is 2 to 3 times more sensitive than PMMA. Poly(..cap alpha..-chloroacrylonitrile) is a negative resist with a sensitivity of 5 x 10/sup -5/ C/cm/sup 2/ using one-micron line images for testing.

  17. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  18. Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance

    PubMed Central

    Wu, Yi-Xin; Yang, Jia-Hua; Saitsu, Hirotomo

    2016-01-01

    Bortezomib (BTZ), a proteasome inhibitor, is the first proteasome inhibitor to be used in clinical practice. Here we investigated the mechanisms underlying acquired bortezomib resistance in hepatocellular carcinoma (HCC) cells. Using stepwise selection, we established two acquired bortezomib-resistant HCC cell lines, a bortezomib-resistant HepG2 cell line (HepG2/BTZ) and bortezomib-resistant HuH7 cell line (HuH7/BTZ). The 50% inhibitory concentration values of HepG2/BTZ and HuH7/BTZ were respectively 15- and 39-fold higher than those of parental cell lines. Sequence analysis of the bortezomib-binding pocket in the β5-subunit showed no mutation. However, bortezomib-resistant HCC cells had increased expression of β1 and β5 proteasome subunits. These alterations of proteasome expression were accompanied by a weak degree of proteasome inhibition in bortezomib-resistant cells than that in wild-type cells after bortezomib exposure. Furthermore, bortezomib-resistant HCC cells acquired resistance to apoptosis. Bortezomib up-regulated pro-apoptotic proteins of the Bcl-2 protein family, Bax and Noxa in wild-type HCC cells. However, in bortezomib-resistant HCC cells, resistance to apoptosis was accompanied by loss of the ability to stabilize and accumulate these proteins. Thus, increased expression and increased activity of proteasomes constitute an adaptive and auto regulatory feedback mechanism to allow cells to survive exposure bortezomib. PMID:27769058

  19. Resisting sarcolemmal rupture: dystrophin repeats increase membrane-actin stiffness.

    PubMed

    Sarkis, Joe; Vié, Véronique; Winder, Steve J; Renault, Anne; Le Rumeur, Elisabeth; Hubert, Jean-François

    2013-01-01

    Dystrophin is an essential part of a membrane protein complex that provides flexible support to muscle fiber membranes. Loss of dystrophin function leads to membrane fragility and muscle-wasting disease. Given the importance of cytoskeletal interactions in strengthening the sarcolemma, we have focused on actin-binding domain 2 of human dystrophin, constituted by repeats 11 to 15 of the central domain (DYS R11-15). We previously showed that DYS R11-15 also interacts with membrane lipids. We investigated the shear elastic constant (μ) and the surface viscosity (η(s)) of Langmuir phospholipid monolayers mimicking the inner leaflet of the sarcolemma in the presence of DYS R11-15 and actin. The initial interaction of 100 nM DYS R11-15 with the monolayers slightly modifies their rheological properties. Injection of 0.125 μM filamentous actin leads to a strong increase of μ and η(s,) from 0 to 5.5 mN/m and 2.4 × 10(-4) N · s/m, respectively. These effects are specific to DYS R11-15, require filamentous actin, and depend on phospholipid nature and lateral surface pressure. These findings suggest that the central domain of dystrophin contributes significantly to the stiffness and the stability of the sarcolemma through its simultaneous interactions with the cytoskeleton and lipid membrane. This mechanical link is likely to be a major contributing factor to the shock absorber function of dystrophin and muscle sarcolemmal integrity on mechanical stress.

  20. Method and apparatus for increasing resistance of bipolar buried layer integrated circuit devices to single-event upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A. (Inventor)

    1991-01-01

    Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.

  1. A study of the deposition of carbide coatings on graphite fibers. [to increase electrical resistance

    NASA Technical Reports Server (NTRS)

    Suplinskas, R. J.; Henze, T. W.

    1979-01-01

    The chemical vapor deposition of boron carbide and silicon carbide on graphite fibers to increase their electrical resistance was studied. Silicon carbide coatings were applied without degradation of the mechanical properties of the filaments. These coatings typically added 1000 ohms to the resistance of a filament as measured between two mercury pools. When SiC-coated filaments were oxidized by refluxing in boiling phosphoric acid, average resistance increased by an additional 1000 ohms; in addition resistance increases as high as 150 K ohms and breakdown voltages as high as 17 volts were noted. Data on boron carbide coatings indicated that such coatings would not be effective in increasing resistance, and would degrade the mechanical properties.

  2. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    SciTech Connect

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  3. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    SciTech Connect

    Blokland, Willem; Bryan, Jeff; Riemer, Bernie; Sangrey, Robert L; Wendel, Mark W; Liu, Yun

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  4. Peri-operative radiation exposure: Are overweight patients at increased risks?

    PubMed

    Dalgleish, S; Hince, A; Finlayson, D F

    2015-12-01

    The aim of this study was to identify if there was a correlation between body mass index (BMI) and intra-operative radiation exposure. A retrospective review of 81 patients who had sliding hip screw fixation for femoral neck fractures in one year was completed, recording body mass index (BMI), screening time, dose area product (DAP), American Society of Anesthesiologists (ASA) grade, seniority of operating surgeon and complexity of the fracture configuration. There was a statistically significant correlation between dose area product and BMI. There was no statistically significant relationship between screening time and BMI. There was no statistical difference between ASA grade, seniority of surgeon, or complexity of fracture configuration and dose area product. Simulated stochastic risks were increased for overweight patients. Overweight patients are exposed to increased doses of radiation regardless of length of screening time. Surgeons and theatre staff should be aware of the increased radiation exposure during fixation of fractures in overweight patients and, along with radiographers, ensure steps are taken to minimise these risks. Whilst such radiation dosages may have little adverse effect for individual patients, these findings may be of more relevance and concern to staff that will be exposed to increased radiation.

  5. Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance

    PubMed Central

    Panic, Andrej; Ketteler, Julia; Reis, Henning; Sak, Ali; Herskind, Carsten; Maier, Patrick; Rübben, Herbert; Jendrossek, Verena; Klein, Diana

    2017-01-01

    Despite good treatment results in localized prostate tumors, advanced disease stages usually have a pronounced resistance to chemotherapy and radiotherapy. The membrane protein caveolin-1 (Cav1) functions here as an important oncogene. Therefore we examined the impact of stromal Cav1 expression for tumor growth and sensitivity to ionizing radiation (IR). Silencing of Cav1 expression in PC3 cells resulted in increased tumor growth and a reduced growth delay after IR when compared to tumors generated by Cav1-expressing PC3 cells. The increased radiation resistance was associated with increasing amounts of reactive tumor stroma and a Cav1 re-expression in the malignant epithelial cells. Mimicking the human situation these results were confirmed using co-implantation of Cav1-silenced PC3 cells with Cav1-silenced or Cav1-expressing fibroblasts. Immunohistochemically analysis of irradiated tumors as well as human prostate tissue specimen confirmed that alterations in stromal-epithelial Cav1 expressions were accompanied by a more reactive Cav1-reduced tumor stroma after radiation and within advanced prostate cancer tissues which potentially mediates the resistance to radiation treatment. Conclusively, the radiation response of human prostate tumors is critically regulated by Cav1 expression in stromal fibroblasts. Loss of stromal Cav1 expression in advanced tumor stages may thus contribute to resistance of these tumors to radiotherapy. PMID:28112237

  6. NBS1 knockdown by small interfering RNA increases ionizing radiation mutagenesis and telomere association in human cells

    NASA Technical Reports Server (NTRS)

    Zhang, Ying; Lim, Chang U K.; Williams, Eli S.; Zhou, Junqing; Zhang, Qinming; Fox, Michael H.; Bailey, Susan M.; Liber, Howard L.

    2005-01-01

    Hypomorphic mutations which lead to decreased function of the NBS1 gene are responsible for Nijmegen breakage syndrome, a rare autosomal recessive hereditary disorder that imparts an increased predisposition to development of malignancy. The NBS1 protein is a component of the MRE11/RAD50/NBS1 complex that plays a critical role in cellular responses to DNA damage and the maintenance of chromosomal integrity. Using small interfering RNA transfection, we have knocked down NBS1 protein levels and analyzed relevant phenotypes in two closely related human lymphoblastoid cell lines with different p53 status, namely wild-type TK6 and mutated WTK1. Both TK6 and WTK1 cells showed an increased level of ionizing radiation-induced mutation at the TK and HPRT loci, impaired phosphorylation of H2AX (gamma-H2AX), and impaired activation of the cell cycle checkpoint regulating kinase, Chk2. In TK6 cells, ionizing radiation-induced accumulation of p53/p21 and apoptosis were reduced. There was a differential response to ionizing radiation-induced cell killing between TK6 and WTK1 cells after NBS1 knockdown; TK6 cells were more resistant to killing, whereas WTK1 cells were more sensitive. NBS1 deficiency also resulted in a significant increase in telomere association that was independent of radiation exposure and p53 status. Our results provide the first experimental evidence that NBS1 deficiency in human cells leads to hypermutability and telomere associations, phenotypes that may contribute to the cancer predisposition seen among patients with this disease.

  7. Ras Labs.-CASIS-ISS NL experiment for synthetic muscle: resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Sandberg, Eric; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles A.; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nordarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher; Froio, Danielle; Furlong, Cosme; Razavi, Payam; Valenza, Logan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie

    2016-04-01

    In anticipation of deep space travel, new materials are being explored to assist and relieve humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Ras Labs Synthetic Muscle - electroactive polymers (EAPs) that contract and expand at low voltages - which mimic the unique gentle-yet-strong nature of human tissue, is a potential asset to manned space travel through protective gear and human assist robotics and for unmanned space exploration through deep space. Generation 3 Synthetic Muscle was proven to be resistant to extreme temperatures, and there were indications that these materials may also be radiation resistant. The purpose of the Ras Labs-CASIS-ISS Experiment is to test the radiation resistivity of the third and fourth generation of these EAPs, as well as to make them even more radiation resistant or radiation hardened. On Earth, exposure of the Generation 3 and Generation 4 EAPs to a Cs-137 radiation source for 47.8 hours with a total dose of 305.931 kRad of gamma radiation was performed at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University, followed by pH, peroxide, Shore Hardness Durometry, and electroactivity testing to determine the inherent radiation resistivity of these contractile EAPs and to determine whether the EAPs could be made even more radiation resistant through the application of appropriate additives and coatings. The on Earth preliminary tests determined that selected Ras Labs EAPs were not only inherently radiation resistant, but with the appropriate coatings and additives, could be made even more radiation resistant. Gforce testing to over 10 G's was performed at US Army's ARDEC Labs, with excellent results, in preparation for space flight to the International Space Station National Laboratory (ISS-NL). Selected samples of Generation 3 and Generation 4 Synthetic Muscle™, with various additives and coatings, were launched to the ISS-NL on April

  8. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    SciTech Connect

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-11-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni.

  9. Chitosan Microparticles Exert Broad-Spectrum Antimicrobial Activity against Antibiotic-Resistant Micro-organisms without Increasing Resistance.

    PubMed

    Ma, Zhengxin; Kim, Donghyeon; Adesogan, Adegbola T; Ko, Sanghoon; Galvao, Klibs; Jeong, Kwangcheol Casey

    2016-05-04

    Antibiotic resistance is growing exponentially, increasing public health concerns for humans and animals. In the current study, we investigated the antimicrobial features of chitosan microparticles (CM), engineered from chitosan by ion gelation, seeking potential application for treating infectious disease caused by multidrug resistant microorganisms. CM showed excellent antimicrobial activity against a wide range of microorganisms, including clinically important antibiotic-resistant pathogens without raising resistant mutants in serial passage assays over a period of 15 days, which is a significantly long passage compared to tested antibiotics used in human and veterinary medicine. In addition, CM treatment did not cause cross-resistance, which is frequently observed with other antibiotics and triggers multidrug resistance. Furthermore, CM activity was examined in simulated gastrointestinal fluids that CM encounter when orally administered. Antimicrobial activity of CM was exceptionally strong to eliminate pathogens completely. CM at a concentration of 0.1 μg/mL killed E. coli O157:H7 (5 × 10(8) CFU/mL) completely in synthetic gastric fluid within 20 min. Risk assessment of CM, in an in vitro animal model, revealed that CM did not disrupt the digestibility, pH or total volatile fatty acid production, indicating that CM likely do not affect the functionality of the rumen. Given all the advantages, CM can serve as a great candidate to treat infectious disease, especially those caused by antibiotic-resistant pathogens without adverse side effects.

  10. Microbial radio-resistance of Salmonella Typhimurium in egg increases due to repetitive irradiation with electron beam

    NASA Astrophysics Data System (ADS)

    Tesfai, Adiam T.; Beamer, Sarah K.; Matak, Kristen E.; Jaczynski, Jacek

    2011-04-01

    Ionizing radiation improves food safety. However, foodborne pathogens develop increased resistance in response to sub-lethal stresses such as heat, pH, antibiotics, etc. Therefore, it is hypothesized that foodborne pathogens may develop increased radio-resistance to electron beam (e-beam) radiation. The objective was to determine if D10-value for Salmonella Typhimurium in de-shelled raw egg (egg white and yolk mixed together) increases due to repetitive processing with e-beam at sub-lethal doses. Survivors were enumerated on non-selective (TSA) and selective (XLD) media. Survivors from the highest dose were isolated and used in subsequent e-beam cycle. This process was repeated four times for a total of five e-beam cycles. D10-values for S. Typhimurium enumerated on TSA and XLD following each e-beam cycle were calculated as inverse reciprocal of the slope of survivor curves. D10-values for the ATCC strain were 0.59±0.031 and 0.46±0.022 kGy on TSA and XLD, respectively. However, following the fifth e-beam cycle, the respective D10-values increased (P<0.05) to 0.69±0.026 and 0.61±0.029 kGy, respectively. S. Typhimurium showed a trend (P>0.05) to develop radio-resistance faster on selective media, likely due to facilitated selection of radio-resistant cells within microbial population following each e-beam cycle. For all five e-beam cycles, S. Typhimurium had higher (P<0.05) D10-values on non-selective media, indicating that sub-lethal injury followed by cellular repair and recovery are important for radio-resistance and inactivation of this microorganism. This study demonstrated that e-beam efficiently inactivates S. Typhimurium in raw egg; however, similar to other inactivation techniques and factors affecting microbial growth, S. Typhimurium develops increased radio-resistance if repetitively processed with e-beam at sub-lethal doses.

  11. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.

    1977-01-01

    Specifically, the study has addressed the following: (1) potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation or ecosystems highly stable or amenable to adaptive change, and (2) the sensitivity of key community components (the primary producers, consumers, and decomposers) to increased UV-B radiation. Three areas of study were examined during the past year: (1) a continuation of the study utilizing the two seminatural ecosystem chambers, (2) a pilot study utilizing three flow-through ecosystem tanks enclosed in a small, outdoor greenhouse, and (3) sensitivity studies of representative primary producers and consumers.

  12. Antihistamines block radiation-induced increased intestinal blood flow in canines

    SciTech Connect

    Cockerham, L.G.; Doyle, T.F.; Donlon, M.A.; Gossett-Hagerman, C.J.

    1985-01-01

    Radiation-induced systemic hypotension is accompanied by increased intestinal blood flow (IBF) and an increased hematocrit (HCT) in dogs. Histamine infusion leads to increased IBF and intestinal edema with consequent secretion of fluid into the intestinal lumen. This study was performed to determine whether these effects could be diminished by prior administration of H/sub 1/ and H/sub 2/ histamine blockers. Dogs were given an iv infusion of mepyramine (0.5 mg/min) and cimetidine (0.25 mg/min) for 1 hr before and for 1 hr after radiation (H sub 1 and H sub 2 blockers, respectively). Mean systemic arterial blood pressure (MBP), IBF, and HCT were monitored for 2 hr. Systematic plasma histamine levels were determined simultaneously. Data obtained indicated that the H sub 1 and H sub 2 blockers, given simultaneously, were successful in blocking the increased IBF and the increased HCT seen after 100 Gy, whole-body, gamma radiation. However, the postradiation hypotension was only somewhat affected, with the MBP falling to a level 28% below the preradiation level. Plasma histamine levels reached a sharp peak, as much as 20% above baseline, at 4 min postradiation. These findings implicate histamine in the radiation-induced increase in IBF and HCT but not for the gradual decrease in postradiation blood pressure. (Author)

  13. Antihistamines block radiation-induced increased intestinal blood flow in canines

    SciTech Connect

    Cockerham, L.G.; Doyle, T.F.; Donlon, M.A.; Gossett-Hagerman, C.J.

    1985-06-01

    Radiation-induced systemic hypotension is accompanied by increased intestinal blood flow (IBF) and an increased hematocrit (HCT) in dogs. Histamine infusion leads to increased IBF and intestinal edema with consequent secretion of fluid into the intestinal lumen. This study was performed to determine whether these effects could be diminished by prior administration of H1 and H2 histamine blockers. Dogs were given an iv infusion of mepyramine (0.5 mg/min) and cimetidine (0.25 mg/min) for 1 hr before and for 1 hr after radiation (H1 and H2 blockers, respectively). Mean systemic arterial blood pressure (MBP), IBF, and HCT were monitored for 2 hr. Systemic plasma histamine levels were determined simultaneously. Data obtained indicated that the H1 and H2 blockers, given simultaneously, were successful in blocking the increased IBF and the increased HCT seen after 100 Gy, whole-body, gamma radiation. However, the postradiation hypotension was only somewhat affected, with the MBP falling to a level 28% below the preradiation level. Plasma histamine levels reached a sharp peak, as much as 20% above baseline, at 4 min postradiation. These findings implicate histamine in the radiation-induced increase in IBF and HCT but not for the gradual decrease in postradiation blood pressure.

  14. Radiation resistance of biological reagents for in situ life detection.

    PubMed

    Carr, Christopher E; Rowedder, Holli; Vafadari, Cyrus; Lui, Clarissa S; Cascio, Ethan; Zuber, Maria T; Ruvkun, Gary

    2013-01-01

    Life on Mars, if it exists, may share a common ancestry with life on Earth derived from meteoritic transfer of microbes between the planets. One means to test this hypothesis is to isolate, detect, and sequence nucleic acids in situ on Mars, then search for similarities to known common features of life on Earth. Such an instrument would require biological and chemical components, such as polymerase and fluorescent dye molecules. We show that reagents necessary for detection and sequencing of DNA survive several analogues of the radiation expected during a 2-year mission to Mars, including proton (H-1), heavy ion (Fe-56, O-18), and neutron bombardment. Some reagents have reduced performance or fail at higher doses. Overall, our findings suggest it is feasible to utilize space instruments with biological components, particularly for mission durations of up to several years in environments without large accumulations of charged particles, such as the surface of Mars, and have implications for the meteoritic transfer of microbes between planets.

  15. Radiation resistance of sequencing chips for in situ life detection.

    PubMed

    Carr, Christopher E; Rowedder, Holli; Lui, Clarissa S; Zlatkovsky, Ilya; Papalias, Chris W; Bolander, Jarie; Myers, Jason W; Bustillo, James; Rothberg, Jonathan M; Zuber, Maria T; Ruvkun, Gary

    2013-06-01

    Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis.

  16. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  17. Mixed-Methods Resistance Training Increases Power and Strength of Young and Older Men.

    ERIC Educational Resources Information Center

    Newton, Robert U.; Hakkinen, Keijo; Hakkinen, Arja; McCormick, Matt; Volek, Jeff; Kraemer, William J.

    2002-01-01

    Examined the effects of a 10-week, mixed-methods resistance training program on young and older men. Although results confirmed some age-related reductions in muscle strength and power, the older men demonstrated similar capacity to the younger men for increases in muscle strength and power via an appropriate, periodized resistance training…

  18. Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation

    PubMed Central

    Souchek, J J; Baine, M J; Lin, C; Rachagani, S; Gupta, S; Kaur, S; Lester, K; Zheng, D; Chen, S; Smith, L; Lazenby, A; Johansson, S L; Jain, M; Batra, S K

    2014-01-01

    Background: Despite its promise as a highly useful therapy for pancreatic cancer (PC), the addition of external beam radiation therapy to PC treatment has shown varying success in clinical trials. Understanding PC radioresistance and discovery of methods to sensitise PC to radiation will increase patient survival and improve quality of life. In this study, we identified PC radioresistance-associated pathways using global, unbiased techniques. Methods: Radioresistant cells were generated by sequential irradiation and recovery, and global genome cDNA microarray analysis was performed to identify differentially expressed genes in radiosensitive and radioresistant cells. Ingenuity pathway analysis was performed to discover cellular pathways and functions associated with differential radioresponse and identify potential small-molecule inhibitors for radiosensitisation. The expression of FDPS, one of the most differentially expressed genes, was determined in human PC tissues by IHC and the impact of its pharmacological inhibition with zoledronic acid (ZOL, Zometa) on radiosensitivity was determined by colony-forming assays. The radiosensitising effect of Zol in vivo was determined using allograft transplantation mouse model. Results: Microarray analysis indicated that 11 genes (FDPS, ACAT2, AG2, CLDN7, DHCR7, ELFN2, FASN, SC4MOL, SIX6, SLC12A2, and SQLE) were consistently associated with radioresistance in the cell lines, a majority of which are involved in cholesterol biosynthesis. We demonstrated that knockdown of farnesyl diphosphate synthase (FDPS), a branchpoint enzyme of the cholesterol synthesis pathway, radiosensitised PC cells. FDPS was significantly overexpressed in human PC tumour tissues compared with healthy pancreas samples. Also, pharmacologic inhibition of FDPS by ZOL radiosensitised PC cell lines, with a radiation enhancement ratio between 1.26 and 1.5. Further, ZOL treatment resulted in radiosensitisation of PC tumours in an allograft mouse model

  19. Increasing oxygenation and radiation sensitivity following photodynamic therapy with verteporfin in the RIF-1 tumor

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; O'Hara, Julia A.; Demidenko, Eugene; Wilmot, Carmen M.; Chen, Bin; Swartz, Harold M.; Hasan, Tayyaba

    2003-06-01

    The combination of verteporfin-based photodynamic therapy (PDT) wiht radiaiton therapy from an orthovoltage device has been examiend in the radiation induced fibrosarcoma tumor model. PDT with verteporfin using a 3 hour delay between injection and the time of optical irradiation has been shown to cause a significant rise in overlal tumor oxygenation. It was huypothesized that this mechanism arises from the reduced oxygen consumption from cells where the PDT has targeted the mitochondria and shut down cellular respiration. Tumor blood flow was measured and found to be still be patent immediately following therapy. This increasing oxygenation was thought to provide an opportunity to increase the radiation sensitivity of the tumor immediately following PDT. When this type of treatment was combined with radiation therapy, a delay in the tumor regrowth time demonstrated that the combined effect was greater than additive. Further study of this phenomenon will provide a more complete mechanistic understanding of the effect and possibly provide a viable pre-treatment for radiation therapy of tumore that increases the therapeutic ratio. This effect could be used to either increase the radiaton dose without increasing the side effects or decrease the dose needed for the same effect on the tumor.

  20. Ionizing radiation-induced mutant frequencies increase transiently in male germ cells of older mice.

    PubMed

    Xu, Guogang; McMahan, C Alex; Hildreth, Kim; Garcia, Rebecca A; Herbert, Damon C; Walter, Christi A

    2012-05-15

    Spontaneous mutant frequency in the male germline increases with age, thereby increasing the risk of siring offspring with genetic disorders. In the present study we investigated the effect of age on ionizing radiation-induced male germline mutagenesis. lacI transgenic mice were treated with ionizing radiation at 4-, 15- and 26-month-old, and mutant frequencies were determined for pachytene spermatocytes and round spermatids at 15 days or 49 days after ionizing radiation treatment. Cells collected 15 days after treatment were derivatives of irradiated differentiating spermatogenic cells while cells collected 49 days later were derivatives of spermatogonial stem cells. The results showed that (1) spontaneous mutant frequency increased in spermatogenic cells recovered from nonirradiated old mice (26-months-old), particularly in the round spermatids; (2) mutant frequencies were significantly increased in round spermatids obtained from middle-aged mice (15-months-old) and old age mice (26-months-old) at 15 and 49 days after irradiation compared to the sham-treated old mice; and (3) pachytene spermatocytes obtained from 15- or 26-month-old mice displayed a significantly increased mutant frequency at 15 days post irradiation. This study indicates that age modulates the mutagenic response to ionizing radiation in the male germline.

  1. Radiation resistance of (Ni,Fe)Cr2O4 spinels by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Van Brutzel, Laurent; Alvarez, Pierre; Chartier, Alain

    2014-05-01

    Molecular dynamics simulations are carried out to study primary radiation damage in NiCr2O4 and FeCr2O4 spinels, which are part of the corrosion layer of the vapour generators used in nuclear reactors. The radiation resistance of both spinels is evaluated by studying point defect recombination processes, threshold displacement energies, and 20 keV displacement cascades initiated with different PKA masses. Results are mainly in agreement with previous studies involving MgAl2O4 showing that radiation facilitates the transition to inverse spinel structure or NaCl structure. However, we find some differences between the two studied spinels indicating that NiCr2O4 is more sensitive to radiation.

  2. Altered Physiological Function, Not Structure, Drives Increased Radiation-Use Efficiency of Soybean Grown at Elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies of elevated carbon dioxide concentration ([CO2]) on crop canopies have found that radiation-use efficiency is increased more than radiation-interception efficiency. It is assumed that increased radiation-use efficiency is due to changes in leaf-level physiology; however, canopy stru...

  3. Increase in Antibiotic-Resistant Gram-Negative Bacterial Infections in Febrile Neutropenic Children

    PubMed Central

    2016-01-01

    Background The incidence of bacteremia caused by Gram-negative bacteria has increased recently in febrile neutropenic patients with the increase of antibiotic-resistant Gram-negative bacterial infections. This study aimed to identify the distribution of causative bacteria and the proportion of antibiotic-resistant bacteria in bacteremia diagnosed in febrile neutropenic children. Materials and Methods The medical records of febrile neutropenic children diagnosed with bacteremia between 2010 and 2014 were retrospectively reviewed. The causative bacteria and proportion of antibiotic-resistant bacteria were investigated and compared yearly during the study period. The clinical impact of antibiotic-resistant bacterial infections was also determined. Results A total of 336 bacteremia episodes were identified. During the entire study period, 181 (53.9%) and 155 (46.1%) episodes were caused by Gram-negative and Gram-positive bacteria, respectively. Viridans streptococci (25.9%), Klebsiella spp. (16.7%), and Escherichia coli (16.4%) were the most frequent causative bacteria. The overall distribution of causative bacteria was not significantly different annually. Antibiotic-resistant bacteria were identified in 85 (25.3%) episodes, and the proportion of antibiotic-resistant bacteria was not significantly different annually. Extended-spectrum β-lactamase-producing E. coli and Klebsiella spp. were most common among antibiotic-resistant Gram-negative bacteria, and they accounted for 30.6% (n = 34) of the identified E. coli and K. pneumoniae. Methicillin-resistant coagulase-negative staphylococci were most common among antibiotic-resistant Gram-positive bacteria, and it accounted for 88.5% (n = 23) of the identified coagulase-negative staphylococci. Antibiotic-resistant bacterial infections, especially antibiotic-resistant Gram-negative bacterial infections, caused significantly higher mortality due to bacteremia compared with non-antibiotic-resistant bacterial infections (P <0

  4. DNA repair and resistance to UV-B radiation in western spotted frogs

    USGS Publications Warehouse

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  5. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling.

