Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg
NASA Technical Reports Server (NTRS)
Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng
1994-01-01
The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.
NASA Astrophysics Data System (ADS)
Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.
2012-12-01
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
Radiative Forcing Over Ocean by Ship Wakes
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.
2011-01-01
Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.
Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.
2018-02-01
Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.
Forcings and feedbacks by land ecosystem changes on climate change
NASA Astrophysics Data System (ADS)
Betts, R. A.
2006-12-01
Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.
Black carbon radiative forcing at TOA decreased during aging.
Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao
2016-12-05
During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.
Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets
NASA Technical Reports Server (NTRS)
Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen
2009-01-01
The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.
NASA Technical Reports Server (NTRS)
Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.
2012-01-01
Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.
NASA Astrophysics Data System (ADS)
Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.
2013-03-01
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities
NASA Astrophysics Data System (ADS)
Ward, D. S.; Mahowald, N. M.; Kloster, S.
2014-12-01
Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential radiative forcing from LULCC we create a 'worst-case scenario" in which all arable land is converted to agriculture by the year 2100. This scenario leads to a total radiative forcing of 4.3 Wm-2 (+/- 1 Wm-2) suggesting that well thought-out land policy is needed to minimize future increases in global anthropogenic radiative forcing.
Measuring the greenhouse effect and radiative forcing through the atmosphere
NASA Astrophysics Data System (ADS)
Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel
2013-04-01
In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.
Mechanism of SOA formation determines magnitude of radiative effects
NASA Astrophysics Data System (ADS)
Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang
2017-11-01
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of ‑0.05 W m‑2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is ‑0.07 W m‑2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.
Mechanism of SOA formation determines magnitude of radiative effects
Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; ...
2017-11-13
Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less
Mechanism of SOA formation determines magnitude of radiative effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing
Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less
Mechanism of SOA Formation Determines Magnitude of Radiative Effects
NASA Astrophysics Data System (ADS)
Zhu, J.; Penner, J.; Lin, G.; Zhou, C.
2017-12-01
Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.
Mechanism of SOA formation determines magnitude of radiative effects
Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang
2017-01-01
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of −0.05 W m−2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is −0.07 W m−2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. PMID:29133426
Mechanism of SOA formation determines magnitude of radiative effects.
Zhu, Jialei; Penner, Joyce E; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang
2017-11-28
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO 2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m -2 When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is -0.07 W m -2 , even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. Copyright © 2017 the Author(s). Published by PNAS.
Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M.-H.; Potter, G. L.; Gates, W. L.; Taylor, K. E.; Barker, H. W.; Colman, R. A.; Fraser, J. R.; McAvaney, B. J.; Dazlich, D. A.;
1993-01-01
Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.
Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming
NASA Technical Reports Server (NTRS)
Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.
2010-01-01
The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.
Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A
2016-05-01
Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.
NASA Astrophysics Data System (ADS)
Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.
2016-05-01
Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.
NASA Astrophysics Data System (ADS)
Peng, Jing; Dan, Li; Dong, Wenjie
2014-01-01
Three coupled climate-carbon cycle models including CESM (Community Earth System Model), CanEsm (the Canadian Centre for Climate Modelling and Analysis Earth System Model) and BCC (Beijing Climate Center Climate System Model) were used to estimate whether changes in land hydrological cycle responded to the interactive effects of CO2-physiological forcing and CO2-radiative forcing. No signs could be indicated that the interactive effects of CO2-physiological forcing and CO2-radiative forcing on the hydrological variables (e.g. precipitation, evapotranspiration and runoff) were detected at global and regional scales. For each model, increases in precipitation, evapotranspiration and runoff (e.g. 0.37, 0.18 and 0.25 mm/year2) were simulated in response to CO2-radiative forcing (experiment M3). Decreases in precipitation and evapotranspiration (about - 0.02 and - 0.09 mm/year2) were captured if the CO2 physiological effect was only accounted for (experiment M2). In this experiment, a reverse sign in runoff (the increase of 0.08 mm/year2) in contrast to M3 is presented. All models simulated the same signs across Eastern Asia in response to the CO2 physiological forcing and radiative forcing: increases in precipitation and evapotranspiration only considering greenhouse effect; reductions in precipitation and evapotranspiration in response to CO2-physiological effect; and enhanced trends in runoff from all experiments. However, there was still a large uncertainty on the magnitude of the effect of transpiration on runoff (decreased transpiration accounting for 8% to 250% of the increased runoff) from the three models. Two models (CanEsm and BCC) attributed most of the increase in runoff to the decrease in transpiration if the CO2-physiological effect was only accounted for, whereas CESM exhibited that the decrease in transpiration could not totally explain the increase in runoff. The attribution of the CO2-physiological forcing to changes in stomatal conductance versus changes in vegetation structure (e.g. increased Leaf Area Index) is an issue to discuss, and among the three models, no agreement appeared.
Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.
Mitri, F G; Fatemi, M
2005-05-01
An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.
NASA Astrophysics Data System (ADS)
White, Warren B.; Cayan, Daniel R.; Lean, Judith
1998-09-01
We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.
Black carbon radiative forcing over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Takano, Yoshi; Gu, Yu; Qi, Ling; Mao, Yuhao; Leung, L. Ruby
2014-11-01
We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. The annual mean BC snow albedo forcing is 2.9 W m-2 averaged over snow-covered plateau regions, which is a factor of 3 larger than the value over global land snowpack. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, and coated BC increases the forcing by 30-50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. The annual BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70-85% in the plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network observations. The BC forcings are attributed to emissions from different regions.
NASA Astrophysics Data System (ADS)
Smith, C. J.; Forster, P.; Richardson, T.; Myhre, G.
2016-12-01
Effective radiative forcing (ERF), rather than "traditional" radiative forcing (RF), has become an increasingly popular metric in recent years, as it more closely links the difference in the earth's top-of-atmosphere (TOA) energy budget to equilibrium near-surface temperature rise. One method to diagnose ERF is to take the difference of TOA radiative fluxes from two climate model runs (a perturbation and a control) with prescribed sea-surface temperatures and sea-ice coverage. ERF can be thought of as the sum of a direct forcing, which is the pure radiative effect of a forcing agent, plus rapid adjustments, which are changes in climate state triggered by the forcing agent that themselves affect the TOA energy budget and are unrelated to surface temperature changes.In addition to the classic experiment of doubling of CO2 (2xCO2), we analyse rapid adjustments to a tripling of methane (3xCH4), a quintupling of sulphate aerosol (5xSul), a ten times increase in black carbon (10xBC) and a 2% increase in the solar constant (2%Sol). We use CMIP-style climate model diagnostics from six participating models of the Precipitation Driver Response Model Intercomparison Project (PDRMIP).Assuming approximately linear contributions to the TOA flux differences, the rapid adjustments from changes in atmospheric temperature, surface temperature, surface albedo and water vapour can be cleanly and simply separated from the direct forcing by radiative kernels. The rapid adjustments are in turn decomposed into stratospheric and tropospheric components. We introduce kernels based on the HadGEM2 climate model and find similar results to those based on other models. Cloud adjustments are evaluated as a residual of the TOA radiative fluxes between all-sky and clear-sky runs once direct forcing and rapid adjustments have been subtracted. The cloud adjustments are also calculated online within the HadGEM2 model using the ISCCP simulator. For aerosol forcing experiments, rapid adjustments vary substantially between models. Much of the contribution to this model spread is in the cloud adjustments. We also notice a spread in the model calculations of direct forcing for greenhouse gases, which suggest differences in the radiative transfer parameterisations used by each model.
The rising greenhouse effect: experiments and observations in and around the Alps
NASA Astrophysics Data System (ADS)
Philipona, R.
2010-09-01
The rapid temperature increase of more than 1°C in central Europe over the last three decades is larger than expected from anthropogenic greenhouse warming. Surface radiation flux measurements in and around the Alps in fact confirm that not only thermal longwave radiation but also solar shortwave radiation increased since the 1980s. Surface energy budget analyses reveal the rising surface temperature to be well correlated with the radiative forcing, and also show an increase of the kinetic energy fluxes explaining the rise of atmospheric water vapor. Solar radiation mainly increased due to a strong decline of anthropogenic aerosols since mid of the 1980s. While anthropogenic aerosols were mainly accumulated in the boundary layer, this reduction let solar radiation to recover (solar brightening after several decades of solar dimming) mainly at low altitudes around the Alps. At high elevations in the Alps, solar forcing is much smaller and the respective temperature rise is also found to be smaller than in the lowlands. The fact that temperature increases less in the Alps than at low elevations is unexpected in the concept of greenhouse warming, but the radiation budget analyses clearly shows that in the plains solar forcing due to declining aerosols additionally increased surface temperature, whereas in the Alps temperature increased primarily due to greenhouse warming that is particularly manifested by a strong water vapor feedback.
Observational determination of surface radiative forcing by CO2 from 2000 to 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Daniel R.; Collins, William D.; Gero, P. Johnathan
2015-02-25
The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing1, calculated as the difference between estimates of the Earth’s radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m -2 (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally basedmore » evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations—the Southern Great Plains and the North Slope of Alaska—are derived from Atmospheric Emitted Radiance Interferometer spectra3 together with ancillary measurements and thoroughly corroborated radiative transfer calculations4. The time series both show statistically significant trends of 0.2 W m -2 per decade (with respective uncertainties of ±0.06 W m -2 per decade and ±0.07 W m-2 per decade) and have seasonal ranges of 0.1–0.2 W m -2. This is approximately ten per cent of the trend in downwelling longwave radiation5, 6, 7. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.« less
NASA Astrophysics Data System (ADS)
Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.
2012-09-01
Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Bruce T.; Knight, Jeff R.; Ringer, Mark A.
2012-10-15
Global-scale variations in the climate system over the last half of the twentieth century, including long-term increases in global-mean near-surface temperatures, are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000, data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numericalmore » global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures—and global-mean near-surface temperatures—is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition, they indicate that less than 25%of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements, emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.« less
Can unforced radiative variability explain the "hiatus"?
NASA Astrophysics Data System (ADS)
Donohoe, A.
2016-02-01
The paradox of the "hiatus" is characterized as a decade long period over which global mean surface temperature remained relatively constant even though greenhouse forcing forcing is believed to have been positive and increasing. Explanations of the hiatus have focused on two primary lines of thought: 1. There was a net radiative imbalance at the top of atmosphere (TOA) but this energy input was stored in the ocean without increasing surface temperature or 2. There was no radiative imbalance at the TOA because the greenhouse forcing was offset by other climate forcings. Here, we explore a third hypothesis: that there was no TOA radiative imbalance over the decade due to unforced, natural modes of radiative variability that are unrelated to global mean temperature. Is it possible that the Earth could emit enough radiation to offset greenhouse forcing without increasing its temperature due to internal modes of climate variability? Global mean TOA energy imbalance is estimated to be 0.65 W m-2 as determined from the long term change in ocean heat content - where the majority of the energy imbalance is stored. Therefore, in order to offset this TOA energy imbalance natural modes of radiative variability with amplitudes of order 0.5 W m-2 at the decadal timescale are required. We demonstrate that unforced coupled climate models have global mean radiative variability of the required magnitude (2 standard deviations of 0.57 W m-2 in the inter-model mean) and that the vast majority (>90%) of this variability is unrelated to surface temperature radiative feedbacks. However, much of this variability is at shorter (monthly and annual) timescales and does not persist from year to year making the possibility of a decade long natural interruption of the energy accumulation in the climate system unlikely due to natural radiative variability alone given the magnitude of the greenhouse forcing on Earth. Comparison to observed satellite data suggest the models capture the magnitude (2 sigma = 0.61 W m-2) and mechanisms of internal radiative variability but we cannot exclude the possibility of low frequency modes of variability with significant magnitude given the limited length of the satellite record.
NASA Astrophysics Data System (ADS)
Matt, F.; Burkhart, J. F.
2017-12-01
Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.
A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force
Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R
2010-01-01
Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621
NASA Technical Reports Server (NTRS)
Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.;
2006-01-01
The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.
NASA Astrophysics Data System (ADS)
Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.
2013-03-01
Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.
Key drivers of ozone change and its radiative forcing over the 21st century
NASA Astrophysics Data System (ADS)
Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.
2018-05-01
Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.
Dependence of the radiative forcing of the climate system on fossil fuel type
NASA Astrophysics Data System (ADS)
Nunez, L. I.
2015-12-01
Climate change mitigation strategies are greatly directed towards the reduction of CO2 emissions and other greenhouse gases from fossil fuel combustion to limit warming to 2º C in this century. For example, the Clean Power Plan aims to reduce CO2 emissions from the power sector by 32% of 2005 levels by 2030 by increasing power plant efficiency but also by switching from coal-fired power plants to natural gas-fired power plants. It is important to understand the impact of such fuel switching on climate change. While all fossil fuels emit CO2, they also emit other pollutants with varying effects on climate, health and agriculture. First, The emission of CO2 per joule of energy produced varies significantly between coal, oil and natural gas. Second, the complexity that the co-emitted pollutants add to the perturbations in the climate system necessitates the detangling of radiative forcing for each type of fossil fuel. The historical (1850-2011) net radiative forcing of climate as a function of fuel type (coal, oil, natural gas and biofuel) is reconstructed. The results reveal the significant dependence of the CO2 and the non-CO2 forcing on fuel type. The CO2 forcing per joule of energy is largest for coal. Radiative forcing from the co-emitted pollutants (black carbon, methane, nitrogen oxides, organic carbon, sulfate aerosols) changes the global mean CO2 forcing attributed to coal and oil significantly. For natural gas, the CO2-only radiative forcing from gas is increased by about 60% when the co-emitted pollutants are included.
NASA Astrophysics Data System (ADS)
Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi
2008-05-01
One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.
Radiative Forcing by Contrails
NASA Technical Reports Server (NTRS)
Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.
1999-01-01
A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years
Joos, Fortunat; Spahni, Renato
2008-01-01
The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO2 and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO2 but from the combination of CO2, CH4, and N2O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years. PMID:18252830
NASA Technical Reports Server (NTRS)
Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.
2017-01-01
Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.
Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit
NASA Astrophysics Data System (ADS)
Mohapatra, Abhishek Ray; Sepehrirahnama, Shahrokh; Lim, Kian-Meng
2018-05-01
Acoustophoresis is a form of contact-free particle manipulation in microfluidic devices. The precision of manipulation can be enhanced with better understanding of the acoustic radiation force. In this paper we present the measurements of interparticle radiation force between a pair of polystyrene beads in the Rayleigh limit. The study is conducted for three different sizes of beads and the experimental results are of the same order of magnitude when compared with theoretical predictions. However, the experimental values are larger than the theoretical values. The trend of a decrease in the magnitude of the interparticle radiation force with decreasing particle size and increasing center-to-center distance between the particles is also observed experimentally. The experiments are conducted in the specific scenario where the pair of beads are in close proximity, but not in contact with each other, and the beads are approaching the pressure nodal plane with the center-to-center line aligned perpendicular to the incident wave. This scenario minimizes the presence of the primary radiation force, allowing accurate measurement of the interparticle force. The attractive nature of the interparticle force is observed, consistent with theoretical predictions.
End of the Little Ice Age in the Alps forced by industrial black carbon
Painter, Thomas H.; Flanner, Mark G.; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A.; Abdalati, Waleed
2013-01-01
Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13–17 W⋅m−2 between 1850 and 1880, and to 9–22 W⋅m−2 in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m−2 by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude −15 m water equivalent by 1900 and −30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions. PMID:24003138
End of the Little Ice Age in the Alps forced by industrial black carbon.
Painter, Thomas H; Flanner, Mark G; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A; Abdalati, Waleed
2013-09-17
Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13-17 W⋅m(-2) between 1850 and 1880, and to 9-22 W⋅m(-2) in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m(-2) by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude -15 m water equivalent by 1900 and -30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions.
NASA Astrophysics Data System (ADS)
Nicholls, M.; Pielke, R., Sr.; Smith, W. H.; Saleeby, S. M.; Wood, N.
2016-12-01
Several cloud-resolving numerical modeling results indicate that radiative forcing significantly accelerates tropical cyclogenesis. The primary mechanism appears to be differential radiative forcing between a relatively cloud-free environment and a developing tropical disturbance that generates circulations that influence convective activity in the core of the system, a mechanism first suggested by Gray and Jacobson. A dynamical perspective of this mechanism is taken by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations. Numerical model experiments indicate that as an expansive stratiform cloud layer forms aloft the long wave cooling is reduced at low and mid levels. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but it becomes significant at night when there is strong radiative clear sky cooling of the environment. Thermally driven circulations, are induced characterized by relatively weak subsidence in the environment but considerably stronger upward motion in the system core. This leads to a cooling tendency and increased relative humidity at night which appears to be a major factor in enhancing convective activity thereby leading in the mean to an increased rate of genesis. The increased upward motion and relative humidity that occurs throughout a deep layer is likely to aid in the triggering of convection, and provide a more favorable local environment at mid-levels for maintenance of buoyancy in convective cells due to a reduction of the detrimental effects of dry air entrainment. In order to clarify the effects of radiation the radiative forcing occurring in a fully physics simulation is imposed as a forcing term on the thermodynamic equation in a simulation without microphysics or radiation included to examine the induced circulations and the resultant thermodynamic changes that can influence convective development.
Kovilakam, Mahesh; Mahajan, Salil
2016-06-28
While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovilakam, Mahesh; Mahajan, Salil
While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less
Gamma radiation influence on technological characteristics of wheat flour
NASA Astrophysics Data System (ADS)
Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.
2012-08-01
This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.
NASA Astrophysics Data System (ADS)
Li, Ying; Thompson, David W. J.; Huang, Yi; Zhang, Minghong
2014-03-01
The signature of the northern annular mode/North Atlantic Oscillation (NAM/NAO) in the vertical and horizontal distribution of tropospheric cloudiness is investigated in CloudSat and CALIPSO data from June 2006 to April 2011. During the Northern Hemisphere winter, the positive polarity of the NAM/NAO is marked by increases in zonally averaged cloud incidence north of ~60°N, decreases between ~25 and 50°N, and increases in the subtropics. The tripolar-like anomalies in cloud incidence associated with the NAM/NAO are largest over the North Atlantic Ocean basin/Middle East and are physically consistent with the NAM/NAO-related anomalies in vertical motion. Importantly, the NAM/NAO-related anomalies in tropospheric cloud incidence lead to significant top of atmosphere cloud radiative forcing anomalies that are comparable in amplitude to those associated with the NAM/NAO-related temperature anomalies. The results provide observational evidence that the most prominent pattern of Northern Hemisphere climate variability is significantly linked to variations in cloud radiative forcing. Implications for two-way feedback between extratropical dynamics and cloud radiative forcing are discussed.
NASA Astrophysics Data System (ADS)
Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.
2017-12-01
Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.
Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing
NASA Technical Reports Server (NTRS)
Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.
2007-01-01
The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Hansen, C. H.; Snyder, S. D.
1991-01-01
Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.
Impact of Dust Radiative Forcing upon Climate. Chapter 13
NASA Technical Reports Server (NTRS)
Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina
2014-01-01
Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.
Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor
NASA Astrophysics Data System (ADS)
Creekmore, Torreon N.
A thorough assessment of direct, indirect, and semi-direct influences of aerosols on Earth's energy budget is required to better understand climate and estimate how it may change in the future. Clear-sky surface broadband (measured and modeled) irradiance, spectral aerosol optical depth, heating rate profiles, and non-radiative flux measurements were conducted at a state-of-the-art site, developed by the NOAA-Howard University Center for Atmospheric Sciences (NCAS) program, providing a best estimate of aerosol radiative atmosphere-surface interactions. Methods developed by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program were applied to: (1) temporally quantify regional aerosol forcing, (2) to derive an empirical equation describing a relationship between aerosol optical depth and normalized diffuse ratio, (3) evaluate aerosol impacts on atmospheric heating, and (4) evaluate how aerosol forcing impacts may possibly reduce latent and sensible fluxes. Measurements were obtained during the period of May--September for the years of 2005, 2006, and 2007. Atmospheric aerosols are among the key uncertainties affecting the Earth's climate and atmospheric radiative processes. Present-day increases in aerosol concentrations directly, indirectly, and semi-directly impact the Earth's energy budget (i.e., cooling the surface and heating the atmosphere), thereby contributing to climate change. The Howard University Beltsville Site (HUBS) has experienced a greater loss in mean normalized aerosol radiative forcing with time, as observations show a decrease from --0.9 in 2005 to --3.1 and --3.4 W/m2 for 2006 and 2007 respectively, in mean net surface irradiance. The mean normalized aerosol radiative forcing estimated for the period considered was --2.5 W/m2. The reduction in surface solar insolation is due to increased scattering and absorption related to increased aerosol burdens v for the period, promoting surface cooling and atmospheric heating. Calculation of radiative flux and heating rates profiles, which are constrained by HUBS observations, were performed by the 1-D Fu-Liou radiative transfer model to investigate the effect of polluted and pristine aerosol conditions on the surface energy budget and hydrological cycle. For HUBS the surface forcing (--14.2 W/m2) and atmospheric forcing (9.9 W/m2) were significantly larger than the TOA (--4.3 W/m2) radiative forcing. Associated aerosol heating, as well as reduced surface insolation, may lead to increasing near surface static stability, and reduced vertical transport of moisture into the atmospheric boundary layer, and over time, a possible spin-down of the hydrological cycle. It is shown that HUBS provides an ideal opportunity for improving measurements and datasets, thus allowing for both the study and understanding of aerosol impacts on the climate system. Further, results show that in order to provide reference quality data and constrain aerosol radiative effects over land, ground-based research sites must conform to HUBS standards of: (1) instrumentation (e.g. passive and active sensors); (2) operational protocols (e.g. calibration and routine cleaning); (3) rigorous cloud screening protocols; and (4) incorporation of ARM QC and modified FFA algorithms. HUBS surface measurements provides the reference quality data necessary and capability required to help enhance measurements and constrain current uncertainties in estimates of aerosol direct effects over land. Incorporating a combined technique of both active and passive instruments reduced the direct radiative forcing estimates by ˜82 W/m2. The analysis of aerosol effects over HUBS helps continue in bridging the gap of applying measurements for improvement of climate simulations by generating observational products, which describes aerosol and radiation field characteristics in detail.
NASA Astrophysics Data System (ADS)
Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.
2013-12-01
pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marenco, A.; Gouget, H.; Nedelec, P.
1994-08-01
The rate at which ozone is increasing in the troposphere is uncertain due to the lack of accurate long-term measurements. Old ozone measurements obtained at the Pic du Midi Observatory (3000 m high, southwestern France) were recently rediscovered. Four sets of data available at this station are presented. The results show an increase in ozone by a factor of 5 since the beginning of the twentieth century, corresponding to an exponential increase of 1.6% per year, although this trend is probably higher (2.4% per year) for the last few decades. A stable 10 ppb ozone mixing ratio is observed duringmore » the first 20 years of the series, which is representative to the preindustrial era ozone level. The increase is seen to start around 1895. Other data, obtained at various European high-altitude stations between 1920 and 1980, tie in closely with the Pic du Midi observations. A tentative evaluation of the impact of tropospheric ozone on radiative forcing confirms that ozone is currently the second most significant greenhouse gas, responsible for 22% and 13% of radiative forcing changes since 1800 in the northern and southern hemispheres, respectively. If these rates were to be maintained in the future, ozone would continue to evolve differently in the two hemispheres (maximum level in the northern hemisphere) and could make an even more significant contribution to the radiative forcing of the northern hemisphere.« less
Annual Cycle of Cloud Forcing of Surface Radiation Budget
NASA Technical Reports Server (NTRS)
Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.
2006-01-01
The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.
Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.
Garbin, Valeria; Overvelde, Marlies; Dollet, Benjamin; de Jong, Nico; Lohse, Detlef; Versluis, Michel
2011-10-07
Targeted molecular imaging with ultrasound contrast agent microbubbles is achieved by incorporating targeting ligands on the bubble coating and allows for specific imaging of tissues affected by diseases. Improved understanding of the interplay between the acoustic forces acting on the bubbles during insonation with ultrasound and other forces (e.g. shear due to blood flow, binding of targeting ligands to receptors on cell membranes) can help improve the efficacy of this technique. This work focuses on the effects of the secondary acoustic radiation force, which causes bubbles to attract each other and may affect the adhesion of targeted bubbles. First, we examine the translational dynamics of ultrasound contrast agent microbubbles in contact with (but not adherent to) a semi-rigid membrane due to the secondary acoustic radiation force. An equation of motion that effectively accounts for the proximity of the membrane is developed, and the predictions of the model are compared with experimental data extracted from optical recordings at 15 million frames per second. A time-averaged model is also proposed and validated. In the second part of the paper, initial results on the translation due to the secondary acoustic radiation force of targeted, adherent bubbles are presented. Adherent bubbles are also found to move due to secondary acoustic radiation force, and a restoring force is observed that brings them back to their initial positions. For increasing magnitude of the secondary acoustic radiation force, a threshold is reached above which the adhesion of targeted microbubbles is disrupted. This points to the fact that secondary acoustic radiation forces can cause adherent bubbles to detach and alter the spatial distribution of targeted contrast agents bound to tissues during activation with ultrasound. While the details of the rupture of intermolecular bonds remain elusive, this work motivates the use of the secondary acoustic radiation force to measure the strength of adhesion of targeted microbubbles.
Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100
NASA Astrophysics Data System (ADS)
Szopa, Sophie; Balkanski, Y.; Schulz, M.; Bekki, S.; Cugnet, D.; Fortems-Cheiney, A.; Turquety, S.; Cozic, A.; Déandreis, C.; Hauglustaine, D.; Idelkadi, A.; Lathière, J.; Lefevre, F.; Marchand, M.; Vuolo, R.; Yan, N.; Dufresne, J.-L.
2013-05-01
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between -12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed -3 W m-2.
The contribution of China’s emissions to global climate forcing
NASA Astrophysics Data System (ADS)
Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng
2016-03-01
Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on “common but differentiated responsibilities” reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China’s present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China’s relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China’s strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China’s eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.
The contribution of China's emissions to global climate forcing.
Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng
2016-03-17
Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.
First Global Estimates of Anthropogenic Shortwave Forcing by Methane
NASA Astrophysics Data System (ADS)
Collins, William; Feldman, Daniel; Kuo, Chaincy
2017-04-01
Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric conditions with an observationally derived prescription for the Earth's spectral surface albedo as inputs to the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN is designed to model atmospheric propagation of electromagnetic radiation for the 100-50,000 1/cm (0.2 to 100 micrometers) spectral range. This covers the spectrum from middle ultraviolet to visible light to far infrared. The most recently released version of the code, MODTRAN6, provides a spectral resolution of 0.2 1/cm using its 0.1 1/cm band model algorithm.
Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion
NASA Astrophysics Data System (ADS)
Zhang, X.; Caldeira, K.
2015-12-01
The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.
Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites
NASA Astrophysics Data System (ADS)
Collins, W.; Feldman, D.; Turner, D. D.
2014-12-01
Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.
Nonlinear effects in the radiation force generated by amplitude-modulated focused beams
NASA Astrophysics Data System (ADS)
González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco
2012-10-01
Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.
Observationally derived rise in methane surface forcing mediated by water vapour trends
NASA Astrophysics Data System (ADS)
Feldman, D. R.; Collins, W. D.; Biraud, S. C.; Risser, M. D.; Turner, D. D.; Gero, P. J.; Tadić, J.; Helmig, D.; Xie, S.; Mlawer, E. J.; Shippert, T. R.; Torn, M. S.
2018-04-01
Atmospheric methane (CH4) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH4. However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m2 yr-1. The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH4. However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H2O) and CH4 to explain the observations fully. Thus, the determination of CH4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH4 and the vertically resolved trends in H2O.
Radiative-photochemical response of the mesosphere to dynamical forcing
NASA Technical Reports Server (NTRS)
Frederick, J. E.
1981-01-01
Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.
Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
Sengupta, Kamalika; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim
2016-01-01
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol–cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m−2 (27%) to −0.60 W m−2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes. PMID:27790989
Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
NASA Astrophysics Data System (ADS)
Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.
2016-10-01
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.
Effect of radiation processing on meat tenderisation
NASA Astrophysics Data System (ADS)
Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun
2015-06-01
The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.
Does shortwave absorption by methane influence its effectiveness?
NASA Astrophysics Data System (ADS)
Modak, Angshuman; Bala, Govindasamy; Caldeira, Ken; Cao, Long
2018-01-01
In this study, using idealized step-forcing simulations, we examine the effective radiative forcing of CH4 relative to that of CO2 and compare the effects of CH4 and CO2 forcing on the climate system. A tenfold increase in CH4 concentration in the NCAR CAM5 climate model produces similar long term global mean surface warming ( 1.7 K) as a one-third increase in CO2 concentration. However, the radiative forcing estimated for CO2 using the prescribed-SST method is 81% that of CH4, indicating that the efficacy of CH4 forcing is 0.81. This estimate is nearly unchanged when the CO2 physiological effect is included in our simulations. Further, for the same long-term global mean surface warming, we simulate a smaller precipitation increase in the CH4 case compared to the CO2 case. This is because of the fast adjustment processes—precipitation reduction in the CH4 case is larger than that of the CO2 case. This is associated with a relatively more stable atmosphere and larger atmospheric radiative forcing in the CH4 case which occurs because of near-infrared absorption by CH4 in the upper troposphere and lower stratosphere. Within a month after an increase in CH4, this shortwave heating results in a temperature increase of 0.8 K in the lower stratosphere and upper troposphere. In contrast, within a month after a CO2 increase, longwave cooling results in a temperature decrease of 3 K in the stratosphere and a small change in the upper troposphere. These fast adjustments in the lower stratospheric and upper tropospheric temperature, along with the adjustments in clouds in the troposphere, influence the effective radiative forcing and the fast precipitation response. These differences in fast climate adjustments also produce differences in the climate states from which the slow response begins to evolve and hence they are likely associated with differing feedbacks. We also find that the tropics and subtropics are relatively warmer in the CH4 case for the same global mean surface warming because of a larger longwave clear-sky and shortwave cloud forcing over these regions in the CH4 case. Further investigation using a multi-model intercomparison framework would permit an assessment of the robustness of our results.
Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
NASA Astrophysics Data System (ADS)
Niemeier, Ulrike; Schmidt, Hauke
2017-12-01
The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO) in the tropics. The QBO slows down after an injection of 4 Tg(S) yr-1 and completely shuts down after an injection of 8 Tg(S) yr-1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S) yr-1 (8-18 %), a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.
NASA Technical Reports Server (NTRS)
Mickley L. J.; Jacob, D. J.; Field, B. D.; Rind, D.
2004-01-01
We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m(sup -2) due to the increase in tropospheric ozone since preindustrial times results in an increase in global mean surface temperature of 0.28 C. The increase is nearly 0.4 C in the Northern Hemisphere and about 0.2 C in the Southern Hemisphere. The largest increases (greater than 0.8 C) are downwind of Europe and Asia and over the North American interior in summer. In the lower stratosphere, global mean temperatures decrease by about 0.2 C due to the diminished upward flux of radiation at 9.6 micrometers. The largest stratospheric cooling, up to 1.0 C, occurs over high northern latitudes in winter, with possibly important implications for the formation of polar stratospheric clouds. To identify the characteristics of climate forcing unique to tropospheric ozone, we have conducted two additional climate equilibrium simulations: one in which preindustrial tropospheric ozone concentrations were increased everywhere by 18 ppb, producing the same global radiative forcing as present-day ozone but without the heterogeneity; and one in which CO2 was decreased by 25 ppm relative to present day, with ozone at present-day values, to again produce the same global radiative forcing but with the spectral signature of CO2 rather than ozone. In the first simulation (uniform increase of ozone), the global mean surface temperature increases by 0.25 C, with an interhemispheric difference of only 0.03 C, as compared with nearly 0.2 C for the heterogeneous ozone increase. In the second simulation (equivalent CO2), the global mean surface temperature increases by 0.36 C, 30% higher than the increase from tropospheric ozone. The stronger surface warming from CO2 is in part because CO2 forcing (obscured by water vapor) is shifted relatively poleward where the positive ice-albedo feedback amplifies the climate response and in part because the magnitude of the CO2 forcing in the mid-troposphere is double that of ozone. However, we find that CO2 is far less effective than tropospheric ozone in driving lower stratospheric cooling at high northern latitudes in winter.
Forcing and Responses of the Surface Energy Budget at Summit, Greenland
NASA Astrophysics Data System (ADS)
Miller, Nathaniel B.
Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
Climate forcings and feedbacks
NASA Technical Reports Server (NTRS)
Hansen, James
1993-01-01
Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.
Effect of 16 and 24 hours daily radiation (light) on lettuce growth
NASA Technical Reports Server (NTRS)
Koontz, H. V.; Prince, R. P.; Knott, W. M. (Principal Investigator)
1986-01-01
A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) 'Grand Rapids Forcing', 'Waldmanns Green', 'Salad Bowl', and 'RubyConn', but not a Butterhead cultivar, 'Salina'. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.
Global warming and ocean stratification: A potential result of large extraterrestrial impacts
NASA Astrophysics Data System (ADS)
Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul
2017-04-01
The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu
2018-04-01
Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.
NASA Astrophysics Data System (ADS)
Haugstad, A.; Battisti, D. S.; Armour, K.
2016-12-01
Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.
Kilroy, Joseph P; Klibanov, Alexander L; Wamhoff, Brian R; Hossack, John A
2012-10-01
Previous research has demonstrated that acoustic radiation force enhances intravascular microbubble adhesion to blood vessels in the presence of flow for moleculartargeted ultrasound imaging and drug delivery. A prototype acoustic radiation force intravascular ultrasound (ARFIVUS) catheter was designed and fabricated to displace a microbubble contrast agent in flow representative of conditions encountered in the human carotid artery. The prototype ARFIVUS transducer was designed to match the resonance frequency of 1.4- to 2.6-μm-diameter microbubbles modeled by an experimentally verified 1-D microbubble acoustic radiation force translation model. The transducer element was an elongated Navy Type I (hard) lead zirconate titanate (PZT) ceramic designed to operate at 3 MHz. Fabricated devices operated with center frequencies of 3.3 and 3.6 MHz with -6-dB fractional bandwidths of 55% and 50%, respectively. Microbubble translation velocities as high as 0.86 m/s were measured using a high-speed streak camera when insonating with the ARFIVUS transducer. Finally, the prototype was used to displace microbubbles in a flow phantom while imaging with a commercial 45-MHz imaging IVUS transducer. A sustained increase of 31 dB in average video intensity was measured following insonation with the ARFIVUS, indicating microbubble accumulation resulting from the application of acoustic radiation force.
The impact of boreal forest fire on climate warming
Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.
2006-01-01
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
The impact of boreal forest fire on climate warming.
Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S
2006-11-17
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
NASA Technical Reports Server (NTRS)
Minschwaner, K.; Carver, R. W.; Briegleb, B. P.
1997-01-01
Observations from instruments on the Upper Atmosphere Research Satellite (UARS) have been used to constrain calculations of infrared radiative forcing by CH4, CCl2F2 and N2O, and to determine lifetimes Of CCl2F2 and N2O- Radiative forcing is calculated as a change in net infrared flux at the tropopause that results from an increase in trace gas amount from pre-industrial (1750) to contemporary (1992) times. Latitudinal and seasonal variations are considered explicitly, using distributions of trace gases and temperature in the stratosphere from UARS measurements and seasonally averaged cloud statistics from the International Satellite Cloud Climatology Project. Top-of-atmosphere fluxes calculated for the contemporary period are in good agreement with satellite measurements from the Earth Radiation Budget Experiment. Globally averaged values of the radiative forcing are 0.536, 0.125, and 0.108 W m-2 for CH4, CCl2F2, and N2O, respectively. The largest forcing occurs near subtropical latitudes during summer, predominantly as a result of the combination of cloud-free skies and a high, cold tropopause. Clouds are found to play a significant role in regulating infrared forcing, reducing the magnitude of the forcing by 30-40% compared to the case of clear skies. The vertical profile of CCl2F2 is important in determining its radiative forcing; use of a height-independent mixing ratio in the stratosphere leads to an over prediction of the forcing by 10%. The impact of stratospheric profiles on radiative forcing by CH4 and N2O is less than 2%. UARS-based distributions of CCl2F2 and N2O are used also to determine global destruction rates and instantaneous lifetimes of these gases. Rates of photolytic destruction in the stratosphere are calculated using solar ultraviolet irradiances measured on UARS and a line-by-line model of absorption in the oxygen Schumann-Runge bands. Lifetimes are 114 +/- 22 and 118 +/- 25 years for CCl2F2 and N2O, respectively.
NASA Astrophysics Data System (ADS)
Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael
2017-10-01
Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.
NASA Astrophysics Data System (ADS)
Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.
2016-12-01
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.
Observations of enhanced aerosol longwave radiative forcing over an urban environment
NASA Astrophysics Data System (ADS)
Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.
2008-02-01
Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.
Radiative Forcings from Albedo and Carbon Dynamics after Disturbance in Massachusetts Forests
NASA Astrophysics Data System (ADS)
MacLean, R. G.; Williams, C. A.
2014-12-01
Recent efforts have sought to compare and contrast the radiative forcings excited by forest disturbances due to both biogeochemical and biogeophysical mechanisms (Bonan et al., 2008) using either in situ measurements (e.g. Randerson et al., 2005; Randerson et al., 2006) or modeling (e.g. Brovkin et al., 2004). Study of boreal forest disturbances led to the important finding that the albedo increase from snow exposure after a canopy destroying fire offsets the warming from carbon emissions (Randerson et al. 2005). Similar study is lacking for temperate forests, leading to uncertainty about the net effect of albedo and carbon forcings following their disturbance. This work quantifies the gross and net radiative forcings from albedo and carbon mechanisms at two clear cut sites in Harvard Forest, Massachusetts, one a Norway spruce plantation clear cut in 2008 and the other a red pine plantation cleared in 1990. Carbon fluxes are estimated from detailed biomass inventories at both sites, as well as additional measurement with eddy covariance at the 2008 clearing. Associated radiative forcing is estimated with conventional methods estimating the perturbation to CO2 in the atmosphere and its lifetime considering ocean uptake (pulse response) and vegetation regrowth. Albedo change is assessed with Landsat derived albedo for both sites, as well as in situ measurements at the 2008 clearing. Associated radiative forcing is estimated with the model-derived radiative kernels provided by Shell et al (2008). From these extensive records we offer an in depth characterization of albedo and carbon forcings immediately following disturbance through to canopy closure and stem exclusion stages of forest growth in a mid-latitude temperate forest region.
NASA Astrophysics Data System (ADS)
Etminan, M.; Myhre, G.; Highwood, E. J.; Shine, K. P.
2016-12-01
New calculations of the radiative forcing (RF) are presented for the three main well-mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane's RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750-2011 RF is about 25% higher (increasing from 0.48 W m-2 to 0.61 W m-2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750-2011 CO2 RF is within 1% of IPCC's value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario.
Guan, Xiaodan; Huang, Jianping; Guo, Ruixia; Lin, Pu
2015-01-01
Since the slowing of the trend of increasing surface air temperature (SAT) in the late 1990 s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. Although several explanations have been proposed for the warming-trend slowdown (WTS), none has been generally accepted. We investigate the WTS using a recently developed methodology that can successfully identify and separate the dynamically induced and radiatively forced SAT changes from raw SAT data. The dynamically induced SAT changes exhibited an obvious cooling effect relative to the warming effect of the adjusted SAT in the hiatus process. A correlation analysis suggests that the changes are dominated primarily by the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Our results confirm that dynamically induced variability caused the WTS. The radiatively forced SAT changes are determined mainly by anthropogenic forcing, indicating the warming influence of greenhouse gases (GHGs), which reached levels of 400 ppm during the hiatus period. Therefore, the global SAT will not remain permanently neutral. The increased radiatively forced SAT will be amplified by increased dynamically induced SAT when the natural mode returns to a warming phase in the next period. PMID:26223491
Numerical analysis of THz radiation wave using upper hybrid wave wiggler
NASA Astrophysics Data System (ADS)
Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku
2018-03-01
A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.