    PubMed

    Skvortsova, Ira; Debbage, Paul; Kumar, Vinod; Skvortsov, Sergej

    2015-12-01

    Despite the fact that radiation therapy is a highly effective therapeutic approach, a small intratumoral cell subpopulation known as "cancer stem cells" (CSCs) is radiation-resistant and possesses specific molecular properties protecting it against radiation-induced damage. The exact mechanisms of this radioresistance are still not fully elucidated, but they relate to these cells' enhanced DNA repair capacities and their low intracellular ROS concentrations, resulting from their up-regulation of ROS scavengers. The low ROS content is accompanied by disturbances in cell cycle regulation, so it can be assumed that either CSCs are quiescent or dormant themselves, or that this cell population consists of at least two cell subpopulations: the normally and the slowly proliferating cells (quiescent or dormant cells). Slowly dividing CSCs show concomitant dysregulation of the signaling molecules mediating both cell cycle progression and maintenance of cell stemness. Despite a massive accumulation of data concerning the mechanisms underlying DNA damage response in CSCs, it represents a challenge to researchers in the era of personalized medicine to elucidate the role of intracellular ROS and of signaling pathways associated with the radiation resistance of these cells; there is a clear need to understand the molecular mechanisms helping CSCs to survive radiation exposure.

  6. Low-Temperature Ionizing Radiation Resistance of Deinococcus radiodurans and Antarctic Dry Valley Bacteria

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M.

    2010-09-01

    The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.

  7. Inhibition of Transforming Growth Factor-{beta} Signaling in Normal Lung Epithelial Cells Confers Resistance to Ionizing Radiation

    SciTech Connect

    Reeves, Anna; Zagurovskaya, Marianna; Gupta, Seema; Shareef, Mohammed M.; Mohiuddin, Mohammed; Ahmed, Mansoor M. . E-mail: mmahmed@geisinger.edu

    2007-05-01

    Purpose: To address the functional role of radiation-induced transforming growth factor-{beta} (TGF-{beta}) signaling in a normal epithelial background, we selected a spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of a dominant-negative mutant of the TGF-{beta} RII ({delta}RII) transgenic mouse that conditionally expressed {delta}RII under the control of the metallothionein promoter (MT-1), and assessed this cell line's response to radiation. Methods and Materials: A spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and terminal transferase dUPT nick end labeling (TUNEL) assays were used to assess clonogenic inhibition and apoptosis, respectively. Western-blot analysis was performed to assess the kinetics of p21, bax, and RII proteins. Transforming growth factor-{beta}-responsive promoter activity was measured using dual-luciferase reporter assay. Results: Exposure to ZnSO{sub 4} inhibited TGF-{beta} signaling induced either by recombinant TGF-{beta}1 or ionizing radiation. The SILECC, treated with either ZnSO{sub 4} or neutralizing antibody against TGF-{beta}, showed a significant increase in radio-resistance compared to untreated cells. Furthermore, the expression of {delta}RII inhibited the radiation-induced up-regulation of the TGF-{beta} effector gene p21{sup waf1/cip1}. Conclusions: Our findings imply that inhibition of radiation-induced TGF-{beta} signaling via abrogation of the RII function enhances the radio-resistance of normal lung epithelial cells, and this can be directly attributed to the loss of TGF-{beta} signaling function.

  8. Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie.

    PubMed

    Gibbs, C J; Gajdusek, D C; Latarjet, R

    1978-12-01

    The titers of several preparations of kuru. Creutzfeldt-Jacob disease, and scrapie viruses were reduced by only 1/10th or less by high doses of gamma radiation of 50 kGy and by only 1/10th-1/1000th or less for 200 kGy. This unusual radiation resistance of the two human viruses further links them with the scrapie virus and suggests that the genetic information of all three viruses is considerably smaller than that of any other known viruses of mammals.

  9. Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie.

    PubMed Central

    Gibbs, C J; Gajdusek, D C; Latarjet, R

    1978-01-01

    The titers of several preparations of kuru. Creutzfeldt-Jacob disease, and scrapie viruses were reduced by only 1/10th or less by high doses of gamma radiation of 50 kGy and by only 1/10th-1/1000th or less for 200 kGy. This unusual radiation resistance of the two human viruses further links them with the scrapie virus and suggests that the genetic information of all three viruses is considerably smaller than that of any other known viruses of mammals. PMID:104301

  10. Increased sensitivity to platinum drugs of cancer cells with acquired resistance to trabectedin

    PubMed Central

    Colmegna, B; Uboldi, S; Frapolli, R; Licandro, S A; Panini, N; Galmarini, C M; Badri, Nadia; Spanswick, V J; Bingham, J P; Kiakos, Konstantinos; Erba, E; Hartley, J A; D'Incalci, M

    2015-01-01

    Background: In order to investigate the mechanisms of acquired resistance to trabectedin, trabectedin-resistant human myxoid liposarcoma (402-91/T) and ovarian carcinoma (A2780/T) cell lines were derived and characterised in vitro and in vivo. Methods: Resistant cell lines were obtained by repeated exposures to trabectedin. Characterisation was performed by evaluating drug sensitivity, cell cycle perturbations, DNA damage and DNA repair protein expression. In vivo experiments were performed on A2780 and A2780/T xenografts. Results: 402-91/T and A2780/T cells were six-fold resistant to trabectedin compared with parental cells. Resistant cells were found to be hypersensitive to UV light and did not express specific proteins involved in the nucleotide excision repair (NER) pathway: XPF and ERCC1 in 402-91/T and XPG in A2780/T. NER deficiency in trabectedin-resistant cells was associated with the absence of a G2/M arrest induced by trabectedin and with enhanced sensitivity (two-fold) to platinum drugs. In A2780/T, this collateral sensitivity, confirmed in vivo, was associated with an increased formation of DNA interstrand crosslinks. Conclusions: Our finding that resistance to trabectedin is associated with the loss of NER function, with a consequent increased sensitivity to platinum drugs, provides the rational for sequential use of these drugs in patients who have acquired resistance to trabectedin. PMID:26633559

  11. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications.

    PubMed

    Tank, David C; Eastman, Jonathan M; Pennell, Matthew W; Soltis, Pamela S; Soltis, Douglas E; Hinchliff, Cody E; Brown, Joseph W; Sessa, Emily B; Harmon, Luke J

    2015-07-01

    Our growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events. Diversification rates have been incredibly heterogeneous throughout the evolutionary history of angiosperms and reveal a pattern of 'nested radiations' - increases in net diversification nested within other radiations. This pattern in turn generates a negative relationship between clade age and diversity across both families and orders. We suggest that stochastically changing diversification rates across the phylogeny explain these patterns. Finally, we demonstrate significant statistical support for the WGD radiation lag-time model. Across angiosperms, nested shifts in diversification led to an overall increasing rate of net diversification and declining relative extinction rates through time. These diversification shifts are only rarely perfectly associated with WGD events, but commonly follow them after a lag period.

  12. Radiation effects on the fibrinolytic system and their relation to hemorrhagic diathesis and increased endothelial permeability

    SciTech Connect

    Ballelos, E.E.

    1982-01-01

    This study was designed to investigate the effects of wholebody X-irradiation on the fibrinolytic system, the causes of radiation-induced changes in plasmin (fibrinolytic) activity, and the contribution of increased plasmin activity to increased capillary (endothelial) permeability and hemorrhagic diathesis. The parameters evaluated using adult, male, Rochester ex-Wistar rats were: (1) plasmin, plasminogen, and plasminogen activator levels in plasma within one month after 425, 655, or 885 rad and at 3.5, 7 and 12 months after 425 rad, by a modified caseinolytic method; (2) tissue plasminogen activator activity (TPAA) in heart, kidneys, lungs, liver, pancreas and spleen, by a fibrin plate method (885 rad); (3) vascular permeability, by a radioisotopic method (885 rad); and (4) gross hemorrhagic response, scored for severity. The dose-dependent changes described in plasmin, plasminogen and plasminogen activator were multi-phasic. Epsilon-amino-caproic acid (0.3 gm/kg body weight) prevented the immediate and early radiation effects on these fibrinolytic components, and partially inhibited the later effects (within one month) whether administered only as a single injection before irradiation or maintained by daily water intake thereafter. The kidneys, spleen and pancreas were markedly susceptible to radiation-induced changes in TPAA. The lungs and liver showed significant changes in capillary permeability, which correlated positively with changes in vascular volume and blood plasmin and plasminogen activator levels. Increased plasmin (fibrinolytic) activity, superimposed on a hemostatic apparatus already impaired because of thrombocytopenia, contributed to hemorrhagic diathesis in acute radiation sickness.

  13. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation.

    PubMed

    Sanzari, Jk; Muehlmatt, A; Savage, A; Lin, L; Kennedy, Ar

    2014-02-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in OP occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure.

  14. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation

    PubMed Central

    Sanzari, JK; Muehlmatt, A; Savage, A; Lin, L; Kennedy, AR

    2014-01-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in OP occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure. PMID:25242832

  15. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Muehlmatt, Amy; Savage, Alexandria; Lin, Liyong; Kennedy, Ann R.

    2014-02-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in opening pressure (OP) occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure.

  16. Recovery of viability and radiation resistance by heat-injured conidia of Penicillium expansum Lk. ex Thom.

    PubMed

    Baldy, R W; Sommer, N F; Buckley, P M

    1970-05-01

    Spores heated in water at 54 C for up to 1 hr were plated on nutrient agar immediately or held for 3 days in aerated water at 23 C and then plated. Under these conditions, holding was optimal for recovery, increasing survival percentage up to 20-fold over values for immediate plating. Recovery was prevented partially or completely, however, when spores were held in any of the following solutions: glucose, potassium phosphate, ammonium or sodium acetate, sodium azide, or 2,4-dinitrophenol, or in the sodium or potassium salts of pyruvate, and tricarboxylic acid cycle acids. Both anaerobiosis and incubation at 0 C prevented recovery. Survivors of a heat treatment were more sensitive to gamma radiation than were unheated spores. Conditions which affected the recovery of viability had the same effect on restoration of radiation resistance. Thus, many of the processes for restoration of radiation resistance seem involved also in recovery of viability after heating. After a 99% inactivating treatment (about 30 min at 54 C), heated spores respired as fast as unheated spores, or faster. Malate, citrate, succinate, and acetate stimulated respiration in unheated spores and inhibited it in heated spores.

  17. Mathematical Analysis of Space Radiator Segmenting for Increased Reliability and Reduced Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2001-01-01

    Spacecraft for long duration deep space missions will need to be designed to survive micrometeoroid bombardment of their surfaces some of which may actually be punctured. To avoid loss of the entire mission the damage due to such punctures must be limited to small, localized areas. This is especially true for power system radiators, which necessarily feature large surface areas to reject heat at relatively low temperature to the space environment by thermal radiation. It may be intuitively obvious that if a space radiator is composed of a large number of independently operating segments, such as heat pipes, a random micrometeoroid puncture will result only in the loss of the punctured segment, and not the entire radiator. Due to the redundancy achieved by independently operating segments, the wall thickness and consequently the weight of such segments can be drastically reduced. Probability theory is used to estimate the magnitude of such weight reductions as the number of segments is increased. An analysis of relevant parameter values required for minimum mass segmented radiators is also included.

  18. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl

    PubMed Central

    Lehmann, Philipp; Boratyński, Zbyszek; Mappes, Tapio; Mousseau, Timothy A.; Møller, Anders P.

    2016-01-01

    A cataract is a clouding of the lens that reduces light transmission to the retina, and it decreases the visual acuity of the bearer. The prevalence of cataracts in natural populations of mammals, and their potential ecological significance, is poorly known. Cataracts have been reported to arise from high levels of oxidative stress and a major cause of oxidative stress is ionizing radiation. We investigated whether elevated frequencies of cataracts are found in eyes of bank voles Myodes glareolus collected from natural populations in areas with varying levels of background radiation in Chernobyl. We found high frequencies of cataracts in voles collected from different areas in Chernobyl. The frequency of cataracts was positively correlated with age, and in females also with the accumulated radiation dose. Furthermore, the number of offspring in female voles was negatively correlated with cataract severity. The results suggest that cataracts primarily develop as a function of ionizing background radiation, most likely as a plastic response to high levels of oxidative stress. It is therefore possible that the elevated levels of background radiation in Chernobyl affect the ecology and fitness of local mammals both directly through, for instance, reduced fertility and indirectly, through increased cataractogenesis. PMID:26814168

  19. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    PubMed

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  20. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl.

    PubMed

    Lehmann, Philipp; Boratyński, Zbyszek; Mappes, Tapio; Mousseau, Timothy A; Møller, Anders P

    2016-01-27

    A cataract is a clouding of the lens that reduces light transmission to the retina, and it decreases the visual acuity of the bearer. The prevalence of cataracts in natural populations of mammals, and their potential ecological significance, is poorly known. Cataracts have been reported to arise from high levels of oxidative stress and a major cause of oxidative stress is ionizing radiation. We investigated whether elevated frequencies of cataracts are found in eyes of bank voles Myodes glareolus collected from natural populations in areas with varying levels of background radiation in Chernobyl. We found high frequencies of cataracts in voles collected from different areas in Chernobyl. The frequency of cataracts was positively correlated with age, and in females also with the accumulated radiation dose. Furthermore, the number of offspring in female voles was negatively correlated with cataract severity. The results suggest that cataracts primarily develop as a function of ionizing background radiation, most likely as a plastic response to high levels of oxidative stress. It is therefore possible that the elevated levels of background radiation in Chernobyl affect the ecology and fitness of local mammals both directly through, for instance, reduced fertility and indirectly, through increased cataractogenesis.

  1. Radiation Increases Invasion of Gene-Modified Mesenchymal Stem Cells into Tumors

    SciTech Connect

    Zielske, Steven P.; Livant, Donna L.; Lawrence, Theodore S.

    2009-11-01

    Purpose: Mesenchymal stem cells (MSCs) are multipotent cells in the bone marrow that have been found to migrate to tumors, suggesting a potential use for cancer gene therapy. MSCs migrate to sites of tissue damage, including normal tissues damaged by radiation. In this study, we investigated the effect of tumor radiotherapy on the localization of lentivirus-transduced MSCs to tumors. Methods and Materials: MSCs were labeled with a lipophilic dye to investigate their migration to colon cancer xenografts. Subsequently, the MSCs were transduced with a lentiviral vector to model gene therapy and mark the infused MSCs. LoVo tumor xenografts were treated with increasing radiation doses to assess the effect on MSC localization, which was measured by quantitative polymerase chain reaction. MSC invasion efficiency was determined in an invasion assay. Results: MSCs migrated to tumor xenografts of various origins, with few cells found in normal tissues. A lentiviral vector efficiently transduced MSCs in the presence, but not the absence, of hexadimethrine bromide (Polybrene). When LoVo tumors were treated with increasing radiation doses, more MSCs were found to migrate to them than to untreated tumors. Irradiation increased MSC localization in HT-29 and MDA-MB-231, but not UMSCC1, xenografts. Monocyte chemotactic protein-1 expression in tumors did not correlate with the basal levels of MSC infiltration; however, monocyte chemotactic protein-1 was modestly elevated in irradiated tumors. Media from irradiated LoVo cells stimulated MSC invasion into basement membranes. Conclusion: These findings suggest that radiation-induced injury can be used to target MSCs to tumors, which might increase the effectiveness of MSC cancer gene therapy. The production of tumor-derived factors in response to radiation stimulates MSC invasion.

  2. RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells

    PubMed Central

    Holley, Aaron K.; Xu, Yong; St. Clair, Daret K.; St. Clair, William H.

    2011-01-01

    Radiation therapy is in the front line for treatment of localized prostate cancer. However, a significant percentage of patients have radiation-resistant disease. The NF-κB pathway is an important factor for radiation resistance, and the classical (canonical) pathway is thought to confer protection of prostate cancer cells from ionizing radiation. Recently, the alternative (non-canonical) pathway, which is involved in prostate cancer aggressiveness, has also been shown to be important for radiation resistance in prostate cancer. The alternative NF-κB pathway component RelB protects prostate cancer cells from the detrimental effects of ionizing radiation, in part, by stimulating expression of the mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD). Blocking RelB activation suppresses MnSOD expression and sensitizes prostate cancer cells to radiation. These results suggest that RelB-mediated modulation of the antioxidant capacity of prostate cancer cells is an important mechanism of radiation resistance. Therefore, targeting RelB activation may prove to be a valuable weapon in the oncologist’s arsenal to defeat aggressive and radiation-resistant prostate cancer. PMID:20649549

  3. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    PubMed Central

    Saintas, Emily; Abrahams, Liam; Ahmad, Gulshan T.; Ajakaiye, Anu-Oluwa M.; AlHumaidi, Abdulaziz S. H. A. M.; Ashmore-Harris, Candice; Clark, Iain; Dura, Usha K.; Fixmer, Carine N.; Ike-Morris, Chinedu; Mato Prado, Mireia; Mccullough, Danielle; Mishra, Shishir; Schöler, Katia M. U.; Timur, Husne; Williamson, Maxwell D. C.; Alatsatianos, Markella; Bahsoun, Basma; Blackburn, Edith; Hogwood, Catherine E.; Lithgow, Pamela E.; Rowe, Michelle; Yiangou, Lyto; Rothweiler, Florian; Cinatl, Jindrich; Zehner, Richard; Baines, Anthony J.; Garrett, Michelle D.; Gourlay, Campbell W.; Griffin, Darren K.; Gullick, William J.; Hargreaves, Emma; Howard, Mark J.; Lloyd, Daniel R.; Rossman, Jeremy S.; Smales, C. Mark; Tsaousis, Anastasios D.; von der Haar, Tobias; Wass, Mark N.

    2017-01-01

    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin. PMID:28192521

  4. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS.

    PubMed

    Saintas, Emily; Abrahams, Liam; Ahmad, Gulshan T; Ajakaiye, Anu-Oluwa M; AlHumaidi, Abdulaziz S H A M; Ashmore-Harris, Candice; Clark, Iain; Dura, Usha K; Fixmer, Carine N; Ike-Morris, Chinedu; Mato Prado, Mireia; Mccullough, Danielle; Mishra, Shishir; Schöler, Katia M U; Timur, Husne; Williamson, Maxwell D C; Alatsatianos, Markella; Bahsoun, Basma; Blackburn, Edith; Hogwood, Catherine E; Lithgow, Pamela E; Rowe, Michelle; Yiangou, Lyto; Rothweiler, Florian; Cinatl, Jindrich; Zehner, Richard; Baines, Anthony J; Garrett, Michelle D; Gourlay, Campbell W; Griffin, Darren K; Gullick, William J; Hargreaves, Emma; Howard, Mark J; Lloyd, Daniel R; Rossman, Jeremy S; Smales, C Mark; Tsaousis, Anastasios D; von der Haar, Tobias; Wass, Mark N; Michaelis, Martin

    2017-01-01

    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.

  5. Resistance of lichens to simulated galactic cosmic radiation: limits of survival capacity and biosignature detection

    NASA Astrophysics Data System (ADS)

    de la Torre Noetzel, Rosa; Miller, Ana Z.; Cubero, Beatriz; Raguse, Marina; Meessen, Joachim

    2016-04-01

    Space constitutes an extremely harmful environment for survival of terrestrial organisms. Amongst extremophiles on Earth, lichens are one of the most resistant organisms to harsh terrestrial environments, as well as some species of microorganisms, such as bacteria (Moeller et al., 2010), criptoendolithic cyanobacteria and lithic fungi (de los Ríos et al. 2004). To study the survival capacity of lichens to the harmful radiation environment of space, we have selected the lichen Circinaria gyrosa, an astrobiological model defined by its high capacity of resistance to space conditions (De la Torre et al. 2010) and to a simulated Mars environment (Sanchez et al., 2012). Samples were irradiated with four types of space-relevant ionizing radiation in the STARLIFE campaign: helium and iron ion doses (up to 2,000 Gy), X-ray doses (up to 5,000 Gy) and ultra-high γ-ray doses (from 6 to 113 kGy). Results on resistance of C. gyrosa to space-relevant ionizing radiation and its post-irradiation viability were obtained by: (i) chlorophyll a fluorescence of photosystem II (PS II); (ii) epifluorescence microscopy; (iii) confocal laser-scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence showed no significant changes on the viability of C. gyrosa with increasing doses of helium and iron ions as well as X-rays. In contrast, γ-irradiation elicited significant dose-correlated effects as revealed by all applied techniques. Relevant is the presence of whewellite-like crystals, detected by FESEM on C. gyrosa thalli after high irradiation doses, which has been also identified in previous Mars simulation studies (Böttcher et al., 2014). These studies contribute to the better understanding of the adaptability of extremophile organisms to harsh environments, as well as to estimate the habitability of a planet's surface, like Mars; they will be important for planning experiments on the search of life

  6. Resistance of radiation-induced tropical wood-polymer composites to fungal degradation

    NASA Astrophysics Data System (ADS)

    Chia, L. H. L.; Lim, V. S. L.; Yap, M. G. S.

    The resistance of six tropical hardwoods to fungal degradation by two wild-type strains of Phanerochaete chrysosporium Burdsall was investigated using vermiculite burial and wood-block weight loss techniques. Radiation-induced wood-polymer composites (WPC), based on two hardwoods Ramin and Rubber-wood with methyl methacrylate, were prepared, and samples were also exposed to the wood-rotting fungus. A significant improvement in resistance to fungal decay was observed in the WPC. Scanning-electron micrographs of the two woods and their composites after fungal degradation are presented and discussed.

  7. Image gently, step lightly: increasing radiation dose awareness in pediatric interventions through an international social marketing campaign.

    PubMed

    Sidhu, Manrita K; Goske, Marilyn J; Coley, Brian J; Connolly, Bairbre; Racadio, John; Yoshizumi, Terry T; Utley, Tara; Strauss, Keith J

    2009-09-01

    In the past several decades, advances in imaging and interventional techniques have been accompanied by an increase in medical radiation dose to the public. Radiation exposure is even more important in children, who are more sensitive to radiation and have a longer lifespan during which effects may manifest. To address radiation safety in pediatric computed tomography, in 2008 the Alliance for Radiation Safety in Pediatric Imaging launched an international social marketing campaign entitled Image Gently. This article describes the next phase of the Image Gently campaign, entitled Step Lightly, which focuses on radiation safety in pediatric interventional radiology.

  8. Effect of nano-oxide particle size on radiation resistance of iron-chromium alloys

    NASA Astrophysics Data System (ADS)

    Xu, Weizong; Li, Lulu; Valdez, James A.; Saber, Mostafa; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2016-02-01

    Radiation resistance of Fe-14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700-1500 He bubbles at the depth of about 150-700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5-4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  9. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOEpatents

    Christiansen, D.W.; Schively, D.P.

    1982-01-19

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  10. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  11. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell

    PubMed Central

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549. PMID:26078725

  12. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    radiation resistance can be reversed with DNAPK inhibition. These findings suggest that DNA-PK inhibition should be explored as a clinical strategy for...PK inhibition should be explored as a clinical strategy for radiosensitizing prostate cancers. In addition, we have discovered that ERG interacts...DOD Annual Report review committee to consider allowing us to expand the aims of this grant to assess PARP1 inhibition as a therapeutic strategy for

  13. ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment.

    PubMed

    Weylandt, Karsten H; Nebrig, Maxim; Jansen-Rosseck, Nils; Amey, Joanna S; Carmena, David; Wiedenmann, Bertram; Higgins, Christopher F; Sardini, Alessandro

    2007-03-01

    Resistance to anticancer drugs and consequent failure of chemotherapy is a complex problem severely limiting therapeutic options in metastatic cancer. Many studies have shown a role for drug efflux pumps of the ATP-binding cassette transporters family in the development of drug resistance. ClC-3, a member of the CLC family of chloride channels and transporters, is expressed in intracellular compartments of neuronal cells and involved in vesicular acidification. It has previously been suggested that acidification of intracellular organelles can promote drug resistance by increasing drug sequestration. Therefore, we hypothesized a role for ClC-3 in drug resistance. Here, we show that ClC-3 is expressed in neuroendocrine tumor cell lines, such as BON, LCC-18, and QGP-1, and localized in intracellular vesicles co-labeled with the late endosomal/lysosomal marker LAMP-1. ClC-3 overexpression increased the acidity of intracellular vesicles, as assessed by acridine orange staining, and enhanced resistance to the chemotherapeutic drug etoposide by almost doubling the IC(50) in either BON or HEK293 cell lines. Prevention of organellar acidification, by inhibition of the vacuolar H(+)-ATPase, reduced etoposide resistance. No expression of common multidrug resistance transporters, such as P-glycoprotein or multidrug-related protein-1, was detected in either the BON parental cell line or the derivative clone overexpressing ClC-3. The probable mechanism of enhanced etoposide resistance can be attributed to the increase of vesicular acidification as consequence of ClC-3 overexpression. This study therefore provides first evidence for a role of intracellular CLC proteins in the modulation of cancer drug resistance.

  14. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth.

    PubMed

    Hjältén, Joakim; Axelsson, E Petter

    2015-01-01

    Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees.

  15. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth

    PubMed Central

    Hjältén, Joakim; Axelsson, E. Petter

    2015-01-01

    Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees. PMID:25983736

  16. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy

    PubMed Central

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy. PMID:27478804

  17. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy.

    PubMed

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy.

  18. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury

    PubMed Central

    Sureban, Sripathi M.; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A.; Ding, Kai; Umar, Shahid; Schlosser, Michael J.; Houchen, Courtney W.

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis. PMID:26270561

  19. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury.

    PubMed

    Sureban, Sripathi M; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A; Ding, Kai; Umar, Shahid; Schlosser, Michael J; Houchen, Courtney W

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis.

  20. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    PubMed

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur.

  1. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    SciTech Connect

    Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-11-15

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  2. Radiation-Resistant Hybrid Lotus Effect for Achieving Photoelectrocatalytic Self-Cleaning Anticontamination Coatings

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Pirich, Ronald G.

    2011-01-01

    An experiment involving radiation-resistant hydrophobic coatings is planned for space exposure and experimental testing on the International Space Station (ISS) in 2011. The Lotus biocide coatings are designed for supporting space exploration missions. This innovation is an antibacterial, anti-contamination, and self-cleaning coating that uses nano-sized semiconductor semimetal oxides to neutralize biological pathogens and toxic chemicals, as well as to mitigate dust accumulation (see figure). The Lotus biocide coating is thin (approximately microns thick), lightweight, and the biocide properties will not degrade with time or exposure to biological or chemical agents. The biocide is stimulated chemically (stoichiometric reaction) through exposure to light (photocatalysis), or by an applied electric field (electrocatalysis). The hydrophobic coating samples underwent preliminary high-energy proton and alpha-ray (helium ion) irradiations at the Lawrence Berkeley National Laboratory 88" cyclotron and demonstrated excellent radiation resistance for a portion of the Galactic Cosmic Ray (GRC) and Solar Proton spectrum. The samples will undergo additional post-flight studies when returned to Earth to affirm further the radiation resistance properties of the space exposed coatings.

  3. Potential health effects of climatic change: Effects of increased ultraviolet radiation on man

    SciTech Connect

    Urbach, F. )

    1991-12-01

    There is scientific evidence that stratospheric ozone concentration has declined over the Northern Hemisphere in the past 20 years, and projections based on various assumption s about future release of chlorofluorocarbon gases and other contaminants suggest that this decline will continue into the next century. The effects on human health secondary to increase in biologically effective ultraviolet radiation are expected to consist of increases in nonmelanoma skin cancer and malignant melanoma of the skin, possible alteration of immune response, and development of lens cataracts. The recent and projected increases in skin cancer and changes in human immune responses are discussed. 19 refs.

  4. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, K.; Villafañe, V. E.; Helbling, E. W.

    2012-10-01

    Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 μatm) for more than 20 generations. Compared to the ambient CO2 level (390 μatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

  5. Increased Water Activity Reduces the Thermal Resistance of Salmonella enterica in Peanut Butter

    PubMed Central

    He, Yingshu; Li, Ye; Salazar, Joelle K.; Yang, Jingyun; Tortorello, Mary Lou

    2013-01-01

    Increased water activity in peanut butter significantly (P < 0.05) reduced the heat resistance of desiccation-stressed Salmonella enterica serotypes treated at 90°C. The difference in thermal resistance was less notable when strains were treated at 126°C. Using scanning electron microscopy, we observed minor morphological changes of S. enterica cells resulting from desiccation and rehydration processes in peanut oil. PMID:23728806

  6. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    SciTech Connect

    Wang, Jingbo; Cao, Jianzhong; Yuan, Shuanghu; Arenberg, Douglas; Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K.; Kong, Feng-Ming

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  7. Method of increasing radiation sensitivity by inhibition of beta one integrin

    DOEpatents

    Park, Catherine; Bissell, Mina J.