Weinstein, Jeff I; Payne, Sarah; Poulson, Jean M; Azuma, Chieko
2009-01-01
A standard of therapy for osteosarcoma includes amputation with or without adjuvant chemotherapy. There is a subset of dogs with osteosarcoma that are unsuitable for amputation. We evaluated kinetic variables in dogs with appendicular osteosarcoma treated with a single 8 Gy dose of radiation. Eighteen pet dogs with appendicular osteosarcoma received one 8 Gy fraction of palliative radiation on day 0. Force plate measurements and clinical assessments were made on days 0, 7, 14, and 21. Peak vertical forces (Fz) were recorded for each limb and a symmetric index (SI) was calculated. There were no significant changes in kinetic parameters after one 8 Gy dose of radiation therapy. Nine of these 18 dogs exhibited increased limb function at day 21 based on force plate analysis. Significant factors affecting Fz included gender and tumor location. There was a significant correlation between Fz and response to therapy based on SI at day 21. SI seems to be useful to objectively assess response in this mixed population of dogs. One 8 Gy fraction of radiation therapy alone did not reduce lameness associated with appendicular osteosarcoma, but a subset of dogs did have improved limb function after a single dose.
Consistency between satellite-derived and modeled estimates of the direct aerosol effect.
Myhre, Gunnar
2009-07-10
In the Intergovernmental Panel on Climate Change Fourth Assessment Report, the direct aerosol effect is reported to have a radiative forcing estimate of -0.5 Watt per square meter (W m(-2)), offsetting the warming from CO2 by almost one-third. The uncertainty, however, ranges from -0.9 to -0.1 W m(-2), which is largely due to differences between estimates from global aerosol models and observation-based estimates, with the latter tending to have stronger (more negative) radiative forcing. This study demonstrates consistency between a global aerosol model and adjustment to an observation-based method, producing a global and annual mean radiative forcing that is weaker than -0.5 W m(-2), with a best estimate of -0.3 W m(-2). The physical explanation for the earlier discrepancy is that the relative increase in anthropogenic black carbon (absorbing aerosols) is much larger than the overall increase in the anthropogenic abundance of aerosols.
Postfire influences of snag attrition on albedo and radiative forcing
NASA Astrophysics Data System (ADS)
O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.
2014-12-01
This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.
NASA Astrophysics Data System (ADS)
Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho
2014-05-01
The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.
Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient
NASA Astrophysics Data System (ADS)
Shia, R.
2011-12-01
The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the climate change, including paleoclimatology and the prerequests for climate models to include cooling effect of GHG properly are discussed.
NASA Astrophysics Data System (ADS)
Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk
2011-01-01
Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.
Direct Aerosol Forcing Uncertainty
Mccomiskey, Allison
2008-01-15
Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.
Suomi, Visa; Edwards, David; Cleveland, Robin
2015-12-01
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Accounting for radiative forcing from albedo change in future global land-use scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andrew D.; Calvin, Katherine V.; Collins, William D.
2015-08-01
We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic withinmore » each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm –2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.« less
El Nino-southern oscillation: A coupled response to the greenhouse effect?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, De-Zheng
The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value,more » however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.« less
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari
2007-01-01
the radiative and physiological effects of doubled atmospheric carbon dioxide concentration (CO2) on climate are described using climate simulations. When CO2 was increased for vegetation only assuming no radiative effect, the response was a decrease in stomatal conductance followed by a temperature increase. This temperature increase was stronger when the vegetation physiological down-regulation was allowed in the model. The radiative forcing alone did not affect the global mean photosynthesis, however, some stimulation was observed in cold places. The interactions between the physiological and the radiative effects of doubled CO2 are not linearly additive and when acting together they tend to reduce the warming in the Mediterranean region.
Global mountain snow and ice loss driven by dust and black carbon radiative forcing
NASA Astrophysics Data System (ADS)
Painter, T. H.
2014-12-01
Changes in mountain snow and glaciers have been our strongest indicators of the effects of changing climate. Earlier melt of snow and losses of glacier mass have perturbed regional water cycling, regional climate, and ecosystem dynamics, and contributed strongly to sea level rise. Recent studies however have revealed that in some regions, the reduction of albedo by light absorbing impurities in snow and ice such as dust and black carbon can be distinctly more powerful than regional warming at melting snow and ice. In the Rocky Mountains, dust deposition has increased 5 to 7 fold in the last 150 years, leading to ~3 weeks earlier loss of snow cover from forced melt. In absolute terms, in some years dust radiative forcing there can shorten snow cover duration by nearly two months. Remote sensing retrievals are beginning to reveal powerful dust and black carbon radiative forcing in the Hindu Kush through Himalaya. In light of recent ice cores that show pronounced increases in loading of dust and BC during the Anthropocene, these forcings may have contributed far more to glacier retreat than previously thought. For example, we have shown that the paradoxical end of the Little Ice Age in the European Alps beginning around 1850 (when glaciers began to retreat but temperatures continued to decline and precipitation was unchanged) very likely was driven by the massive increases in deposition to snow and ice of black carbon from industrialization in surrounding nations. A more robust understanding of changes in mountain snow and ice during the Anthropocene requires that we move past simplistic treatments (e.g. temperature-index modeling) to energy balance approaches that assess changes in the individual forcings such as the most powerful component for melt - net solar radiation. Remote sensing retrievals from imaging spectrometers and multispectral sensors are giving us more powerful insights into the time-space variation of snow and ice albedo.
Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon
NASA Technical Reports Server (NTRS)
Chung, Serena H.; Seinfeld,John H.
2008-01-01
The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.
NASA Astrophysics Data System (ADS)
Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.
2016-12-01
Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.
NASA Astrophysics Data System (ADS)
Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.
2017-12-01
We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.
Aerosol Radiative Forcing over North India during Pre-Monsoon Season using WRF-Chem
NASA Astrophysics Data System (ADS)
Misra, A.; Kumar, K.; Michael, M.; Tripathi, S. N.
2013-12-01
Study of aerosols is important for a fair understanding of the Earth climate system. This requires knowledge of the physical, chemical, optical, and morphological properties of aerosols. Aerosol radiative forcing provides information on the effect of aerosols on the Earth radiation budget. Radiative forcing estimates using model data provide an opportunity to examine the contribution of individual aerosol species to overall radiative forcing. We have used Weather Research and Forecast with Online Chemistry (WRF-Chem) derived aerosol concentration data to compute aerosol radiative forcing over north India during pre-monsoon season of 2008, 2009, and 2010. WRF-Chem derived mass concentrations are converted to number concentrations using standard procedure. Optical Properties of Aerosol and Cloud (OPAC) software package is used to compute extinction and scattering coefficients, and asymmetry parameter. Computations are performed at different altitudes and the obtained values are integrated to get the column optical properties. Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model is used to calculate the radiative forcing at surface and top-of-atmosphere. Higher values of aerosol radiative forcing are observed over desert region in western Indian state of Rajasthan, and Punjab of Pakistan. Contribution of individual aerosol species to atmospheric radiative forcing is also assessed. Dust radiative forcing is high over western India. Radiative forcing due to BC and water-soluble (WASO) aerosols are higher over north-west Indian states of Punjab and Haryana, and the Indo-Gangetic Basin. A pool of high WASO optical depth and radiative forcing is observed over the Indo-Bangladesh border. The findings of aerosol optical depth and radiative forcing are consistent with the geography and prevailing aerosol climatology of various regions. Heating rate profiles due to total aerosols and only due to BC have been evaluated at selected stations in north India. They show variation between various stations and seasons.
Force approach to radiation reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx
The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less
Plasmonic nanoparticle chain in a light field: a resonant optical sail.
Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I
2011-11-09
Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.
Porra, Luke; Swan, Hans; Ho, Chien
2015-08-01
Introduction: Acoustic Radiation Force Impulse (ARFI) Quantification measures shear wave velocities (SWVs) within the liver. It is a reliable method for predicting the severity of liver fibrosis and has the potential to assess fibrosis in any part of the liver, but previous research has found ARFI quantification in the right lobe more accurate than in the left lobe. A lack of standardised applied transducer force when performing ARFI quantification in the left lobe of the liver may account for some of this inaccuracy. The research hypothesis of this present study predicted that an increase in applied transducer force would result in an increase in SWVs measured. Methods: ARFI quantification within the left lobe of the liver was performed within a group of healthy volunteers (n = 28). During each examination, each participant was subjected to ARFI quantification at six different levels of transducer force applied to the epigastric abdominal wall. Results: A repeated measures ANOVA test showed that ARFI quantification was significantly affected by applied transducer force (p = 0.002). Significant pairwise comparisons using Bonferroni correction for multiple comparisons showed that with an increase in applied transducer force, there was a decrease in SWVs. Conclusion: Applied transducer force has a significant effect on SWVs within the left lobe of the liver and it may explain some of the less accurate and less reliable results in previous studies where transducer force was not taken into consideration. Future studies in the left lobe of the liver should take this into account and control for applied transducer force.
Stratospheric solar geoengineering without ozone loss.
Keith, David W; Weisenstein, Debra K; Dykema, John A; Keutsch, Frank N
2016-12-27
Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO 3 ) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 W⋅m -2 , for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y -1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.
Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing
NASA Astrophysics Data System (ADS)
Samset, Bjørn H.; Myhre, Gunnar
2011-12-01
A global radiative transfer model is used to calculate the vertical profile of shortwave radiative forcing from a prescribed amount of aerosols. We study black carbon (BC), sulphate (SO4) and a black and organic carbon mixture typical of biomass burning (BIO), by prescribing aerosol burdens in layers between 1000 hPa and 20 hPa and calculating the resulting direct radiative forcing divided by the burden (NDRF). We find a strong sensitivity in the NDRF for BC with altitude, with a tenfold increase between BC close to the surface and the lower part of the stratosphere. Clouds are a major contributor to this dependence with altitude, but other factors also contribute. We break down and explain the different physical contributors to this strong sensitivity. The results show a modest regional dependence of the altitudinal dependence of BC NDRF between industrial regions, while for regions with properties deviating from the global mean NDRF variability is significant. Variations due to seasons and interannual changes in cloud conditions are found to be small. We explore the effect that large altitudinal variation in NDRF may have on model estimates of BC radiative forcing when vertical aerosol distributions are insufficiently constrained, and discuss possible applications of the present results for reducing inter-model differences.
Impact of Tropospheric Ozone on Summer Climate in China
NASA Astrophysics Data System (ADS)
Li, Shu; Wang, Tijian; Zanis, Prodromos; Melas, Dimitris; Zhuang, Bingliang
2018-04-01
The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m-2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day-1 over eastern China during summer. In addition, tropospheric ozone increased the land-sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.
Novel applications of the temporal kernel method: Historical and future radiative forcing
NASA Astrophysics Data System (ADS)
Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.
2017-12-01
We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.
Divergent global precipitation changes induced by natural versus anthropogenic forcing.
Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi
2013-01-31
As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.
NASA Astrophysics Data System (ADS)
Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2015-10-01
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of one particle then consists of two components, the incident sound wave and the scattered field generated by the neighboring particle. The radiation force calculation then includes the contributions of these two fields and incorporates the mutual particle influence. In this investigation the droplet/particle influence on each other has been analyzed theoretically by using the method developed by Gorkov and modified by Ilinskii et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipkens, Bart, E-mail: blipkens@wne.edu; Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. Anmore » often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of one particle then consists of two components, the incident sound wave and the scattered field generated by the neighboring particle. The radiation force calculation then includes the contributions of these two fields and incorporates the mutual particle influence. In this investigation the droplet/particle influence on each other has been analyzed theoretically by using the method developed by Gorkov and modified by Ilinskii et al.« less
NASA Astrophysics Data System (ADS)
Pincus, R.; Stevens, B. B.; Forster, P.; Collins, W.; Ramaswamy, V.
2014-12-01
The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies An enormous amount of attention has been paid to the diversity of responses in the CMIP and other multi-model ensembles. This diversity is normally interpreted as a distribution in climate sensitivity driven by some distribution of feedback mechanisms. Identification of these feedbacks relies on precise identification of the forcing to which each model is subject, including distinguishing true error from model diversity. The Radiative Forcing Model Intercomparison Project (RFMIP) aims to disentangle the role of forcing from model sensitivity as determinants of varying climate model response by carefully characterizing the radiative forcing to which such models are subject and by coordinating experiments in which it is specified. RFMIP consists of four activities: 1) An assessment of accuracy in flux and forcing calculations for greenhouse gases under past, present, and future climates, using off-line radiative transfer calculations in specified atmospheres with climate model parameterizations and reference models 2) Characterization and assessment of model-specific historical forcing by anthropogenic aerosols, based on coordinated diagnostic output from climate models and off-line radiative transfer calculations with reference models 3) Characterization of model-specific effective radiative forcing, including contributions of model climatology and rapid adjustments, using coordinated climate model integrations and off-line radiative transfer calculations with a single fast model 4) Assessment of climate model response to precisely-characterized radiative forcing over the historical record, including efforts to infer true historical forcing from patterns of response, by direct specification of non-greenhouse-gas forcing in a series of coordinated climate model integrations This talk discusses the rationale for RFMIP, provides an overview of the four activities, and presents preliminary motivating results.
Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong
2017-01-01
Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sampa; Harshvardhan, H.; Bian, Huisheng
Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found inmore » the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.« less
Sathre, Roger; Masanet, Eric
2012-09-04
To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.
Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew
2014-12-01
Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.
Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives.
Meng, Jing; Liu, Junfeng; Yi, Kan; Yang, Haozhe; Guan, Dabo; Liu, Zhu; Zhang, Jiachen; Ou, Jiamin; Dorling, Stephen; Mi, Zhifu; Shen, Huizhong; Zhong, Qirui; Tao, Shu
2018-05-14
Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM), and a multiregional input-output analysis (MRIO). BC was physically transported (i.e., atmospheric transport) from western to eastern countries in the midlatitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia was also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America, and East Asia (0.01 Wm -2 ) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.
Steinbacher, M; Vollmer, M K; Buchmann, B; Reimann, S
2008-03-01
A combination of reconstructed histories, long-term time series and recent quasi-continuous observations of non-CO2 greenhouse gases at the high-Alpine site Jungfraujoch is used to assess their current global radiative forcing budget and the influence of regulations due to the Montreal Protocol on Substances that Deplete the Ozone Layer in terms of climate change. Extrapolated atmospheric greenhouse gases trends from 1989 assuming a business-as-usual scenario, i.e. no Montreal Protocol restriction, are presented and compared to the observations. The largest differences between hypothetical business-as-usual mixing ratios and current atmospheric observations over the last 16 years were found for chlorinated species, in particular methyl chloroform (CH3CCl3) at 167 to 203 ppt and chlorofluorocarbon-12 (CFC-12) at 121 to 254 ppt. These prevented increases were used to estimate the effects of their restrictions on the radiative forcing budget. The net direct effect due to the Montreal Protocol regulations reduces global warming and offsets about 14 to 30% of the positive greenhouse effect related to the major greenhouse gases CO2, CH4, N2O and also SF6, and about 12 to 22% of the hypothetical current radiative forcing increase without Montreal Protocol restrictions. Thus, the Montreal Protocol succeeded not only in reducing the atmospheric chlorine content in the atmosphere but also dampened global warming. Nevertheless, the Montreal Protocol controlled species still add to global warming.
Greenhouse Effect, Radiative Forcing and Climate Sensitivity
NASA Astrophysics Data System (ADS)
Ponater, Michael; Dietmüller, Simone; Sausen, Robert
Temperature conditions and climate on Earth are controlled by the balance between absorbed solar radiation and outgoing terrestrial radiation. The greenhouse effect is a synonym for the trapping of infrared radiation by radiatively active atmospheric constituents. It generally causes a warming of the planet's surface, compared to the case without atmosphere. Perturbing the radiation balance of the planet, e.g., by anthropogenic greenhouse gas emissions, induces climate change. Individual contributions to a total climate impact are usually quantified and ranked in terms of their respective radiative forcing. This method involves some limitations, because the effect of the external forcing is modified by radiative feedbacks. Here the current concept of radiative forcing and potential improvements are explained.
Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos
2012-02-01
The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America
The carbon balance of North American wetlands
Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C.
2006-01-01
We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH 4) yr-1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands.
Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2001-01-01
General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.
Black carbon aerosol-induced Northern Hemisphere tropical expansion
Kovilakam, Mahesh; Mahajan, Salil
2015-06-23
Global climate models (GCMs) underestimate the observed trend in tropical expansion. Recent studies partly attribute it to black carbon (BC) aerosols, which are poorly represented in GCMs. In this paper, we conduct a suite of idealized experiments with the Community Atmosphere Model version 4 coupled to a slab ocean model forced with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing while maintaining their spatial distribution. The Northern Hemisphere (NH) tropics expand poleward nearly linearly as BC radiative forcing increases (0.7° W -1 m 2), indicating that a realistic representation of BC couldmore » reduce GCM biases. We find support for the mechanism where BC-induced midlatitude tropospheric heating shifts the maximum meridional tropospheric temperature gradient poleward resulting in tropical expansion. Finally, we also find that the NH poleward tropical edge is nearly linearly correlated with the location of the Intertropical Convergence Zone, which shifts northward in response to increasing BC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui
Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating themore » effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaeva, Anastasiia V., E-mail: niko200707@mail.ru; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of anmore » obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.« less
NASA Astrophysics Data System (ADS)
Fiedler, S.; Stevens, B.; Mauritsen, T.
2017-12-01
State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in comprehensive aerosol-climate models in the framework of the EU-funded project BACCHUS. In the future, MACv2-SP will be used in models participating in the Radiative Forcing Model Intercomparison Project (Pincus et al., 2016).
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.
1999-01-01
Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.
NASA Astrophysics Data System (ADS)
Matsui, Toshi; Zhang, Sara Q.; Lang, Stephen E.; Tao, Wei-Kuo; Ichoku, Charles; Peters-Lidard, Christa D.
2018-03-01
In this study, the impact of different configurations of the Goddard radiation scheme on convection-permitting simulations (CPSs) of the West African monsoon (WAM) is investigated using the NASA-Unified WRF (NU-WRF). These CPSs had 3 km grid spacing to explicitly simulate the evolution of mesoscale convective systems (MCSs) and their interaction with radiative processes across the WAM domain and were able to reproduce realistic precipitation and energy budget fields when compared with satellite data, although low clouds were overestimated. Sensitivity experiments reveal that (1) lowering the radiation update frequency (i.e., longer radiation update time) increases precipitation and cloudiness over the WAM region by enhancing the monsoon circulation, (2) deactivation of precipitation radiative forcing suppresses cloudiness over the WAM region, and (3) aggregating radiation columns reduces low clouds over ocean and tropical West Africa. The changes in radiation configuration immediately modulate the radiative heating and low clouds over ocean. On the 2nd day of the simulations, patterns of latitudinal air temperature profiles were already similar to the patterns of monthly composites for all radiation sensitivity experiments. Low cloud maintenance within the WAM system is tightly connected with radiation processes; thus, proper coupling between microphysics and radiation processes must be established for each modeling framework.
Dust-on-snow and the timing of peak streamflow in the upper Rio Grande
USDA-ARS?s Scientific Manuscript database
Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use...
Irrigation as an Historical Climate Forcing
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.
2014-01-01
Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multimodel assessments.
Kashimura, Hiroki; Abe, Manabu; Watanabe, Shingo; ...
2017-03-08
This paper evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr -1 of SO 2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysismore » shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m -2, depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m -2 and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (~-4 W m -2) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds.« less
Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere
NASA Astrophysics Data System (ADS)
Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.
2017-07-01
Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.
Climate forcing by anthropogenic aerosols
NASA Technical Reports Server (NTRS)
Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.
1992-01-01
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
Climate forcing by anthropogenic aerosols.
Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J
1992-01-24
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
Borden, Mark A.; Streeter, Jason E.; Sirsi, Shashank R.; Dayton, Paul A.
2015-01-01
In designing targeted contrast agent materials for imaging, the need to present a targeting ligand for recognition and binding by the target is counterbalanced by the need to minimize interactions with plasma components and to avoid recognition by the immune system. We have previously reported on a microbubble imaging probe for ultrasound molecular imaging that uses a buried-ligand surface architecture to minimize unwanted interactions and immunogenicity. Here we examine for the first time the utility of this approach for in vivo molecular imaging. In accordance with previous results, we showed a threefold increase in circulation persistence through the tumor of a fibrosarcoma model in comparison with controls. The buried-ligand microbubbles were then activated for targeted adhesion through the application of noninvasive ultrasound radiation forces applied specifically to the tumor region. Using a clinical ultrasound scanner, microbubbles were activated, imaged, and silenced. The results showed visually conspicuous images of tumor neovasculature and a twofold increase in ultrasound radiation force enhancement of acoustic contrast intensity for buried-ligand microbubbles, whereas no such increase was found for exposed-ligand microbubbles. We therefore conclude that the use of acoustically active buried-ligand microbubbles for ultrasound molecular imaging bridges the demand for low immunogenicity with the necessity of maintaining targeting efficacy and imaging conspicuity in vivo. PMID:23981781
Stellar winds in binary X-ray systems
NASA Technical Reports Server (NTRS)
Macgregor, K. B.; Vitello, P. A. J.
1982-01-01
It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.
The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.
Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith
2006-06-15
Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong
2018-06-01
Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation and to develop improved the aerosol models over central China.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram
1999-01-01
Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.
SOURCE ATTRIBUTION OF RADIATIVE FORCING FROM SHORT LIVED CLIMATE FORCING AGENTS
The immediate project result is quantification of the pre-industrial to present forcing for anthropogenic emissions, the radiative effects of natural emissions, and spatial distribution of the radiative forcing efficiency for key aerosol and O3 precursors (i.e., mW/m2<...
Retention and radiative forcing of black carbon in eastern Sierra Nevada snow
NASA Astrophysics Data System (ADS)
Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.
2013-02-01
When contaminated by absorbing particles, such as refractory black carbon (rBC) and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g-1) compared to bulk values in the snowpack (~3 ng g-1). Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing.
NASA Astrophysics Data System (ADS)
Schmith, Torben; Thejll, Peter; Johansen, Søren
2016-04-01
We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.
NASA Astrophysics Data System (ADS)
Qian, Zuwen; Zhu, Zhemin; Ye, Shigong; Jiang, Wenhua; Zhu, Houqing; Yu, Jinshen
2010-10-01
Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al., an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived. A general relation between acoustic power P and normal radiation force F n is obtained under the condition of kr ≫ 1. Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets. The results show that, for a given source, there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected. The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W). It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source, the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.
Precipitation Response to Regional Radiative Forcing
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.
2012-01-01
Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.
OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp
2015-02-01
We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less
Barnes, Christopher A.; Roy, David P.
2010-01-01
Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.
Low Simulated Radiation Limit for Runaway Greenhouse Climates
NASA Technical Reports Server (NTRS)
Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David
2013-01-01
Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.
The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental protocol for CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pincus, Robert; Forster, Piers M.; Stevens, Bjorn
The phrasing of the first of three questions motivating CMIP6 – “How does the Earth system respond to forcing?” – suggests that forcing is always well-known, yet the radiative forcing to which this question refers has historically been uncertain in coordinated experiments even as understanding of how best to infer radiative forcing has evolved. The Radiative Forcing Model Intercomparison Project (RFMIP) endorsed by CMIP6 seeks to provide a foundation for answering the question through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near-preindustrial baseline and careful diagnosis of the components of this forcing; (ii) assessment ofmore » the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to tightly specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's preindustrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. In conclusion, the search for robust responses to aerosol changes relies on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one and up to four 165-year coupled ocean–atmosphere simulations at Tier 1.« less
The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental protocol for CMIP6
Pincus, Robert; Forster, Piers M.; Stevens, Bjorn
2016-09-27
The phrasing of the first of three questions motivating CMIP6 – “How does the Earth system respond to forcing?” – suggests that forcing is always well-known, yet the radiative forcing to which this question refers has historically been uncertain in coordinated experiments even as understanding of how best to infer radiative forcing has evolved. The Radiative Forcing Model Intercomparison Project (RFMIP) endorsed by CMIP6 seeks to provide a foundation for answering the question through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near-preindustrial baseline and careful diagnosis of the components of this forcing; (ii) assessment ofmore » the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to tightly specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's preindustrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. In conclusion, the search for robust responses to aerosol changes relies on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one and up to four 165-year coupled ocean–atmosphere simulations at Tier 1.« less
Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.
Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas
2017-12-28
Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.
Volcano and Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water Increases in a Climate Model
NASA Astrophysics Data System (ADS)
Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas
2017-12-01
Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational data set and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.
NASA Astrophysics Data System (ADS)
Estrada, Francisco; Perron, Pierre; Martínez-López, Benjamín
2013-12-01
The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8°C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.
Rusakov, V N; Cherkashin, A V; Shishkanov, A P; Ian'shin, L A; Gracheva, T N
2010-12-01
Radiative and hygienic passportization is one of the most actual pattern of socio and hygienic monitoring in Armed Forces. Radiative and hygienic passport is the main document which characterizes the safety control in military unit and uses the sources of ionizing radiation. Sanitary and epidemiologic institutions were imputed to control the formation of radiative and hygienic passports, analysis and generalization of its data, formation of conclusions about the condition of radiation security in the military units. According to radiative and hygienic passportization, which took place in 2009, the radiation security in the Armed Forces and organizations is satisfactory, but there are some problems of providing of radiation security of personnel under the professional and medical radiation. The salvation of its problems requires the effective work of official functionary of radiac object and institutions of state sanitary and epidemiological supervision in Armed Forces of Russian Federation.
A simulation technique for 3D MR-guided acoustic radiation force imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Allison, E-mail: apayne@ucair.med.utah.edu; Bever, Josh de; Farrer, Alexis
2015-02-15
Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation forcemore » field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.« less
Roles of production, consumption and trade in global and regional aerosol radiative forcing
NASA Astrophysics Data System (ADS)
Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.
2016-12-01
Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions associated with global consumption. Ref: Lin et al., China's international trade and air pollution in the United States, PNAS, 2014 Lin et al., Global climate forcing of aerosols embodied in international trade, Nature Geoscience, 2016
ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komacek, Thaddeus D.; Showman, Adam P., E-mail: tkomacek@lpl.arizona.edu
The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperaturemore » differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.« less
Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols
NASA Technical Reports Server (NTRS)
Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.;
2000-01-01
The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is quite small quite small. Discrepancies among the models arise from inaccuracies in Mie calculations, differing treatment of the angular scattering phase function, differing wavelength and angular resolution, and differing treatment of multiple scattering. These results imply the need for standardized radiative transfer methods tailored to the direct aerosol forcing problem. However, the relatively small spread in these results suggests that the uncertainty in forcing arising from the treatment of radiative forcing of a well-characterized aerosol at well-specified surface albedo is smaller than some of the other sources of uncertainty in estimates of direct forcing by anthropogenic sulfate aerosols and anthropogenic aerosols generally.
Acoustic Radiation Force of a Quasi-Gaussian Beam on an Elastic Sphere in a Fluid.
Nikolaeva, A V; Sapozhnikov, O A; Bailey, M R
2016-09-01
Acoustic radiation force has many applications. One of the related technologies is the ability to noninvasively expel stones from the kidney. To optimize the procedure it is important to develop theoretical approaches that can provide rapid calculations of the radiation force depending in stone size and elastic properties, together with ultrasound beam diameter, intensity, and frequency. We hypothesize that the radiation force nonmonotonically depends on the ratio between the acoustic beam width and stone diameter because of coupling between the acoustic wave in the fluid and shear waves in the stone. Testing this hypothesis by considering a spherical stone and a quasi-Gaussian beam was performed in the current work. The calculation of the radiation force was conducted for elastic spheres of two types. Dependence of the magnitude of the radiation force on the beam diameter at various fixed values of stone diameters was modeled. In addition to using real material properties, speed of shear wave in the stone was varied to reveal the importance of shear waves in the stone. It was found that the radiation force reaches its maximum at the beamwidth comparable to the stone diameter; the gain in the force magnitude can reach 40% in comparison with the case of a narrow beam.
Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.
1998-01-01
Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver
2017-06-01
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4 m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4 m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4 m -2 yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2 m -2 yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2 m -2 yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
McFarlane, Ashly Ann; Frierson, Dargan M. W.
2017-08-01
We use Coupled Model Intercomparison Project global climate models forced with the Representative Concentration Pathway (RCP) 8.5 scenario to attribute tropical precipitation shifts under global warming scenarios and changes in cross-equatorial atmosphere heat transport (c-eq AHT) to changes in ocean and radiative fluxes. We find that the models tend to agree on the sign of c-eq AHT and change in precipitation asymmetry induced by each forcing, but not the magnitude. The ice-albedo feedback and aerosol emission reduction lead to the Northern Hemisphere warming, but this is countered by a reduction to the Atlantic Meridional Overturning Circulation northward heat transport and increased longwave leading to the multimodel mean change in precipitation asymmetry being approximately zero. None of the forcings considered, including aerosol cleanup, can account for more than 20% of the multimodel mean change in c-eq AHT alone.
On the climate impacts from the volcanic and solar forcings
NASA Astrophysics Data System (ADS)
Varotsos, Costas A.; Lovejoy, Shaun
2016-04-01
The observed and the modelled estimations show that the main forcings on the atmosphere are of volcanic and solar origins, which act however in an opposite way. The former can be very strong and decrease at short time scales, whereas, the latter increase with time scale. On the contrary, the observed fluctuations in temperatures increase at long scales (e.g. centennial and millennial), and the solar forcings do increase with scale. The common practice is to reduce forcings to radiative equivalents assuming that their combination is linear. In order to clarify the validity of the linearity assumption and determine its range of validity, we systematically compare the statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one to 1000 years. Additionally, we attempt to investigate plausible reasons for the discrepancies observed between the measured and modeled anomalies of tropospheric temperatures in the tropics. For this purpose, we analyse tropospheric temperature anomalies for both the measured and modeled time series. The results obtained show that the measured temperature fluctuations reveal white noise behavior, while the modeled ones exhibit long-range power law correlations. We suggest that the persistent signal, should be removed from the modeled values in order to achieve better agreement with observations. Keywords: Scaling, Nonlinear variability, Climate system, Solar radiation
NASA Astrophysics Data System (ADS)
Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.
2018-05-01
A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.
Future climate forcing potentially without precedent in the last 420 million years
Foster, Gavin L.; Royer, Dana L.; Lunt, Daniel J.
2017-01-01
The evolution of Earth's climate on geological timescales is largely driven by variations in the magnitude of total solar irradiance (TSI) and changes in the greenhouse gas content of the atmosphere. Here we show that the slow ∼50 Wm−2 increase in TSI over the last ∼420 million years (an increase of ∼9 Wm−2 of radiative forcing) was almost completely negated by a long-term decline in atmospheric CO2. This was likely due to the silicate weathering-negative feedback and the expansion of land plants that together ensured Earth's long-term habitability. Humanity's fossil-fuel use, if unabated, risks taking us, by the middle of the twenty-first century, to values of CO2 not seen since the early Eocene (50 million years ago). If CO2 continues to rise further into the twenty-third century, then the associated large increase in radiative forcing, and how the Earth system would respond, would likely be without geological precedent in the last half a billion years. PMID:28375201
NASA Astrophysics Data System (ADS)
Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.
2016-12-01
Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a larger increase in accuracy for SW cloud radiative forcing vs temperature, and from a lower confounding noise from natural variability in the cloud radiative forcing variable compared to temperature. In particular, global average temperature is much more sensitive to the climate noise of ENSO cycles.
Negative radiation forces and the asymmetry of scattered radiation: spheres in Bessel beams
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2011-11-01
The discovery that acoustical and optical, radiation forces computed on spheres placed on the axis of acoustical and optical Bessel beams may be opposite the direction of beam propagation makes it appropriate to reexamine the relationship between radiation forces and the asymmetry of the scattered radiation. For all of the previously identified acoustical cases in which the force was negative and the scattering pattern was also computed, it was found that the backscattering was suppressed and the forward scattering relatively enhanced (see e.g.). In the present research the acoustic radiation force on an arbitrary isotropic sphere is related to the asymmetry in the scattering and the extinction introduced by the sphere for the case of a helical Bessel beam of arbitrary order. The analysis confirms that conditions are more favorable for generating negative forces when the asymmetry is such that the backscattering is suppressed relative to the forward scattering. It is also found, however, that absorption of power by the sphere gives rise to a positive force contribution, a term which has been neglected in the corresponding optical analysis.
Radiative acceleration in Schwarzschild space-times
NASA Astrophysics Data System (ADS)
Keane, A. J.; Barrett, R. K.; Simmons, J. F. L.
2001-03-01
We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.
Strong enhancement of dispersion forces from microwave radiation
NASA Astrophysics Data System (ADS)
Sernelius, B. E.
2002-11-01
We have studied non-thermal effects of microwave radiation on the forces between objects. This is the first step in a study of possible effects of microwave radiation from cellular phones on biological tissue. We have used a simplified model for human blood cells in blood. We find for the normal radiation level of cellular phones an enhancement of the attractive force with ten orders of magnitude as compared to the corresponding effect at thermal radiation.
Direct and semidirect aerosol effects of southern African biomass burning aerosol
NASA Astrophysics Data System (ADS)
Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.
2011-06-01
Direct and semidirect radiative effects of biomass burning aerosols from southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. Aerosol optical depth is constrained using observations in clear skies from Moderate Resolution Imaging Spectroradiometer (MODIS) and for aerosol layers above clouds from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). Over the ocean, where the aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semidirect radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semidirect radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by radiative heating in overlying layers and surface cooling in response to direct aerosol forcing. The marine cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative, which leads to a reduction in precipitation and also a reduction in sensible heat flux. The former is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rain forest and the Intertropical Convergence Zone (ITCZ) in the southern Sahel. The changes are consistent with the low-level aerosol-forced cooling pattern. The results highlight the importance of semidirect radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.
Radiative forcing and climate response due to the presence of black carbon in cloud droplets
NASA Astrophysics Data System (ADS)
Wang, Zhili; Zhang, Hua; Li, Jiangnan; Jing, Xianwen; Lu, Peng
2013-05-01
Optical properties of clouds containing black carbon (BC) particles in their water droplets are calculated by using the Maxwell Garnett mixing rule and Mie theory. The obtained cloud optical properties were then applied to an interactive system by coupling an aerosol model with a General Circulation Model. This system is used to investigate the radiative forcing and the equilibrium climate response due to BC in cloud droplets. The simulated global annual mean radiative forcing at the top of the atmosphere due to the BC in cloud droplets is found to be 0.086 W m-2. Positive radiative forcing can be seen in Africa, South America, East and South Asia, and West Europe, with a maximum value of 1.5 W m-2 being observed in these regions. The enhanced cloud absorption is shown to increase the global annual mean values of solar heating rate, water vapor, and temperature, but to decrease the global annual mean cloud fraction. Finally, the global annual mean surface temperature is shown to increase by +0.08 K. The local maximum changes are found to be as low as -1.5 K and as high as +0.6 K. We show there has been a significant difference in surface temperature change in the Southern and Northern Hemisphere (+0.19 K and -0.04 K, respectively). Our results show that this interhemispheric asymmetry in surface temperature change could cause a corresponding change in atmospheric dynamics and precipitation. It is also found that the northern trade winds are enhanced in the Intertropical Convergence Zone (ITCZ). This results in northerly surface wind anomalies which cross the equator to converge with the enhanced southern trade winds in the tropics of Southern Hemisphere. This is shown to lead to an increase (a decrease) of vertical ascending motion and precipitation on the south (north) side of the equator, which could induce a southward shift in the tropical rainfall maximum related to the ITCZ.
Radiative forcing and climate response due to the presence of black carbon in cloud droplets
NASA Astrophysics Data System (ADS)
Wang, Z.; Zhang, H.; Li, J.; Jing, X.; Lu, P.
2013-05-01
Optical properties of clouds containing black carbon (BC) particles in their water droplets are calculated by using the Maxwell Garnett mixing rule and Mie theory. The obtained cloud optical properties were then applied to an interactive system by coupling an aerosol model with a General Circulation Model. This system is used to investigate the radiative forcing and the equilibrium climate response due to BC in cloud droplets. The simulated global annual mean radiative forcing at the top of the atmosphere due to the BC in cloud droplets is found to be 0.086 W m-2. Positive radiative forcing can be seen in Africa, South America, East and South Asia and West Europe, with a maximum value of 1.5 W m-2 being observed in these regions. The enhanced cloud absorption is shown to increase the global annual mean values of solar heating rate, water vapor and temperature, but to decrease the global annual mean cloud fraction. Finally, the global annual mean surface temperature is shown to increase by +0.08 K. The local maximum changes are found to be as low as -1.5 K and as high as +0.6 K. We show there has been a significant difference in surface temperature change in the Southern and Northern Hemisphere (+0.19 K and -0.04 K, respectively). Our results show that this interhemispheric asymmetry in surface temperature change could cause a corresponding change in atmospheric dynamics and precipitation. It is also found that the northern trade winds are enhanced in the Intertropical Convergence Zone (ITCZ). This results in northerly surface wind anomalies which cross the equator to converge with the enhanced southern trade winds in the tropics of Southern Hemisphere. This is shown to lead to an increase (a decrease) of vertical ascending motion and precipitation on the south (north) side of the equator, which could induce a southward shift in the tropical rainfall maximum related to the ITCZ.
Variability of the contrail radiative forcing due to crystal shape
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Witek, M. L.
2011-12-01
The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.
NASA Technical Reports Server (NTRS)
Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.
1996-01-01
Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.
1996-01-01
Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.
NASA Astrophysics Data System (ADS)
Painter, Thomas H.; Skiles, S. McKenzie; Deems, Jeffrey S.; Brandt, W. Tyler; Dozier, Jeff
2018-01-01
Common practice and conventional wisdom hold that fluctuations in air temperature control interannual variability in snowmelt and subsequent river runoff. However, recent observations in the Upper Colorado River Basin confirm that net solar radiation and by extension radiative forcing by dust deposited on snow cover exerts the primary forcing on snowmelt. We show that the variation in the shape of the rising limb of the annual hydrograph is controlled by variability in dust radiative forcing and surprisingly is independent of variations in winter and spring air temperatures. These observations suggest that hydroclimatic modeling must be improved to account for aerosol forcings of the water cycle. Anthropogenic climate change will likely reduce total snow accumulations and cause snowmelt runoff to occur earlier. However, dust radiative forcing of snowmelt is likely consuming important adaptive capacity that would allow human and natural systems to be more resilient to changing hydroclimatic conditions.
Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric
NASA Technical Reports Server (NTRS)
Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)
1997-01-01
Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the range -50 to -190 W sq m per unit inadvisable optical depth. The magnitudes are about 15 to 100 times larger than the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger forcing in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce the actual major radiative forcing events that contribute to any global-average climate effect. Detailed comparisons of calculated and measured forcings for specific events are used for more refined tests of closure.
The effects of clouds on CO2 forcing
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
The cloud radiative forcing (CRF) is the difference between the radiative flux (at the top of the atmosphere) which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. The CO2 forcing is defined, in analogy with the cloud forcing, as the difference in fluxes and/or infrared heating rates obtained by instantaneously changing CO2 concentration (doubling it) without changing anything else, i.e., without allowing any feedback. An increased CO2 concentration leads to a reduced net upward longwave flux at the Earth's surface. This induced net upward flux is due to an increased downward emission by the CO2 in the atmosphere above. The negative increment to the net upward flux becomes more intense at higher levels in the troposphere, reaching a peak intensity roughly at the tropopause. It then weakens with height in the stratosphere. This profile implies a warming of the troposphere and cooling of the stratosphere. The CSU GCM was recently used to make some preliminary CO2 forcing calculations, for a single simulated, for July conditions. The longwave radiation routine was called twice, to determine the radiative fluxes and heating rates for both 2 x CO2 and 1 x CO2. As diagnostics, the 2-D distributions of the longwave fluxes at the surface and the top of atmosphere, as well as the 3-D distribution of the longwave cooling in the interior was saved. In addition, the pressure was saved (near the tropopause) where the difference in the longwave flux due to CO2 doubling has its largest magnitude. For convenience, this level is referred to as the CO2 tropopause. The actual difference in the flux at that level was also saved. Finally, all of these fields were duplicated for the hypothetical case of no cloudiness (clear sky), so that the effects of the clouds can be isolated.
NASA Astrophysics Data System (ADS)
Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.
2018-04-01
Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.
NASA Technical Reports Server (NTRS)
Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor); Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.
Radiation Forces and Torques without Stress (Tensors)
ERIC Educational Resources Information Center
Bohren, Craig F.
2011-01-01
To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…
Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region
NASA Astrophysics Data System (ADS)
Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.
2016-05-01
In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.
The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation
NASA Astrophysics Data System (ADS)
Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.
2015-12-01
Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.