    2009-11-17

    A method for increasing or monitoring apoptosis in tumor cells by the co-administration of ionizing radiation and an anti-integrin antibody. Increasing apoptosis reduces tumor growth in vivo and in a cell culture model. The antibody is directed against the beta-1 integrin subunit and is inhibitory of beta-1 integrin signaling. Other molecules having an inhibitory effect on beta-1 integrin, either in signaling or in binding to its cognate extracellular receptors may also be used. The present method is particularly of interest in treatment of tumor cells associated with breast cancer, wherein radiation is currently used alone. The present method further contemplates a monoclonal antibody suitable for human administration that may further comprise a radioisotope attached thereto.

  8. Resistance training increases total energy expenditure and free-living physical activity in older adults.

    PubMed

    Hunter, G R; Wetzstein, C J; Fields, D A; Brown, A; Bamman, M M

    2000-09-01

    The purpose of this study was to determine what effects 26 wk of resistance training have on resting energy expenditure (REE), total free-living energy expenditure (TEE), activity-related energy expenditure (AEE), engagement in free-living physical activity as measured by the activity-related time equivalent (ARTE) index, and respiratory exchange ratio (RER) in 61- to 77-yr-old men (n = 8) and women (n = 7). Before and after training, body composition (four-compartment model), strength, REE, TEE (doubly labeled water), AEE (TEE - REE + thermic response to meals), and ARTE (AEE adjusted for energy cost of standard activities) were evaluated. Strength (36%) and fat-free mass (2 kg) significantly increased, but body weight did not change. REE increased 6.8%, whereas resting RER decreased from 0.86 to 0.83. TEE (12%) and ARTE (38%) increased significantly, and AEE (30%) approached significance (P = 0.06). The TEE increase remained significant even after adjustment for the energy expenditure of the resistance training. In response to resistance training, TEE increased and RER decreased. The increase in TEE occurred as a result of increases in both REE and physical activity. These results suggest that resistance training may have value in increasing energy expenditure and lipid oxidation rates in older adults, thereby improving their metabolic profiles.

  9. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  10. Study of fatigue resistance of chemical and radiation crosslinked medical grade ultrahigh molecular weight polyethylene.

    PubMed

    Baker, D A; Hastings, R S; Pruitt, L

    1999-09-15

    The aim of this work is to understand the role of chemical and radiation induced crosslinking on the fatigue crack propagation resistance of medical grade ultrahigh molecular weight polyethylene (UHMWPE). In recent years, the need to improve the tribological performance of UHMWPE used in total joint replacements has resulted in the widespread utilization of crosslinking as a method to improve wear resistance. Although crosslinking has been shown to drastically improve the wear resistance of the polymer, the potential trade-off in fatigue properties has yet to be addressed. Fatigue crack propagation resistance is a concern in tibial inserts where large cyclic stresses are sufficient to drive the growth of subsurface cracks that potentially contribute to delamination wear mechanisms. For clinical relevance, the combined effects of sterilization and aging are examined in two commercially available crosslinked resins. Nonsterile and unaged resins serve as a control. To evaluate the effect of crosslinking, a comparison is made to uncrosslinked resins. Scanning electron microscopy is used to provide an understanding of fatigue fracture mechanisms in the crosslinked polymers. The results of this study show that the current level of crosslinking used in orthopedic resins for enhanced wear resistance is not beneficial for fatigue crack propagation resistance.

  11. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, K.; Villafañe, V. E.; Helbling, E. W.

    2012-06-01

    Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PSII caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. As for photosynthetic carbon fixation, the rate increased with increasing temperature from 15 to 25 °C, regardless of their growth CO2 levels. In addition, UV-induced inhibition of photosynthesis was inversely correlated to temperature. The ratio of repair to UV-induced damage showed inverse relationship with increased NPQ, showing higher values under the ocean acidification condition against UV-B, reflecting that the increased pCO2 and lowered pH counteracted UV-B induced harm.

  12. Distribution of radiation resistances of microbiological contaminants of a cotton-based medical product

    NASA Astrophysics Data System (ADS)

    Yan Aoshuang; Tallentire, Alan

    1995-02-01

    A distribution of radiation resistances of microorganisms has been compiled from the results of D 10 determinations of isolates recovered from a cotton-based medical product. In all, 250 organisms were isolated from a total microbial population of around 21,000 organisms present on about 170 g of product. D 10 values of the isolates fall within the range of 0.5 to 3.6 kGy. The findings indicate that organisms having a D 10 value greater than 3.6 kGy occur amongst contaminants on this cotton product at a probability of less than 1 in 5000. The overall resistance of the population of organisms found in the present study is somewhat less than that of the 'Standard Distribution of Resistances' used in 'AAMI dose setting methods'.

  13. Top-surface imaging resists for lithography with strongly attenuated radiation

    SciTech Connect

    Ray-Chaudhuri, A.; Kubiak, G.; Henderson, C.; Wheeler, D.; Pollagi, T.

    1997-09-01

    Strong resist photoabsorption at wavelengths below 248 nm necessitates the use of a thin layer imaging (TLI) scheme for microlithography using 193 nm, 157 nm, or 13.4 nm radiation. Previous to this work, a TLI process commonly known as silylated top surface imaging (TSI) was developed by a Sandia/AT and T team for use in extreme ultraviolet lithography (EUVL) at 13.4 nm. Using this bilayer process, 0.13 {micro}m resolution with 87{degree} sidewalls in 0.7 {micro}m of resist was achieved for EUV exposures. New imaging layer polymers, silylation reagents and crosslinkers, and process conditions were screened for improvement in this TSI process with the ultimate goal of demonstrating a resist technology capable of 0.10 {micro}m critical dimension (CD). The results of these attempted improvements to the TSI process are described in this report.

  14. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    PubMed

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    , such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such

  15. The effect of surface roughness on the resistivity increase in nanometric dimensions

    NASA Astrophysics Data System (ADS)

    Marom, H.; Eizenberg, M.

    2006-06-01

    Materials with nanometric dimensions exhibit higher electrical resistivity due to additional scattering centers for the conduction electrons, mainly from surfaces and grain boundaries. In this study we focus on the effect of surfaces by implementing an experimental technique in which the resistivity of thin films is measured during and after etching them inside a solution. This technique enables to analyze the contribution of surfaces to the resistivity and gives a unique insight as for the effect of surface roughness. It is shown that the scattering of electrons from annealed copper films with smooth enough surfaces is mostly specular and that the resistivity in this case is dominated by the effect of grain boundaries. However, when the roughness of the surface becomes larger than the de Broglie wavelength of the electrons, a substantial increase in resistivity occurs. This roughness-induced resistivity is analyzed and shown to be much larger in certain cases than the resistivity predicted for a flat surface, even when all electron scatterings are assumed to be completely diffused.

  16. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    PubMed

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  17. Coordinate regulation of proteins associated with radiation resistance in cultured insect cells

    SciTech Connect

    Rand, A.; Koval, T.M.

    1994-04-01

    Cultured TN-368 lepidopteran insect cells exhibit a pronounced resistance to the lethal effects of a variety of physical agents, including X rays and 254 nm UV light, as well as a large number of chemicals. The resistance to ionizing radiation has previously been associated with an inducible process which is not expressed in unirradiated cells or cells receiving less than some minimal amount of radiation necessary for activating the process. The studies in this paper were initiated in an attempt to identify and characterize the inducible proteins associated with the marked radiation resistance of the TN-368 cells. Cells were exposed to doses of 0, 25, 64 or 350 Gy of {sup 137}Cs {gamma} rays and incubated either for 3 h in medium containing [{sup 35}S]methionine or for 2 h without labeling. Labeled cells were separated into nuclear and cytoplasmic fractions and proteins were analyzed on two-dimensional polyacrylamide gels. Unlabeled cells were used to isolate total RNA which was translated in vitro in a rabbit reticulocyte lysate system with {sup 35}S label. These translation products were also analyzed by two-dimensional electrophoresis. Gamma irradiation of the TN-368 cells resulted in the de novo synthesis of several proteins as well as the complete inhibition of others. The number of such proteins identified was 19. These proteins ranged in size from 18-73 kDa, with a pI distribution of 4.7 to 6.1. In addition to the unique proteins, a large number of other proteins were also either up- or down-regulated. These observations were made in both nuclear and cytoplasmic fractions as well as in the translation products of RNA produced after irradiation. These studies indicate that RNA and protein synthesis in lepidopteran cells are coordinately regulated in response to ionizing radiation and may participate in the pronounced radioresistance of the TN-368 cells. 15 refs., 3 figs., 1 tab.

  18. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  19. New treatment options for infections caused by increasingly antimicrobial-resistant Neisseria gonorrhoeae.

    PubMed

    Lee, Hyukmin; Lee, Kyungwon; Chong, Yunsop

    2016-01-01

    The emergence of high-level resistance to ceftriaxone is giving rise to serious concern about absence of effective treatment options to cure gonococcal infections. Increasing the dosage regimen can be applied to ceftriaxone and azithromycin, but the emergence of high-level resistance has already been reported. Spectinomycin is another active drug but has low efficacy in the treatment of pharyngeal gonorrhoea. Conventional antibiotics could be introduced for gonococcal treatment, but they have some limitations, such as the absence of clinical trials and breakpoint. Combining antibiotics is another promising method to cure patients and to prevent the emergence of resistance. The most important strategy to maintain the efficacy of antibiotics is rapid detection and dissemination control of novel resistant isolate.

  20. Earth Radiation Budget Satellite extraterrestrial solar constant measurements - 1986-1987 increasing trend

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Harrison, Edwin F.; Gibson, Michael A.; Natarajan, Sudha M.; Edmonds, William L.; Mecherikunnel, Ann T.; Kyle, H. Lee

    1988-01-01

    From June 1986 through Nov 1987, the Earth Radiation Budget Satellite (ERBS) pyrheliometric measurements indicated that the solar constant was increasing approximately +0.02 percent per year. Earlier ERBS measurements indicated that the solar constant was declining approximately -0.03 percent per year during the 1984 through mid-1986 period. Since mid-1986 represents the beginning of solar cycle 22, it is believed that the reversal in the long-term solar constant trend may be linked to increased solar activity associated with the beginning of the 11-year sunspot cycle. The typical value of the solar constant was found to be 1365 Wm-2.

  1. Excitotoxic and Radiation Stress Increase TERT Levels in the Mitochondria and Cytosol of Cerebellar Purkinje Neurons.

    PubMed

    Eitan, Erez; Braverman, Carmel; Tichon, Ailone; Gitler, Daniel; Hutchison, Emmette R; Mattson, Mark P; Priel, Esther

    2016-08-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress.

  2. Parametrization of the radiation induced leakage current increase of NMOS transistors

    NASA Astrophysics Data System (ADS)

    Backhaus, M.

    2017-01-01

    The increase of the leakage current of NMOS transistors during exposure to ionizing radiation is known and well studied. Radiation hardness by design techniques have been developed to mitigate this effect and have been successfully used. More recent developments in smaller feature size technologies do not make use of these techniques due to their drawbacks in terms of logic density and requirement of dedicated libraries. During operation the resulting increase of the supply current is a serious challenge and needs to be considered during the system design. A simple parametrization of the leakage current of NMOS transistors as a function of total ionizing dose is presented. The parametrization uses a transistor transfer characteristics of the parasitic transistor along the shallow trench isolation to describe the leakage current of the nominal transistor. Together with a parametrization of the number of positive charges trapped in the silicon dioxide and number of activated interface traps in the silicon to silicon dioxide interface the leakage current results as a function of the exposure time to ionizing radiation. This function is fitted to data of the leakage current of single transistors as well as to data of the supply current of full ASICs.

  3. Dose- and time-dependent increase of lysosomal enzymes in embryonic cartilage in vitro after ionizing radiation

    SciTech Connect

    Cornelissen, M.; de Ridder, L. )

    1990-09-01

    Radiation doses of 20, 50 or 100 Gy caused the same time related decrease for RNA and proteoglycan (PG) synthesis in embryonic cartilage in vitro (4 days culture). In this paper, participation of lysosomes in this radiation response is investigated. Therefore, we employ a cytochemical method using beta-glycerophosphate as substrate for acid phosphatase (AP) detection. Increase of AP was found 2 days after irradiation and increased during the whole culture period. The increase was more pronounced with a higher radiation dose. Stimulation of AP activity explains the observed radiation response of RNA and PG synthesis.

  4. Duplication and amplification of antibiotic resistance genes enable increased resistance in isolates of multidrug-resistant Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During normal bacterial DNA replication, gene duplication and amplification (GDA) events occur randomly at a low frequency in the genome throughout a population. In the absence of selection, GDA events that increase the number of copies of a bacterial gene (or a set of genes) are lost. Antibiotic ...

  5. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  6. MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1α-promoted glycolysis in non-small cell lung cancer cells.

    PubMed

    Jiang, Shumei; Wang, Renben; Yan, Hongjiang; Jin, Linzhi; Dou, Xue; Chen, Dong

    2016-05-01

    Aberrant microRNA (miRNA) expression in cancer affects the transcription of target genes, and profoundly influences cancer‑associated signaling pathways. Radiation resistance is a major problem encountered in the treatment of cancer. The present study aimed to investigate the role of miRNA (miR)‑21 in the development of radiation resistance in non‑small cell lung cancer cells. A radiation‑resistant cell line was generated from A549 cells. Significant upregulation of miR‑21 was detected in the radioresistant cancer cells, as compared with the radiosensitive cells, and overexpression of miR‑21 rendered A549 parental cells resistant to radiation. In addition, glycolysis was increased in the radioresistant cells, as compared with the sensitive cells. Furthermore, hypoxia‑inducible factor‑1α (HIF1α) was upregulated by miR‑21 in radioresistant cells, resulting in promotion of the key enzymes of glycolysis. Inhibition of HIF1α by small interfering RNA suppressed glycolysis and resensitized the cancer cells to radiation, whereas the recovery of HIF1α in miR‑21‑inhibited radioresistant cells resulted in recovery of radioresistance. In conclusion, the present study suggested that miR‑21 may modulate radioresistance through the upregulation of HIF1α. These results may provide a novel perspective on miRNA for the development of anti-radioresistance drugs.

  7. Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts

    PubMed Central

    Dargent, Felipe; Scott, Marilyn E.; Hendry, Andrew P.; Fussmann, Gregor F.

    2013-01-01

    A reduction in the strength of selection is expected to cause the evolution of reduced trait expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that parasite. To test this prediction in nature, we studied the fourth- and eighth-generation descendants of guppies (Poecilia reticulata) introduced into four natural streams following experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two generations of laboratory rearing to control for plasticity and maternal effects, we infected individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the introduced guppy populations had rapidly and repeatably evolved increased resistance to the now-absent parasite. This evolution was not owing to a resistance-tolerance trade-off, nor to differences in productivity among the sites. Instead, a leading candidate hypothesis is that the rapid life-history evolution typical in such introductions pleiotropically increases parasite resistance. Our study adds a new dimension to the growing evidence for contemporary evolution in the wild, and also points to the need for a re-consideration of simple expectations from host–parasite theory. In particular, our results highlight the need for increased consideration of multiple sources of selection and pleiotropy when studying evolution in natural contexts. PMID:24197417

  8. Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance.

    PubMed

    Minn, Alexandra H; Lan, Hong; Rabaglia, Mary E; Harlan, David M; Peculis, Brenda A; Attie, Alan D; Shalev, Anath

    2005-03-01

    Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance.

  9. Inhibition of miR-630 enhances the cell resistance to radiation by directly targeting CDC14A in human glioma

    PubMed Central

    Zhang, Lei; Wang, Chao; Xue, Zhi-Xiao

    2017-01-01

    Radio-resistance becomes a large obstacle for effective cancer treatment. MicroRNAs (miRNAs) play important roles in response to radiation. However, the underlying mechanism of miR-630 on the radio-resistance of human glioma is less elucidated. In this study, we found that miR-630 was downregulated in glioma cell lines after radiation. MiR-630 inhibition enhanced the survival fraction, cell number in S stage and colony formation ability in glioma cells after radiation, while miR-630 overexpression resulted in inverse effects. By detecting the molecular mechanism of miR-630, we validated that CDC14A was a direct target of miR-630 and miR-630 suppressed CDC14A protein level. CDC14A overexpression can attenuate the inhibitory roles of miR-630 in survival fraction and cell proliferation. Finally, in vivo study demonstrated that miR-630 inhibition increased the volumes of xenografts bearing with glioma cells after radiation. In conclusion, our data indicate that anti-miR-630 enhances the radio-resistance of human glioma cells by targeting CDC14A, implying that miR-630 may act as a novel therapeutic target for enhancing the radiation efficiency on glioma patients. PMID:28386351

  10. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp.

    PubMed

    Zhang, Yongli; Marrs, Carl F; Simon, Carl; Xi, Chuanwu

    2009-06-01

    The occurrence and spread of multi-drug resistant bacteria is a pressing public health problem. The emergence of bacterial resistance to antibiotics is common in areas where antibiotics are heavily used, and antibiotic-resistant bacteria also increasingly occur in aquatic environments. The purpose of the present study was to evaluate the impact of the wastewater treatment process on the prevalence of antibiotic resistance in Acinetobacter spp. in the wastewater and its receiving water. During two different events (high-temperature, high-flow, 31 degrees C; and low-temperature, low-flow, 8 degrees C), 366 strains of Acinetobacter spp. were isolated from five different sites, three in a wastewater treatment plant (raw influent, second effluent, and final effluent) and two in the receiving body (upstream and downstream of the treated wastewater discharge point). The antibiotic susceptibility phenotypes were determined by the disc-diffusion method for 8 antibiotics, amoxicillin/clavulanic acid (AMC), chloramphenicol (CHL), ciprofloxacin (CIP), colistin (CL), gentamicin (GM), rifampin (RA), sulfisoxazole (SU), and trimethoprim (TMP). The prevalence of antibiotic resistance in Acinetobacter isolates to AMC, CHL, RA, and multi-drug (three antibiotics or more) significantly increased (p<0.01) from the raw influent samples (AMC, 8.7%; CHL, 25.2%; RA, 63.1%; multi-drug, 33.0%) to the final effluent samples (AMC, 37.9%; CHL, 69.0%; RA, 84.5%; multi-drug, 72.4%), and was significantly higher (p<0.05) in the downstream samples (AMC, 25.8%; CHL, 48.4%; RA, 85.5%; multi-drug, 56.5%) than in the upstream samples (AMC, 9.5%; CHL, 27.0%; RA, 65.1%; multi-drug, 28.6%). These results suggest that wastewater treatment process contributes to the selective increase of antibiotic resistant bacteria and the occurrence of multi-drug resistant bacteria in aquatic environments.

  11. Increasing Use of Dose-Escalated External Beam Radiation Therapy for Men With Nonmetastatic Prostate Cancer

    SciTech Connect

    Swisher-McClure, Samuel; Mitra, Nandita; Woo, Kaitlin; Smaldone, Marc; Uzzo, Robert; Bekelman, Justin E.

    2014-05-01

    Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Using multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment.

  12. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons

    PubMed Central

    Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-01-01

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation. PMID:26415228

  13. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons.

    PubMed

    Chien, Ling; Chen, Wun-Ke; Liu, Szu-Ting; Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-10-13

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation.

  14. A Low-Power, Radiation-Resistant, Silicon-Drift-Detector Array for Extraterrestrial Element Mapping

    SciTech Connect

    Ramsey B. D.; De Geronimo G.; Gaskin, J.A.; Elsner, R.F.; Chen, W.; Carini, G.A.; Keister, J.; Li, S.; Li, Z.; Siddons, D.P.; Smith, G.

    2012-02-08

    We are developing a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C to Fe) fluoresced by ambient radiation on remote airless bodies. The value of fluorescence spectrometry for surface element mapping is demonstrated by its inclusion on three recent lunar missions and by exciting new data that have recently been announced from the Messenger Mission to Mercury. The SDD-XRS instrument that we have been developing offers excellent energy resolution and an order of magnitude lower power requirement than conventional CCDs, making much higher sensitivities possible with modest spacecraft resources. In addition, it is significantly more radiation resistant than x-ray CCDs and therefore will not be subject to the degradation that befell recent lunar instruments. In fact, the intrinsic radiation resistance of the SDD makes it applicable even to the harsh environment of the Jovian system where it can be used to map the light surface elements of Europa. In this paper, we first discuss our element-mapping science-measurement goals. We then derive the necessary instrument requirements to meet these goals and discuss our current instrument development status with respect to these requirements.

  15. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant

    PubMed Central

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. PMID:27169610

  16. Increasing Incidence of Multidrug Resistance Among Cystic Fibrosis Respiratory Bacterial Isolates.

    PubMed

    Rutter, W Cliff; Burgess, Donna R; Burgess, David S

    2017-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are common pathogens in cystic fibrosis (CF) patients with increasing multidrug resistance (MDR). This study characterized antimicrobial susceptibility trends among organisms isolated from the respiratory tract of CF patients. Microbiological culture and sensitivity results for all CF patients were collected from January 2010 through December 2014. Minimum inhibitory concentrations were obtained using Phoenix(®) and Etest(®) methods. Clinical and Laboratory Standards Institute guidelines were used to remove duplicate isolates and develop antimicrobial susceptibility reports. MDR was defined as resistance to one agent in three or more antibiotic classes or oxacillin resistance in S. aureus. Overall, 542 bacterial isolates from 376 cultures were analyzed for trends. P. aeruginosa (41%), S. aureus (40%), and Stenotrophomonas maltophilia (8%) were the most commonly isolated organisms. Multidrug-resistant organism isolation increased from 39% to 49% (r = 0.76, p = 0.13), while representing 47.6% of all isolates. Multidrug-resistant P. aeruginosa incidence increased each year from 26% to 43% (r = 0.89, p = 0.046), while P. aeruginosa isolation decreased from 47% to 38% over the study period (r = -0.93, p = 0.02). MRSA accounted for 62.6% of all S. aureus isolated, while overall multidrug-resistant S. aureus incidence was 73.1% in all cultures. MDR among common pathogens in CF continues to increase. Empiric therapy for CF exacerbations should be targeted to previous antimicrobial susceptibility, and P. aeruginosa and S. aureus should be empirically covered.

  17. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    SciTech Connect

    Luzhna, Lidia; Kovalchuk, Olga

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  18. Increasing irradiation temperature maximizes vitamin E grafting and wear resistance of ultrahigh molecular weight polyethylene.

    PubMed

    Oral, Ebru; Neils, Andrew L; Rowell, Shannon L; Lozynsky, Andrew J; Muratoglu, Orhun K

    2013-04-01

    Vitamin E stabilization of radiation crosslinked ultrahigh molecular weight polyethylene (UHMWPE) for total joint implants can be done by blending of UHMWPE resin powder with vitamin E, followed by consolidation and irradiation of the blend. It is well known that vitamin E prevents crosslinking in UHMWPE during ionizing radiation. We hypothesized that there would also be a significant amount of grafting of vitamin E onto UHMWPE during irradiation. Spectroscopic analysis of radiation crosslinked vitamin E-blended UHMWPE before and after extraction with boiling hexane showed vitamin E grafting in up to 30% of the blended vitamin E. Grafting increased with irradiation temperature. We also discovered that increasing irradiation temperature resulted in better preservation of active vitamin E in the polymer and increased crosslinking efficiency of UHMWPE. As a result, warm-irradiated vitamin E-blended UHMWPEs had significantly less wear than those irradiated at ambient temperature. It may be desirable to graft vitamin E on UHMWPE to decrease the possibility of elution and increase long-term stability. Warm irradiation of vitamin E blends may present an advantage in increasing vitamin E potency, as well as decreasing the wear of UHMWPE, which is crucial in decreasing the incidence of periprosthetic osteolysis in total joint replacement patients.

  19. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  20. Streptomycin use in apple orchards did not increase abundance of mobile resistance genes.

    PubMed

    Duffy, Brion; Holliger, Eduard; Walsh, Fiona

    2014-01-01

    Streptomycin is used as a first-line defense and tetracycline as a second-line defense, in the fight against fire blight disease in apple and pear orchards. We have performed the first study to quantitatively analyze the influence of streptomycin use in agriculture on the abundance of streptomycin and tetracycline resistance genes in apple orchards. Flowers, leaves, and soil were collected from three orchard sites in 2010, 2011, and 2012. Gene abundance distribution was analyzed using two-way anova and principal component analysis to investigate relationships between gene abundance data over time and treatment. The mobile antibiotic resistance genes, strA, strB, tetB, tetM, tetW, and the insertion sequence IS1133, were detected prior to streptomycin treatment in almost all samples, indicating the natural presence of these resistance genes in nature. Statistically significant increases in the resistance gene abundances were occasional, inconsistent, and not reproducible from one year to the next. We conclude that the application of streptomycin in these orchards was not associated with sustained increases in streptomycin or tetracycline resistance gene abundances.

  1. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  2. Increased Risk for Multidrug-Resistant Tuberculosis in Migratory Workers, Armenia

    PubMed Central

    Crape, Byron; Grigoryan, Ruzanna; Martirosyan, Hripsime; Petrosyan, Varduhi

    2015-01-01

    To understand use of tuberculosis (TB) services for migrant workers, we conducted a cross-sectional census of 95 migrant workers with TB from Armenia by using medical record reviews and face-to-face interviews. Prolonged time between diagnosis and treatment, treatment interruption, and treatment defaults caused by migrant work might increase the risk for multidrug-resistant TB. PMID:25695488

  3. Bleomycin increases amikacin and streptomycin resistance in Escherichia coli harboring transposon Tn5.

    PubMed Central

    Blazquez, J; Martinez, J L; Baquero, F

    1993-01-01

    The antitumor antibiotic bleomycin acts as a transcriptional inducer of the neo-ble-str operon of the transposon Tn5, increasing the resistance level to streptomycin and amikacin in Tn5-containing Escherichia coli. The mechanism may involve a recA-independent induction mediated by DNA damage. Images PMID:7694544

  4. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach r...

  5. Preparation and characterization of sorghum flour with increased resistant starch content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary objective of this research was to develop an effective process to increase the resistant starch content of sorghum flour. A secondary objective was to investigate the role of the sorghum proteins on starch digestibility. Samples of white sorghum flour (28.9% amylose content) with differe...

  6. Ultraviolet radiation does not increase oxidative stress in the lizard Psammodromus algirus along an elevational gradient.

    PubMed

    Reguera, Senda; Zamora-Camacho, Francisco J; Melero, Elena; García-Mesa, Sergio; Trenzado, Cristina E; Cabrerizo, Marco J; Sanz, Ana; Moreno-Rueda, Gregorio

    2015-05-01

    Lizards, as ectotherms, spend much time basking for thermoregulating exposed to solar radiation. Consequently, they are subjected to ultraviolet radiation (UVR), which is the most harmful component of solar radiation spectrum. UVR can provoke damages, from the molecular to tissue level, even cause death. Photooxidation triggered by UVR produces reactive oxidative species (ROS). When antioxidant machinery cannot combat the ROS concentration, oxidative stress occurs in the organisms. Given that UVR increases with elevation, we hypothesised that lizards from high elevations should be better adapted against UVR than lizards from lower elevations. In this work, we test this hypothesis in Psammodromus algirus along an elevation gradient (three elevational belts, from 300 to 2500 m above sea level). We ran an experiment in which lizards from each elevation belt were exposed to 5-hour doses of UVR (UV-light bulb, experimental group) or photosynthetically active radiation (white-light bulb, control group) and, 24 h after the exposure, we took tissue samples from the tail. We measured oxidative damage (lipid and protein peroxidation) and antioxidant capacity as oxidative-stress biomarkers. We found no differences in oxidative stress between treatments. However, consistent with a previous work, less oxidative damage appeared in lizards from the highlands. We conclude that UVR is not a stressor agent for P. algirus; however, our findings suggest that the lowland environment is more oxidative for lizards. Therefore, P. algirus is well adapted to inhabit a large elevation range, and this would favour the lizard in case it ascends in response to global climate change.