NASA Astrophysics Data System (ADS)
Bran, Sherin Hassan; Jose, Subin; Srivastava, Rohit
2018-03-01
The dynamical and optical properties of aerosols during an intense dust storm event over the Arabian Sea have been studied using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and space borne instruments such as MODIS, MISR, CALIPSO and CERES during the period 17 to 24 March, 2012. The model captures the spatio-temporal and vertical variations of meteorological and optical parameters, however an overestimation in simulated aerosol optical parameters are observed when compared to satellite retrievals. The correlation coefficients (R) between simulated and observed AOD from MODIS and MISR are found to be 0.54 and 0.32 respectively. Model simulated AOD on dusty days (20 and 21 March 2012) increased by 2-3 times compared to non-dusty days (17 and 24 March 2012) and the single scattering albedo (SSA) and the asymmetry parameter increased from 0.96 to 0.99 and from 0.56 to 0.66, respectively. The R between simulated shortwave (SW) radiation at top of the atmosphere (TOA) and TOA SW radiation obtained from CERES is found to be 0.43, however the model simulated SW radiation at the TOA showed an underestimation with respect to CERES. The shortwave aerosol radiative forcing (SWARF) during the event over surface and TOA are ∼ -19.3 and ∼ -14.2 Wm-2 respectively, which is about 2-5 times higher when compared to the respective forcing values during non-dust days. Estimated net radiative forcing was in the range of -13 to -21 Wm-2 at TOA and -12 to -20 Wm-2 at the surface. The heating rate during event days within the lower atmosphere near 850 hPa is found to 0.32 - 0.4 K day-1 and 0.18 - 0.22 K day-1 on dusty and non-dusty days, respectively. Results of this study may be useful for a better modeling of atmospheric aerosols and its optical and radiative properties over oceanic region.
Barnes, Christopher; Roy, David P.
2008-01-01
Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snow-free broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm−2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as −0.247 Wm−2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm−2 is estimated.
Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires
Guo, Song; Leighton, H.
2008-01-01
The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.
Understanding the drivers of Amazonian evapotranspiration (ET) change in response to increased CO2.
NASA Astrophysics Data System (ADS)
Halladay, Kate; Good, Peter
2016-04-01
Earth system models allow us to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the hydrological cycle and the future state and extent of the Amazon rainforest. With HadGEM2-ES simulations from CMIP5 in which CO2 is increased at 1% per year starting from pre-industrial concentrations and reaching 4 times that after 140 years, we separate the various drivers and processes controlling ET in western Amazonia. The design of these simulations allows for radiative and physiological forcings to be examined separately and in combination, and the degree to which the combination of forcings is additive or non-linear. We consider ET as a product of the moisture gradient between the surface and the boundary layer and a conductance term, which includes terms limiting the evaporation from stomata and from the canopy. We find that aside from the direct effects of radiative and physiological forcing, there are a number of other processes occurring: 1) reductions in ET alter the surface energy budget leading to increases in moisture gradient which drive increases in ET, 2) additional reductions in stomatal conductance when surface temperatures exceed optimum temperature for photosynthesis, leading to greater decreases in ET between 2 and 4 times pre-industrial CO2, 3) negative correlation between moisture gradient and conductance terms leads to additional decreases in ET, 4) decreases in canopy water content increases the importance of stomatal conductance which also drives decreases in ET. A combination of these processes leads to non-linear decreases in ET between 2 and 4 times pre-industrial CO2 when both radiative and physiological forcings are operating. These results indicate a major role physiological forcing in the hydrological cycle of Amazonia, highlight the potential for differences in offline and models in terms of the hydrological cycle and land surface feedbacks, and the need to reduce uncertainty in the modelling the response of stomatal conductance to high temperatures.
NASA Astrophysics Data System (ADS)
Fiorella, R.; Poulsen, C. J.
2013-12-01
The enigmatic Neoproterozoic geological record suggests the potential for a fully glaciated 'Snowball Earth.' Low-latitude continental position has been invoked as a potential Snowball Earth trigger by increasing surface albedo and decreasing atmospheric CO2 concentrations through increased silicate weathering. Herein, climate response to reduction of total solar irradiance (TSI) and CO2 concentration is tested using four different land configurations (aquaplanet, modern, Neoproterozoic, and low-latitude supercontinent) with uniform topography in the NCAR Community Atmosphere Model (CAM, version 3.1) GCM with a mixed-layer ocean. Despite a lower global mean surface albedo at 100% TSI for the aquaplanet scenario, the threshold for global glaciation decreases from 92% TSI in the aquaplanet configuration to 85% TSI with a low-latitude supercontinent. Climate sensitivity, as measured by the equilibrium temperature response to TSI and CO2 changes, varied across all four geographies at each forcing pair. The range of sensitivities observed suggests that climate feedback strengths are strongly dependent on both paleogeography and forcing. To identify the mechanisms responsible for the observed breadth in climate sensitivities, we calculate radiative kernels for four different TSI and CO2 forcing pairs in order to assess the strengths of the water vapor, albedo, lapse rate, Planck, and cloud feedbacks and how they vary with both forcing and paleogeography. Radiative kernels are calculated using an uncoupled version of the CAM3.1 radiation code and then perturbing climate fields of interest (surface albedo, specific humidity, and temperature) by a standard amount. No cloud kernels are calculated; instead, the cloud feedback is calculated by correcting the change in cloud radiative forcing to account for cloud masking. We find that paleogeography strongly controls how the water vapor and lapse rate feedbacks respond to different forcings. In particular, low latitude continents diminish the change in water vapor feedback strengths resulting from changes in forcing. Continental heating intensifies the Walker circulation, enhancing surface evaporation and moistening the marine troposphere. Additionally, dehumidification of the troposphere over large tropical continents in CAM3.1 increases direct heating by decreasing cloud cover. As a result, in the absence of potential silicate weathering feedbacks, large tropical landmasses raise the barrier to initiation of Snowball events. More generally, these simulations demonstrate the substantial influence of geography on climate sensitivity and climate feedback mechanisms, and challenge the notion that reduced continental area early in Earth history might provide a solution to the Faint Young Sun Paradox.
NASA Astrophysics Data System (ADS)
Su, Ruifeng; Zhu, Mingzhi; Huang, Zhan; Wang, Baoxu; Wu, Wenkai
2018-01-01
Influence of radiation force of a high-energy laser beam on the second harmonic generation (SHG) efficiency through stress within a mounted potassium dihydrogen phosphate (KDP) crystal is studied, as well as an active method of improving the SHG efficiency by controlling the stress is proposed. At first, the model for studying the influence of the radiation force on the SHG efficiency is established, where the radiation force is theoretically analyzed, the stress caused by the radiation force is theoretically analyzed and numerically calculated using the finite-element method, and the influence of the stress on the SHG efficiency is theoretically analyzed. Then, a method of improving the SHG efficiency by controlling the stress through adjusting the structural parameters of the mounting set of the KDP crystal is examined. It demonstrates that the radiation force causes stress within the KDP crystal and further militates against the SHG efficiency; however, the SHG efficiency could be improved by controlling the stress through adjusting the structural parameters of the mounting set of the KDP crystal.
Negative radiation forces on spheres illuminated by acoustic Bessel beams.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Thiessen, David B.
2007-11-01
An analytical solution for the scattering of an acoustic Bessel beam by a sphere centered on the beam has made it possible to explore the way the acoustic radiation force on elastic and fluid spheres depends on beam and material parameters. Situations have been previously noted where, even in the absence of absorption, the radiation force of the beam on the sphere is opposite the direction of beam propagation [1]. In extensions of that work, conditions have been identified for such a force reversal on solid spheres and elastic shells. Negative radiation forces may be useful for manipulation of objects in reduced gravity and of biological cells (with single beam acoustic tweezers). The finite element method (FEM) has been used to evaluate the total acoustic field in the region near the sphere. This makes it possible to evaluate the radiation force from numerical integration of an appropriate projection of the Brillouin radiation stress tensor. FEM and analytical results agree for plane wave and Bessel beam illumination. 1. P. L. Marston, J. Acoust. Soc. Am. 120, 3518-3524 (2006).
Observationally constrained estimates of carbonaceous aerosol radiative forcing.
Chung, Chul E; Ramanathan, V; Decremer, Damien
2012-07-17
Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.
Observationally constrained estimates of carbonaceous aerosol radiative forcing
Chung, Chul E.; Ramanathan, V.; Decremer, Damien
2012-01-01
Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522
Methodologies in the modeling of combined chemo-radiation treatments
NASA Astrophysics Data System (ADS)
Grassberger, C.; Paganetti, H.
2016-11-01
The variety of treatment options for cancer patients has increased significantly in recent years. Not only do we combine radiation with surgery and chemotherapy, new therapeutic approaches such as immunotherapy and targeted therapies are starting to play a bigger role. Physics has made significant contributions to radiation therapy treatment planning and delivery. In particular, treatment plan optimization using inverse planning techniques has improved dose conformity considerably. Furthermore, medical physics is often the driving force behind tumor control and normal tissue complication modeling. While treatment optimization and outcome modeling does focus mainly on the effects of radiation, treatment modalities such as chemotherapy are treated independently or are even neglected entirely. This review summarizes the published efforts to model combined modality treatments combining radiation and chemotherapy. These models will play an increasing role in optimizing cancer therapy not only from a radiation and drug dosage standpoint, but also in terms of spatial and temporal optimization of treatment schedules.
Observed Reduction In Surface Solar Radiation - Aerosol Forcing Versus Cloud Feedback?
NASA Astrophysics Data System (ADS)
Liepert, B.
The solar radiation reaching the ground is a key parameter for the climate system. It drives the hydrological cycle and numerous biological processes. Surface solar radi- ation revealed an estimated 7W/m2 or 4% decline at sites worldwide from 1961 to 1990. The strongest decline occurred at the United States sites with 19W/m2 or 10%. Increasing air pollution and hence direct and indirect aerosol effect, as we know today can only explain part of the reduction in solar radiation. Increasing cloud optical thick- ness - possibly due to global warming - is a more likely explanation for the observed reduction in solar radiation in the United States. The analysis of surface solar radiation data will be shown and compared with GCM results of the direct and indirect aerosol effect. It will be argued that the residual declines in surface solar radiation is likely due to cloud feedback.
NASA Astrophysics Data System (ADS)
Rao, R. R.
2015-12-01
Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is more sensitive to different aerosol species than total spectral flux which was also supported by our observed data.
Subpiconewton intermolecular force microscopy.
Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T
1997-02-24
We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.
Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing
NASA Astrophysics Data System (ADS)
Dyck, K. A.; Ravelo, A. C.
2011-12-01
How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.
2011-12-01
This study examines how aerosols measured from the ground and space over the U. S. Southeast change temporally over a regional scale and their radiative impacts. PM2.5 data consist of two datasets that represent the measurements that are used for regulatory purposes by the U.S. EPA and continuous measurements used for quickly disseminating air quality information. Aerosol optical depth (AOD) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available aerosol data over the state of Georgia from 2000 - 2009. In additional to aerosol data, we examine the surface albedo and cloud cover products from MODIS Terra over the same time period. Strong seasonality is detected in both the AOD and PM2.5 datasets; as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold from over the same period. We found good agreement between MODIS and MISR onboard the Terra satellite during the spring and summer having correlation coefficients of 0.64 in spring and 0.71 in summer. Monthly anomalies were used to determine the presence of a trend in the both AODs and PM2.5 aerosol datasets. In addition, radiative transfer modeling was performed to assess the aerosol radiative forcing in the region over the past decade. The results of this analysis suggest that the Southeastern U.S. is experiencing solar brightening likely due to better air quality control policies. Our results also hint that if the brightening continues, the radiative forcing from these aerosols will become less negative, which could have potential impacts on climate for the region.
NASA Astrophysics Data System (ADS)
Kleinschmitt, Christoph; Boucher, Olivier; Platt, Ulrich
2018-02-01
The enhancement of the stratospheric sulfate aerosol layer has been proposed as a method of geoengineering to abate global warming. Previous modelling studies found that stratospheric aerosol geoengineering (SAG) could effectively compensate for the warming by greenhouse gases on the global scale, but also that the achievable cooling effect per sulfur mass unit, i.e. the forcing efficiency, decreases with increasing injection rate. In this study we use the atmospheric general circulation model LMDZ with the sectional aerosol module S3A to determine how the forcing efficiency depends on the injected amount of SO2, the injection height, and the spatio-temporal pattern of injection. We find that the forcing efficiency may decrease more drastically for larger SO2 injections than previously estimated. As a result, the net instantaneous radiative forcing does not exceed the limit of -2 W m-2 for continuous equatorial SO2 injections and it decreases (in absolute value) for injection rates larger than 20 Tg S yr-1. In contrast to other studies, the net radiative forcing in our experiments is fairly constant with injection height (in a range 17 to 23 km) for a given amount of SO2 injected. Also, spreading the SO2 injections between 30° S and 30° N or injecting only seasonally from varying latitudes does not result in a significantly larger (i.e. more negative) radiative forcing. Other key characteristics of our simulations include a consequent stratospheric heating, caused by the absorption of solar and infrared radiation by the aerosol, and changes in stratospheric dynamics, with a collapse of the quasi-biennial oscillation at larger injection rates, which has impacts on the resulting spatial aerosol distribution, size, and optical properties. But it has to be noted that the complexity and uncertainty of stratospheric processes cause considerable disagreement among different modelling studies of stratospheric aerosol geoengineering. This may be addressed through detailed model intercomparison activities, as observations to constrain the simulations of stratospheric aerosol geoengineering are not available and analogues (such as volcanic eruptions) are imperfect.
Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...
2016-09-07
Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan
2016-09-10
Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less
Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.
Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor
2013-08-01
The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.
Greenhouse effect of chlorofluorocarbons and other trace gases
NASA Technical Reports Server (NTRS)
Hansen, James; Lacis, Andrew; Prather, Michael
1989-01-01
A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.
Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.
2008-01-01
Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.
Dalsøren, Stig B; Eide, Magnus S; Myhre, Gunnar; Endresen, Oyvind; Isaksen, Ivar S A; Fuglestvedt, Jan S
2010-04-01
The increase in civil world fleet ship emissions during the period 2000-2007 and the effects on key tropospheric oxidants are quantified using a global Chemical Transport Model (CTM). We estimate a substantial increase of 33% in global ship emissions over this period. The impact of ship emissions on tropospheric oxidants is mainly caused by the relatively large fraction of NOx in ship exhaust. Typical increases in yearly average surface ozone concentrations in the most impacted areas are 0.5-2.5 ppbv. The global annual mean radiative forcing due to ozone increases in the troposphere is 10 mWm(-2) over the period 2000-2007. We find global average tropospheric OH increase of 1.03% over the same period. As a result of this the global average tropospheric methane concentration is reduced by approximately 2.2% over a period corresponding to the turnover time. The resulting methane radiative forcing is -14 mWm(-2) with an additional contribution of -6 mWm(-2) from methane induced reduction in ozone. The net forcing of the ozone and methane changes due to ship emissions changes between 2000 and 2007 is -10 mWm(-2). This is significant compared to the net forcing of these components in 2000. Our findings support earlier observational studies indicating that ship traffic may be a major contributor to recent enhancement of background ozone at some coastal stations. Furthermore, by reducing global mean tropospheric methane by 40 ppbv over its turnover time it is likely to contribute to the recent observed leveling off in global mean methane concentration.
NASA Technical Reports Server (NTRS)
Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong
2008-01-01
The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.
Haberal, Kemal Murat; Turnaoğlu, Hale; Özdemir, Adnan; Uslu, Nihal; Haberal Reyhan, Asuman Nihan; Moray, Gökhan; Haberal, Mehmet
2017-08-24
The aim of this study was to evaluate the diagnostic efficiency of the acoustic radiation force impulse (Siemens Medical Solutions, Erlangen, Germany) elastography in assessment of fibrosis in orthotopic liver transplant patients. We enrolled 28 orthotopic liver transplant patients (deceased and living donors), whose biopsy decision had been prospectively given clinically. Ten acoustic radiation force impulse elastographic measurements were applied before the biopsy or within 3 days after the biopsy by 2 radiologists. After the core tissue needle biopsy, specimens of all patients were analyzed according to the modified Ishak scoring system. Measurements of acoustic radiation force impulse elastography and pathology specimen results were compared. From 28 biopsies, fibrosis scores of 4 biopsies were evaluated as F0 (14.3%), 16 as F1 (57.1%), 4 as F2 (14.3%), and 4 as F3 (14.3%). Mean results of acoustic radiation force impulse measurements were calculated as 1.4 ± 0.07 in F0, 1.74 ± 0.57 in F1, 2.19 ± 0.7 in F2, and 2.18 ± 0.35 in F3. There were no significant correlations of mean acoustic radiation force impulse values between the F0 versus F1 (P = .956) and F0 versus F2 stages (P = .234). A statistically significant correlation of mean acoustic radiation force impulse values was found between the F0 and F3 fibrosis stages (P = .046). Acoustic radiation force impulse imaging is a promising screening test for detecting significant liver fibrosis (≥ F3 in modified Ishak) in living-donor or deceased-donor orthotopic liver transplant recipients.
Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model
NASA Technical Reports Server (NTRS)
Williams, Trevor W.; Hughes, Kyle M.; Mashiku, Alinda K.; Longuski, James M.
2015-01-01
Solar radiation pressure is one of the largest perturbing forces on the OSIRISRex trajectory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model accounts for Bennu's non-spherical gravity field, third-body gravity forces from the Sun and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such high-fidelity simulations indicate significant solar radiation pressure perturbations from the nominal orbit. Modifications to the initial design of the nominal orbit are found using a variation of parameters approach that reduce the perturbation in eccentricity by a factor of one-half.
Mitri, F G
2009-04-01
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.
The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale
NASA Astrophysics Data System (ADS)
Middlemas, E.; Clement, A. C.; Medeiros, B.
2017-12-01
Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Behzad, Mehdi
2014-10-01
A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.
Aerosol indirect effect on tropospheric ozone via lightning
NASA Astrophysics Data System (ADS)
Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.
2012-09-01
Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as lightning, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting lightning activity and lightning-generated NOx (LNOx). We find that lightning flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in lightning and LNOx, which is supported by modle simulations with prescribed lightning change. O3production increase from this aerosol-lightning-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that lightning activity, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-lightning-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and projecting future tropospheric O3forcing as well as wildfire changes and call for integrated investigations of the coupled aerosol-cloud-chemistry system.
The effect of radiation pressure on spatial distribution of dust inside H II regions
NASA Astrophysics Data System (ADS)
Ishiki, Shohei; Okamoto, Takashi; Inoue, Akio K.
2018-02-01
We investigate the impact of radiation pressure on spatial dust distribution inside H II regions using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. In order to investigate grain-size effects as well, we introduce two additional fluid components describing large and small dust grains in the simulations. Relative velocity between dust and gas strongly depends on the drag force. We include collisional drag force and coulomb drag force. We find that, in a compact H II region, a dust cavity region is formed by radiation pressure. Resulting dust cavity sizes (˜0.2 pc) agree with observational estimates reasonably well. Since dust inside an H II region is strongly charged, relative velocity between dust and gas is mainly determined by the coulomb drag force. Strength of the coulomb drag force is about 2 order of magnitude larger than that of the collisional drag force. In addition, in a cloud of mass 105 M⊙, we find that the radiation pressure changes the grain-size distribution inside H II regions. Since large (0.1 μm) dust grains are accelerated more efficiently than small (0.01 μm) grains, the large-to-small grain mass ratio becomes smaller by an order of magnitude compared with the initial one. Resulting dust-size distributions depend on the luminosity of the radiation source. The large and small grain segregation becomes weaker when we assume stronger radiation source, since dust grain charges become larger under stronger radiation and hence coulomb drag force becomes stronger.
Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer
NASA Astrophysics Data System (ADS)
Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.
2016-01-01
The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.
The radiative forcing potential of different climate geoengineering options
NASA Astrophysics Data System (ADS)
Lenton, T. M.; Vaughan, N. E.
2009-01-01
Climate geoengineering proposals seek to rectify the Earth's current radiative imbalance, either by reducing the absorption of incoming solar (shortwave) radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on the global energy balance and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. Already it reveals some significant errors in existing calculations, and it allows us to compare the relative effectiveness of a range of proposals. By 2050, only stratospheric aerosol injections or sunshades in space have the potential to cool the climate back toward its pre-industrial state, but some land carbon cycle geoengineering options are of comparable magnitude to mitigation "wedges". Strong mitigation, i.e. large reductions in CO2 emissions, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition probably has greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean upwelling or downwelling have trivial effects on any meaningful timescale. Our approach provides a common framework for the evaluation of climate geoengineering proposals, and our results should help inform the prioritisation of further research into them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov
2016-11-20
We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less
Increase of hole-drilling speed by using packs of laser pulses
NASA Astrophysics Data System (ADS)
Gorny, Sergey G.; Grigoriev, A. M.; Lopota, Vitaliy A.; Turichin, Gleb A.