  7. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    SciTech Connect

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-05-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN/sup -/) for murine Cu-Zn-SOD was determined to be 6.8 x 10/sup -6/ M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied.

  8. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    NASA Astrophysics Data System (ADS)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  9. Study of bulk damage in high resistivity silicon detectors irradiated by high dose of {sup 60}Co {gamma}-radiation

    SciTech Connect

    Li, Z.; Li, C.J.

    1996-04-01

    High dose (> 200 Mrad) {gamma}-radiation induced displacement damage (or bulk damage) in high resistivity (6--10 k{Omega}-cm) silicon detectors has been studied. It has been found that detector bulk leakage current increases with {gamma} dose at a rate of 3.3 {times} 10{sup {minus}7} A/cm{sup 3}/Mrad. This introduction rate of bulk leakage current makes the introduction of generation centers by 210 Mrad of {gamma}-radiation comparable to that by 1 {times} 10{sup 12} n/cm{sup 2} of neutron radiation. Significant carrier removal (or donor removal), about 100%, was found in detectors irradiated to 215 Mrad. Space charge sign inversion (SCSI) (or type inversion) was observed in detectors irradiated to {ge} 215 Mrad using transient current technique (TCT). As many as seven deep levels have been observed by current deep level transient spectroscopy (I-DLTS). There was little or no annealing (or reverse annealing) for detectors irradiated to 215 Mrad. Some annealing for detectors irradiated to 500 Mrad have been observed.

  10. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    PubMed Central

    Lu, Hua; Zhang, Chong; Albrecht, Ute; Shimizu, Rena; Wang, Guanfeng; Bowman, Kim D.

    2013-01-01

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production. PMID:23761797

  11. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    NASA Astrophysics Data System (ADS)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  12. Stability and Normal Zone Propagation Speed in YBCO Coated Conductors with Increased Interfacial Resistance (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    AFRL-RZ-WP-TP-2010-2085 STABILITY AND NORMAL ZONE PROPAGATION SPEED IN YBCO COATED CONDUCTORS WITH INCREASED INTERFACIAL RESISTANCE...August 2006 – 25 August 2008 4. TITLE AND SUBTITLE STABILITY AND NORMAL ZONE PROPAGATION SPEED IN YBCO COATED CONDUCTORS WITH INCREASED INTERFACIAL...reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We will discuss how stability and speed of normal zone propagation in YBCO

  13. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes

    SciTech Connect

    Lidstrom, Mary E.

    2002-06-10

    The mixture of toxic chemicals, heavy metals, halogenated solvents and radionuclides in many DOE waste materials presents a challenging problem for separating the different species and disposing of individual contaminants. One approach for dealing with mixed wastes is to genetically engineer the radiation-resistant bacterium, Deinococcus radiodurans to survive in and detoxify DOE's mixed waste streams, and to develop process parameters for treating mixed wastes with such constructed strains. The goal for this project is to develop a suite of genetic tools for Deinococcus radiodurans and to use these tools to construct and test stable strains for detoxification of haloorganics in mixed wastes.

  14. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes

    SciTech Connect

    Lidstrom, Mary E.

    2001-06-11

    The mixture of toxic chemicals, heavy metals, halogenated solvents and radionuclides in many DOE waste materials presents a challenging problem for separating the different species and disposing of individual contaminants. One approach for dealing with mixed wastes is to genetically engineer the radiation-resistant bacterium, Deinococcus radiodurans to survive in and detoxify DOE's mixed waste streams, and to develop process parameters for treating mixed wastes with such constructed strains. The goal for this project is to develop a suite of genetic tools for Deinococcus radiodurans and to use these tools to construct and test stable strains for detoxification of haloorganics in mixed wastes.

  15. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    PubMed

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  16. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  17. Radiation-induced resistance oscillations in a 2D hole gas: a demonstration of a universal effect

    NASA Astrophysics Data System (ADS)

    Iñarrea, Jesús; Platero, Gloria

    2015-09-01

    We report on a theoretical study about the microwave-induced resistance oscillations and zero resistance states when dealing with p-type semiconductors and holes instead of electrons. We consider a high-mobility two-dimensional hole gas hosted in a pure Ge/SiGe quantum well. Similarly to electrons we obtain radiation-induced resistance oscillations and zero resistance states. We analytically deduce a universal expression for the irradiated magnetoresistance, explaining the origin of the minima positions and their 1/4 cycle phase shift. The outcome is that these phenomena are universal and only depend on radiation and cyclotron frequencies. We also study the possibility of having simultaneously two different carriers driven by radiation: light and heavy holes. As a result the calculated magnetoresistance reveals an interference profile due to the different effective masses of the two types of carriers.

  18. Transpulmonary pressure gradient verifies pulmonary hypertension is initiated by increased arterial resistance in broilers.

    PubMed

    Lorenzoni, A G; Anthony, N B; Wideman, R F

    2008-01-01

    Previous hemodynamic evaluations demonstrated that pulmonary arterial pressure (PAP) is higher in broilers that are susceptible to pulmonary hypertension syndrome (PHS, ascites) than in broilers that are resistant to PHS. We compared key pulmonary hemodynamic parameters in broilers from PHS-susceptible and PHS-resistant lines (selected for 12 generations under hypobaric hypoxia) and in broilers from a relaxed (control) line. In experiment 1 the PAP was measured in male broilers in which a flow probe positioned on one pulmonary artery permitted the determination of cardiac output and pulmonary vascular resistance (PVR). The PAP and relative PVR were higher in susceptible broilers than in relaxed and resistant broilers, whereas absolute and relative cardiac output did not differ between lines. In experiment 2 male and female broilers from the 3 lines were catheterized to measure pressures in the wing vein, right atrium, right ventricle, pulmonary artery, and pulmonary veins (WP, wedge pressure). The transpulmonary pressure gradient (TPG) was calculated as (PAP-WP), with PAP quantifying precapillary pressure and WP approximating postcapillary pulmonary venous pressure. When compared with resistant and relaxed broilers, PAP values in susceptible broilers were > or =10 mmHg higher, TPG values were > or =8 mmHg higher, and WP values were < or =2 mmHg higher, regardless of sex. The combined hemodynamic criteria (elevated PAP and PVR combined with a proportionally elevated TPG) demonstrate that susceptibility to PHS can be attributed primarily to pulmonary arterial hypertension associated with increased precapillary (arteriole) resistance rather than to pulmonary venous hypertension caused by elevated postcapillary (venous and left atrial) resistance.

  19. Heparanase promotes radiation resistance of cervical cancer by upregulating hypoxia inducible factor 1

    PubMed Central

    Li, Jianping; Meng, Xin; Hu, Jing; Zhang, Ying; Dang, Yunzhi; Wei, Lichun; Shi, Mei

    2017-01-01

    Heparanase (HPSE1) is elevated in various types of cancers including cervical cancer, and correlated with poor prognosis. Current study is to investigate the effects of HPSE1 on radiation response in cervical cancer. Colony formation assays after radiation were performed to compare the radiation response among control, HPSE1 knockdown and HPSE1 overexpression HeLa cells. The mRNA and protein levels of HIF1, bFGF and VEGF were measured as indicators for the activity of HIF1 pathway. Xenograft mouse model were used to study the HPSE1 radiation regulator effects in vivo. Microvessel densities (MVD) were measured in xenograft tumor samples. The survival fractions were significantly lower in HPSE1 knockdown cells and higher in HPSE1 overexpression cells compared with control cells. The mRNA and protein levels of HIF1, VEGF and bFGF are decreased in HPSE1 knockdown cells and increased in HPSE1 overexpression cells. HIF1 inhibition eliminated the radiation protection effects by HPSE1 overexpression. Our results demonstrate HPSE1 is an important regulator of radiation response both in vivo and in vitro. Further studies are warranted to determine the underlie mechanism of how HPSE1 regulate HIF1 activity and the clinical effects of HPSE1 inhibitors in cervical cancer. PMID:28337373

  20. Oxygen exposure increases resistance of Desulfovibrio vulgaris Hildenborough to killing by hydrogen peroxide.

    PubMed

    Wildschut, Janine D; Caffrey, Sean M; Voordouw, Johanna K; Voordouw, Gerrit

    2012-02-01

    Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free cultures of mutant and wild-type Desulfovibrio vulgaris (10(5)-10(6) colony-forming units/ml) were treated with 0 to 2,500 μM H(2)O(2) for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 μM H(2)O(2), respectively, indicating the latter to be 4.6-fold more resistant to killing by H(2)O(2) under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 μM H(2)O(2)) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance of the perR mutant increased less (4.6-fold; 50% killing at 1230 μM H(2)O(2)), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 μM H(2)O(2) for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O(2) effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H(2)O(2) stress only following pretreatment with air.

  1. Developing Planetary Protection Technology: Microbial Diversity and Radiation Resistance of Microorganisms in a Spacecraft Assembly Facility.

    NASA Astrophysics Data System (ADS)

    Chen, F.; La Duc, M. T.; Baker, A.; Koukol, R.; Barengoltz, J.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Europa has attracted much attention as evidence suggests the presence of a liquid ocean beneath this Jupiter moon's frozen crust. Such an environment might be conducive to the origins of life. Since robotic exploration of Europa is being planned, it becomes crucial to prepare for bio-burden reduction of hardware assembled for Europa missions to avoid contamination of Europa's pristine environment. In this study, we examined the microbial diversity of samples collected from two flight-ready circuit boards and their assembly facility. Also, because Jupiter's strong radiation environment may be able to reduce the viable microbial contamination on flight components, we have also studied the effects of radiation on microbial communities found to be associated with the space-flight hardware and/or present in the assembly facility. Surface samples thought to be representative of considerable human contact were collected from two circuit boards and various locations within the assembly facility using polyester swabs (swab samples). Likewise, sterile wipes were used to sample a shelf above the workstation where the circuit boards were assembled and the floor of the facility (wipe samples). The swab and wipe samples were pooled separately and divided into two halves, one of which was irradiated with 1Mrad gamma radiation for 5.5 hours, the other was not irradiated. About 1.2x104 and 6x104 CFUs/m2 cultivable microbes were detected in the swab and wipe samples, respectively. Radiation proved effective in inhibiting the growth of most microbes. Further characterization of the bacterial colonies observed in the irradiated swab and wipe samples is necessary to determine the degree of the radiation resistance. The16S rDNA sequence analysis of the cultivable microbes indicated that the assembly facility consists mostly of the members of actinobacteria, corynebacteria and pseudomonads. However, the swab samples that include the circuit boards were predominantly populated with

  2. Mouth leak with nasal continuous positive airway pressure increases nasal airway resistance.

    PubMed

    Richards, G N; Cistulli, P A; Ungar, R G; Berthon-Jones, M; Sullivan, C E

    1996-07-01

    Nasal congestion, dry nose and throat, and sore throat affect approximately 40% of patients using nasal continuous positive airway pressure (CPAP). The mechanisms causing nasal symptoms are unclear, but mouth leaks causing high unidirectional nasal airflow may be important. We conducted a study to investigate the effects of mouth leak and the influence of humidification on nasal resistance in normal subjects. Nasal resistance was measured with posterior rhinomanometry in six normal subjects who deliberately produced a mouth leak for 10 min while using nasal CPAP. Nasal resistance was measured regularly for 20 min after the challenge. A series of tests were performed using air at differing temperatures and humidities. There was no change in nasal resistance when subjects breathed through their noses while on CPAP, but a mouth leak caused a large increase in resistance (at a flow of 0.5 L/s) from a baseline mean of 2.21 cm H2O/L/s to a maximum mean of 7.52 cm H2O/L/s at 1 min after the challenge. Use of a cold passover humidifier caused little change in the response (maximum mean: 8.27 cm H2O/L/s), but a hot water bath humidifier greatly attenuated the magnitude (maximum mean: 4.02 cm H2O/L/s) and duration of the response. Mouth leak with nasal CPAP leads to high unidirectional nasal airflow, which causes a large increase in nasal resistance. This response can be largely prevented by fully humidifying the inspired air.

  3. Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors.

    PubMed

    Springuel, Lorraine; Hornakova, Tekla; Losdyck, Elisabeth; Lambert, Fanny; Leroy, Emilie; Constantinescu, Stefan N; Flex, Elisabetta; Tartaglia, Marco; Knoops, Laurent; Renauld, Jean-Christophe

    2014-12-18

    The acquisition of growth signal self-sufficiency is 1 of the hallmarks of cancer. We previously reported that the murine interleukin-9-dependent TS1 cell line gives rise to growth factor-independent clones with constitutive activation of the Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mutations either in JAK1, JAK3, or in both kinases. Transient and stable expression of JAK1 and/or JAK3 mutants showed that each mutant induces STAT activation and that their coexpression further increases this activation. The proliferation of growth factor-independent TS1 clones can be efficiently blocked by JAK inhibitors such as ruxolitinib or CMP6 in short-term assays. However, resistant clones occur upon long-term culture in the presence of inhibitors. Surprisingly, resistance to CMP6 was not caused by the acquisition of secondary mutations in the adenosine triphosphate-binding pocket of the JAK mutant. Indeed, cells that originally showed a JAK1-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK3, whereas cells that originally showed a JAK3-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK1. These observations underline the cooperation between JAK1 and JAK3 mutants in T-cell transformation and represent a new mechanism of acquisition of resistance against JAK inhibitors.

  4. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen.

    PubMed

    Gonzalez-Villoria, Ana Maria; Valverde-Garduno, Veronica

    2016-01-01

    Antibiotic-resistant infectious bacteria currently imply a high risk and therefore constitute a strong challenge when treating patients in hospital settings. Characterization of these species and of particular strains is a priority for the establishment of diagnostic tests and preventive procedures. The relevance of Acinetobacter baumannii as a problematic microorganism in inpatient facilities, particularly intensive care units, has increased over time. This review aims to draw attention to (i) the historical emergence of carbapenem-resistant Acinetobacter baumannii, (ii) the current status of surveillance needs in Latin America, and (iii) recent data suggesting that A. baumannii continues to spread and evolve in hospital settings. First, we present synopsis of the series of events leading to the discovery and precise identification of this microorganism in hospital settings. Then key events in the acquisition of antibiotic-resistant genes by this microorganism are summarized, highlighting the race between new antibiotic generation and emergence of A. baumannii resistant strains. Here we review the historical development of this species as an infectious threat, the current state of its distribution, and antibiotic resistance characteristics, and we discuss future prospects for its control.

  5. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen

    PubMed Central

    Gonzalez-Villoria, Ana Maria; Valverde-Garduno, Veronica

    2016-01-01

    Antibiotic-resistant infectious bacteria currently imply a high risk and therefore constitute a strong challenge when treating patients in hospital settings. Characterization of these species and of particular strains is a priority for the establishment of diagnostic tests and preventive procedures. The relevance of Acinetobacter baumannii as a problematic microorganism in inpatient facilities, particularly intensive care units, has increased over time. This review aims to draw attention to (i) the historical emergence of carbapenem-resistant Acinetobacter baumannii, (ii) the current status of surveillance needs in Latin America, and (iii) recent data suggesting that A. baumannii continues to spread and evolve in hospital settings. First, we present synopsis of the series of events leading to the discovery and precise identification of this microorganism in hospital settings. Then key events in the acquisition of antibiotic-resistant genes by this microorganism are summarized, highlighting the race between new antibiotic generation and emergence of A. baumannii resistant strains. Here we review the historical development of this species as an infectious threat, the current state of its distribution, and antibiotic resistance characteristics, and we discuss future prospects for its control. PMID:26966582

  6. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  7. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  8. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.

    PubMed

    Setlow, P

    2006-09-01

    A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular

  9. Short-term responses of unicellular planktonic eukaryotes to increases in temperature and UVB radiation

    PubMed Central

    2012-01-01

    Background Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. Results We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 μm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. Conclusions This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs. PMID:22966751

  10. Vision 20/20: Increased image resolution versus reduced radiation exposure

    SciTech Connect

    Ritman, Erik L.

    2008-06-15

    This is a review of methods, currently and potentially, available for significantly reducing x-ray exposure in medical x-ray imaging. It is stimulated by the radiation exposure implications of the growing use of helical scanning, multislice, x-ray computed tomography for screening, such as for coronary artery atherosclerosis and cancer of the colon and lungs. Screening requires high-throughput imaging with high spatial and contrast resolution to meet the need for high sensitivity and specificity of detection and classification of specific imaged features. To achieve this goal beyond what is currently available with x-ray imaging methods requires increased x-ray exposure, which increases the risk of tissue damage and ultimately cancer development. These consequences limit the utility of current x-ray imaging in screening of at-risk subjects who have not yet developed the clinical symptoms of disease. Current methods for reducing x-ray exposure in x-ray imaging, mostly achieved by increasing sensitivity and specificity of the x-ray detection process, may still have potential for an up-to-tenfold decrease. This could be sufficient for doubling the spatial resolution of x-ray CT while maintaining the current x-ray exposure levels. However, a spatial resolution four times what is currently available might be needed to adequately meet the needs for screening. Consequently, for the proposed need to increase spatial resolution, an additional order of magnitude of reduction of x-ray exposure would be needed just to keep the radiation exposure at current levels. This is conceivably achievable if refraction, rather than the currently used attenuation, of x rays is used to generate the images. Existing methods that have potential for imaging the consequences of refracted x ray in a clinical setting are (1) by imaging the edge enhancement that occurs at the interfaces between adjacent tissues of different refractive indices, or (2) by imaging the changes in interference

  11. A Versatile Link for High-Speed, Radiation Resistant Optical Transmission in LHC Upgrades

    NASA Astrophysics Data System (ADS)

    Xiang, A.; Gong, D.; Hou, S.; Huffman, T.; Kwan, S.; Liu, K.; Liu, T.; Prosser, A.; Soos, C.; Su, D.; Teng, P.; Troska, J.; Vasey, F.; Weidberg, T.; Ye, J.

    The Versatile Link project is developing a general purpose physical layer optical link with high bandwidth, radiation resistance and magnetic-field tolerance that meets the requirements of LHC upgrade experiments. This paper presents recent work on system specifications, front-end transceiver prototypes, passive components studies and commercial back-end transceiver evaluations. System optical power budgets are specified for single mode (1310nm) and multi-mode (850nm) links, with a target data rate of 4.8 Gbps and a transmission length of 150 meters. Noise and interference penalties are simulated using the 10GbE link model and verified by bit error ratio measurement on reference links. The power margin is particularly constrained by radiation degradation of the front-end receivers. We report the power budgets for all link variants where at least 1.8 dB safety margins are maintained. The Versatile Transceiver (VTRx) - the front-end module to be installed on-detector - is based on a commercial small form pluggable (SFP+) package, modified to optimize size and mass, assembled to host a qualified laser, PIN photodiode, custom-designed radiation tolerant laser driver and receiving amplifier. A set of VTRxs with validated components have been prototyped and compliance tested. We also present the radiation test results on front-end components and passive components. The total fluence tests for lasers and PINs have been carried out with pions and neutrons up to 4 x 1015/cm2. SEU tests have been performed on PIN photodiodes and the full receiver optical subassembly. Radiation induced absorption in a number of single mode and multi-mode fibers, at -25¡C and up to 500 kGy, have been measured and high performance candidates identified. Commercial off-of-the-shelf parts have been examined for use as back-end transceivers. Compliance tests on SFP+, 4+4 parallel optical engines and SNAP 12 transmitter/receivers have been completed.

  12. CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma.

    PubMed

    Mohanty, Atish; Sandoval, Natalie; Das, Manasi; Pillai, Raju; Chen, Lu; Chen, Robert W; Amin, Hesham M; Wang, Michael; Marcucci, Guido; Weisenburger, Dennis D; Rosen, Steven T; Pham, Lan V; Ngo, Vu N

    2016-11-08

    Mantle cell lymphoma (MCL) is characterized by the t(11;14) translocation, which leads to deregulated expression of the cell cycle regulatory protein cyclin D1 (CCND1). Genomic studies of MCL have also identified recurrent mutations in the coding region of CCND1. However, the functional consequence of these mutations is not known. Here, we showed that, compared to wild type (WT), single E36K, Y44D or C47S CCND1 mutations increased CCND1 protein levels in MCL cell lines. Mechanistically, these mutations stabilized CCND1 protein through attenuation of threonine-286 phosphorylation, which is important for proteolysis through the ubiquitin-proteasome pathway. In addition, the mutant proteins preferentially localized to the nucleus. Interestingly, forced expression of WT or mutant CCND1 increased resistance of MCL cell lines to ibrutinib, an FDA-approved Bruton tyrosine kinase inhibitor for MCL treatment. The Y44D mutant sustained the resistance to ibrutinib even at supraphysiologic concentrations (5-10 μM). Furthermore, primary MCL tumors with CCND1 mutations also expressed stable CCND1 protein and were resistant to ibrutinib. These findings uncover a new mechanism that is critical for the regulation of CCND1 protein levels, and is directly relevant to primary ibrutinib resistance in MCL.

  13. Increasing resistivity of electrically conductive ceramics by insulating grain boundary phase.

    PubMed

    Kusunose, Takafumi; Sekino, Tohru

    2014-02-26

    Increasing resistivity of electrically conductive nonoxide ceramics was investigated by insulating conductive pathways through conductive grains in a sintered body by addition of an insulating grain boundary phase, which was produced by the reaction of sintering additives in liquid phase sintering. When SiC was hot pressed with an additive of 10 vol % of Al2O3 and Y2O3, the resistivity decreased as sintering temperature increased owing to contact between SiC grains during densification. However, by hot pressing at 1750°C, a high resistivity of greater than 1 × 10(11) Ω cm was achieved because of the penetration of an insulating grain boundary phase between the SiC grains. It is possible to fabricate high-resistivity SiC ceramics without losing their excellent mechanical properties by introduction of an insulating grain boundary phase, the volume of which is approximately 1/7 that of the insulating phase incorporated in conventional ceramic composites.

  14. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Burdyliuk, Nadia; Lushchak, Volodymyr

    2017-01-01

    Alpha-ketoglutarate (AKG) is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+) but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG. PMID:28154578

  15. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions.

    PubMed

    D'Alessandro, Marco; Erb, Matthias; Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C J

    2014-04-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.

  16. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria

    PubMed Central

    Staehlin, Benjamin M.; Gibbons, John G.; Rokas, Antonis; O’Halloran, Thomas V.; Slot, Jason C.

    2016-01-01

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including the cus (copper sensing copper efflux system), and pco (plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative of Enterobacter cloacae as the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the original pco module was replaced by a divergent pco homolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. PMID:26893455

  17. CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma

    PubMed Central

    Mohanty, Atish; Sandoval, Natalie; Das, Manasi; Pillai, Raju; Chen, Lu; Chen, Robert W.; Amin, Hesham M.; Wang, Michael; Marcucci, Guido; Weisenburger, Dennis D.; Rosen, Steven T.; Pham, Lan V.; Ngo, Vu N.

    2016-01-01

    Mantle cell lymphoma (MCL) is characterized by the t(11;14) translocation, which leads to deregulated expression of the cell cycle regulatory protein cyclin D1 (CCND1). Genomic studies of MCL have also identified recurrent mutations in the coding region of CCND1. However, the functional consequence of these mutations is not known. Here, we showed that, compared to wild type (WT), single E36K, Y44D or C47S CCND1 mutations increased CCND1 protein levels in MCL cell lines. Mechanistically, these mutations stabilized CCND1 protein through attenuation of threonine-286 phosphorylation, which is important for proteolysis through the ubiquitin-proteasome pathway. In addition, the mutant proteins preferentially localized to the nucleus. Interestingly, forced expression of WT or mutant CCND1 increased resistance of MCL cell lines to ibrutinib, an FDA-approved Bruton tyrosine kinase inhibitor for MCL treatment. The Y44D mutant sustained the resistance to ibrutinib even at supraphysiologic concentrations (5–10 μM). Furthermore, primary MCL tumors with CCND1 mutations also expressed stable CCND1 protein and were resistant to ibrutinib. These findings uncover a new mechanism that is critical for the regulation of CCND1 protein levels, and is directly relevant to primary ibrutinib resistance in MCL. PMID:27713153

  18. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria.

    PubMed

    Staehlin, Benjamin M; Gibbons, John G; Rokas, Antonis; O'Halloran, Thomas V; Slot, Jason C

    2016-02-17

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens.

  19. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria; Burdyliuk, Nadia; Lushchak, Volodymyr

    2017-01-01

    Alpha-ketoglutarate (AKG) is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe(2+) and Cu(2+)) but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.

  20. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance.

    PubMed

    Talukder, M A Hassan; Preda, Marilena; Ryzhova, Larisa; Prudovsky, Igor; Pinz, Ilka M

    2016-03-01

    Insulin resistance and diabetes are comorbidities of obesity and affect one in 10 adults in the United States. Despite the high prevalence, the mechanisms of cardiac insulin resistance in obesity are still unclear. We test the hypothesis that the insulin receptor localizes to caveolae and is regulated through binding to caveolin-3 (CAV3). We further test whether haploinsufficiency forCAV3 increases the susceptibility to high-fat-induced insulin resistance. We used in vivo and in vitro studies to determine the effect of palmitate exposure on global insulin resistance, contractile performance of the heart in vivo, glucose uptake in the heart, and on cellular signaling downstream of theIR We show that haploinsufficiency forCAV3 increases susceptibility to palmitate-induced global insulin resistance and causes cardiomyopathy. On the basis of fluorescence energy transfer (FRET) experiments, we show thatCAV3 andIRdirectly interact in cardiomyocytes. Palmitate impairs insulin signaling by a decrease in insulin-stimulated phosphorylation of Akt that corresponds to an 87% decrease in insulin-stimulated glucose uptake inHL-1 cardiomyocytes. Despite loss of Akt phosphorylation and lower glucose uptake, palmitate increased insulin-independent serine phosphorylation ofIRS-1 by 35%. In addition, we found lipid induced downregulation ofCD36, the fatty acid transporter associated with caveolae. This may explain the problem the diabetic heart is facing with the simultaneous impairment of glucose uptake and lipid transport. Thus, these findings suggest that loss ofCAV3 interferes with downstream insulin signaling and lipid uptake, implicatingCAV3 as a regulator of theIRand regulator of lipid uptake in the heart.

  1. Resistance training increases total daily energy expenditure in disabled older women with coronary heart disease.

    PubMed

    Ades, Philip A; Savage, Patrick D; Brochu, Martin; Tischler, Marc D; Lee, N Melinda; Poehlman, Eric T

    2005-04-01

    Physical activity energy expenditure (PAEE) is a determinant of prognosis and fitness in older patients with coronary heart disease (CHD). PAEE and total energy expenditure (TEE) are closely related to fatness, physical function, and metabolic risk in older individuals. The goal of this study was to assess effects of resistance training on PAEE, TEE, and fitness in older women with chronic CHD and physical activity limitations (N = 51, mean age: 72 + 5 yr). The study intervention consisted of a progressive, 6-mo program of resistance training vs. a control group condition of low-intensity yoga and deep breathing. The study interventions were completed by 42 of the 51 participants. The intervention group manifested a 177 +/- 213 kcal/day (+9%) increase in TEE, pre- to posttraining, measured by the doubly labeled water technique during a nonexercise 10-day period (P < 0.03 vs. controls). This was due to a 50 +/- 74 kcal/day (4%) increase in resting metabolic rate measured by indirect calorimetry (P < 0.01, P < 0.05 vs. controls) and a 123 +/- 214 kcal/day (9%) increase in PAEE (P < 0.03, P = 0.12 vs. controls). Resistance training was associated with significant increases in upper and lower body strength, but no change in fat-free mass, measured by dual X-ray absorptiometry, or left ventricular function, measured by echocardiography and Doppler. Women in the control group showed no alterations in TEE or its determinants. There were no changes between groups in body composition, aerobic capacity, or measures of mental depression. These results demonstrate that resistance training of 6-mo duration leads to an increase in TEE and PAEE in older women with chronic CHD.