1999-09-01
For realization of the optimum mode of hole drilling the packs of laser pulses of high intensity were used, when average level of intensity of radiation is not too high, that reduces specific energy of destruction, and the peak intensity is reasonably great, that the pulse of pressure of effect at evaporation has completely deleted the liquid from the zone of processing. The high peak intensity of radiation permits in this case to place a target not in focus of a optical system, creating on its surface the image with the help of masks. It permits to receive in metal plates the holes of any section, to execute marking of surfaces and deep engraving of sample material with the help of laser. With the using of focused radiation the cutting of thin materials can be executed without a auxiliary gas. The condition of melt replacement is excess of power of recoil pressure above the power of viscous forces and forces of inertia. The decision of the hydrodynamic problem permits to evaluate the necessary parameters of laser radiation, frequency and longitude of packs of pulses which provide increases of process speed in several times. The conducted experiments confirm the indicated theoretical analysis of process of removing of the material under action of packs of pulses of laser radiation. The given process is realized in laser technological installations for holes drilling and marks of materials.
NASA Astrophysics Data System (ADS)
Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2004-12-01
The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.
Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, B.
2009-12-01
The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for understanding the latitudinal differences of the monsoonal responses to external forcings and internal feedback processes. The strength of the forced response depends on latitude. On centennial-millennial time scales, the variation of the extratropical and subtropical rainfall tends to follow the effective solar radiation forcing closely; the tropical rainfall is less sensitive to the effective solar radiation forcing but responds significantly to the modern anthropogenic CO2 forcing. The spatial patterns and structures of the forced response differ from the internal mode (i.e., interannual variability that arises primarily from the internal feedback processes within the climate system). Further, the behavior of the internal mode is effectively modulated by changes in the mean state on the centennial to millennial time scales. These findings have important ramification in understanding the differences and linkages between the forced and internal modes of variability as well as in promoting communication between scientists studying modern- and paleo-monsoon variations.
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Owocki, Stanley P.
1995-01-01
We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.
Influence of Clouds On The Surface Radiative Balance For Two Mediterranean Sites
NASA Astrophysics Data System (ADS)
Bortoli, D.; Costa, M. J.; Nardino, M.
Clouds strongly affect the Earth's climate influencing the surface radiative balance by reducing the incident solar radiation and increasing the downward longwave flux. Al- though the quantitative impact of clouds on the surface radiative balance is necessarily associated with great uncertainties due to the complexity and variation of the under- lying parameters, cloud radiative forcing is one of the main regulating factors of the Earth's climate. The present work aims at determining the effect of cloud coverage on the surface radiative balance, in order to contribute for a better understanding of local variations in the Mediterranean climate. Measurements of the cloud cover index (CCI) require the presence of an observer capable of quantifying cloud amounts in the sky in sight above the measurements' site. Since such measurements are not always available the cloud cover index is re- trieved using two different methodologies. On one hand the CCI is computed from the surface radiometer measurements throughout a parameterisation. On the other it is retrieved using a bi-spectral algorithm based on the METEOSAT satellite measure- ments from the visible and infrared spectral regions. Results of the CCI are compared with co-located observations to perform a general check against the available "ground truth". At the same time the CCI values obtained from both methodologies are inter- compared. Results of the CCI and their implications on the surface radiative balance are presented for the two Mediterranean sites selected, one located in Italy and the other in the south of Portugal. The cloud radiative forcing calculations show a cooling effect of the surface in presence of clouds for both sites. Moreover, a seasonal dependence is obtained, with a stronger cooling effect during summer. Acknowledgements: The work was supported by Instituto de Cooperação Científica e Tecnológica Internacional (ICCTI) - Portugal and Consiglio Nazionale delle Ricerche (CNR) - Italy, through the bilateral agreement "Study of cloud and aerosol radiative forcing on the surface radiative balance".
A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Jöckel, Patrick; Tost, Holger; Kunze, Markus; Gellhorn, Catrin; Brinkop, Sabine; Frömming, Christine; Ponater, Michael; Steil, Benedikt; Lauer, Axel; Hendricks, Johannes
2016-06-01
The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT, and ORBIT. The submodel RAD (including the shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) online radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of online radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.
Micromechanical Resonator Driven by Radiation Pressure Force.
Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj
2017-11-22
Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.
Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.
Bright, Ryan M; Strømman, Anders Hammer; Peters, Glen P
2011-09-01
Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Flanner, M G; Leung, Lai-Yung R
2011-03-02
The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic COmore » 2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µk/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m -2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0°C averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO 2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO 2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. During boreal spring, aerosols are transported by the southwesterly and reach the higher altitude and/or deposited in the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above by the increased sensible heat flux over the TP. Both effects enhance the upward motion of air and spur deep convection along the TP during pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO 2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier - a near zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia.« less
Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei
2016-08-01
The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing.
Conservation practices to mitigate and adapt to the effects of climate change
USDA-ARS?s Scientific Manuscript database
Greenhouse gases (GHGs) emitted into the atmosphere by human activities have increased radiative forcing and caused an increase in the global mean temperature of approximately 0.74°C over the past century. In terms of soil conservation, expected consequences of future climate change include changes ...
NASA Technical Reports Server (NTRS)
Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.
2000-01-01
The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.
Radiative Energy Loss by Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.
2002-01-01
Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.
Greenhouse gas policy influences climate via direct effects of land-use change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andrew D.; Collins, William D.; Edmonds, James A.
2013-06-01
Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standardmore » RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.« less
Effects of increasing aerosol on regional climate change in China: Observation and modeling
NASA Astrophysics Data System (ADS)
Qian, Y.; Leung, L.; Ghan, S. J.
2002-12-01
We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, which are exceptions to the large scale warming trend in the northern hemisphere, are at least partly related to the cooling induced by atmospheric aerosol loading that has been increasing since the middle of the last century.
Climate implications of including albedo effects in terrestrial carbon policy
NASA Astrophysics Data System (ADS)
Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.
2012-12-01
Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo change, 2) an increase in CO2 concentrations that exactly balances the forcing from land use change at the global level, and 3) a simulation combining the first two effects, resulting in net zero global-mean forcing as would occur in an idealized carbon cap-and-trade scheme that accounts for the albedo effect of land use change. The pattern of land use change that we examine is derived from an integrated assessment model that accounts for population, demographic, technological, and policy changes over the 21st century. We find significant differences in the pattern of climate change associated with each of these forcing scenarios, demonstrating the non-additivity of radiative forcing from land-use change and greenhouse gases in the context of a hypothetical scenario of future land use change. These results have implications for the development of land use and climate policies.
Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua
1999-01-01
Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.
NASA Technical Reports Server (NTRS)
Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.
2007-01-01
Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.
Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment
NASA Astrophysics Data System (ADS)
Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.
2012-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability to parametric and structural model uncertainties. This work will help to prioritise areas for future model improvements and ultimately lead to uncertainty reduction.
Spatially Refined Aerosol Direct Radiative Forcing Efficiencies
Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...
Radiative flux and forcing parameterization error in aerosol-free clear skies.
Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M
2015-07-16
Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.
NASA Astrophysics Data System (ADS)
Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.
2018-06-01
The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.
Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing
NASA Technical Reports Server (NTRS)
Norris, Joel
2005-01-01
The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.
NASA Technical Reports Server (NTRS)
Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.
2012-01-01
We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.
Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks
NASA Astrophysics Data System (ADS)
MacDougall, Andrew H.; Knutti, Reto
2016-06-01
The global carbon cycle is sensitive to changes in global temperature and atmospheric CO2 concentration, with increased temperature tending to reduce the efficiency of carbon sinks and increased CO2 enhancing the efficiency of carbon sinks. The emission of non-CO2 greenhouse gases warms the Earth but does not induce the CO2 fertilization effect or increase the partial-pressure gradient between the atmosphere and the surface ocean. Here we present idealized climate model experiments that explore the indirect interaction between non-CO2 forcing and the carbon cycle. The experiments suggest that this interaction enhances the warming effect of the non-CO2 forcing by up to 25% after 150 years and that much of the warming caused by these agents lingers for over 100 years after the dissipation of the non-CO2 forcing. Overall, our results suggest that the longer emissions of non-CO2 forcing agents persists the greater effect these agents will have on global climate.
Amplification of heat extremes by plant CO2 physiological forcing.
Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S
2018-03-15
Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.
NASA Astrophysics Data System (ADS)
Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.
2017-12-01
Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record to examine pre-disturbance albedo trends and to link historical land cover and disturbance history to post-disturbance early spring albedo values. We examine the impact of landscape heterogeneity on albedo in the growing and dormant seasons and quantify the effects of snow exposure changes from over-story canopy loss.
Measuring the Impact of Rising CO2 and CH4 on the Surface Energy Balance
NASA Astrophysics Data System (ADS)
Feldman, D.; Collins, W.; Biraud, S.; Turner, D. D.; Mlawer, E. J.; Gero, P. J.; Xie, S.; Shippert, T.; Torn, M. S.
2015-12-01
We use observations at the North Slope of Alaska (NSA) and Southern Great Plains (SGP) ARM sites to improve understanding both of the distribution of CO2 and CH4and their influence on the surface energy balance. We use aircraft and ground-based in situ data to characterize the temporal distribution of these greenhouse gases, and spectroscopic observations to derive their collocated surface radiative forcing. The spectroscopically-measured surface radiative forcing from rising CO2 is 0.2 W/m2/decade at both sites, with a seasonal cycle of 0.2 W/m2. This finding is largely consistent with theoretical predictions, providing robust evidence of radiative perturbations to the Earth's surface energy budget due to anthropogenic influences. The contribution from CH4 to the surface energy balance is more spatially and temporally heterogeneous. The ground-based measurements of CH4 at NSA and SGP indicate rising atmospheric concentrations except for a hiatus from 1995-2005, while more recent aircraft profiles indicate that concentrations in the boundary layer and free troposphere are correlated at NSA and decorrelated at SGP. The probability density functions of boundary layer concentrations of CH4 at NSA show little skew, but at SGP show positive skewness, which increased with the introduction of nearby fossil-fuel extraction. The correlated increases in atmospheric measurements of C2H6 and CH4that only occur at SGP are consistent with an anthropogenic influence there. Time-series of spectroscopically-measured CH4 surface radiative forcing at SGP and NSA also indicate positive trends of 0.1 W/m2/decade associated with the end of the hiatus, marked seasonal cycles, and little skew at NSA and a positive skew at SGP. The combination of in situ and spectroscopic measurements at these sites enables the quantification of surface radiative forcing from anthropogenic CH4. Implications are discussed for how advanced spectroscopic remote sensing measurements of CH4 can be used to quantify the impact of fossil fuel extraction on surface energy budget.
Evidence for Limited Indirect Aerosol Forcing in Stratocumulus
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.
2003-01-01
Increases in cloud cover and condensed water contribute more than half of the indirect aerosol effect in an ensemble of general circulation model (GCM) simulations estimating the global radiative forcing of anthropogenic aerosols. We use detailed simulations of marine stratocumulus clouds and airborne observations of ship tracks to show that increases in cloud cover and condensed water in reality are far less than represented by the GCM ensemble. Our results offer an explanation for recent simplified inverse climate calculations indicating that indirect aerosol effects are greatly exaggerated in GCMs.
NASA Astrophysics Data System (ADS)
Beegum S, N.; Ben Romdhane, H.; Ghedira, H.
2013-12-01
Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol microphysics as well as the types of aerosol undergo significant seasonal variations.
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Vertical vibration and shape oscillation of acoustically levitated water drops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, D. L.; Xie, W. J.; Yan, N.
2014-09-08
We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.
Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha
We analyze a suite of Global Climate Models from the 5th Phase of Coupled Models Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the 21st century despite a robust weakening of dynamics governing the monsoon circulation. Combining the future changes in the contributions from various sources, which contribute to the moisture supply over South Asia, with those in monsoon dynamics and atmospheric moisture content, we establish a pathway of understanding that partly explains these counteracting responses to increase in radiative forcing. Ourmore » analysis suggests that both regional (local recycling, Arabian Sea, Bay of Bengal) and remote (mainly Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. Increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period, but is also the net driver of the positive summer monsoon precipitation response in the 21st century. Our results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the non-stationary moisture driven South Asian summer monsoon precipitation response in the 21st century.« less
Yongqiang Liu
2005-01-01
Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a...
Effect of Ex Vivo Ionizing Radiation on Static and Fatigue Properties of Mouse Vertebral Bodies
NASA Technical Reports Server (NTRS)
Emerzian, Shannon R.; Pendleton, Megan M.; Li, Alfred; Liu, Jennifer W.; Alwood, Joshua S.; O’Connell, Grace D.; Keaveny, Tony M.
2018-01-01
For a variety of medical and scientific reasons, human bones can be exposed to a wide range of ionizing radiation levels. In vivo radiation therapy (0.05 kGy) is used in cancer treatment, and ex vivo irradiation (25-35 kGy) is used to sterilize bone allografts. Ionizing radiation in these applications has been shown to increase risk of fracture, decrease bone quality and degrade collagen integrity. Past studies have investigated the deleterious effects of radiation on cortical or trabecular bone specimens individually, but to date no studies have examined whole bones containing both cortical and trabecular tissue. Furthermore, a clear relationship between the dose and the mechanical and biochemical response of bone's extracellular matrix has yet to be established for doses ranging from cancer therapy to allograft sterilization (0.05-35 kGy). To gain insight into these issues, we conducted an ex vivo radiation study to investigate non-cellular (i.e. matrix) effects of ionizing radiation dose on vertebral whole bone mechanical properties, over a range of radiation doses (0.05-35 kGy), with a focus on any radiation-induced changes in collagen. With underlying mechanisms of action in mind, we hypothesized that any induced reductions in mechanical properties would be associated with changes in collagen integrity. METHODS: 20-week old female mice were euthanized and the lumbar spine was dissected using IACUC approved protocols. The lumbar vertebrae (L1- S1) were extracted from the spine via cuts through adjacent intervertebral discs, and the endplates, posterior processes, surrounding musculature, and soft tissues were removed (approx. 1.5mm diameter, approx. 2mm height). Specimens were randomly assigned to one of five groups for ex vivo radiation exposure: x-ray irradiation at 0.05, 1, 17, or 35 kGy, or a 0 kGy control. Following irradiation, the vertebrae were imaged using microcomputed tomography (micro-CT) and then subjected to either monotonic compressive loading to failure or uniform cyclic compressive loading. During cyclic testing, samples were loaded in force control to a force level that corresponded to a strain of 0.46%, as determined in advance by a linearly elastic micro-CT-based finite element analysis for each specimen. Tests were stopped at imminent fracture, defined as a rapid increase in strain. The main outcome for the monotonic test was the strength (maximum force); for cyclic testing it was the fatigue life (log of the number of cycles of loading at imminent failure). A fluorometric assay was used on the S1 vertebrae to measure the number of non-enzymatic collagen crosslinks[4]. A one-way ANOVA was performed on mechanical properties and collagen crosslinks; means were compared with controls using Dunnett's method, with a Tukey-Kramer post-hoc analysis when significance was found (p < or = 0.05). RESULTS: Compared to the unirradiated control group, the concentration of non-enzymatic collagen crosslinks was significantly increased for all irradiated groups (p < 0.0001), and being higher by at least 50% (Figure 1a). By contrast, the radiation effects on the collagen were only evident at the higher doses. For irradiation exposures of 17 kGy or more, strength decreased substantially as the radiation level was increased, but no effect was evident below 17 kGy (Figure 1b). There was no significant change in the stiffness or maximum displacement for any radiation dose (p>0.05). The finite element analysis prescribed force level for cyclic loading exceeded the measured (monotonic) strength of the 17 and 35 kGy irradiated groups (mean +/- SD, 20.6 +/- 5.6 N; 13.2 +/- 3.7 N, respectively) and therefore these groups were eliminated from the fatigue study. The fatigue life for the 0.05 and 1 kGy groups were similar to each other and were not statistically significantly different from the control group (Figure 1c).
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)
2001-01-01
Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of (Delta)F(sub 24hr)/(Delta)tau = - 25 +/- 5 W/sq m. Ground based data give forcing at the surface of (Delta)F(sub 24hr)/(Delta)taur = -80 +/- 5 W/sq m. In TARFOX a mixture of maritime and regional pollution aerosol resulted in a varied forcing at the top of the atmosphere, (Delta)F(sub 24hr)/(Delta)tau, between -26 W/sq 2 and -50 W/sq m depending on mixture of coarse and accumulation modes, for Angstrom exponents of 1.0 and 0.2 respectively.
Theoretical and Experimental Investigation of Particle Trapping via Acoustic Bubbles
NASA Astrophysics Data System (ADS)
Chen, Yun; Fang, Zecong; Merritt, Brett; Saadat-Moghaddam, Darius; Strack, Dillon; Xu, Jie; Lee, Sungyon
2014-11-01
One important application of lab-on-a-chip devices is the trapping and sorting of micro-objects, with acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force on micro-particles and trap them, when this radiation force exceeds the drag force that acts to keep the particles in motion. In this study, we theoretically evaluate the magnitudes of these two forces for varying actuation frequencies and voltages. In particular, the secondary radiation force is calculated directly from bubble oscillation shapes that have been experimentally measured for varying acoustic parameters. Finally, based on the force estimates, we predict the threshold voltage and frequency for trapping and compare them to the experimental results.
NASA Astrophysics Data System (ADS)
Rao, Roshan
2016-04-01
Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. In our analysis, RT model clearly shows that direct component of spectral flux is more sensitive to different aerosol species than total spectral flux which is also supported by our observed data.
NASA Astrophysics Data System (ADS)
Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.
2017-12-01
Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and radiative feedbacks derived from observational records. We find that these records are, as of yet, too short to be useful in constraining radiative feedbacks, and we provide estimates of how the uncertainty narrows as a function of record length.
NASA Astrophysics Data System (ADS)
Siedlecki, S. A.; Nguyen, T. T.; Hermann, A. J.; Bond, N. A.; Ackerman, T. P.; Hinkelman, L. M.
2016-02-01
JISAO Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) is an experimental seasonal forecast system of ocean conditions that is designed to support ecosystem-based management of fisheries in the Northwest Pacific ocean. The forecast system consists of a high resolution ROMS model with biogeochemistry forced by atmospheric and oceanic fields from the Climate Forecast System (CFS). Recent research has focused on the systematic errors in this forcing. In 2013, the predicted CFS shortwave radiation fluxes for summer were higher than the observation fluxes by nearly 100 W/m2. This forecast bias varies interannually and regionally. Hindcast experiments were set up for 2013 to estimate the impact of the shortwave radiation bias on ocean conditions in the Pacific Northwest waters. Results demonstrate that a 20% increase (decrease) in radiation fluxes can cause a warm (cold) bias in sea surface temperature (SST) of up to 1 - 1.5°C on average, and an even higher bias (± 2°C) during the June - August upwelling season. In the response to an increased radiation flux, the increased stratification from the warmer SSTs can reduce mixing and deepen the maximum phytoplankton growth zone, which consequently modifies the oxygen concentration of the water column. The effect of the change in short wave radiation fluxes on the oxygen concentrations of shelf waters is more complicated than the effect on SST. A change of up to 1 to 1.5 ml/l in bottom oxygen concentration occurs in some areas in the region. Two potential mechanisms that govern the response of the shelf water oxygen concentration are explored in this study: reduced mixing and altered chlorophyll distributions. Through the use of an oxygen budget, we can examine the relative importance of each of these mechanisms to the change in radiation.
Allowing for Horizontally Heterogeneous Clouds and Generalized Overlap in an Atmospheric GCM
NASA Technical Reports Server (NTRS)
Lee, D.; Oreopoulos, L.; Suarez, M.
2011-01-01
While fully accounting for 3D effects in Global Climate Models (GCMs) appears not realistic at the present time for a variety of reasons such as computational cost and unavailability of 3D cloud structure in the models, incorporation in radiation schemes of subgrid cloud variability described by one-point statistics is now considered feasible and is being actively pursued. This development has gained momentum once it was demonstrated that CPU-intensive spectrally explicit Independent Column Approximation (lCA) can be substituted by stochastic Monte Carlo ICA (McICA) calculations where spectral integration is accomplished in a manner that produces relatively benign random noise. The McICA approach has been implemented in Goddard's GEOS-5 atmospheric GCM as part of the implementation of the RRTMG radiation package. GEOS-5 with McICA and RRTMG can handle horizontally variable clouds which can be set via a cloud generator to arbitrarily overlap within the full spectrum of maximum and random both in terms of cloud fraction and layer condensate distributions. In our presentation we will show radiative and other impacts of the combined horizontal and vertical cloud variability on multi-year simulations of an otherwise untuned GEOS-5 with fixed SSTs. Introducing cloud horizontal heterogeneity without changing the mean amounts of condensate reduces reflected solar and increases thermal radiation to space, but disproportionate changes may increase the radiative imbalance at TOA. The net radiation at TOA can be modulated by allowing the parameters of the generalized overlap and heterogeneity scheme to vary, a dependence whose behavior we will discuss. The sensitivity of the cloud radiative forcing to the parameters of cloud horizontal heterogeneity and comparisons of CERES-derived forcing will be shown.
Low Reynolds Number Droplet Combustion In CO2 Enriched Atmospheres In Microgravity
NASA Technical Reports Server (NTRS)
Hicks, M. C.
2003-01-01
The effect of radiative feedback from the gas phase in micro-gravity combustion processes has been of increasing concern because of the implications in the selection and evaluation of appropriate fire suppressants. The use of CO2, an optically thick gas in the infrared region of the electromagnetic spectrum, has garnered widespread acceptance as an effective fire suppressant for most ground based applications. Since buoyant forces often dominate the flow field in 1-g environments the temperature field between the flame front and the fuel surface is not significantly affected by gas phase radiative absorption and re-emission as these hot gases are quickly swept downstream. However, in reduced gravity environments where buoyant-driven convective flows are negligible and where low-speed forced convective flows may be present at levels where gas phase radiation becomes important, then changes in environment that enhance gas phase radiative effects need to be better understood. This is particularly true in assessments of flammability limits and selection of appropriate fire suppressants for future space applications. In recognition of this, a ground-based investigation has been established that uses a droplet combustion configuration to systematically study the effects of enhanced gas phase radiation on droplet burn rates, flame structure, and radiative output from the flame zone.
Intensification of Climate-Carbon Feedbacks after 2100 and Implications for Disturbance Regimes
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Lindsay, K. T.; Munoz, E.; Fu, W.; Hoffman, F. M.; Moore, J. K.; Doney, S. C.; Mahowald, N. M.; Bonan, G. B.
2014-12-01
Long-term ecosystem and carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (version 1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 (and its extension). In three simulations, land and ocean biogeochemical models were exposed to the same trajectory of increasing atmospheric CO2. In one simulation, atmospheric CO2 and other forcing agents were radiatively active (fully coupled), modifying temperature and other aspects of climate. In another, CO2 was radiatively uncoupled, and in the third, both CO2 and other atmospheric forcing agents (including CH4, N2O, and aerosols) were radiatively uncoupled. In the fully coupled simulation, global mean air temperatures increased by 9.3°C from 1850 to 2300, with 4.4°C of this warming occurring after 2100. Without radiative forcing from CO2, cumulative warming was much lower at 2.4°C, but exceeding 2°C targets needed to avoid dangerous interference with the climate system. In response to climate change, ocean and land rates of carbon uptake were reduced, with the size of the impact increasing over time. In the oceans, reductions in cumulative carbon uptake from climate change increased from 3% during the 20th century to 40% during the 23rd century. By 2300, climate change had reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Most of this reduction occurred after 2100 as a consequence of increases in surface stratification and decreases in Atlantic meridional overturning circulation. Land fluxes similarly diverged over time, with climate change inducing a cumulative loss of 230 Pg C by 2300. On land the intensification of the hydrological cycle globally increased terrestrial water storage, although asymmetric responses were observed across different continents in the tropics. Net loss of carbon from tropical forest ecosystems, in response to large temperature increases, were partly offset by increases in carbon uptake in temperate and high latitude ecosystems. We conclude by presenting an assessment of how climate variability over land and burned area change century by century.
NASA Technical Reports Server (NTRS)
Zhang, Jiang-Long; Christopher, Sundar A.
2003-01-01
Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.
Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body
NASA Astrophysics Data System (ADS)
Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai
2018-04-01
This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.
NASA Astrophysics Data System (ADS)
Balmes, K.; Cronin, M. F.
2014-12-01
Clouds play a critical role in the ocean surface radiation balance, along with the solar zenith angle and the atmospheric moisture and aerosol content. Two moored buoys in the North Pacific - KEO (32.3°N, 144.6°E) and Papa (50°N, 145°W) - continuously measure solar and longwave radiation and other atmospheric and oceanic variables through two redundant systems. After identifying the primary system and constructing daily clear sky solar and longwave radiation values, the seasonal and regional clouds effects are quantified for the two locations. Situated south of the Kuroshio Extension, significant moisture content variability, associated with the Asian monsoon, affects solar and longwave radiation and cloud effects at KEO. Less seasonal variability is observed at buoy Papa located in the Gulf of Alaska. At KEO, the negative solar radiation cloud forcing outweigh the positive longwave radiation cloud forcing leading to ocean cooling, particularly in the summer. At Papa, the longwave radiation cloud forcing counteracts the solar cloud forcing during the winter, subsequently warming the ocean. The regional and seasonal variability of clouds represents a difficult aspect of climate modeling and an area for further research.
NASA Astrophysics Data System (ADS)
Lipat, Bernard R.; Tselioudis, George; Grise, Kevin M.; Polvani, Lorenzo M.
2017-06-01
This study analyzes Coupled Model Intercomparison Project phase 5 (CMIP5) model output to examine the covariability of interannual Southern Hemisphere Hadley cell (HC) edge latitude shifts and shortwave cloud radiative effect (SWCRE). In control climate runs, during years when the HC edge is anomalously poleward, most models substantially reduce the shortwave radiation reflected by clouds in the lower midlatitude region (LML; ˜28°S-˜48°S), although no such reduction is seen in observations. These biases in HC-SWCRE covariability are linked to biases in the climatological HC extent. Notably, models with excessively equatorward climatological HC extents have weaker climatological LML subsidence and exhibit larger increases in LML subsidence with poleward HC edge expansion. This behavior, based on control climate interannual variability, has important implications for the CO2-forced model response. In 4×CO2-forced runs, models with excessively equatorward climatological HC extents produce stronger SW cloud radiative warming in the LML region and tend to have larger climate sensitivity values than models with more realistic climatological HC extents.
Magnetic field amplification by the r-mode instability
NASA Astrophysics Data System (ADS)
Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.
2017-12-01
We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jingbo; Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing; Cao, Jianzhong
Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary diseasemore » (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.« less
Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging
Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.
2008-01-01
With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042
Multi-year predictability of climate, drought, and wildfire in southwestern North America.
Chikamoto, Yoshimitsu; Timmermann, Axel; Widlansky, Matthew J; Balmaseda, Magdalena A; Stott, Lowell
2017-07-26
Past severe droughts over North America have led to massive water shortages and increases in wildfire frequency. Triggering sources for multi-year droughts in this region include randomly occurring atmospheric blocking patterns, ocean impacts on atmospheric circulation, and climate's response to anthropogenic radiative forcings. A combination of these sources translates into a difficulty to predict the onset and length of such droughts on multi-year timescales. Here we present results from a new multi-year dynamical prediction system that exhibits a high degree of skill in forecasting wildfire probabilities and drought for 10-23 and 10-45 months lead time, which extends far beyond the current seasonal prediction activities for southwestern North America. Using a state-of-the-art earth system model along with 3-dimensional ocean data assimilation and by prescribing the external radiative forcings, this system simulates the observed low-frequency variability of precipitation, soil water, and wildfire probabilities in close agreement with observational records and reanalysis data. The underlying source of multi-year predictability can be traced back to variations of the Atlantic/Pacific sea surface temperature gradient, external radiative forcings, and the low-pass filtering characteristics of soils.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Low simulated radiation limit for runaway greenhouse climates
NASA Astrophysics Data System (ADS)
Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David
2013-08-01
The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate--the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282Wm-2 (lower than previously reported) and that 294Wm-2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.
Seasonal variation of columnar aerosol optical properties and radiative forcing over Beijing, China
NASA Astrophysics Data System (ADS)
Yu, Xingna; Lü, Rui; Liu, Chao; Yuan, Liang; Shao, Yixing; Zhu, Bin; Lei, Lu
2017-10-01
Long-term seasonal characteristics of aerosol optical properties and radiative forcing at Beijing (during March 2001-March 2015) were investigated using a combination of ground-based Sun/sky radiometer retrievals from the AERONET and a radiative transfer model. Aerosol optical depth (AOD) showed a distinct seasonal variation with higher values in spring and summer, and relatively lower values in fall and winter. Average Angstrom exponent (AE) in spring was lower than other seasons, implying the significant impact of dust episodes on aerosol size distribution. AE mainly distributed between 1.0 and 1.4 with an obvious uni-peak pattern in each season. The observation data showed that high AODs (>1.0) were clustered in the fine mode growth wing and the coarse mode. Compared to AOD, seasonal variation in single scattering albedo (SSA) showed an opposite pattern with larger values in summer and spring, and smaller ones in winter and fall. The highest volume size distribution and median radius of fine mode particles occurred in summer, while those of coarse mode particles in spring. The averaged aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) in spring, summer, fall and winter were -33 ± 22 W m-2, -35 ± 22 W m-2, -28 ± 20 W m-2, and -24 ± 23 W m-2 respectively, and these differences were mainly due to the SSA seasonal variation. The largest positive ARF within atmosphere occurred in spring, implying strong warming in the atmosphere. The low heating ratio in summer was caused by the increase in water vapor content, which enhanced light scattering capacity (i.e., increased SSA).
NASA Astrophysics Data System (ADS)
Taubman, Brett F.; Marufu, Lackson T.; Vant-Hull, Brian L.; Piety, Charles A.; Doddridge, Bruce G.; Dickerson, Russell R.; Li, Zhanqing
2004-01-01
Airborne observations made on 8 July 2002 over five locations in Virginia and Maryland revealed the presence of two discrete layers of air pollution, one of a smoke plume between ˜2 and 3 km above mean sea level advected from Quebec forest fires and another, underlying plume from fossil fuel combustion. Within the smoke layer, large increases were observed in submicrometer particle numbers, scattering, and absorption as well as ozone (O3) and CO (but not SO2) mixing ratios. The single-scattering albedos (ω0) in the layer between ˜2 and 3 km (mean value at 550 nm = 0.93 ± 0.02) were consistently smaller than those below (mean value at 550 nm = 0.95 ± 0.01). Aerosol optical depth in the lower 3 km of the atmosphere was determined at each of the five locations, and the value at 550 nm varied between 0.42 ± 0.06 and 1.53 ± 0.21. Calculations of clear-sky aerosol direct radiative forcing by the smoke plume using an atmospheric radiative transfer code indicated that the forcing at the top of the atmosphere was small relative to the forcing at the surface. Thus atmospheric absorption of solar radiation was nearly equal to the attenuation at the surface. The net effect was to cool the surface and heat the air aloft. A morning subsidence inversion positioned the smoke in a dense enough layer above the planetary boundary layer that solar heating of the layer maintained the temperature inversion through the afternoon. This created a positive feedback loop that prevented vertical mixing and dilution of the smoke plume, thereby increasing the regional radiative impact.
Longwave emission trends over Africa and implications for Atlantic hurricanes
NASA Astrophysics Data System (ADS)
Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.
2017-09-01
The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.
Comparison of fluorescent and high-pressure sodium lamps on growth of leaf lettuce
NASA Technical Reports Server (NTRS)
Koontz, H. V.; Prince, R. P.; Koontz, R. F.; Knott, W. M. (Principal Investigator)
1987-01-01
Radiation from high-pressure sodium (HPS) lamps provided more than a 50% increased yield (fresh and dry weight of tops) of loose-leaf lettuce cultivars Grand Rapids Forcing and RubyConn, compared to that obtained by radiation from cool-white fluorescent (CWF) lamps at equal photosynthetic photon flux; yet, input wattage was approximately 36% less. It was postulated that the considerable output of 700 to 850 nm radiation from the HPS lamp was a significant factor of the increased yield. Under HPS lamps, the leaves of both cultivars were slightly less green with very little red pigmentation ('RubyConn') and slightly elongated, compared to CWF, but plant productivity per unit electrical energy input was vastly superior with HPS.
Outputs expected from this project include improved confidence in direct radiative forcing and cloud radiative forcing, particularly over the United States and with regard to United States emissions publicly available, documented data sets including emission inventories of siz...
NASA Astrophysics Data System (ADS)
Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.
2013-04-01
The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta
2014-05-15
The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occursmore » at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.« less
NASA Astrophysics Data System (ADS)
Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar
2014-05-01
The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.
On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanas'ev, A A; Rubinov, A N; Gaida, L S
2015-10-31
Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)
NASA Astrophysics Data System (ADS)
Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang
2017-06-01
Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.
NASA Technical Reports Server (NTRS)
Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal
2017-01-01
Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.
A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing
NASA Astrophysics Data System (ADS)
Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.
2010-02-01
Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.
Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela
2013-09-01
Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Emissions and temperature benefits: The role of wind power in China.
Duan, Hongbo
2017-01-01
As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Guangxing; Penner, Joyce E; Clack, Herek L
2014-09-02
Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).
Climate impact of contrails and contrail cirrus
DOT National Transportation Integrated Search
2008-01-25
Generally, the climatic impact of air traffic (of which a substantial part may be due to contrails and contrail cirrus) today (year 2000) amounts to 2-8% of the global radiative forcing associated with climate change. Due to the projected increase in...
NASA Astrophysics Data System (ADS)
Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir
2017-11-01
Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.
Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing
NASA Astrophysics Data System (ADS)
Persad, Geeta Gayatri
Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols' surface versus atmospheric forcing. Future aerosol emissions patterns will affect the distribution of regional climate impacts. This dissertation interrogates how international trade affects existing assumptions about East Asia's future black carbon aerosol emissions, using integrated assessment modeling, emissions and economic data, and AM3 simulations. Exports emerge as a uniquely large and potentially growing source of Chinese black carbon emissions that could impede projected regional emissions reductions, with substantial climate and health consequences. The findings encourage greater emissions projection sophistication and illustrate how societal decisions may influence future aerosol forcing heterogeneity.
Radiation Pressure Measurements on Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.
Radiation Pressure Measurements on Micron-Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Mojahed, Alireza
2016-11-01
In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.
Mitri, F G
2006-07-01
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.
First observation-based estimates of cloud-free aerosol radiative forcing across China
Zhanqing Li; Kwon-Ho Lee; Yuesi Wang; Jinyuan Xin; Wei-Min Hao
2010-01-01
Heavy loading of aerosols in China is widely known, but little is known about their impact on regional radiation budgets, which is often expressed as aerosol radiative forcing (ARF). Cloudâfree direct ARF has either been estimated by models across the region or determined at a handful of locations with aerosol and/or radiation measurements. In this study, ARF...
NASA Astrophysics Data System (ADS)
Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.
2017-09-01
The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.
Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study
NASA Astrophysics Data System (ADS)
Yannopapas, Vassilios; Galiatsatos, Pavlos G.
2008-04-01
According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.
Mitri, F G
2005-08-01
The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.
Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2014-01-01
This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.
Greater focus needed on methane leakage from natural gas infrastructure.
Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P
2012-04-24
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Greater focus needed on methane leakage from natural gas infrastructure
Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.
2012-01-01
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226
Radiation Dose Assessments for Shore-Based Individuals in Operation Tomodachi
2012-09-30
force (lbs avoirdupois) pound-force inch pound-force/inch pound-force/foot2 pound-force/inch2 (psi) pound- mass (lbm avoirdupois) pound- mass ...foot2 (moment of inertia) pound- mass /foot3 rad (radiation dose absorbed) roentgen shake slug torr (mm Hg, 00 C) 1.000 000 x E -10 1.013 25 x E...who provided technical consultation and critical reviews of environmental monitoring data. • Mr. Brian Sanchez of ARA, Inc., who designed and
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.
Response to marine cloud brightening in a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; Boucher, Olivier; Cole, Jason N. S.; Ji, Duoying; Jones, Andy; Haywood, Jim; Kravitz, Ben; Lenton, Andrew; Moore, John C.; Niemeier, Ulrike; Phipps, Steven J.; Schmidt, Hauke; Watanabe, Shingo; Egill Kristjánsson, Jón
2018-01-01
Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to -1.9 W m-2, with a substantial inter-model spread of -0.6 to -2.5 W m-2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020-2069) -0.96 [-0.17 to -1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of -2.35 [-0.57 to -2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Frederiksen, Jorgen S.; Sisson, Janice M.; Osbrough, Stacey L.
2017-05-01
Changes in the characteristics of Southern Hemisphere (SH) storms, in all seasons, during the second half of the twentieth century, have been related to changes in the annual cycle of SH baroclinic instability. In particular, significant negative trends in baroclinic instability, as measured by the Phillips Criterion, have been found in the region of the climatological storm tracks; a zonal band of significant positive trends occur further poleward. Corresponding to this decrease/increase in baroclinic instability there is a decrease/increase in the growth rate of storm formation at these latitudes over this period, and in some cases a preference for storm formation further poleward than normal. Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that these trends are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land-use change. The MME is used in an analysis of variance method to separate the internal (natural) variability in the Phillips Criterion from influences associated with anomalous external radiative forcing. In all seasons, the leading externally forced mode has a significant trend and a loading pattern highly correlated with the pattern of trends in the Phillips Criterion. The covariance between the externally forced component of SH rainfall and the leading external mode strongly resembles the MME pattern of SH rainfall trends. A comparison between similar analyses of MME simulations using the second half of the twenty-first century of the Representative Concentration Pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in the Phillips Criterion and rainfall are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations.
Rajabi, Majid; Behzad, Mehdi
2014-04-01
In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.
Mathematical model of the solar radiation force and torques acting on the components of a spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1971-01-01
General expressions for the solar radiation force and torques are derived in the vectorial form for any given reflecting surface, provided that the reflecting characteristics of the surface, as well as the value of the solar constant, are known. An appropriate choice of a spacecraft-fixed frame of reference leads to relatively simple expressions for the solar radiation forces and torques in terms of the functions of the sun-spacecraft-earth angle.
Tunable optical lens array using viscoelastic material and acoustic radiation force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami
2015-10-28
A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.
Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less
Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue
NASA Astrophysics Data System (ADS)
Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.
NASA Astrophysics Data System (ADS)
Williams, Richard; Roussenov, Vassil; Goodwin, Philip; Resplandy, Laure; Bopp, Laurent
2017-04-01
Insight into how to avoid dangerous climate may be obtained from Earth system model projections, which reveal a near-linear dependence of global-mean surface warming on cumulative carbon emissions. This dependence of surface warming on carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing contribution from atmospheric CO2 and the dependence of radiative forcing from atmospheric CO2 on cumulative carbon emissions. Mechanistically each of these dependences varies, respectively, with ocean heat uptake, the CO2 and non-CO2 radiative forcing, and the ocean and terrestrial uptake of carbon. An ensemble of 9 Earth System models forced by up to 4 Representative Concentration Pathways are diagnosed. In all cases, the dependence of surface warming on carbon emissions evolves primarily due to competing effects of heat and carbon uptake over the upper ocean: there is a reduced effect of radiative forcing from CO2 due to ocean carbon uptake, which is partly compensated by enhanced surface warming due to a reduced effect of ocean heat uptake. There is a wide spread in the dependence of surface warming on carbon emissions, undermining the ability to identify the maximum permitted carbon emission to avoid dangerous climate. Our framework reveals how uncertainty in the future warming trend is high over the next few decades due to relatively high uncertainties in ocean heat uptake, non-CO2 radiative forcing and the undersaturation of carbon in the ocean.