  2. Improvement of daptomycin production via increased resistance to decanoic acid in Streptomyces roseosporus.

    PubMed

    Lee, Sung-Kwon; Kim, Hong Rip; Jin, Ying-Yu; Yang, Seung Hwan; Suh, Joo-Won

    2016-10-01

    Daptomycin, a cyclic anionic lipopeptide compound produced by Streptomyces roseosporus, is used to treat skin infections caused by multi-drug resistant gram-positive pathogens. The biosynthesis of daptomycin is initiated by the condensation of decanoic acid (DA, a 10-carbon unit fatty acid) and the N-terminal l-tryptophan. So, the addition of DA to the fermentation medium is essential for increasing daptomycin production. However, increasing of DA concentration in the fermentation medium was not possible due to the high toxicity of DA. The previous studies reported that the cell growth of S. roseosporus was halted from 1 mM DA. In order to improve daptomycin production with increasing DA concentration in the medium, the DA-resistant S. roseosporus was developed via a sequential-adaptation method. The DA-resistant strain (DAR) showed complete resistance to 1 mM DA, and the daptomycin production was increased 1.4-fold (40.5 ± 0.7 mg/L) compared with the wild-type (28.5 ± 0.8 mg/L) at 1 mM DA. Additionally, the initial step of the daptomycin biosynthesis was enhanced by the overexpression of dptE and dptF in DAR. The dptEF overexpression DAR showed 3.9-fold (156.3 ± 8.2 mg/L) increase in the daptomycin production compared with DAR (40.1 ± 2.6 mg/L) at 1 mM DA.

  3. Does Drought Increase the Risk of Insects Developing Behavioral Resistance to Systemic Insecticides?

    PubMed

    Khodaverdi, Haleh; Fowles, Trevor; Bick, Emily; Nansen, Christian

    2016-10-01

    Increases in severity and frequency of drought periods, average global temperatures, and more erratic fluctuations in rainfall patterns due to climate change are predicted to have a dramatic impact on agricultural production systems. Insect pest populations in agricultural and horticultural systems are also expected to be impacted, both in terms of their spatial and temporal distributions and in their status as pest species. In this opinion-based article, we discuss how indirect effects of drought may adversely affect the performance of systemic insecticides and also lead to increased risk of insect pests developing behavioral insecticide resistance. We hypothesize that more pronounced drought will decrease uptake and increase the magnitude of nonuniform translocation of systemic insecticides within treated crop plants, and that may have two concurrent consequences: 1) reduced pesticide performance, and 2) increased likelihood of insect pests evolving behavioral insecticide resistance. Under this scenario, pests that can sense and avoid acquisition of lethal dosages of systemic insecticides within crop plants will have a selective advantage. This may lead to selection for insect behavioral avoidance, so that insects predominantly feed and oviposit on portions of crop plants with low concentration of systemic insecticide. Limited research has been published on the effect of environmental variables, including drought, on pesticide performance, but we present and discuss studies that support the hypothesis described above. In addition, we wish to highlight the importance of studying the many ways environmental factors can affect, directly and indirectly, both the performance of insecticides and the risk of target insect pests developing resistance.

  4. Increase of resistance to stretch during the latent period in single muscle fibres of the frog.

    PubMed

    Haugen, P

    1982-02-01

    The time from stimulation to the first change of the extensibility in an isolated skeletal muscle fibre was measured by subjecting the fibre to a rapid, small stretch at various times during the latent period. The experiments were performed at constant temperatures in the range 1-16 degrees C. Irrespective of the temperature, the first increase of the resistance to stretch occurred after the onset of the latency relaxation. At a temperature or 10 degrees C and a sarcomere length of 3 microgram the resistance started to increase 5.5 ms after stimulation, i.e. 1.5-2 ms after the onset of the drop in tension, and then increased nearly linearly with time. Corresponding to the end of the latent period, i.e. when the tension recrosses the resting level, the amplitude of the response was about 1.5 times its resting value. There was an interval between the onset of increase f the resistance to stretch and the time when the rate of drop in tension had passed its maximum value. The results are compatible with the hypothesis that the latency relaxation arises from a minute lengthening of the thin filaments as proposed by Haugen & Sten-Knudsen, and that attachment and generation of force take place at separate steps of the cross-bridge cycle.

  5. [Resistance to UV radiation of microorganisms isolated from the rock biotopes of the Antarctic region].

    PubMed

    Romanovskaia, V A; Tashirev, A B; Shilin, S O; Chernaia, N A

    2010-01-01

    Microbiological analysis of terrestrial biotopes of the Antarctic Region has shown, that vertical rocks of the Antarctic islands open for the Sun were characterized by special microcenoses. The wide distribution of pigmented microorganisms in the rock Antarctic samples, a higher frequency of their occurrence, the total number and biologic diversity, than in other Antarctic biotopes, has been demonstrated. For the first time the presence of bacteria and yeast, resistant to high doses of UV radiation on the vertical rocks in the Antarctic Region was shown. The lethal doze of UV radiation for the Antarctic pink pigmented Methylobacterium strains exceeded 200-300 J/m2, for coal-black yeast--500-800 J/m2, for red yeast--1200-1500 J/m2. The distinctions in lethal UV effect against strains of Methylobacterium isolated from the regions with different climate have not been found. Probably, adaptation of the rock microcenosis to extreme factors of the environment proceeds by natural selection of microorganisms, which resistance to this factor is genetically determined.

  6. Resistance of the nucleosomal organization of eucaryotic chromatin to ionizing radiation. [/sup 60/Co

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1982-09-01

    The structural organization and radiation sensitivity of Tetrahymena chromatin under several conditions of modified transcriptional activity were investigated using the structure-specific nucleases, micrococcal nuclease and DNase I. Digestion of unirradiated nuclei by those nucleases proceeded with very similar kinetics and to a similar extent irrespective of the stages of growth of the cultures, except for the cultures in stationary phase, which became more resistant to DNase I digestion. Neither for suppression of total cellular RNA synthesis by actinomycin D nor the transient inhibition of only rRNA synthesis by 40 krad of ..gamma.. radiation affected the sensitivity of the chromatin of the nucleases. These results confirm that activity transcribing chromatin remains in an active conformation even when its function is temporarily inhibited, while more permanent repression of some genes during stationary phase appears to alter the chromatin and hence its susceptibility to DNase I. Actively transcribing ribosomal chromatin was found to be very sensitive to DNase I degradation compared to bulk chromatin; its sensitivity to DNase I was also not altered by 40 krad of ..gamma.. radiation, but was reduced in stationary phase. It is concluded that damage to DNA and/or chromatin resulting from ..gamma.. irradiation does not produce alterations in the nucleosome-level organization of chromatin which can be measured by micrococcal nuclease and DNase I.

  7. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1998-06-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  8. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    SciTech Connect

    Bradshaw, Tyler J.; Bowen, Stephen R.; Deveau, Michael A.; Kubicek, Lyndsay; White, Pamela; Bentzen, Søren M.; Chappell, Richard J.; Forrest, Lisa J.; Jeraj, Robert

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  9. Increased Very Low Density Lipoprotein Secretion, Hepatic Steatosis, and Insulin Resistance

    PubMed Central

    Choi, Sung Hee; Ginsberg, Henry N

    2011-01-01

    Insulin resistance (IR) not only affects regulation of carbohydrate metabolism, but all aspects of lipid and lipoprotein metabolism. IR is associated with increased secretion of very low density lipoproteins (VLDL) and increased plasma triglycerides, as well as hepatic steatosis, despite the increased VLDL secretion. Here, we link IR with increased VLDL secretion and hepatic steatosis at both the physiologic and molecular levels. Increased VLDL secretion, together with the downstream effects on high density lipoprotein cholesterol and low density lipoprotein size is pro-atherogenic. Hepatic steatosis is a risk for steatohepatitis and cirrhosis. Understanding the complex inter-relationship between IR and these abnormalities of liver lipid homeostasis may provide insights relevant to new therapies for these increasing clinical problems. PMID:21616678

  10. Increased outdoor recreation, diminished ozone layer pose ultraviolet radiation threat to eye

    SciTech Connect

    Not Available

    1989-02-24

    The long-term effects of ultraviolet (UV) light on the eye are of increasing concern as many people live longer and spend more of that time in outdoor recreation and as the diminishing ozone layer filters less UV light. Ultraviolet radiation is strongest at high altitude, low latitude, and open for reflective environments (sand, snow, or water). For people who lack an eye lens (aphakics), UV light is transmitted directly onto the retina. Cumulative exposure to the 300- to 400-nm range of UV light is one factor causing cataracts. Ophthalmologists say cataracts cause visual deficits for more than 3.5 million people in the United States. Cumulative UV exposure may lead to age-related macular degeneration. At a Research to Prevent Blindness conference in Arlington, VA, John S. Werner, PhD, professor of psychology and neurosciences at the University of Colorado, Boulder, described how his group demonstrated the effects of UV light on retinal cones. Different types of intraocular lenses were placed in each eye of eight patients who had undergone bilateral cataract surgery. After five years, retinal cones chronically exposured to UV radiation had less sensitivity for short wavelengths (440 nm) by a factor of 1.7.

  11. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity.

    PubMed

    Mockett, Robin J; Bayne, Anne Cécile V; Kwong, Linda K; Orr, William C; Sohal, Rajindar S

    2003-01-15

    The goal of this study was to test the hypothesis that the rate of mitochondrial oxidant production governs the aging process of the fruit fly, Drosophila melanogaster. Catalase, an antioxidative enzyme expressed in the cytosol and peroxisomes of Drosophila, was targetted ectopically to the mitochondrial matrix by fusion of a leader peptide derived from ornithine aminotransferase with its N-terminus. The presence of the transgene encoding this fusion protein was associated with moderate (35 +/- 13%) increases in total catalase activity in most lines, and measurable levels of catalase activity in the mitochondria (30-140 U/mg protein). There was no impact on the life span of the flies at 25 degrees C, even in an exceptional line with a 149% increase in total catalase activity, and there was a small decrease in longevity at 29 degrees C. There were no compensatory changes in the rate of metabolism or physical activity, or in the levels of other major antioxidants, suggesting that the aging process was largely unaffected. Resistance to exogenous hydrogen peroxide, paraquat, and cold stress was enhanced, but there was no appreciable effect on resistance to hyperoxia. The results demonstrate the importance of mitochondrial antioxidant levels in the resistance to oxidative stress at the organismal level, and illustrate that different effects on aging and stress resistance may ensue from a single treatment. The main inferences drawn are that: (i) levels of stress resistance may neither be a cause nor a reliable indicator of the rate of aging, and (ii) bolstering antioxidant levels in Drosophila may not delay or slow down the aging process.

  12. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud – radiation interactions

    EPA Science Inventory

    The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface...

  13. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    SciTech Connect

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-06-15

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types.

  14. Feeding of liquid silicon for high performance multicrystalline silicon with increased ingot height and homogenized resistivity

    NASA Astrophysics Data System (ADS)

    Krenckel, Patricia; Riepe, Stephan; Schindler, Florian; Strauch, Theresa

    2017-04-01

    Feeding of liquid silicon during the directional solidification process is a promising opportunity for cost reduction by increased throughput and improved material homogeneity due to constant resistivity over ingot height. In this work, a liquid feeding apparatus was developed for an industrial type directional solidification furnace. One n-type G2 sized High Performance multicrystalline ingot with liquid feeding of additional 14 kg of undoped silicon feedstock was crystallized. The resistivity was kept within a range of ±0.1 Ω cm of the target resistivity during the feeding sequence. A smaller mean grain area growth was observed during feeding, whereas the area fraction of recombination active dislocation structures was as low as in a reference ingot. Increased interstitial oxygen and substitutional carbon concentrations were measured for the ingot with liquid feeding. The measured mean bulk lifetime of 190 μs for passivated wafers in the feeding sequence can probably be increased by further pre-melting crucible improvements. For this laboratory experiment, energy reductions of 2% per wafer and time savings of 16% per wafer were realized.

  15. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging

    PubMed Central

    Matheu, Ander; Pantoja, Cristina; Efeyan, Alejo; Criado, Luis M.; Martín-Caballero, Juan; Flores, Juana M.; Klatt, Peter; Serrano, Manuel

    2004-01-01

    Mammalian genes frequently present allelic variants that differ in their expression levels and that, in the case of tumor suppressor genes, can be of relevance for cancer susceptibility and aging. We report here the characterization of a novel mouse model with increased activity for the Ink4a and Arf tumor suppressors. We have generated a “super Ink4a/Arf” mouse strain carrying a transgenic copy of the entire Ink4a/Arf locus. Cells derived from super Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation. Importantly, super Ink4a/Arf mice manifest higher resistance to cancer compared to normal, nontransgenic, mice. Finally, super Ink4a/Arf mice have normal aging and lifespan. Together, these results indicate that modest increases in the activity of the Ink4a/Arf tumor suppressor result in a beneficial cancer-resistant phenotype without affecting normal viability or aging. PMID:15520276

  16. Increased virulence of neuraminidase inhibitor-resistant pandemic H1N1 virus in mice

    PubMed Central

    Song, Min-Suk; Hee Baek, Yun; Kim, Eun-Ha; Park, Su-Jin; Kim, Semi; Lim, Gyo-Jin; Kwon, Hyeok-il; Pascua, Philippe Noriel Q; Decano, Arun G; Lee, Byeong-Jae; Kim, Young-Il; Webby, Richard J; Choi, Young-Ki

    2013-01-01

    Pandemic H1N1 2009 (A[H1N1]pdm09) variants associated with oseltamivir resistance have emerged with a histidine-to-tyrosine substitution in the neuraminidase(NA) at position 274 (H274Y). To determine whether the H274Y variant has increased virulence potential, A(H1N1)pdm09 virus, with or without the H274Y mutation, was adapted by serial lung-to-lung passages in mice. The mouse-adapted H274Y (maCA04H274Y) variants showed increased growth properties and virulence in vitro and in vivo while maintaining high NA inhibitor resistance. Interestingly, most maCA04H274Y and maCA04 viruses acquired common mutations in HA (S183P and D222G) and NP (D101G), while only maCA04H274Y viruses had consensus additional K153E mutation in the HA gene, suggesting a potential association with the H274Y substitution. Collectively, our findings highlight the potential emergence of A(H1N1)pdm09 drug-resistant variants with increased virulence and the need for rapid development of novel antiviral drugs. PMID:23924955

  17. Antimicrobial susceptibilities of uropathogen Escherichia coli in renal transplant recipients: dramatic increase in ciprofloxacin resistance.

    PubMed

    Azap, Ö; Togan, T; Yesilkaya, A; Arslan, H; Haberal, M

    2013-04-01

    The urinary tract is the most common site of bacterial infections in renal transplant recipients. The management of urinary tract infections (UTI) in renal transplant recipients is becoming more difficult because of drug-resistant bacteria. The antimicrobial susceptibilities of uropathogen bacteria isolated from 398 patients who underwent renal transplantation between 2007 and 2011 were obtained from medical records. At least 1 UTI episode was diagnosed in 172 (43.2%) patients. Among the 703 bacteria isolated from these patients, Exherichia coli the most common pathogen, was isolated from 407/703 episodes (57.8%). Ciprofloxacin, co-trimoxazole, ceftriaxone, and gentamicin resistance rates were 59.4%, 85.7%, 40.7%, and 36.6%, respectively. Ninty six of 407 E. coli isolates (23.5%) were ESBL positive. Analysis of resistance rates in our center demonstrated ciprofloxacin resistance rate in uropathogenic E. coli to have increased gradually from 30.4% in 2003, 41.3% in 2007, and 59.4% in 2012. Instutional data regarding the etiologic agents and antimicrobial susceptibility results are important for proper management of patients with UTI.

  18. Acute hypervolaemia increases gastroduodenal resistance to the flow of liquid in the rat.

    PubMed Central

    Xavier-Neto, J; dos Santos, A A; Rola, F H

    1990-01-01

    The effect of volume expansion of extracellular fluid on gastroduodenal resistance to the flow of isotonic saline was assessed in three groups of rats using intravenous infusions of isotonic, isotonic-isoncotic, and isotonic-isoncotic-isohaemic solutions. The gastroduodenal segment of 29 male Wistar rats was barostatically perfused at a constant pressure gradient of 4 cm H2O and changes in flow (ml/minute) were taken as a reflection of changes in gastroduodenal resistance. Isotonic expansion led to a 33% drop in gastroduodenal flow compared with the normovolaemic period in the same animals (p less than 0.01). Extracellular fluid expansion with isotonic-isoncotic and isotonic-isoncotic-isohaemic solutions was associated with reductions in gastroduodenal flow of 29% (p less than 0.05) and 31% (p less than 0.01) respectively. The increase in gastroduodenal resistance is due to hypervolaemia per se and not to haemodilution, decreases in plasma oncotic pressure, or electrolyte imbalance. The effect of hypervolaemia on gastroduodenal resistance, which was reversed by small haemorrhages (0.5-1.0 ml per 100 g body weight), may be due to changes in tonus or phasic motor activity, or both, and may be part of the homeostatic processes that help the organism minimise liquid volume excess. PMID:2210444

  19. Serum betatrophin levels are increased and associated with insulin resistance in patients with polycystic ovary syndrome.

    PubMed

    Qu, Qinglan; Zhao, Dongmei; Zhang, Fengrong; Bao, Hongchu; Yang, Qiuhua

    2017-02-01

    Objective Betatrophin is a newly identified circulating protein that is significantly associated with type 2 diabetes mellitus (T2DM), adiposity, and metabolic syndrome. The aim of this study was to investigate whether betatrophin levels and polycystic ovary syndrome (PCOS) were associated. Methods Circulating betatrophin levels were measured in 162 patients with PCOS and 156 matched control females using specific enzyme-linked immunosorbent assay kits. Correlations between betatrophin levels and PCOS incidence as well as multiple key endocrine PCOS parameters were analyzed using multiple statistical methods. Results Betatrophin levels were significantly increased in patients with PCOS (685.3 ± 27.7 vs. 772.6 ± 42.5 pg/ml). When sub-grouping all investigated subjects according to the presence of insulin resistance, women with PCOS and insulin resistance exhibited markedly higher betatrophin concentrations. Furthermore, betatrophin levels were significantly correlated with fasting insulin levels and homeostatic model assessment of insulin resistance only in females with PCOS ( r = 0.531 and r = 0.628, respectively). Conclusion We provide the first report that betatrophin is strongly associated with PCOS. This study suggests that betatrophin may potentially serve as an independent predictor for the development of PCOS in at-risk women, especially those with insulin resistance.

  20. Potential Impact of Increased Use of Biocides in Consumer Products on Prevalence of Antibiotic Resistance

    PubMed Central

    Gilbert, Peter; McBain, Andrew J.

    2003-01-01

    There has recently been much controversy surrounding the increased use of antibacterial substances in a wide range of consumer products and the possibility that, as with antibiotics, indiscriminate use of biocides might contribute to the overall pattern of susceptibility in the general environment and in the clinic. Such speculation, based on the isolation of resistant mutants from in vitro monoculture experiments, is not reflected by an emergence of biocide-resistant strains in vivo. This review provides a broad coverage of the biocide and resistance literature and evaluates the potential risks, perceived from such laboratory monoculture experiments, against evidence gathered over 50 years of field studies. An explanation for the continued effectiveness of broad-spectrum biocidal agents against the decline in efficacy of therapeutic agents is provided based on the fitness costs of resistance and the ubiquity of naturally occurring substances that possess antibacterial effect. While we conclude from this review of the literature that the incorporation of antibacterial agents into a widening sphere of personal products has had little or no impact on the patterns of microbial susceptibility observed in the environment, the associated risks remain finite. The use of such products should therefore be associated with a clear demonstration of added value either to consumer health or to the product life. Hygienic products should therefore be targeted to applications for which the risks have been established. PMID:12692093

  1. Role of GLI1 and NDRG1 in Increased Resistance to Apoptosis Induction.

    PubMed

    Wu, Feng; Rom, William N; Koshiji, Minori; Mo, Yiqun; Hosomi, Yukio; Tchou-Wong, Kam-Meng

    2015-01-01

    We examined the effects of GLI1 expression in PW mouse embryo fibroblasts and H441 lung carcinoma cells. Ectopic expression of GLI1 in PW cells induced anchorage-independent growth and increased resistance to staurosporine-induced apoptosis, and overexpression of GLI1 in H441 cells caused resistance to apoptosis induced by staurosporine and etoposide. GLI1 expression in both H441 and PW cells was associated with increased expression of NDRG1, a gene known to be downregulated by the MYC family of proteins, indicating that upregulation of NDRG1 by GLI1 is not cell-type specific. Consistent with suppression of NDRG1 by c-MYC and N-MYC, increased NDRG1 expression correlated with decreased expression of c-MYC and N-MYC in GLI1-expressing H441 and GLI1-expressing PW cells, respectively. Downregulation of GLI1 expression in A549 cells by siRNA transfection increased sensitivity to etoposide-induced apoptosis, and downregulation of NDRG1 expression in H441 cells by siRNA transfection increased sensitivity to etoposide-induced apoptosis. Of clinical significance, inhibition of GLI1 and NDRG1 expression may increase sensitivity of cancer cells to chemotherapeutic drugs. Strategies that aim to inhibit GLI1 function and NDRG1 expression may be useful for targeted therapy of cancers induced by the SHH-GLI signaling pathway.

  2. Type IV resistant starch increases cecum short chain fatty acids level in rats.

    PubMed

    Le Thanh-Blicharz, Joanna; Anioła, Jacek; Kowalczewski, Przemysław; Przygoński, Krzysztof; Zaborowska, Zofia; Lewandowicz, Grażyna

    2014-01-01

    Resistant starches are type of dietary fibers. However, their physiological effects depend on the way they resist digestion in the gastrointestinal tract. The objective of this study was to examine the hypothesis that new type of RS4 preparations, of in vitro digestibility of about 50%, obtained by cross-linking and acetylation, acts as a prebiotic by increasing short chain fatty acids content in cecum digesta. The rats were fed with diet containing pregelatinized, cross-linked and acetylated starches as a main carbohydrate source. Pregelatinized, but not chemically modified, potato starch was used in the composition of the control diet. After two weeks of experiment the increase of short chain fatty acids contents in ceceum digesta was observed. The intake of starch A, cross-linked only with adipic acid, resulted in increase of about 40% of short chain fatty acids content, whereas starch PA cross-linked with sodium trimetaphosphate and adipic acid of about 50%. The utmost twofold increase was observed in the case of the production of propionic acid. In contrast, the content of butyric acid increased (12%) only as an effect of consumption of starch PA and even decreased (about 30%) in case of starch A. Both RS4 starches caused an increase of the production of acetic acid by more than 40%. No changes in serum biochemistry, liver cholesterol and organ weights of rats were stated.

  3. [Increasing trend of antimicrobial drug-resistance in organisms causing bacteremia at a tertiary-care hospital: 1995 to 2000].

    PubMed

    Kato-Maeda, Midori; Bautista-Alavez, Anabertha; Rolón-Montes-de-Oca, Ana Lilia; Ramos-Hinojosa, Ancelmo; Ponce-de-León, Alfredo; Bobadilla-del-Valle, Miriam; Ruiz-Palacios, Guillermo; Sifuentes-Osornio, José

    2003-01-01

    We described the trends of drug-resistant organisms isolated in blood cultures from patients detected in a teaching hospital from 1995 to 2000. We found an increase in the number of clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp, Serratia spp, Staphylococcus aureus, S. epidermidis and Enterococcus spp, resistant to antibiotics commonly used to treat infections caused by these organisms. The frequency of gram-negative bacilli resistant to third-generation cephalosporins and quinolones increased during the period of study, and in 2000 more than 20% of the isolates were resistant. In contrast, the frequency of resistance to aminoglycosides and carbapenems was less than 20%. The frequency of resistant staphylococci increased exuberantly fifty fold to quinolones and five fold to oxacillin during the study period, therefore in 2000, 26.1% of S. aureus isolates and 61% of S. epidermidis were resistant to oxacillin. The frequency of resistant enterococci also increased, and in 2000, 50% were resistant to ampicillin, and 37.5% to gentamicin. The increase of drug resistant organisms isolated in blood had a direct impact in the empirical treatment of severely infected patients in our hospital. It is important to continuously supervise antibiotic use, and to adopt more strict control measures to decrease the frequency of infections caused by drug resistant organisms.

  4. Optimization of Iron Cobalt-based Nanocomposite Alloys for High Induction and Increased Resistivity

    NASA Astrophysics Data System (ADS)

    Shen, Shen

    FeCo-based nanocrystalline soft magnetic materials are promising to provide high saturation induction, high Curie temperature and excellent soft magnetic properties for electric vehicle and high frequency power conversion applications. The increasing operation frequency of various inductive applications requires nanocomposite alloys with higher resistivity to suppress power losses. In this thesis, the method of measuring as-cast and annealed resistivity of melt-spun ribbon alloys by obtaining alloy densities was established. Archimedes method with deionized water as a medium was used to determine the density of crystalline alloys. A gas pycnometer using dry Helium gas as the medium exhibited improved accuracy in measuring the density of amorphous ribbon alloys compared to the conventional Archimedes method using a liquid medium. This method was applied to previously developed HITPERM (FeCoZrBCu) and HTX002 (FeCoBSiCu) type of alloys as well as carbon-containing (FeCoBCCu) alloys to guide composition adjustments pursuing for improved magnetic properties. In the HITPERM type of alloys, the composition dependence of as-cast resistivity was studied and simulated by Mott's two-current model with a rigid-band assumption which provided guidance for further adjusting alloy composition looking for higher resistivity. An alloy designed with the Fe:Co ratio for maximum as-cast resistivity and Hf as glass former exhibits low power loss values being approximately 1/4 of those measured on the alloy with the original HITPERM composition for a range of frequencies. The Al and Si additions were found effective to achieve a high resistivity of 151.9 muO·cm in the as-cast alloys but also lead to embrittlement of melt-spun ribbons. Composition adjustments on the HTX002 type of alloys which are castable in air and available for larger-scale production were also explored. Increasing the ferromagnetic late transition metal content by reducing glass formers was found effective to achieve

  5. Evidence for involvement of cytosolic thioredoxin peroxidase in the excessive resistance of Sf9 Lepidopteran insect cells against radiation-induced apoptosis.

    PubMed

    Hambarde, Shashank; Singh, Vijaypal; Chandna, Sudhir

    2013-01-01

    Lepidopteran insect cells display 50-100 times higher radioresistance compared to human cells, and reportedly have more efficient antioxidant system that can significantly reduce radiation-induced oxidative stress and cell death. However, the antioxidant mechanisms that contribute substantially to this excessive resistance still need to be understood thoroughly. In this study, we investigated the role of thioredoxin peroxidase (TPx) in high-dose γ-radiation response of Sf9 cell line derived from Spodoptera frugiperda, the Fall armyworm. We identified a TPx orthologue (Sf-TPx) in Spodoptera system, with primarily cytosolic localization. Gamma-irradiation at 500 Gy dose significantly up-regulated Sf-TPx, while higher doses (1000 Gy-2000 Gy) had no such effect. G2/M checkpoint induced following 500 Gy was associated with transition of Sf-TPx decamer into enzymatically active dimer. Same effect was observed during G2/M block induced by 5 nM okadaic acid or 10 µM CDK1 (cycline dependent kinase-1) inhibitor roscovitine, thus indicating that radiation-induced Sf-TPx activity is mediated by CDKs. Accumulation of TPx dimer form during G2/M checkpoint might favour higher peroxidase activity facilitating efficient survival at this dose. Confirming this, higher lethal doses (1000 Gy-2000 Gy) caused significantly less accumulation of dimer form and induced dose-dependent apoptosis. A ∼50% knock-down of Sf-TPx by siRNA caused remarkable increase in radiation-induced ROS as well as caspase-3 dependent radiation-induced apoptosis, clearly implying TPx role in the radioresistance of Sf9 cells. Quite importantly, our study demonstrates for the first time that thioredoxin peroxidase contributes significantly in the radioresistance of Lepidopteran Sf9 insect cells, especially in their exemplary resistance against radiation-induced apoptosis. This is an important insight into the antioxidant mechanisms existing in this highly stress-resistant model cell system.

  6. Hyperinsulinaemia increases vascular resistance and endothelin-1 expression in the equine digit

    PubMed Central

    GAUFF, F.; PATAN-ZUGAJ, B.; LICKA, T. F.

    2014-01-01

    Summary Reasons for performing study Insulin leads to overexpression of endothelin-1 (ET-1) in the endothelium of insulin-resistant rodents. If this is also the case in equine laminar tissue, this could explain the predisposition of insulin-resistant horses to laminitis. Objectives To investigate the effect of hyperinsulinaemia on metabolism and vascular resistance of the isolated equine digit in a model of extracorporeal perfusion. Study design Randomised, controlled study with interventional group, with blinded evaluation of histology results. Method After exsanguination, equine digits (n = 11) and autologous blood were collected at an abattoir. One digit served as a hyperinsulinaemic pilot limb, 5 digits were assigned to the hyperinsulinaemic perfusion (IP) group and 5 to the control perfusion (CP) group. Digits were perfused for 10 h at a defined perfusion rate of 12 ml/min/kg. After the first hour of perfusion (equilibration period), insulin was added to the reservoir of the IP digits. Perfusion pressure, glucose consumption, lactate and lactate dehydrogenase were monitored. Vascular resistance was calculated as perfusion pressure (in millimetres of mercury) in relation to the flow rate (in millilitres per minute). After perfusion, histology samples of the dorsal hoof wall (haematoxylin & eosin or periodic acid-Schiff) were evaluated. Immunohistology with a polyclonal rabbit-derived anti-endothelin antibody was used for detection of ET-1. Results In the IP group, the mean insulin concentration in the plasma of the perfusate was 142 ± 81 μiu/ml, while insulin concentration was <3 μiu/ml in the CP group. Mean vascular resistance was significantly higher (P<0.01) in the IP group (2.04 ± 1.13 mmHg/ml/min) than in the CP group (1.31 ± 0.55 mmHg/ml/min). Histology of the IP group samples showed significantly more vessels with an open lumen, increased width of the secondary epidermal lamellae and formation of oedema. In the lamellar vessels (veins and arteries

  7. Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII.

    PubMed

    Sag, Can M; Wolff, Hendrik A; Neumann, Kay; Opiela, Marie-Kristin; Zhang, Juqian; Steuer, Felicia; Sowa, Thomas; Gupta, Shamindra; Schirmer, Markus; Hünlich, Mark; Rave-Fränk, Margret; Hess, Clemens F; Anderson, Mark E; Shah, Ajay M; Christiansen, Hans; Maier, Lars S

    2013-11-01

    Ionizing radiation (IR) is an integral part of modern multimodal anti-cancer therapies. IR involves the formation of reactive oxygen species (ROS) in targeted tissues. This is associated with subsequent cardiac dysfunction when applied during chest radiotherapy. We hypothesized that IR (i.e., ROS)-dependently impaired cardiac myocytes' Ca handling might contribute to IR-dependent cardiocellular dysfunction. Isolated ventricular mouse myocytes and the mediastinal area of anaesthetized mice (that included the heart) were exposed to graded doses of irradiation (sham 4 and 20 Gy) and investigated acutely (after ~1 h) as well as chronically (after ~1 week). IR induced a dose-dependent effect on myocytes' systolic function with acutely increased, but chronically decreased Ca transient amplitudes, which was associated with an acutely unaltered but chronically decreased sarcoplasmic reticulum (SR) Ca load. Likewise, in vivo echocardiography of anaesthetized mice revealed acutely enhanced left ventricular contractility (strain analysis) that declined after 1 week. Irradiated myocytes showed persistently increased diastolic SR Ca leakage, which was acutely compensated by an increase in SR Ca reuptake. This was reversed in the chronic setting in the face of slowed relaxation kinetics. As underlying cause, acutely increased ROS levels were identified to activate Ca/calmodulin-dependent protein kinase II (CaMKII). Accordingly, CaMKII-, but not PKA-dependent phosphorylation sites of the SR Ca release channels (RyR2, at Ser-2814) and phospholamban (at Thr-17) were found to be hyperphosphorylated following IR. Conversely, ROS-scavenging as well as CaMKII-inhibition significantly attenuated CaMKII-activation, disturbed Ca handling, and subsequent cellular dysfunction upon irradiation. Targeted cardiac irradiation induces a biphasic effect on cardiac myocytes Ca handling that is associated with chronic cardiocellular dysfunction. This appears to be mediated by increased oxidative

  8. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  9. Sampling and Complementarity Effects of Plant Diversity on Resource Use Increases the Invasion Resistance of Communities

    PubMed Central

    Zhu, Dan H.; Wang, Ping; Zhang, Wei Z.; Yuan, Yue; Li, Bin; Wang, Jiang

    2015-01-01

    Background Although plant diversity is postulated to resist invasion, studies have not provided consistent results, most of which were ascribed to the influences of other covariate environmental factors. Methodology/Principal Findings To explore the mechanisms by which plant diversity influences community invasibility, an experiment was conducted involving grassland sites varying in their species richness (one, two, four, eight, and sixteen species). Light interception efficiency and soil resources (total N, total P, and water content) were measured. The number of species, biomass, and the number of seedlings of the invading species decreased significantly with species richness. The presence of Patrinia scabiosaefolia Fisch. ex Trev. and Mosla dianthera (Buch.-Ham. ex Roxburgh) Maxim. significantly increased the resistance of the communities to invasion. A structural equation model showed that the richness of planted species had no direct and significant effect on invasion. Light interception efficiency had a negative effect on the invasion whereas soil water content had a positive effect. In monocultures, Antenoron filiforme (Thunb.) Rob. et Vaut. showed the highest light interception efficiency and P. scabiosaefolia recorded the lowest soil water content. With increased planted-species richness, a greater percentage of pots showed light use efficiency higher than that of A. filiforme and a lower soil water content than that in P. scabiosaefolia. Conclusions/Significance The results of this study suggest that plant diversity confers resistance to invasion, which is mainly ascribed to the sampling effect of particular species and the complementarity effect among species on resources use. PMID:26556713

  10. Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river.

    PubMed

    Berglund, Björn; Fick, Jerker; Lindgren, Per-Eric

    2015-01-01

    Antibiotic-resistant bacteria are an emerging global problem that threatens to undermine important advances in modern medicine. The environment is likely to play an important role in the dissemination of antibiotic-resistance genes (ARGs) among both environmental and pathogenic bacteria. Wastewater treatment plants (WWTPs) accumulate both chemical and biological waste from the surrounding urban milieu and have therefore been viewed as potential hotspots for dissemination and development of antibiotic resistance. To assess the effect of wastewater effluent on a river that flows through a Swedish city, sediment and water samples were collected from Stångån River, both upstream and downstream of an adjacent WWTP over 3 mo. Seven ARGs and the integrase gene on class 1 integrons were quantified in the collected sediment using real-time polymerase chain reaction (PCR). Liquid chromatography-mass spectrometry was used to assess the abundance of 10 different antibiotics in the water phase of the samples. The results showed an increase in ARGs and integrons downstream of the WWTP. The measured concentrations of antibiotics were low in the water samples from the Stångån River, suggesting that selection for ARGs did not occur in the surface water. Instead, the downstream increase in ARGs is likely to be attributable to accumulation of genes present in the treated effluent discharged from the WWTP.

  11. Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene.

    PubMed

    Azadi, Pejman; Otang, Ntui Valentaine; Supaporn, Hasthanasombut; Khan, Raham Sher; Chin, Dong Poh; Nakamura, Ikuo; Mii, Masahiro

    2011-06-01

    Lilium cv Acapulco was transformed with a defective cucumber mosaic virus (CMV) replicase gene (CMV2-GDD) construct using Agrobacterium tumefaciens. Four lines were analyzed for gene expression and resistance to CMV-O strain. Expression of the CMV2-GDD gene in the transgenic plants was confirmed by reverse transcription PCR (RT-PCR). When these four lines were mechanically inoculated with CMV-O, no signal of coat protein (CP) messages using RT-PCR was detected in newly produced leaves of two transgenic lines. Dot-immunobinding assay (DIBA) of CP was performed to examine the presence of the CMV in the newly produced leaves of challenged plants. Results, similar to those obtained with RT-PCR of the CP messages, were observed in DIBA. Therefore, our results imply that the two lines show increased levels of resistance to CMV, and CMV-GDD replicase gene is an effective construct that has protection against CMV in Lilium.

  12. Thin n-i-p radiation-resistant solar cell feasibility study

    NASA Technical Reports Server (NTRS)

    Allison, J. F.; Arndt, R. A.; Meulenberg, A., Jr.

    1980-01-01

    Silicon solar cells were fabricated to verify the predictions that: (1) thin n(+)pp(+) cells can provide high values of open circuit voltage even when high resistivity base material ( 1000 omega-cm) is used; (2) cells with good p(+) back contacts will display an increase in open circuit voltage with decreasing cell thickness; and (3) high quality, thin, high resistivity, solar cells can be made using processing compatible with conventional practice. Analysis of I-V and spectral response measurements of these cells confirmed theoretical predictions and thereby pointed to voltages beyond the near 600 mV obtained in this study.

  13. A temperature correlation for the radiation resistance of a thick-walled circular duct exhausting a hot gas

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Cline, J. G.; Jones, J. D.

    1984-01-01

    It is often useful to know the radiation impedance of an unflanged but thick-walled circular duct exhausting a hot gas into relatively cold surroundings. The reactive component is shown to be insensitive to temperature, but the resistive component is shown to be temperature dependent. A temperature correlation is developed permitting prediction of the radiation resistance from a knowledge of the temperature difference between the ambient air and the gas flowing from the duct, and a physical basis for this correlation is presented.

  14. Treatment Resistant Epilepsy in Autism Spectrum Disorder: Increased Risk for Females.

    PubMed

    Blackmon, Karen; Bluvstein, Judith; MacAllister, William S; Avallone, Jennifer; Misajon, Jade; Hedlund, Julie; Goldberg, Rina; Bojko, Aviva; Mitra, Nirmala; Giridharan, Radha; Sultan, Richard; Keller, Seth; Devinsky, Orrin

    2016-02-01

    The male:female ratio in autism spectrum disorder (ASD) averages greater than 4:1 while the male:female ratio of ASD with epilepsy averages less than 3:1. This indicates an elevated risk of epilepsy in females with ASD; yet, it is unknown whether phenotypic features of epilepsy and ASD differ between males and females with this comorbidity. The goal of this study is to investigate sex differences in phenotypic features of epilepsy and ASD in a prospective sample of 130 children and young adults with an initial ASD diagnosis and subsequent epilepsy diagnosis. All participants were characterized by standardized diagnostic inventories, parent/caregiver completed questionnaires, and medical/academic record review. Diagnostic classifications of epilepsy, ASD, and intellectual disability were performed by board certified neurologists and a pediatric neuropsychologist. Results demonstrated a lower male:female ratio (1.8:1) in individuals with ASD and treatment-resistant epilepsy relative to those with ASD and treatment-responsive epilepsy (4.9:1), indicating a higher risk of treatment-resistant epilepsy in females. Mild neuroimaging abnormalities were more common in females than males and this was associated with increased risk of treatment-resistance. In contrast, ASD symptom severity was lower in females compared with males. Findings distinguish females with ASD and epilepsy as a distinct subgroup at higher risk for a more severe epilepsy phenotype in the context of a less severe ASD phenotype. Increased risk of anti-epileptic treatment resistance in females with ASD and epilepsy suggests that comprehensive genetic, imaging, and neurologic screening and enhanced treatment monitoring may be indicated for this subgroup. Autism Res 2016, 9: 311-320. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  15. Muscle Volume Increases Following 16 Weeks of Resistive Exercise Training with the Advanced Resistive Exercise Device (ARED) and Free Weights

    NASA Technical Reports Server (NTRS)

    Nash, R. E.; Loehr, J. A.; Lee, S. M. C.; English, K. L.; Evans, H.; Smith, S. A.; Hagan, R. D.

    2009-01-01

    Space flight-induced muscle atrophy, particularly in the postural and locomotorymuscles, may impair task performance during long-duration space missions and planetary exploration. High intensity free weight (FW) resistive exercise training has been shown to prevent atrophy during bed rest, a space flight analog. NASA developed the Advanced Resistive Exercise Device (ARED) to simulate the characteristics of FW exercise (i.e. constant mass, inertial force) and to be used as a countermeasure during International Space Station (ISS) missions. PURPOSE: To compare the efficacy of ARED and FW training to induce hypertrophy in specific muscle groups in ambulatory subjects prior to deploying ARED on the ISS. METHODS: Twenty untrained subjects were assigned to either the ARED (8 males, 3 females) or FW (6 males, 3 females) group and participated in a periodizedtraining protocol consisting of squat (SQ), heel raise (HR), and deadlift(DL) exercises 3 d wk-1 for 16 wks. SQ, HR, and DL muscle strength (1RM) was measured before, after 8 wks, and after 16 wks of training to prescribe exercise and measure strength changes. Muscle volume of the vastigroup (V), hamstring group (H), hip adductor group (ADD), medial gastrocnemius(MG), lateral gastrocnemius(LG), and deep posterior muscles including soleus(DP) was measured using MRI pre-and post-training. Consecutive cross-sectional images (8 mm slices with a 2 mm gap) were analyzed and summed. Anatomical references insured that the same muscle sections were analyzed pre-and post-training. Two-way repeated measures ANOVAs (p<0.05) were used to test for differences in muscle strength and volume between training devices. RESULTS: SQ, HR, and DL 1RM increased in both FW (SQ: 49+/-6%, HR: 12+/-2%, DL: 23+/-4%) and ARED (SQ: 31+/-4%, HR: 18+/-2%, DL: 23+/-3%) groups. Both groups increased muscle volume in the V (FW: 13+/-2%, ARED: 10+/-2%), H (FW: 3+/-1%, ARED: 3+/-1 %), ADD (FW: 15=/-2%, ARED: 10+/-1%), LG (FW: 7+/-2%, ARED: 4+/-1%), MG (FW

  16. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors.

    PubMed

    Caldwell, Martyn M; Ballaré, Carlos L; Bornman, Janet F; Flint, Stephan D; Björn, Lars Olof; Teramura, Alan H; Kulandaivelu, G; Tevini, Manfred

    2003-01-01

    Based on research to date, we can state some expectations about terrestrial ecosystem response as several elements of global climate change develop in coming decades. Higher plant species will vary considerably in their response to elevated UV-B radiation, but the most common general effects are reductions in height of plants, decreased shoot mass if ozone reduction is severe, increased quantities of some phenolics in plant tissues and, perhaps, reductions in foliage area. In some cases, the common growth responses may be lessened by increasing CO2 concentrations. However, changes in chemistry of plant tissues will generally not be reversed by elevated CO2. Among other things, changes in plant tissue chemistry induced by enhanced UV-B may reduce consumption of plant tissues by insects and other herbivores, although occasionally consumption may be increased. Pathogen attack on plants may be increased or decreased as a consequence of elevated UV-B, in combination with other climatic changes. This may be affected both by alterations in plant chemistry and direct damage to some pathogens. Water limitation may decrease the sensitivity of some agricultural plants to UV-B, but for vegetation in other habitats, this may not apply. With global warming, the repair of some types of UV damage may be improved, but several other interactions between warming and enhanced UV-B may occur. For example, even though warming may lead to fewer killing frosts, with enhanced UV-B and elevated CO2 levels, some plant species may have increased sensitivity to frost damage.

  17. Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in veterans with suicide behaviors.

    PubMed

    Lopez-Larson, Melissa; King, Jace B; McGlade, Erin; Bueler, Elliott; Stoeckel, Amanda; Epstein, Daniel J; Yurgelun-Todd, Deborah

    2013-01-01

    Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR) in a group of Veterans with and without a history of suicidal behavior (SB) to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI) and no SB (TBI-SB), 19 Veterans with mild TBI and a history of SB (TB + SB), and 15 healthy controls (HC) underwent magnetic resonance imaging scanning including a structural and diffusion tensor imaging scan. SBs were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS). Differences in thalamic volumes and ATR fractional anisotropy (FA) were examined between (1) TBI + SB versus HC and (2) TBI + SB versus combined HC and TBI-SB and (3) between TBI + SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI + SB compared to the HC, TBI-SB, and the combined group. Veterans with TBI + SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI + SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI + SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide.

  18. Enlarged Thalamic Volumes and Increased Fractional Anisotropy in the Thalamic Radiations in Veterans with Suicide Behaviors

    PubMed Central

    Lopez-Larson, Melissa; King, Jace B.; McGlade, Erin; Bueler, Elliott; Stoeckel, Amanda; Epstein, Daniel J.; Yurgelun-Todd, Deborah

    2013-01-01

    Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR) in a group of Veterans with and without a history of suicidal behavior (SB) to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI) and no SB (TBI-SB), 19 Veterans with mild TBI and a history of SB (TB + SB), and 15 healthy controls (HC) underwent magnetic resonance imaging scanning including a structural and diffusion tensor imaging scan. SBs were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS). Differences in thalamic volumes and ATR fractional anisotropy (FA) were examined between (1) TBI + SB versus HC and (2) TBI + SB versus combined HC and TBI-SB and (3) between TBI + SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI + SB compared to the HC, TBI-SB, and the combined group. Veterans with TBI + SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI + SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI + SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide. PMID:23964245

  19. Does Drought Increase the Risk of Insects Developing Behavioral Resistance to Systemic Insecticides?

    PubMed Central

    Fowles, Trevor; Bick, Emily; Nansen, Christian

    2016-01-01

    Increases in severity and frequency of drought periods, average global temperatures, and more erratic fluctuations in rainfall patterns due to climate change are predicted to have a dramatic impact on agricultural production systems. Insect pest populations in agricultural and horticultural systems are also expected to be impacted, both in terms of their spatial and temporal distributions and in their status as pest species. In this opinion-based article, we discuss how indirect effects of drought may adversely affect the performance of systemic insecticides and also lead to increased risk of insect pests developing behavioral insecticide resistance. We hypothesize that more pronounced drought will decrease uptake and increase the magnitude of nonuniform translocation of systemic insecticides within treated crop plants, and that may have two concurrent consequences: 1) reduced pesticide performance, and 2) increased likelihood of insect pests evolving behavioral insecticide resistance. Under this scenario, pests that can sense and avoid acquisition of lethal dosages of systemic insecticides within crop plants will have a selective advantage. This may lead to selection for insect behavioral avoidance, so that insects predominantly feed and oviposit on portions of crop plants with low concentration of systemic insecticide. Limited research has been published on the effect of environmental variables, including drought, on pesticide performance, but we present and discuss studies that support the hypothesis described above. In addition, we wish to highlight the importance of studying the many ways environmental factors can affect, directly and indirectly, both the performance of insecticides and the risk of target insect pests developing resistance. PMID:27551149

  20. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    SciTech Connect

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.

  1. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    SciTech Connect

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  2. Recent progress and tests of radiation resistant impregnation materials for Nb{sub 3}Sn coils

    SciTech Connect

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-27

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  3. Threonines 2638/2647 in DNA-PK are essential for cellular resistance to ionizing radiation.

    PubMed

    Soubeyrand, Sébastien; Pope, Louise; Pakuts, Benjamin; Haché, Robert J G

    2003-03-15

    DNA-dependent protein kinase (DNA-PK) is required for the repair of double-stranded DNA breaks through the nonhomologous DNA end joining pathway. DNA-PK activity is required for DNA repair, but kinase activity also appears to be attenuated through an autoregulatory feedback loop. We show that autophosphorylation of DNA-PK catalytic subunit occurs in trans at least three sites NH(2) terminal to the catalytic domain and that two sites, threonine 2638 and 2647, determine DNA-PK autophosphorylation in vitro. Thr2638/2647ala substitution in DNA-PK catalytic subunit compromised cellular resistance to ionizing radiation without affecting DNA end joining, suggesting a requirement for DNA-PK inactivation for cell survival at a step after the rejoining of double-stranded DNA breaks.

  4. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less

  5. New insight on the high radiation resistance of UO2 against fission fragments

    NASA Astrophysics Data System (ADS)

    Szenes, G.

    2016-12-01

    Track radii are derived for semiconductors from a temperature distribution Θ(r) in which the width of the distribution is the only materials parameter. Analysis of track data for GeS, InP, GaAs and GaN show that the projectile velocity has no effect on track radii in semiconductors. Due to the missing velocity effect, the threshold for track formation, Set = 20 keV/nm is high in semiconducting UO2 in the whole range of projectile velocities. This is the origin of the high radiation resistance for fission fragments. Consequences for the simulation experiments with insulating CeO2 are discussed. It is verified that sputtering is described accurately by the Arrhenius equation for various materials including UO2. The ion-induced surface potential has a strong effect on the activation energy.

  6. Radiation-resistant composite scintillators based on GSO and GPS grains

    NASA Astrophysics Data System (ADS)

    Boyarintsev, A. Yu.; Galunov, N. Z.; Gerasymov, Ia. V.; Karavaeva, N. L.; Krech, A. V.; Levchuk, L. G.; Popov, V. F.; Sidletskiy, O. Ts.; Sorokin, P. V.; Tarasenko, O. A.

    2017-01-01

    The effect of irradiation on the scintillation light output, optical transmittance, and luminescent spectra of composite scintillators based on grains of single crystals Gd2SiO5:Ce (GSO) and Gd2Si2O7:Ce (GPS) is studied. The dielectric gel Sylgard-184 is the base and the binder for the grains inside the composite scintillator. The paper presents and analyzes the results obtained for the scintillators exposed by 10 MeV electrons from the linear electron accelerator at room temperature. The exposure doses D≤250 Mrad. The dose rate is 0.2 or 1500 Mrad/h. The study has shown that the composite scintillators based on the grains of GSO and GPS are radiation-resistant over the range of the irradiation.

  7. Evaluation of radiation resistance of the bacterial contaminants from femoral heads processed for allogeneic transplantation

    NASA Astrophysics Data System (ADS)

    Singh, Rita; Singh, Durgeshwer

    2009-09-01

    Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D10 values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D10 values 0.56-1.04 kGy were observed for Gram-positive bacterial isolates.

  8. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  9. Anesthetic-resistant spontaneous mutant of Drosophila melanogaster: intensified response to /sup 60/Cobalt radiation damage

    SciTech Connect

    Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.; Ueda, I.

    1985-02-25

    Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at the eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.

  10. Genetic variation in resistance to ionizing radiation. Progress report, January--July 1990

    SciTech Connect

    Ayala, F.J.

    1990-12-31

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu, Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population of ``null`` (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The role of SOD levels in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. During the first seven months of funding we have completed a number of experiments and are proceeding with many others. We have made progress along all the research lines anticipated for the first year of this grant, as summarized in the following pages.

  11. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity

    SciTech Connect

    Mullins, Dana; Proulx, Denise; Saoudi, A.; Ng, Cheng E. . E-mail: cng@ohri.ca

    2005-05-01

    Purpose: Topotecan (TPT), a camptothecin analog, is currently used to treat human ovarian and small-cell lung cancer and is in clinical trials for other tumor sites. However, it is unknown whether chronomodulation of TPT treatment is beneficial. We examined the effects of administering TPT or X-radiation (XR) alone at different times of the day or night. Methods: We treated mice bearing human colorectal tumor xenografts at four different times representing the early rest period (9 AM or 3 HALO [hours after light onset]), late rest period (3 PM or 9 HALO), early active period (9 PM or 15 HALO), and late active period (3 AM or 21 HALO) of the mice. We gave either TPT (12 mg/kg, injected i.p.) or XR (4 Gy, directed to the tumor) twice weekly on Days 0, 4, 7, 10 within 2 weeks. Results: Treatment with either TPT or XR at 3 AM demonstrated the greatest efficacy (measured by a tumor regrowth assay) without significantly increasing acute toxicity (assessed by a decrease in leukocyte counts or body weight). Conversely, treatment at 3 PM, in particular, showed increased toxicity without any enhanced efficacy. Conclusions: Our study provided the first evidence that chronomodulation of TPT treatments, consistent with the findings of other camptothecin analogs, is potentially clinically beneficial. Additionally, our findings suggest that chronomodulation of fractionated XR treatments is also potentially clinically beneficial.

  12. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation.

    PubMed

    Bertrand, Gérald; Maalouf, Mira; Boivin, Antony; Battiston-Montagne, Priscillia; Beuve, Michael; Levy, Antonin; Jalade, Patrice; Fournier, Claudia; Ardail, Dominique; Magné, Nicolas; Alphonse, Gersende; Rodriguez-Lafrasse, Claire

    2014-02-01

    Although promising new radiation therapy techniques such as hadrontherapy are currently being evaluated in the treatment of head and neck malignancies, local control of head and neck squamous cell carcinoma (HNSCC) remains low. Here, we investigated the involvement of cancer stem-like cells (CSCs) in a radioresistant HNSCC cell line (SQ20B). Stem-like cells SQ20B/SidePopulation(SP)/CD44(+)/ALDH(high) were more resistant to both photon and carbon ion irradiation compared with non-CSCs. This was confirmed by a BrdU labeling experiment, which suggests that CSCs were able to proliferate and to induce tumorigenicity after irradiation. SQ20B/SP/CD44(+)/ALDH(high) were capable of an extended G2/M arrest phase in response to photon or carbon ion irradiation compared with non-CSCs. Moreover, our data strongly suggest that resistance of CSCs may result from an imbalance between exacerbated self-renewal and proliferative capacities and the decrease in apoptotic cell death triggering. In order to modulate these processes, two targeted pharmacological strategies were tested. Firstly, UCN-01, a checkpoint kinase (Chk1) inhibitor, induced the relapse of G2/M arrest and radiosensitization of SQ20B-CSCs. Secondly, all-trans retinoic acid (ATRA) resulted in an inhibition of ALDH activity, and induction of the differentiation and radiosensitization of SQ20B/SP/CD44(+)/ALDH(high) cells. The combination of ATRA and UCN-01 treatments with irradiation drastically decreased the surviving fraction at 2Gy of SQ20B-CSCs from 0.85 to 0.38 after photon irradiation, and from 0.45 to 0.21 in response to carbon ions. Taken together, our results suggest that the combination of UCN-01 and ATRA represent a promising pharmacological-targeted strategy that significantly sensitizes CSCs to photon or carbon ion radiation.

  13. Second Malignancies After Adjuvant Radiation Therapy for Early Stage Breast Cancer: Is There Increased Risk With Addition of Regional Radiation to Local Radiation?

    SciTech Connect

    Hamilton, Sarah Nicole; Tyldesley, Scott; Li, Dongdong; Olson, Robert; McBride, Mary

    2015-04-01

    Purpose: This study was undertaken to determine whether there was an increased risk of second malignancies (SM), particularly lung cancer, in early stage breast cancer patients treated with the addition of nodal fields to breast and/or chest wall radiation therapy (RT). Materials and Methods: Subjects were stage I/II female breast cancer patients 20 to 79 years of age, diagnosed between 1989 and 2005 and treated with adjuvant RT at our institution. Patients were included if they survived and did not have SM within 3 years of diagnosis. Standardized incidence ratios (SIR) with 95% confidence intervals (CI) were calculated to compare SM incidence to cancer incidence in the general sex- and age-matched populations. Secondary malignancy risks in patients treated with local RT (LRT) to the breast/chest wall were compared to those in patients treated with locoregional RT (LRRT) to the breast/chest wall and regional nodes, using multivariate regression analysis (MVA) to account for covariates. Results: The cohort included 12,836 patients with a median follow-up of 8.4 years. LRRT was used in 18% of patients. The SIR comparing patients treated with LRT to the general population was 1.29 (CI: 1.21-1.38). No statistically significant increased incidence of in-field malignancies (SIR, 1.04; CI: 0.87-1.23) and lung cancers (SIR, 1.06; CI: 0.88-1.26) was detected. The SIR comparing patients treated with LRRT to the general population was 1.39 (CI: 1.17-1.64). No statistically significant increased incidence of in-field malignancies (SIR, 1.26; CI: 0.77-1.94) and lung cancers (SIR, 1.27; CI: 0.76-1.98) was detected. On MVA comparing LRRT to LRT, the adjusted hazard ratio was 1.20 for in-field malignancies (CI: 0.68-2.16) and 1.26 for lung cancer (CI: 0.67-2.36). The excess attributable risk (EAR) to regional RT was 3.1 per 10,000 person years (CI: −8.7 to 9.9). Conclusions: No statistically significant increased risk of second malignancy was detected after LRRT relative to

  14. Does Axillary Boost Increase Lymphedema Compared With Supraclavicular Radiation Alone After Breast Conservation?

    SciTech Connect

    Hayes, Shelly B. Freedman, Gary M.; Li Tianyu; Anderson, Penny R.; Ross, Eric

    2008-12-01

    Purpose: To determine independent predictors of lymphedema (LE) after breast radiotherapy and to quantify added risks of LE from regional node irradiation (RNI). Materials and Methods: A total of 2,579 women with T1-2, N 0-3, M0 breast cancer treated with breast conservation between 1970 and 2005 were studied. A total of 2,169 patients (84%) received radiation to the breast (B), 226 (8.8%) to the breast and supraclavicular LNs (B+SC), and 184 (7.1%) to the breast, supraclavicular LNs, and a posterior axillary boost (B+SC+PAB). Median follow-up was 81 months (range, 3-271). Results: Eighteen percent of patients developed LE. LE risks were as follows: 16% (B), 23% (B+SC), and 31% (B+SC+PAB) (p < 0.0001). LE severity was greater in patients who had RNI (p = 0.0002). On multivariate analysis, RT field (p < 0.0001), obesity index (p = 0.0157), systemic therapy (p = 0.0013), and number of LNs dissected (p < 0.0001) independently predicted for LE. In N1 patients, the addition of a SC to tangents (p < 0.0001) and the addition of a PAB to tangents (p = 0.0017) conferred greater risks of LE, but adding a PAB to B+SC RT did not (p = 0.8002). In the N2 patients, adding a PAB increased the risk of LE 4.5-fold over B+SC RT (p = 0.0011). Conclusions: LE predictors included number of LNs dissected, RNI, obesity index, and systemic therapy. LE risk increased when a SC or PAB were added in the N1 subgroup. In the N2 patients, a PAB increased the risk over B+SC. The decision to boost the axilla must be weighed against the increased risk of LE that it imposes.

  15. At-home resistance tubing strength training increases shoulder strength in the trained and untrained limb.

    PubMed

    Magnus, C R A; Boychuk, K; Kim, S Y; Farthing, J P

    2014-06-01

    The purpose was to determine if an at-home resistance tubing strength training program on one shoulder (that is commonly used in rehabilitation settings) would produce increases in strength in the trained and untrained shoulders via cross-education. Twenty-three participants were randomized to TRAIN (strength-trained one shoulder; n = 13) or CONTROL (no intervention; n = 10). Strength training was completed at home using resistance tubing and consisted of maximal shoulder external rotation, internal rotation, scaption, retraction, and flexion 3 days/week for 4 weeks. Strength was measured via handheld dynamometry and muscle size measured via ultrasound. For external rotation strength, the trained (10.9 ± 10.9%) and untrained (12.7 ± 9.6%) arm of TRAIN was significantly different than CONTROL (1.6 ± 13.2%; -2.7 ± 12.3%; pooled across arm; P < 0.05). For internal rotation strength, the trained (14.8 ± 11.3%) and untrained (14.6 ± 10.1%) arm of TRAIN was significantly different than CONTROL (6.4 ± 11.2%; 5.1 ± 8.8%; pooled across arm; P < 0.05). There were no significant differences for scaption strength (P = 0.056). TRAIN significantly increased muscle size in the training arm of the supraspinatus (1.90 ± 0.32 to 1.99 ± 0.31 cm), and the anterior deltoid (1.08 ± 0.37 to 1.21 ± 0.39 cm; P < 0.05). This study suggests that an at-home resistance tubing training program on one limb can produce increases in strength in both limbs, and has implications for rehabilitation after unilateral shoulder injuries.

  16. Increased endothelin-1 vasoconstriction in mesenteric resistance arteries after superior mesenteric ischaemia-reperfusion

    PubMed Central

    Martínez-Revelles, S; Caracuel, L; Márquez-Martín, A; Dantas, AP; Oliver, E; D'Ocon, P; Vila, E

    2012-01-01

    BACKGROUND AND PURPOSE Endothelin-1 (ET-1) plays an important role in the maintenance of vascular tone. We aimed to evaluate the influence of superior mesenteric artery (SMA) ischaemia-reperfusion (I/R) on mesenteric resistance artery vasomotor function and the mechanism involved in the changes in vascular responses to ET-1. EXPERIMENTAL APPROACH SMA from male Sprague-Dawley rats was occluded (90 min) and following reperfusion (24 h), mesenteric resistance arteries were dissected. Vascular reactivity was studied using wire myography. Protein and mRNA expression, superoxide anion (O2•−) production and ET-1 plasma concentration were evaluated by immunofluorescence, real-time quantitative PCR, ethidium fluorescence and elisa, respectively. KEY RESULTS I/R increased ET-1 plasma concentration, ET-1-mediated vasoconstriction and ETB mRNA expression, and down-regulated ETA mRNA expression. Immunofluorescence confirmed mRNA results and revealed an increase in ETB receptors in the mesenteric resistance artery media layer after I/R. Therefore, the ETB receptor agonist sarafotoxin-6 induced a contraction that was inhibited by the ETB receptor antagonist BQ788 only in vessels, with and without endothelium, from I/R rats. Furthermore, BQ788 potentiated ET-1 vasoconstriction only in sham rats. Endothelium removal in rings from I/R rats unmasked the inhibition of ET-1 vasoconstriction by BQ788. Endothelium removal, Nω-nitro-L-arginine methyl ester and superoxide dismutase abolished the differences in ET-1 vasoconstriction between sham and I/R rats. We also found that I/R down-regulates endothelial NOS mRNA expression and concomitantly enhanced O2•− production by increasing NADPH oxidase 1 (NOX-1) and p47phox mRNA. CONCLUSIONS AND IMPLICATIONS Mesenteric I/R potentiated the ET-1-mediated vasoconstriction by a mechanism that involves up-regulation of muscular ETB receptors and decrease in NO bioavailability. PMID:21806604

  17. Photochemical activation increases the porcine corneal stiffness and resistance to collagenase digestion.

    PubMed

    Wang, Ti; Peng, Yinbo; Shen, Nianci; Yu, Yan; Yao, Min; Zhu, Jingyin

    2014-06-01

    In this study, we explore the effect of photochemical activation induced corneal cross-linking, utilizing Rose Bengal (RB) and 532 nm green light irradiation (RB-PCL), on porcine corneal biomechanical rigidity and the biochemical resistance against collagenase digestion. A protocol with a wavelength of 532 nm and illumination intensity of 0.4W/cm(2) for 250 s to deliver a dose of 100 J/cm(2) was chosen. Using confocal microscopy, we demonstrated that the diffusion depth of RB into porcine cornea was approximately 150 μm and mostly localized in anterior stroma 25 min followed by RB application. After photochemical cross-linking, an increase in tensile strength (by average 200%) and Young's modulus (by average 200%) in porcine corneas was observed. The corneal buttons treated by RB-PCL showed doubling of collagenase digestion time from 10.8 ± 3.1 days in the blank group to 19.7 ± 6.2 days in the RB-PCL group, indicating increased resistance to enzymatic digestion. In conclusion, Collagen cross-linking by RB-PCL increased both the biomechanical stiffness and the biochemical resistance against collagenase digestion in porcine corneas, therefore to allow stabilizing and solidifier the cornea. The advantages and disadvantages of RB-PCL versus UVA/riboflavin cross-linking technique (UV-CXL) are fully explored. Due to the nature of minimal penetration of RB into corneal stroma, the RB-PCL method could potentially be used in patients with corneal thickness less than 400 μm where UV-CXL is limited.

  18. Insulin resistance, low cardiorespiratory fitness, and increased exercise blood pressure: contribution of abdominal obesity.

    PubMed

    Huot, Maxime; Arsenault, Benoit J; Gaudreault, Valérie; Poirier, Paul; Pérusse, Louis; Tremblay, Angelo; Bouchard, Claude; Després, Jean-Pierre; Rhéaume, Caroline

    2011-12-01

    Individuals with insulin resistance and low cardiorespiratory fitness are frequently found to have an increased waist circumference and high exercise blood pressure. We tested the hypothesis that the relationships among insulin resistance, low cardiorespiratory fitness, and increased exercise blood pressure may be mediated by an elevated waist circumference. This study included 317 apparently healthy men and women (mean age: 34.8±12.8 years; mean body mass index: 26.1±5.2 kg/m(2)). Exercise blood pressure values were measured using a submaximal ergometer test evaluating physical working capacity. Plasma insulin and glucose levels were measured during a 3-hour oral glucose tolerance test. Multivariate regression analyses showed that waist circumference accounted for 32.8% (P<0.0001) and 45.1% (P<0.0001) of the variance in exercise systolic blood pressure in men and women, respectively. Participants were classified into tertiles according to either insulin response, measured during the oral glucose tolerance test, or fitness levels and then further subdivided into 2 subgroups using sex-specific waist circumference thresholds. Individuals with an increased waist circumference (≥94 cm and ≥80 cm for men and women, respectively) had higher exercise systolic blood pressure compared with individuals with low waist circumference, irrespective of their level of insulin resistance (10.6 versus 6.8, 12.2 versus 7.7, and 13.2 versus 8.7 mm Hg/metabolic equivalent, respectively, for the low, intermediate, and high tertiles; P<0.05) or fitness levels (13.1 versus 8.2, 12.0 versus 7.9, and 10.6 versus 7.1 mm Hg/metabolic equivalent, respectively, for the low, intermediate, and high tertiles; P<0.05). Individuals with a higher waist circumference have elevated exercise systolic blood pressure, regardless of their insulin sensitivity or level of cardiorespiratory fitness.

  19. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.

    PubMed

    Zhang, Lu; Alfano, James R; Becker, Donald F

    2015-02-01

    The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.

  20. Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape.

    PubMed

    Delourme, R; Bousset, L; Ermel, M; Duffé, P; Besnard, A L; Marquer, B; Fudal, I; Linglin, J; Chadœuf, J; Brun, H

    2014-10-01

    Quantitative resistance mediated by multiple genetic factors has been shown to increase the potential for durability of major resistance genes. This was demonstrated in the Leptosphaeria maculans/Brassica napus pathosystem in a 5year recurrent selection field experiment on lines harboring the qualitative resistance gene Rlm6 combined or not with quantitative resistance. The quantitative resistance limited the size of the virulent isolate population. In this study we continued this recurrent selection experiment in the same way to examine whether the pathogen population could adapt and render the major gene ineffective in the longer term. The cultivars Eurol, with a susceptible background, and Darmor, with quantitative resistance, were used. We confirmed that the combination of qualitative and quantitative resistance is an effective approach for controlling the pathogen epidemics over time. This combination did not prevent isolates virulent against the major gene from amplifying in the long term but the quantitative resistance significantly delayed for 5years the loss of effectiveness of the qualitative resistance and disease severity was maintained at a low level on the genotype with both types of resistance after the fungus population had adapted to the major gene. We also showed that diversity of AvrLm6 virulence alleles was comparable in isolates recovered after the recurrent selection on lines carrying either the major gene alone or in combination with quantitative resistance: a single repeat-induced point mutation and deletion events were observed in both situations. Breeding varieties which combine qualitative and quantitative resistance can effectively contribute to disease control by increasing the potential for durability of major resistance genes.

  1. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia.

    PubMed

    Oest, Megan E; Gong, Bo; Esmonde-White, Karen; Mann, Kenneth A; Zimmerman, Nicholas D; Damron, Timothy A; Morris, Michael D

    2016-05-01

    As part of our ongoing efforts to understand underlying mechanisms contributing to radiation-associated bone fragility and to identify possible treatments, we evaluated the longitudinal effects of parathyroid hormone (PTH) treatment on bone quality in a murine model of limited field irradiation. We hypothesized PTH would mitigate radiation-induced changes in the chemical composition and structure of bone, as measured by microscope-based Raman spectroscopy. We further hypothesized that collagen crosslinking would be especially responsive to PTH treatment. Raman spectroscopy was performed on retrieved tibiae (6-7/group/time point) to quantify metrics associated with bone quality, including: mineral-to-matrix ratio, carbonate-to-phosphate ratio, mineral crystallinity, collagen crosslink (trivalent:divalent) ratio, and the mineral and matrix depolarization ratios. Irradiation disrupted the molecular structure and orientation of bone collagen, as evidenced by a higher collagen crosslink ratio and lower matrix depolarization ratio (vs. non-irradiated control bones), persisting until 12weeks post-irradiation. Radiation transiently affected the mineral phase, as evidenced by increased mineral crystallinity and mineral-to-matrix ratio at 4weeks compared to controls. Radiation decreased bone mineral depolarization ratios through 12weeks, indicating increased mineral alignment. PTH treatment partially attenuated radiation-induced increases in collagen crosslink ratio, but did not restore collagen or mineral alignment. These post-radiation matrix changes are consistent with our previous studies of radiation damage to bone, and suggest that the initial radiation damage to bone matrix has extensive effects on the quality of tissue deposited thereafter. In addition to maintaining bone quality, preventing initial radiation damage to the bone matrix (i.e. crosslink ratio, matrix orientation) may be critical to preventing late-onset fragility fractures.

  2. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    SciTech Connect

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  3. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities.

    PubMed

    Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R

    2016-12-01

    There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously.

  4. Antibiotic surgical prophylaxis increases nasal carriage of antibiotic-resistant staphylococci.

    PubMed

    McMurray, Claire L; Hardy, Katherine J; Verlander, Neville Q; Hawkey, Peter M

    2015-12-01

    Staphylococci are a significant cause of hospital-acquired infection. Nasal carriage of Staphylococcus aureus is an important risk factor for infection in surgical patients and coagulase-negative staphylococci (CNS) are a major cause of prosthetic joint infections. The impact that antibiotic surgical prophylaxis has on the nasal carriage of staphylococci has not been studied. Daily nasal swabs were taken from 63 patients who received antibiotic surgical prophylaxis and 16 patients who received no antibiotics. Total aerobic bacterial count, S. aureus and CNS were enumerated by culture from nasal swabs. Representative isolates were typed by staphylococcal interspersed repeat units (SIRU) typing and PFGE, and MICs to nine antibiotics were determined. After antibiotic administration, there was a reduction in S. aureus counts (median - 2.3 log(10)c.f.u. ml(- 1)) in 64.0 % of S. aureus carriers, compared with only a 0.89 log(10)c.f.u. ml(- 1) reduction in 75.0 % of S. aureus carriers who did not receive antibiotics. A greater increase in the nasal carriage rate of meticillin-resistant CNS was observed after antibiotic surgical prophylaxis compared with hospitalization alone, with increases of 16.4 and 4.6 %, respectively. Antibiotic-resistant S. epidermidis carriage rate increased by 16.6 % after antibiotic administration compared with 7.5 % with hospitalization alone. Antibiotic surgical prophylaxis impacts the nasal carriage of both S. aureus and CNS.

  5. Development of the First Cisgenic Apple with Increased Resistance to Fire Blight.

    PubMed

    Kost, Thomas D; Gessler, Cesare; Jänsch, Melanie; Flachowsky, Henryk; Patocchi, Andrea; Broggini, Giovanni A L

    2015-01-01

    The generation and selection of novel fire blight resistant apple genotypes would greatly improve the management of this devastating disease, caused by Erwinia amylovora. Such resistant genotypes are currently developed by conventional breeding, but novel breeding technologies including cisgenesis could be an alternative approach. A cisgenic apple line C44.4.146 was regenerated using the cisgene FB_MR5 from wild apple Malus ×robusta 5 (Mr5), and the previously established method involving A. tumefaciens-mediated transformation of the fire blight susceptible cultivar 'Gala Galaxy' using the binary vector p9-Dao-FLPi. The line C44.4.146 was shown to carry only the cisgene FB_MR5, controlled by its native regulatory sequences and no transgenes were detected by PCR or Southern blot following heat induced recombinase-mediated elimination of the selectable markers. Although this line contains up to 452 bp of vector sequences, it still matches the original definition of cisgenesis. A single insertion of T-DNA into the genome of 'Gala Galaxy' in chromosome 16 was identified. Transcription of FB_MR5 in line C44.4.146 was similar to the transcription in classically bred descendants of Mr5. Three independent shoot inoculation experiments with a Mr5 avirulent strain of Erwinia amylovora were performed using scissors or syringe. Significantly lower disease symptoms were detected on shoots of the cisgenic line compared to those of untransformed 'Gala Galaxy'. Despite the fact that the pathogen can overcome this resistance by a single nucleotide mutation, this is, to our knowledge, the first prototype of a cisgenic apple with increased resistance to fire blight.

  6. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase

    PubMed Central

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2016-01-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 μM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl− and the decreased HCO3− concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na–K–2Cl electroneutral cotransporter or Cl−/HCO3− anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells. PMID:25868554

  7. Multiwire conductor having greatly increased interwire resistance and method for making same

    DOEpatents

    Luhman, Thomas; Suenaga, Masaki

    1984-01-17

    An improved multiwire conductor of the type which is mechanically stabilized by a tin based solder filler. A solder filled conductor is heated to a temperature above its melting point for a period long enough to allow a substantial amount of copper to be dissolved from the wires comprising the conductor. The copper forms the brittle intermetallic compound Cu.sub.5 Sn.sub.6 with tin in the solder. After cooling the conductor is flexed causing a random cracking of the solder, and thereby increasing the interwire resistance of the conductor. The subject invention is particularly adapted for use with braided, ribbon-type solder filled superconductors.

  8. Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same

    DOEpatents

    Luhman, Thomas; Klamut, Carl

    1984-02-14

    An improved multiwire conductor of the type which is mechanically stabilized by a solder filler. A solder filled conductor is heated to a temperature sufficient to make the solder brittle, but below the melting point of the solder. While still hot, the conductor is flexed, causing the solder to separate from the wires comprising the conductor, thereby increasing the interwire resistance. In one embodiment the conductor may be heated to a temperature above the eutectic temperature of the solder so that a controlled amount of solder is removed. The subject invention is particularly suited for use with braided, ribbon-type, solder filled superconductors.

  9. Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same

    DOEpatents

    Luhman, T.; Klamut, C.

    1982-03-15

    An improved multiwire conductor of the type which is mechanically stabilized by a solder filler. A solder filled conductor is heated to a temperature sufficient to make the solder brittle, but below the melting point of the solder. While still hot, the conductor is flexed, causing the solder to separate from the wires comprising the conductor, thereby increasing the interwire resistance. In one embodiment the conductor may be heated to a temperature above the eutectic temperature of the solder so that a controlled amount of solder is removed. The subject invention is particularly suited for use with braided, ribbon-type, solder filled superconductors.

  10. Multiwire conductor having greatly increased interwire resistance and method for making same

    DOEpatents

    Luhman, T.; Suenaga, M.

    1982-03-15

    An improved multiwire conductor of the type which is mechanically stabilized by a tin based solder filler is described. A solder filled conductor is heated to a temperature above its melting point for a period long enough to allow a substantial amount of copper to be dissolved from the wires comprising the conductor. The copper forms the brittle intermetallic compound Cu/sub 5/Sn/sub 6/ with tin in the solder. After cooling the conductor is flexed causing a random cracking of the solder, and thereby increasing the interwire resistance of the conductor. The subject invention is particularly adapted for use with braided, ribbon-type solder filled superconductors.

  11. Ionizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia.

    PubMed

    Radivoyevitch, Tomas; Sachs, Rainer K; Gale, Robert Peter; Smith, Mitchell R; Hill, Brian T

    2016-04-01

    Exposure to ionizing radiation is not thought to cause chronic lymphocytic leukemia (CLL). Challenging this notion are recent data suggesting CLL incidence may be increased by radiation exposure from the atomic bombs (after many decades), uranium mining and nuclear power facility accidents. To assess the effects of therapeutic ionizing radiation for the treatment of solid neoplasms we studied CLL risks in data from the Surveillance, Epidemiology, and End Results (SEER) Program. Specifically, we compared the risks of developing CLL in persons with a 1(st) non-hematologic cancer treated with or without ionizing radiation. We controlled for early detection effects on CLL risk induced by surveillance after 1(st) cancer diagnoses by forming all-time cumulative CLL relative risks (RR). We estimate such CLL RR to be 1.20 (95% confidence interval, 1.17, 1.23) for persons whose 1(st) cancer was not treated with ionizing radiation and 1.00 (0.96, 1.05) for persons whose 1(st) cancer was treated with ionizing radiations. These results imply that diagnosis of a solid neoplasm is associated with an increased risk of developing CLL only in persons whose 1(st) cancer was not treated with radiation therapy.

  12. Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men.

    PubMed

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K; Reitelseder, Søren; Drummond, Micah J; Schjerling, Peter; Scheike, Thomas; Serena, Anja; Holm, Lars

    2017-04-01

    The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. Untrained healthy elderly (>65-yr-old) men were subjected to 13 h of supine rest. After 2.5 h of rest, unilateral LL-RE, consisting of leg extensions (10 sets, 36 repetitions) at 16% of 1 repetition maximum (RM), was conducted. Subsequently, the subjects were randomized to oral intake of 4 g of whey protein per hour (PULSE, n = 10), 28 g of whey protein at 0 h and 12 g of whey protein at 7 h postexercise (BOLUS, n = 10), or 4 g of maltodextrin per hour (placebo, n = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from the resting and the exercised leg of each subject. Myofibrillar FSR and activity of select targets from the mechanistic target of rapamycin complex 1-signaling cascade were analyzed from the biopsies. LL-RE increased myofibrillar FSR compared with the resting leg throughout the 10-h postexercise period. Phosphorylated (T308) AKT expression increased in the exercised leg immediately after exercise. This increase persisted in the placebo group only. Levels of phosphorylated (T37/46) eukaryotic translation initiation factor 4E-binding protein 1 increased throughout the postexercise period in the exercised leg in the placebo and BOLUS groups and peaked at 7 h. In all three groups, phosphorylated (T56) eukaryotic elongation factor 2 decreased in response to LL-RE. We conclude that resistance exercise at only 16% of 1 RM increased myofibrillar FSR, irrespective of nutrient type and feeding pattern, which indicates an anabolic effect of LL-RE in elderly individuals. This finding was supported by increased signaling for translation initiation and translation elongation in response to LL-RE.

  13. Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations.

    PubMed

    Yadav, Abhay Singh; Sharma, Manoj Kumar

    2008-02-29

    The health concerns have been raised following the enormous increase in the use of wireless mobile telephones throughout the world. This investigation had been taken, with the motive to find out whether mobile phone radiations cause any in vivo effects on the frequency of micronucleated exfoliated cells in the exposed subjects. A total of 109 subjects including 85 regular mobile phone users (exposed) and 24 non-users (controls) had participated in this study. Exfoliated cells were obtained by swabbing the buccal-mucosa from exposed as well as sex-age-matched controls. One thousand exfoliated cells were screened from each individual for nuclear anomalies including micronuclei (MN), karyolysis (KL), karyorrhexis (KH), broken egg (BE) and binucleated (BN) cells. The average daily duration of exposure to mobile phone radiations is 61.26 min with an overall average duration of exposure in term of years is 2.35 years in exposed subjects along with the 9.84+/-0.745 micronucleated cells (MNCs) and 10.72+/-0.889 total micronuclei (TMN) as compared to zero duration of exposure along with average 3.75+/-0.774 MNC and 4.00+/-0.808 TMN in controls. The means are significantly different in case of MNC and TMN at 0.01% level of significance. The mean of KL in controls is 13.17+/-2.750 and in exposed subjects is 13.06+/-1.793. The value of means of KH in exposed subjects (1.84+/-0.432) is slightly higher than in controls (1.42+/-0.737). Mean frequency of broken egg is found to be more in exposed subjects (0.65+/-0.276) as compared to controls (0.50+/-0.217). Frequency of presence of more than one nucleus in a cell (binucleated) is also higher in exposed (2.72+/-0.374) in comparison to controls (0.67+/-0.231). Although there is a slight increase in mean frequency of KH, BE and BN in exposed subjects but the difference is not found statistically significant. Correlation between 0-1, 1-2, 2-3 and 3-4 years of exposure and the frequency of MNC and TMN has been calculated and found to

  14. Study of resistive micromegas detectors in a mixed neutron and photon radiation environment

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Iakovidis, G.; Tsipolitis, G.

    2012-05-01

    The Muon ATLAS Micromegas Activity (MAMMA) focuses on the development and testing of large-area muon detectors based on the bulk-Micromegas technology. These detectors are candidates for the upgrade of the ATLAS Muon System in view of the luminosity upgrade of Large Hadron Collider at CERN (sLHC). They will combine trigger and precision measurement capability in a single device. A novel protection scheme using resistive strips above the readout electrode has been developed. The response and sparking properties of resistive Micromegas detectors were successfully tested in a mixed (neutron and gamma) high radiation environment supplied by the Tandem accelerator at the N.C.S.R. Demokritos in Athens. Monte-Carlo studies have been employed to study the effect of 5.5 MeV neutrons impinging on Micromegas detectors. The response of the Micromegas detectors on the photons originating from the inevitable neutron inelastic scattering on the surrounding materials of the experimental facility was also studied.

  15. Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] cultivars Williams-82 and Maverick were grown in a polycarbonate greenhouse, a glass greenhouse, and outdoors (during daytime) to investigate the effect of (i) exclusion of both solar UV-B radiation (280-320 nm) and UV-A radiation (320-400 nm), (ii) exclusion of sola...

  16. Increase in nitric oxide and cyclic GMP of rat cerebellum by radio frequency burst-type electromagnetic field radiation.

    PubMed Central

    Miura, M; Takayama, K; Okada, J

    1993-01-01

    1. Using rat cerebellum supernatant, the effects of radio frequency (RF) burst-type electromagnetic (EM) field radiation on the production of cyclic GMP were examined under various conditions. The radiation was generated by a generator coil, and set at a 10 MHz radiation frequency, a 50% burst time, a 10 kHz burst rate and a 5 V peak-to-peak generator voltage. 2. When the cerebellum supernatant was incubated with both exogenous L-arginine (nitric oxide (NO) donor) and NADPH, and irradiated by an RF burst-type EM field, the production of cyclic GMP was increased significantly from a level of 21-22 nmol min-1 (g tissue)-1 to 25-26 nmol min-1 (g tissue)-1. By contrast, such an effect was not found when the cerebellum supernatant was irradiated by an RF volley-type EM field. 3. When neither L-arginine nor NADPH were added to the cerebellum supernatant, the production of cyclic GMP was lowered to a level of 6 nmol min-1 (g tissue)-1 and the radiation effect was not found. When the cerebellum supernatant was chelated with EDTA, the production of cyclic GMP was lowered to a level of 7 nmol min-1 (g tissue)-1 and the radiation effect was not found. 4. Incubation with Methylene Blue, a guanylate cyclase inhibitor, lowered the production of cyclic GMP to a level of 10-12 nmol min-1 (g tissue)-1, and the radiation effect did not occur. On incubation with a NO synthase inhibitor, either NG-methyl-L-arginine or N omega-nitro-L-arginine methyl ester, the production of cyclic GMP was lowered to a level of 10-12 nmol min-1 (g tissue)-1 or 5-9 nmol min-1 (g tissue)-1 respectively, and the radiation effect was not observed. 5. Using electrochemical NO probes, the production of NO in the cerebellum supernatant was detected. The concentration of NO increased gradually after the onset of the EM field radiation. The radiation effect persisted, and reached a maximum after the cessation of the radiation. 6. In an in vivo study, the arterioles of the frog web were dilated by the radiation

  17. Evidence That Lifelong Low Dose Rates of Ionizing Radiation Increase Lifespan in Long- and Short-Lived Dogs

    PubMed Central

    Feinendegen, Ludwig E.; Socol, Yehoshua

    2017-01-01

    After the 1956 radiation scare to stop weapons testing, studies focused on cancer induction by low-level radiation. Concern has shifted to protecting “radiation-sensitive individuals.” Since longevity is a measure of health impact, this analysis reexamined data to compare the effect of dose rate on the lifespans of short-lived (5% and 10% mortality) dogs and on the lifespans of dogs at 50% mortality. The data came from 2 large-scale studies. One exposed 10 groups to different γ dose rates; the other exposed 8 groups to different lung burdens of plutonium. Reexamination indicated that normalized lifespans increased more for short-lived dogs than for average dogs, when radiation was moderately above background. This was apparent by interpolating between the lifespans of nonirradiated dogs and exposed dogs. The optimum lifespan increase appeared at 50 mGy/y. The threshold for harm (decreased lifespan) was 700 mGy/y for 50% mortality dogs and 1100 mGy/y for short-lived dogs. For inhaled α-emitting particulates, longevity was remarkably increased for short-lived dogs below the threshold for harm. Short-lived dogs seem more radiosensitive than average dogs and they benefit more from low radiation. If dogs model humans, this evidence would support a change to radiation protection policy. Maintaining exposures “as low as reasonably achievable” (ALARA) appears questionable. PMID:28321175

  18. Evidence That Lifelong Low Dose Rates of Ionizing Radiation Increase Lifespan in Long- and Short-Lived Dogs.

    PubMed

    Cuttler, Jerry M; Feinendegen, Ludwig E; Socol, Yehoshua

    2017-01-01

    After the 1956 radiation scare to stop weapons testing, studies focused on cancer induction by low-level radiation. Concern has shifted to protecting "radiation-sensitive individuals." Since longevity is a measure of health impact, this analysis reexamined data to compare the effect of dose rate on the lifespans of short-lived (5% and 10% mortality) dogs and on the lifespans of dogs at 50% mortality. The data came from 2 large-scale studies. One exposed 10 groups to different γ dose rates; the other exposed 8 groups to different lung burdens of plutonium. Reexamination indicated that normalized lifespans increased more for short-lived dogs than for average dogs, when radiation was moderately above background. This was apparent by interpolating between the lifespans of nonirradiated dogs and exposed dogs. The optimum lifespan increase appeared at 50 mGy/y. The threshold for harm (decreased lifespan) was 700 mGy/y for 50% mortality dogs and 1100 mGy/y for short-lived dogs. For inhaled α-emitting particulates, longevity was remarkably increased for short-lived dogs below the threshold for harm. Short-lived dogs seem more radiosensitive than average dogs and they benefit more from low radiation. If dogs model humans, this evidence would support a change to radiation protection policy. Maintaining exposures "as low as reasonably achievable" (ALARA) appears questionable.

  19. Radiation resistance of non-0157:H7 Shiga Toxin-Producing Escherichia coli suspended in refrigerated catfish fillet meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionization (gamma) irradiation is a sustainable and important non-thermal treatment that has been very effective in controlling microorganisms and improving the safety and shelf life of foods. In the design of the food irradiation process, the knowledge of the radiation resistance of the target orga...

  20. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1.

    PubMed

    Choi, Mi Hee; Jeong, Sun-Wook; Shim, Ha Eun; Yun, Seong-Jae; Mushtaq, Sajid; Choi, Dae Seong; Jang, Beom-Su; Yang, Jung Eun; Choi, Yong Jun; Jeon, Jongho

    2017-04-04

    We herein report a new bioremediation method using a radiation-resistant bacterium. Biogenic gold nanomaterial-containing Deinococcus radiodurans R1 showed excellent capability for the removal of radioactive iodine (>99%) in several aqueous solutions. These observations demonstrated that our remediation system would be efficiently applied to the treatment of radioactive wastes.

  1. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains.

    PubMed

    Rizzo, Luigi; Fiorentino, Antonino; Anselmo, Antonella

    2013-06-01

    Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)μWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.

  2. Radiation results in IL-8 mediated intercellular signaling that increases adhesion between monocytic cells and aortic endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Babitz, Stephen; Dunaway, Chad; Steele, Chad

    Epidemiological evidence has established terrestrial radiation exposure as a risk factor for cardiovascular disease. For example, a major side effect of therapeutic radiation, especially for breast and head-and-neck cancers, is atherosclerosis, which can result in stroke years after treatment. Similarly, atomic bomb survivors were significantly more likely to die of cardiovascular disease than their countrymen. Even radiation technologists, prior to 1950 (when regulations governing shielding and occupational exposure were less rigorous) had an increased risk of clinically significant atherosclerosis. We have recently shown that 600 MeV (56) Fe similarly exacerbates plaque formation in the apoE mouse atherosclerosis model at doses 4-7 fold lower than required for x-rays to produce a similar pro-atherogenic effect. This raises concern that exposure to cosmic radiation might pose a similar risk for astronauts. Because so little is known about the mechanism of pro-atherogenic radiation effects, however, the current strategy to minimize risk from terrestrial radiation sources is to limit exposure. For astronauts on deep space missions, exposure to a significant amount of radiation will be unavoidable. Therefore, an understanding of the mechanism of radiation-induced atherosclerosis will be essential in order to develop countermeasures. Radiation can cause increased adhesiveness of vascular endothelium, leading to inappropriate accumulation of monocytes and other white blood cells, which can initiate a self-perpetuating inflammatory response. This vascular inflammation is an early event in atherosclerosis that can eventually lead to clinically significant cardiovascular events such as myocardial infarction and stroke. We showed earlier that x-rays, (56) Fe, and (28) Si all accelerate development of atherosclerosis in the apoE -/- mouse model. We also demonstrated that both x-rays and heavy ions increase adhesion of monocytic cells to vascular human aortic endothelial

  3. Boulders increase resistance to clear-cut logging but not subsequent recolonization rates of boreal bryophytes.

    PubMed

    Schmalholz, Martin; Hylander, Kristoffer

    2011-12-01

    The extent to which a plant assemblage might recolonize a disturbed system is in general related to the availability of propagule sources and sites with appropriate conditions for establishment. Both these factors might be sensitive to aspects of spatial heterogeneity. Microtopographic variation may enhance initial resistance by reducing the impact of the disturbance and facilitating establishment of incoming propagules by providing shaded "safe-sites". This study explores the influence of microtopographic heterogeneity (caused by variation in surface boulder cover) on the recolonization of closed-canopy forest floor bryophytes using a chronosequence of 75 spruce-dominated forests in south-central Sweden (2-163 years after clear-cutting). We found that high boulder cover did increase survival and subsequent persistence in young forests at both investigated scales (i.e. 1,000 and 100 m(2)), although this pattern became less evident on the smaller spatial scale. Species accumulation in boulder-poor subplots was not different when surrounded by boulder-rich compared with boulder-poor subplots suggesting short-distance recolonization from boulder-created refugia to be of little importance during recolonization. To conclude, it seems that boulders increase initial resistance to clear-cutting for this bryophyte guild, but that the subsequent recolonization process is more likely to depend on external propagule sources and factors affecting establishment such as the microclimate in the developing stand.

  4. N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics

    PubMed Central

    Casinelli, Gabriella; LaRosa, Jeff; Sharma, Manika; Cherok, Edward; Banerjee, Swati; Branca, Maria; Edmunds, Lia; Wang, Yudong; Sims-Lucas, Sunder; Churley, Luke; Kelly, Samantha; Sun, Ming; Stolz, Donna; Graves, J Anthony

    2016-01-01

    N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance—bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma. PMID:28028439

  5. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    PubMed Central

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  6. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.

  7. Increased Artemis levels confer radioresistance to both high and low LET radiation exposures

    PubMed Central

    2012-01-01

    Background Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. Results Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. Conclusions These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies. PMID:22713703

  8. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress.

  9. Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice

    PubMed Central

    Lee, James C.; Kinniry, Paul A.; Arguiri, Evguenia; Serota, Matthew; Kanterakis, Stathis; Chatterjee, Shampa; Solomides, Charalambos C.; Javvadi, Prashanthi; Koumenis, Constantinos; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2010-01-01

    The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1%or 5%(w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-α production in lungs, only 5%dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation. PMID:20426658

  10. UVB radiation induces an increase in intracellular zinc in human epidermal keratinocytes.

    PubMed

    Stork, Christian J; Martorano, Lisa M; Li, Yang V

    2010-10-01

    Ultraviolet (UV) radiation is known to cause oxidative stress, inflammation, DNA damage and apoptotic cell death; however, many details of these malign mechanism have yet to be elucidated. In this study, the exposure of adult human epidermal keratinocytes (HEKa) with UVB (>100 mJ/cm(2)) resulted in the significant increase of intracellular zinc that was released from its storage and was detected by fluorescent zinc indicators. Toxicity testing revealed that UVB-induced zinc release in HEKa is associated with HEKa cell death. Cells that showed elevated intracellular zinc fluorescence upon UVB exposure were also stained by propidium iodide (PI), a traditional viability indicator whose fluorescent signal is as a result of its intercalating with DNA fragments and is unaffected by zinc concentration, showing significant colocalization [Pearson's correlation coefficients r=0.956 (n=6)]. The cytotoxicity of zinc was also determined by an MTT assay after applying the exogenous zinc (ZnCl2) along with its ionophore pyrithione (20 microM) into HEKa culture medium. A significant reduction in cell viability as a function of both zinc concentration and exposure time was observed. The treatments of 1, 10 and 100 microM ZnCl2 with pyrithione demonstrated 2.3, 60 and 84% cell deaths, respectively (control 0.5%) after 30 min. ZnCl2 (100 microM) was also found to induce complete HEKa death after 1 h. Thus, the present study demonstrates that UVB irradiation-induced increased zinc is detrimental to HEKa viability, and zinc may be a necessary step in UVB-induced cell death signaling pathways.

  11. The Effect of Increased Temperatures and Ultraviolet Radiation on Dissolved Oxygen in Ecosystems Primarily Comprised of "Euglena"

    ERIC Educational Resources Information Center

    Carpenter, Matt

    2009-01-01

    The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…

  12. [Radiation-induces increased tumor cell aggressiveness of tumors of the glioblastomas?].

    PubMed

    Falk, Alexander T; Moncharmont, Coralie; Guilbert, Matthieu; Guy, Jean-Baptiste; Alphonse, Gersende; Trone, Jane-Chloé; Rivoirard, Romain; Gilormini, Marion; Toillon, Robert-Alain; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2014-09-01

    Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.

  13. Silica optical fibers with high oxygen excess in the core: a new type of radiation-resistant fiber

    NASA Astrophysics Data System (ADS)

    Kashaykin, Pavel F.; Tomashuk, Alexander L.; Salgansky, Mikhail Y.; Abramov, Alexey N.; Iskhakova, Lyudmila D.; Lobanov, Nikolay S.; Nishchev, Konstantin N.; Guryanov, Alexey N.; Dianov, Evgeny M.

    2015-05-01

    The technology, initial properties, and the value of radiation-induced attenuation (RIA) of light in the optical communication spectral range ~1.1-1.7 μm are discussed of the novel MCVD-produced undoped-silica-core F-dopedsilica- cladding fibers, of which the core is synthesized in high O2 excess (HOE) conditions (HOE-fibers). The RIA mechanisms are analyzed and compared in the HOE-fibers and in the F-doped-silica-core fibers previously commonly considered as the most radiation-resistant. The measured RIA values in the HOE-fibers and the literature data on the RIA in the commercial radiation-resistant F-doped-silica-core fibers of Fujikura are compared at λ=1.31 and 1.55 μm. Based on this consideration, the HOE-fibers are argued to be potentially superior to the F-doped-silica-core fibers as to radiation resistance especially at long wavelengths (in particular, at λ~1.55 μm). It is also argued that the fiber drawing tension reduction can further lower RIA in the HOE-fibers. A direct experimental comparison of RIA under γ-radiation from a 60Co-source at a dose rate of 8.7 Gy/s up to a dose of 94 kGy is carried out in two HOE-fibers and a commercial radiation-resistant fiber of European make. RIA in the HOE-fibers is found to be many times lower than that in the commercial fiber throughout the optical communication spectral range ~1.1-1.7 μm.

  14. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities.

    PubMed

    Wepking, Carl; Avera, Bethany; Badgley, Brian; Barrett, John E; Franklin, Josh; Knowlton, Katharine F; Ray, Partha P; Smitherman, Crystal; Strickland, Michael S

    2017-03-29

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.

  15. The suppression of radiation-induced NF-{kappa}B activity by dexamethasone correlates with increased cell death in vivo

    SciTech Connect

    Nam, Seon Young; Chung, Hee-Yong . E-mail: hychung@hanyang.ac.kr

    2005-10-21

    In this study, we show that dexamethasone treatment increases ionizing radiation-induced cell death by inducing the inhibitory {kappa}B{alpha} (I{kappa}B{alpha}) pathway in mice. The effect of dexamethasone on radiation-induced cell death was assessed by changes in total spleen cellularity and bone marrow colony-forming unit-granulocyte-macrophage (CFU-GM) contents after total body irradiation. While in vivo treatment of mice with dexamethasone alone (1 mg/kg/day, for 2 days) failed to elicit cell death in spleen cells, the combined treatment with dexamethasone (1 mg/kg/day, for 2 days) and {gamma}-rays (1 or 5 Gy) caused a 50-80% reduction in total cellularity in spleen and CFU-GM contents in bone marrow. These results demonstrate that dexamethasone has a synergistic effect on radiation-induced cellular damages in vivo. Immunoblot analysis showed that dexamethasone treatment significantly increases I{kappa}B{alpha} expression in the spleens of irradiated mice. In addition, the dexamethasone treatment significantly reduced radiation-induced nuclear translocation of the nucleus factor-{kappa}B in the spleens of irradiated mice. These results indicate that dexamethasone treatment in vivo may increase radiation-induced cell damages by increasing I{kappa}B{alpha} expression in hematopoietic organs such as spleen and bone marrow.

  16. Treatment of Arabidopsis thaliana seeds with an HSP90 inhibitor increases plant resistance

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    2016-07-01

    Resistance of plants to unfavourable conditions is an important feature to use them as an autotrophic link of Life Support Systems in space exploration missions. It significantly depends on basic and stress-induced levels of heat shock proteins (HSP) in cells. It is known that HSP90 can bind and maintain heat shock transcription factors (HSF) as a monomer that lacks DNA binding activity and thereby regulate HSP expression. Modulation of activity of the HSP synthesis and resistance by HSP90 in plants is not well investigated. The objective of this study was to determine how treatment of seeds with an HSP90 inhibitor affects environmental responsiveness in Arabidopsis thaliana. Seed treatment with geldanamycin (GDA) was used to reduce HSP90 function. The affect of space flight stressors was simulated by gamma-irradiation and thermal upshift. Two series of experiments were carried out: 1) exposure of dry seeds to gamma-irradiation (1 kGy, ^{60}Co); 2) heat shock of seedlings. It was shown that GDA treatment of seeds stimulated the seedling growth after seed irradiation. It also increased both the basic thermotolerance (45°C for 45 min) and induced thermotolerance (45°C for 1,5-2,5 h after pretreatment at 37°C for 2 h) in seedlings. In addition, seed treatment with GDA had a prolonged effect on the HSP70 production in seedlings under normal and stressful conditions. It shows that the stimulatory effects of GDA may be caused by induction of HSP70 synthesis. The obtained data demonstrate that pre-treatment of seeds with GDA before planting allows inducing the stress resistance at least at early growth stages of plants.

  17. Eccentric resistance training increases and retains maximal strength, muscle endurance, and hypertrophy in trained men.

    PubMed

    Coratella, Giuseppe; Schena, Federico

    2016-11-01

    The aim of the present study was to evaluate the effects of different resistance training protocols on muscle strength, endurance, and hypertrophy after training and detraining. Thirty-four resistance-trained males were randomized in concentric-only (CONC), eccentric-only (ECC), traditional concentric-eccentric (TRAD) bench press resistance training or control group. The training volume was equalized among the intervention groups. Bench press of 1-repetition maximum (1RM)/body mass, maximum number of repetitions (MNR), and chest circumference were evaluated at the baseline, after 6 weeks of training, and after 6 weeks of detraining. All intervention groups reported significant 1RM/body mass increases after training (CONC baseline: 1.04 ± 0.06, post-training: 1.12 ± 0.08, p < 0.05; ECC baseline: 1.08 ± 0.04, post-training: 1.15 ± 0.05, p < 0.05; TRAD baseline: 1.06 ± 0.08, post-training: 1.11 ± 0.10, p < 0.05). After detraining, only ECC retained 1RM/body mass above the baseline (1.17 ± 0.07, p < 0.05), while CONC and TRAD returned to baseline values. Only ECC improved and retained MNR (baseline: 22 ± 3; post-training: 25 ± 3, and post-detraining: 25 ± 4, p < 0.05 compared with baseline) and chest circumference (baseline: 98.3 ± 2.4 cm, post-training: 101.7 ± 2.2 cm and post-detraining: 100.7 ± 2.3 cm. p < 0.05 compared with baseline), while no significant changes occurred in both CONC and TRAD. The incorporation of eccentric training can be recommended for counteracting the negative effects of detraining or forced physical inactivity.

  18. Increasing antimicrobial resistance in clinical isolates of Staphylococcus intermedius group bacteria and emergence of MRSP in the UK.

    PubMed

    Beever, L; Bond, R; Graham, P A; Jackson, B; Lloyd, D H; Loeffler, A

    2015-02-14

    Frequencies of antimicrobial resistance were determined amongst 14,555 clinical Staphylococcus intermedius group (SIG) isolates from UK dogs and cats to estimate resistance trends and quantify the occurrence of meticillin-resistant Staphylococcus pseudintermedius (MRSP). Reports from two diagnostic laboratories (13,313 general submissions, 1242 referral centre only submissions) were analysed retrospectively (2003/2006-2012). MRSP were defined by phenotypic resistance to meticillin and concurrent broad β-lactam resistance; a subset was confirmed genetically (SIG-specific nuc and mecA). Trends were analysed by Cochran-Armitage test. Resistance remained below 10 per cent for cefalexin, amoxicillin-clavulanic acid and the fluoroquinolones. Increasing resistance trends were seen in both laboratories for ampicillin/amoxicillin (both P<0.001), cefovecin (both P<0.046) and enrofloxacin (both P<0.02). Resistance to cefalexin increased over time in referral hospital isolates (P<0.001) to clindamycin (P=0.01) and trimethoprim-sulfamethoxazole (P=0.001) amongst general laboratory submissions. Overall, 106 MRSP were isolated (0.7 per cent of submissions) including 32 (2.6 per cent of submissions, all genetically confirmed) from the referral centre population (inter-laboratory difference P<0.001). Against a background of widely susceptible SIG isolates, a new trend of increasing resistance to important antimicrobials was identified overtime and the emergence of MRSP from UK clinical cases was confirmed. Attention to responsible use of antibacterial therapy in small animal practice is urgently needed.

  19. High-efficiency, radiation-resistant GaAs space cells

    NASA Technical Reports Server (NTRS)

    Bertness, K. A.; Ristow, M. Ladle; Grounner, M.; Kuryla, M. S.; Werthen, J. G.

    1991-01-01

    Although many GaAs solar cells are intended for space applicatons, few measurements of cell degradation after radiation are available, particularly for cells with efficiencies exceeding 20 percent (one-sun, AMO). Often the cell performance is optimized for the highest beginning-of-life (BOL) efficiency, despite the unknown effect of such design on end-of-life (EOL) efficiencies. The results of a study of the radiation effects on p-n GaAs cells are presented. The EOL efficiency of GaAs space cell can be increased by adjusting materials growth parameters, resulting in a demonstration of 16 percent EOL efficiency at one-sun, AMO. Reducing base doping levels to below 3 x 10(exp 17)/cu m and decreasing emitter thickness to 0.3 to 0.5 micron for p-n cells led to significant improvements in radiation hardness as measured by EOL/BOL efficiency ratios for irradiation of 10(exp -15)/sq cm electrons at 1 MeV. BOL efficiency was not affected by changes in emitter thickness but did improve with lower base doping.

  20. Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose

    SciTech Connect

    E. Skidmore; Billings, K.; Hubbard, M.

    2010-03-24

    A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses of 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.

  1. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions

    NASA Astrophysics Data System (ADS)

    Herwehe, Jerold A.; Alapaty, Kiran; Spero, Tanya L.; Nolte, Christopher G.

    2014-05-01

    The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface precipitation. This deficiency can become problematic when applying WRF as a regional climate model (RCM). Therefore, modifications were made to the WRF model to allow the Kain-Fritsch (KF) convective parameterization to provide subgrid-scale cloud fraction and condensate feedback to the rapid radiative transfer model-global (RRTMG) shortwave and longwave radiation schemes. The effects of these changes are analyzed via 3 year simulations using the standard and modified versions of WRF, comparing the modeled results with the North American Regional Reanalysis (NARR) and Climate Forecast System Reanalysis data, as well as with available data from the Surface Radiation Network and Clouds and Earth's Radiant Energy System. During the summer period, including subgrid cloudiness estimated by KF in the RRTMG reduces the surface shortwave radiation, leading to less buoyant energy, which is reflected in a smaller diabatic convective available potential energy, thereby alleviating the overly energetic convection. Overall, these changes have reduced the overprediction of monthly, regionally averaged precipitation during summer for this RCM application, e.g., by as much as 49 mm for the southeastern U.S., to within 0.7% of the NARR value of 221 mm. These code modifications have been incorporated as an option available in the latest version of WRF (v3.6).

  2. Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa

    PubMed Central

    Kiran, S; Sharma, P; Harjai, K; Capalash, N

    2011-01-01

    Background and Objectives There is increasing emergence of multidrug resistant Pseudomonas aeruginosa (MDRPA) strains and drug resistance is positively-correlated with biofilm-forming ability. Since about 10% of P. aeruginosa genome is controlled by quorum sensing (QS), alteration in its antibiotic susceptibility by targeting QS was the focus of the present study. Materials and Methods One day biofilms of PAO1 and three urinary tract infection MDRPA isolates (PA2, PA8 and PA18) were formed in 96-well microtiter plate. Biofilms were exposed to concentration gradient of ciprofloxacin and gentamicin to obtain Minimum Biofilm Eradication Concentration (MBEC) by direct enumeration method. Susceptibility of 24 h biofilms was evaluated by treatment with ciprofloxacin and gentamicin per se and in combination with lactonase. The effect was also examined on 72 h biofilms by Scanning Electron Microscopy. Results Lactonase treatment did not have any effect on growth of the selected strains but 73.42, 69.1, 77.34 and 72.5% reduction of biofilm was observed after lactonase (1 unit) treatment, respectively. Antibiotics in combination with lactonase (0.3 units) resulted in an increased susceptibility of the biofilm forms by>3.3, 4, 5 and 1.5 folds of MBEC, for ciprofloxacin and>6.67, 12.5, 6 and>2.5 folds, for gentamicin respectively, which could be due to the disruption of biofilm by lactonase treatment as shown by scanning electron microscopy. Also there was significant reduction (p<0.001) in virulence factor production by the strains. Conclusion Lactonase treatment increased antibiotic susceptibility of the biofilms of MDRPA isolates underscoring the potential of quorum quenching in antimicrobial therapeutics. PMID:22347576

  3. Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tayag, Carina Miranda; Li, Hui-Fang; Putra, Dedi Fazriansyah; Kuo, Yi-Hsuan; Bai, Jia-Chin; Chang, Yu-Hsuan

    2016-08-01

    The effect of Spirulina dried powder (SDP) on the immune response of white shrimp Litopenaeus vannamei was studied in vitro and in vivo. Incubating shrimp haemocytes in 0.5 mg ml(-1) SDP caused the degranulation of haemocytes and a reduction in the percentage of large cells within 30 min. Shrimp haemocytes incubated in 1 mg ml(-1) SDP significantly increased their phenoloxidase (PO) activity, serine proteinase activity, and respiratory burst activity (RB, release of superoxide anion). A recombinant protein of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) of the white shrimp was produced, named rLvLGBP, and examined for its binding with SDP. An ELISA binding assay showed that rLvLGBP binds to SDP with a dissociation constant of 0.0507 μM. In another experiment, shrimp fed diets containing SDP at 0 (control), 30, and 60 g kg(-1) after four weeks were examined for LGBP transcript level and lysozyme activity, as well as phagocytic activity, clearance efficiency, and resistance to Vibrio alginolyticus. These parameters were significantly higher in shrimp receiving diets containing SDP at 60 g kg(-1) or 30 g kg(-1) than in controls. In conclusion, shrimp haemocytes receiving SDP provoked the activation of innate immunity as evidenced by the recognition and binding of LGBP, degranulation of haemocytes, reduction in the percentage of large cells, increases in PO activity, serine proteinase activity, superoxide anion levels, and up-regulated LGBP transcript levels. Shrimp receiving diets containing SDP had increased lysozyme activity and resistance against V. alginolyticus infection. This study showed the mechanism underlying the immunostimulatory action of Spirulina and its immune response in shrimp.

  4. Suppression in growth hormone during overeating ameliorates the increase in insulin resistance and cardiovascular disease risk

    PubMed Central

    Cornford, Andrea S.; Barkan, Ariel L.; Hinko, Alexander

    2012-01-01

    Previously, we reported that overeating for only a few days markedly suppressed the secretion of growth hormone (GH). The purpose of the present study was to determine the role of this reduction in GH concentration on key metabolic adaptations that occur during 2 wk of overeating. Nine nonobese, healthy adults were admitted to the hospital for 2 wk, during which time they ate ∼4,000 kcal/day (70 kcal·kg fat-free mass−1·day−1; 50% carbohydrate, 35% fat, and 15% protein), and their plasma GH concentration was allowed to decline naturally (control). An additional eight subjects underwent the same overeating intervention and received exogenous GH treatment (GHT) administered in four daily injections to mimic physiological GH secretion throughout the 2-wk overeating period. We measured plasma insulin and glucose concentrations in the fasting and postprandial state as well as fasting lipolytic rate, proteolytic rate, and fractional synthetic rate (FSR) using stable-isotope tracer methods. GHT prevented the fall in plasma GH concentration, maintaining plasma GH concentration at baseline levels (1.2 ± 0.2 ng/ml), which increased fasting and postprandial assessments of insulin resistance (P < 0.05) and increased fasting lipidemia (all P < 0.05 vs. control). In addition, preventing the suppression in GH with overeating also blunted the increase in systemic proteolysis (P < 0.05 GHT vs. control). However, GHT did not alter lipolysis or FSR in response to overeating. In conclusion, our main findings suggest that the suppression in GH secretion that naturally occurs during the early stages of overeating may help attenuate the insulin resistance and hyperlipidemia that typically accompany overeating. PMID:23011065

  5. Genetic variation in resistance to ionizing radiation. Technical progress report, January--December 1991

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ``null`` (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ``null`` allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  6. Selective Fragmentation of Radiation-Sensitive Novel Polymeric Resist Materials by Inner-Shell Irrad