Estimates of cloud radiative forcing in contrail clusters using GOES imagery
NASA Astrophysics Data System (ADS)
Duda, David P.; Minnis, Patrick; Nguyen, Louis
2001-03-01
Using data from the Geostationary Operational Environmental Satellite (GOES), the evolution of solar and longwave radiative forcing in contrail clusters is presented in several case studies. The first study examines contrails developing over the midwestern United States in a region of upper tropospheric moisture enhanced by the remnants of Hurricane Nora on September 26, 1997. Two other cases involve contrail clusters that formed over the Chesapeake Bay and the Atlantic Ocean on February 11 and March 5, 1999, respectively. The last study includes contrails forming over the tropical Pacific near Hawaii. Observations of tropical contrails near Hawaii show that the contrail optical properties are similar to those measured from satellite in the midlatitudes, with visible optical depths between 0.3 and 0.5 and particle sizes between 30 and 60 μm as the contrails mature into diffuse cloudiness. Radiative transfer model simulations of the tropical contrail case suggest that ice crystal shape may have an important effect on radiative forcing in contrails. The magnitudes of the observed solar and longwave radiative forcings were 5.6 and 3.2 W m-2 less than those from the corresponding model simulations, and these differences are attributed to the subpixel scale low clouds and uncertainties in the anisotropic reflectance and limb-darkening models used to estimate the observed forcing. Since the broadband radiative forcing in contrails often changes rapidly, contrail forcing estimates based only on the polar orbiting advanced very high resolution radiometer (AVHRR) data could be inaccurate due to the lack of sufficient temporal sampling.
Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol
NASA Astrophysics Data System (ADS)
Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona
2016-04-01
Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².
Aerosol indirect effect on tropospheric ozone via lightning
NASA Astrophysics Data System (ADS)
Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.
2012-12-01
Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and projecting future tropospheric O3 forcing as well as wildfire changes and call for integrated investigations of the coupled aerosol-cloud-chemistry system.
Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond
NASA Astrophysics Data System (ADS)
Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko
2013-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.
Non-gravitational perturbations and satellite geodesy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, A.; Nobill, A.M.; Farinella, P.
1987-01-01
This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.
[Standards and guidelines of radiation protection and safety in dental X-ray examinations].
Guo, X L; Li, G; Cheng, Y; Yu, Q; Wang, H; Zhang, Z Y
2017-12-09
With the rapid development of imaging technology, the application of dental imaging in diagnosis, treatment planning, intraoperative surgical navigation, monitoring of treatment or lesion development and assessment of treatment outcomes is playing an essential role in oral healthcare. The increased total number of dental X-ray examinations is accompanied by a relatively significant increase in collective dose to patients as well as to dental healthcare workers, which is harmful to human bodies to a certain degree. Some radiation protection standards and guidelines in dental radiology have been published in European countries, US, Canada and Australia, etc. Adherence to these standards and guidelines helps to achieve images with diagnostic quality and avoid unnecessary and repeated exposures. However, no radiation protection standard or guideline with regard to dental X-ray examinations has been put in force so far in mainland China. Therefore, a literature review on available radiation protection standards and guidelines was conducted to provide reference to the development of radiation protection standards or guidelines in mainland China.
Nondestructive Inspection (NDI) Facility Radiation Protection Survey for Homestead AFB, FL
2012-10-31
worker radiation dosimetry records, Bioenvironmental Engineering’s occupational safety records, NDI’s operating procedures/instructions, radiation...Nondestructive Inspection Methods (2) Air Force Manual 48-125, Personnel Ionizing Radiation Dosimetry (3) Air Force Occupational Safety and Health Standard...radiography 3. TLDs properly stored (AFMAN 48-125; T.O. 33B-1-1, 6.8.5.4.4) 4. TLDs returned to storage rack at the end
Ultrasonic Power Output Measurement by Pulsed Radiation Pressure
Fick, Steven E.; Breckenridge, Franklin R.
1996-01-01
Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms. PMID:27805084
NASA Astrophysics Data System (ADS)
Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.
2017-06-01
We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.
Does temperature nudging overwhelm aerosol radiative ...
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c
Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India
NASA Technical Reports Server (NTRS)
Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg
2013-01-01
Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic
Radiative effect of anthropogenic dust ageing
NASA Astrophysics Data System (ADS)
Klingmueller, K.; Lelieveld, J.; Karydis, V.; Stenchikov, G. L.
2017-12-01
The chemical ageing of mineral dust mixing due to the uptake of air pollution affects the optical and hygroscopical properties of the dust particles and their atmospheric residence time. This results in an anthropogenic radiative forcing associated with mineral dust despite the natural origin of most dust particles. Using the atmospheric chemistry-climate model EMAC with a detailed parametrisation of chemical ageing and an emission scheme accounting for the chemical composition of desert soils, we study the direct radiative forcing globally and regionally. Preliminary results indicate large positive and negative forcings, depending on the region. The predominantly negative top of atmosphere forcing over large parts of the dust belt, from West Africa to East Asia, reaches about -2 W / m2 south of the Sahel, in contrast to positive forcings over India and the western Atlantic. Globally averaged, these forcings partially counterbalance, resulting in a negative forcing of -0.04 to -0.05 W / m2, nevertheless representing a considerable fraction of the total dust forcing.
Mondav, Rhiannon; McCalley, Carmody K; Hodgkins, Suzanne B; Frolking, Steve; Saleska, Scott R; Rich, Virginia I; Chanton, Jeff P; Crill, Patrick M
2017-08-01
Biogenic production and release of methane (CH 4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mitri, F G; Fellah, Z E A
2014-01-01
The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w₀ and a diffraction convergence length known as the Rayleigh range z(R). Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere's resonance frequencies for kw₀≤1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero radiation force. Copyright © 2013 Elsevier B.V. All rights reserved.
Generation of high power sub millimeter radiation using free electron laser
NASA Astrophysics Data System (ADS)
Panwar, J.; Sharma, S. C.; Malik, P.; Yadav, M.; Sharma, R.
2018-03-01
We have developed an analytical formalism to study the emission of high power radiation lying in the sub millimetre range. A relativistic electron beam (REB) is velocity modulated by the pondermotive force exerted by the laser beams. After passing through the drift space, the beam gets density modulated which further interacts with the strong field wiggler and acquires a transverse velocity that couples with the modulated density of the beam in the presence of ion channel which contribute to the non-linear current density which further leads to the emission of the radiation. The output radiation can be modified by changing the wiggler parameters and the energy of the electron beam. The power of the output radiation is found to increase with the modulation. The obtained radiation can be employed for various applications.
A New Method of Comparing Forcing Agents in Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.
We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approachmore » for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.« less
Radiation force on drops and bubbles in acoustic Bessel beams modeled using finite elements
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Thiessen, David B.; Zhang, Likun
2009-11-01
Analysis of the scattering of sound by spheres centered on ordinary and helicoidal (higher-order) Bessel beams makes it possible to evaluate the acoustic radiation force on idealized drops and bubbles centered on the beam [1]. For potential applications it would be necessary to know if a small transverse displacement of the sphere from the beam's axis causes a radiation force that pushes the sphere toward (or away from) the axis of the beam. We applied 3D-finite elements to that problem. To trust FEM calculations of the radiation force with helicoidal beams it was first necessary to verify that analytical values for the axial force are recovered in the on-axis helicoidal case since only the zero-order beam had been previously studied with FEM. Cases have been identified where the force pushes a slightly off-set drop or bubble toward the axis. For some cases the effective potential method of Gorkov may be used to predict the transverse stability of small spheres.[4pt] [1] P. L. Marston, J. Acoust. Soc. Am. 125, 3539-3545 (2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less
Radiative Heat Loss Measurements During Microgravity Droplet Combustion in a Slow Convective Flow
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Kaib, Nathan; Easton, John; Nayagam, Vedha; Williams, Forman A.
2003-01-01
Radiative heat loss from burning droplets in a slow convective flow under microgravity conditions is measured using a broad-band (0.6 to 40 microns) radiometer. In addition, backlit images of the droplet as well as color images of the flame were obtained using CCD cameras to estimate the burning rates and the flame dimensions, respectively. Tests were carried out in air at atmospheric pressure using n-heptane and methanol fuels with imposed forced flow velocities varied from 0 to 10 centimeters per second and initial droplet diameters varied from 1 to 3 millimeters. Slow convective flows were generated using three different experimental configurations in three different facilities in preparation for the proposed International Space Station droplet experiments. In the 2.2 Second Drop-Tower Facility a droplet supported on the leading edge of a quartz fiber is placed within a flow tunnel supplied by compressed air. In the Zero-Gravity Facility (five-second drop tower) a tethered droplet is translated in a quiescent ambient atmosphere to establish a uniform flow field around the droplet. In the KC 135 aircraft an electric fan was used to draw a uniform flow past a tethered droplet. Experimental results show that the burn rate increases and the overall flame size decreases with increases in forced-flow velocities over the range of flow velocities and droplet sizes tested. The total radiative heat loss rate, Q(sub r), decreases as the imposed flow velocity increases with the spherically symmetric combustion having the highest values. These observations are in contrast to the trends observed for gas-jet flames in microgravity, but consistent with the observations during flame spread over solid fuels where the burning rate is coupled to the forced flow as here.
NASA Astrophysics Data System (ADS)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; Peng, Yiran; Liu, Yangang
2017-05-01
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ɛ exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius (Re) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled as the dispersion effect), which can help reconcile global climate models (GCMs) with the satellite observations. However, the total dispersion effects on both Re and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). In order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of Re and Au explicitly accounting for ɛ are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ɛ reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. Additionally, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m-2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m-2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δɛ/ΔNc).
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...
2017-05-12
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
NASA Technical Reports Server (NTRS)
Shindell, Drew T.; Grenfell, J. Lee; Rind, David; Price, Colin; Grewe, Volker; Hansen, James E. (Technical Monitor)
2001-01-01
A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater than 0.8 W/sq m are seen over large areas of the United States, Southern Europe, North Africa, the Middle East, Central Asia, and the Arctic. Radiative forcing is greater than 1.5 W/sq m over parts of these areas during Northern summer Though there are local differences, the radiative forcing is overall in good agreement with the results of other modeling studies in both its magnitude and spatial distribution, demonstrating that the simplified chemistry is adequate for climate studies.
The effect of aerosols on northern hemisphere wintertime stationary waves
NASA Astrophysics Data System (ADS)
Lewinschal, Anna; Ekman, Annica M. L.
2010-05-01
Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore, it shows that regional changes in the climate occur also where the radiative forcing from aerosol particles is not particularly strong, which would indicate that the large scale dynamical response to aerosol forcing can induce changes in temperature, precipitation and wind patterns outside the region where the forcing is initially located.
China, Swarup; Scarnato, Barbara; Owen, Robert C.; ...
2015-01-14
The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. In this paper, we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of ≤2.17. The top of the atmosphere directmore » radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. Lastly, the forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds.« less
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.
Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang
2016-01-01
Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.
Frequency dependence of the acoustic radiation force acting on absorbing cylindrical shells.
Mitri, Farid G
2005-02-01
The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk
2006-03-01
The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.
Radiation budget changes with dry forest clearing in temperate Argentina.
Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G
2013-04-01
Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.
Acoustic forcing of a liquid drop
NASA Technical Reports Server (NTRS)
Lyell, M. J.
1992-01-01
The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.
Radiative flux and forcing parameterization error in aerosol-free clear skies
Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...
2015-07-03
This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m 2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentiallymore » unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less
NASA Astrophysics Data System (ADS)
Kshevetsky, Oleg S.
2018-01-01
We represent evaluating analysis of the feasibilities for controlling the properties of thermoelectric energy converters using EM radiation in the regimes of cooling, heating, electromotive force generation, or electric current generation. Thus we investigate the influence of optical radiation both on electric conductivity and thermo-electromotive force coefficient of thermoelectric materials. We also discuss promising applications for controlling the properties of thermoelectric energy converters using EM radiation. We represent the results of experimental study of positionsensitive energy converters in the regimes of electromotive force generation and the electric current generation (in part, photo-thermoelectric position-sensitive temperature detectors), position-sensitive photo-thermoelectric energy converters in the regimes of cooling, heating, parallel photoelectric and thermoelectric conversion of sun-light optical radiation into electric power.
Radiation forces on small particles in the solar system
NASA Technical Reports Server (NTRS)
Burns, J. A.; Lamy, P. L.; Soter, S.
1979-01-01
Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.
2018-05-01
Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.
Atmospheric Response And Feedback To Smoke Radiative Forcing From Wildland Fires
Yongqiang Liu
2003-01-01
Smoke from wildland fires is one of the sources of atmospheric anthropogenic aerosols. it can dramatically affect regional and global radiative balance. Ross et al. (1998) estimated a direct radiative forcing of nearly -20 Wm-2 for the 1995 Amazonian smoke season (August and September). Penner et al. (1992) indicated that the magnitude of the...
The effects of radiation drag on radial, relativistic hydromagnetic winds
NASA Technical Reports Server (NTRS)
Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong
1992-01-01
The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.
NASA Astrophysics Data System (ADS)
Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team
2015-03-01
We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.
Active electromagnetic invisibility cloaking and radiation force cancellation
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2018-03-01
This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.
EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle
NASA Astrophysics Data System (ADS)
Wild, Martin; Liepert, Beate
2010-06-01
Variations in the intensity of the global hydrological cycle can have far-reaching effects on living conditions on our planet. While climate change discussions often revolve around possible consequences of future temperature changes, the adaptation to changes in the hydrological cycle may pose a bigger challenge to societies and ecosystems. Floods and droughts are already today amongst the most damaging natural hazards, with floods being globally the most significant disaster type in terms of loss of human life (Jonkman 2005). From an economic perspective, changes in the hydrological cycle can impose great pressures and damages on a variety of industrial sectors, such as water management, urban planning, agricultural production and tourism. Despite their obvious environmental and societal importance, our understanding of the causes and magnitude of the variations of the hydrological cycle is still unsatisfactory (e.g., Ramanathan et al 2001, Ohmura and Wild 2002, Allen and Ingram 2002, Allan 2007, Wild et al 2008, Liepert and Previdi 2009). The link between radiation balance and hydrological cycle Globally, precipitation can be approximated by surface evaporation, since the variability of the atmospheric moisture storage is negligible. This is the case because the fluxes are an order of magnitude larger than the atmospheric storage (423 x 1012 m3 year-1 versus 13 x 1012 m3 according to Baumgartner and Reichel (1975)), the latter being determined by temperature (Clausius-Clapeyron). Hence the residence time of evaporated water in the atmosphere is not more than a few days, before it condenses and falls back to Earth in the form of precipitation. Any change in the globally averaged surface evaporation therefore implies an equivalent change in precipitation, and thus in the intensity of the global hydrological cycle. The process of evaporation requires energy, which it obtains from the surface radiation balance (also known as surface net radiation), composed of the absorbed solar and net thermal radiative exchanges at the Earth's surface. Globally averaged, this surface radiation balance is positive, since radiative absorption, scattering and emission in the climate system act to generate an energy surplus at the surface and an energy deficit in the atmosphere (Liepert 2010). Evaporation, or more precisely its energy equivalent, the latent heat flux, is the main process that compensates for this imbalance between surface and atmosphere, since the latent heat dominates the convective energy flux over sensible heating. The radiative energy surplus at the surface is thus mainly consumed by evaporation and moist convection and subsequently released in the atmosphere through condensation. This implies that any alterations in the available radiative energy will induce changes in the water fluxes. Our focus in this editorial is therefore on the surface radiation balance as the principal driver of the global hydrological cycle. Note that this energetic view is in agreement with that of Richter and Xie (2008) who argue that the spatial and temporal behaviour of the process of evaporation is controlled by surface and atmospheric properties such as atmospheric stability, wind speed, moisture deficit and moisture availability. From radiation theory it is expected that with increasing radiative absorption due to abundance of anthropogenic greenhouse gases in the atmosphere and consequent warming, the emission of thermal energy from the atmosphere towards the surface is increasing (known as downward thermal radiation). This enhances the radiative energy surplus at the surface, and, where surface water is not limited, fuels evaporation besides warming the Earth's surface. The enhanced greenhouse effect therefore tends to accelerate the hydrological cycle, as also shown in many climate model simulations with increasing levels of greenhouse gases (e.g., IPCC 2007, but also see Yang et al 2003, Andrews et al 2009). We can assume that the increase in greenhouse gases since preindustrial times had already led to a substantial increase of downward thermal radiation during the 20th century, even though direct observational evidence is sparse and restricted to the latter part of the century (Philipona et al 2004, Wild et al 2008). Precipitation records averaged over global land surfaces indicate an overall, albeit not significant, increase in precipitation and intensification of the hydrological cycle over the 20th century (Trenberth et al 2007), in line with the aforementioned surface energy gain from the increased greenhouse gases and related downward thermal radiation. However, the observations show also that precipitation has not simply followed the increasing greenhouse gas forcing, but has undergone strong decadal variations, with extended periods of both increases and decreases. This is evident in figure 1(a), which shows global land precipitation over the 20th century as determined from the Global Historic Climate Network (GHCN; Peterson and Vose 1997, see also Trenberth et al 2007, figure 3.12). An increase in precipitation can be noted in the 1940s, followed by an overall decrease until the mid-1980s, and a renewed increase more recently. Figure 1 Figure 1. Observed terrestrial precipitation anomalies (a) and the longest observational surface solar radiation record measured in Stockholm (b) covering the period 1923-2000 (annual means). The 11-year running means are given in blue. Precipitation data from GHCN, radiation data from GEBA. However, not only greenhouse-gas-induced thermal radiation changes, but also solar radiation, as a result of changes in the atmospheric transmission, can alter the surface radiation balance and thus the amount of energy available to drive the hydrological cycle. Solar forcings may be even more efficient in modifying the intensity of the hydrological cycle than thermal forcings, as indicated by a higher hydrological sensitivity (e.g., Allen and Ingram 2002, Liepert et al 2004). The hydrological sensitivity, defined as change of precipitation per unit temperature change, is found to be 2-3 times larger under solar forcings than under thermal forcings (Liepert et al 2004, Andrews et al 2009). This is related to the fact that solar forcings apply at the surface directly because of the high solar transparency of the atmosphere compared to thermal radiation. Solar forcings thus effectively alter the surface radiation balance and the associated imbalance between the surface and atmospheric energy contents, which needs to be compensated for by convective fluxes and related evaporation/precipitation. Greenhouse-gas-induced thermal forcings, on the other hand, heat the atmosphere directly through radiative absorption and the surface indirectly through downward thermal radiation. Thermal forcings are therefore less effective in strengthening the imbalance between the surface and atmospheric energy contents. Hence the required changes in the compensational convective fluxes and associated evaporation/precipitation are smaller (equation (4) in Liepert and Previdi 2009). The different effects of solar and thermal forcings become particularly evident in the direct (fast) response of the hydrological cycle to them, while the subsequent longer-term response of the hydrological cycle, including all feedbacks induced by these forcings, is similar between the two forcing mechanisms (Andrews et al 2009, Lambert and Webb 2008). The direct effect of doubling of CO2 concentration reduces the precipitation increase in climate models by about 25% (Lambert and Webb 2008), while such compensational effects do not apply with solar forcings. Recent evidence suggests that the amount of solar radiation incident at the Earth's surface (hereafter referred to as downward solar radiation) has indeed not been stable over time but has undergone significant variations on decadal timescales. This evidence comes from the networks of surface radiation measurements taken around the globe which became operational on a widespread basis during the 1950s. Specifically, the measurements show a predominant decrease in downward solar radiation from the 1950s up to the 1980s (known as 'global dimming') and a partial recovery thereafter at many of the sites (known as 'brightening') (e.g., Gilgen et al 1998, Stanhill and Cohen 2001, Liepert 2002, Wild et al 2005, Wild 2009a). The consecutive downward and upward trends have at least to some extent been attributed to increasing and decreasing air pollution, respectively (Streets et al 2009), apart from the natural inter-decadal variability of cloudiness and volcanic eruptions. The longest observational records show in addition a tendency for an increase in downward solar radiation in the first part of the 20th century ('early brightening'). An illustrative example is given in figure 1(b), which depicts the longest continuous record of downward solar radiation measured in Stockholm. This series, starting in 1923, shows an increase in the 1930s and 1940s, an overall decrease from the 1950s up to the 1980s and a more recent recovery. This evolution is, surprisingly, at least qualitatively similar to the global land precipitation record shown in figure 1(a). Although a comparison of a radiation time series measured at a single station with a global land-averaged precipitation time series is by no means representative, it may illustrate the above point of a potential close link between decadal variations of surface radiation and precipitation. Attempts have been made to infer decadal changes in the surface radiation balance based on both modelling and observational approaches. Liepert et al (2004) analyzed equilibrium experiments with a climate model with greenhouse gas and aerosol concentrations representative for mid-1880s and mid-1980s conditions, respectively. They noted a decrease in absorbed solar radiation at the surface of 3.8 Wm-2 globally, mainly due to the aerosol direct and indirect effects, which are larger than the increased greenhouse effect of 1.9 Wm-2. This resulted in a reduction of net surface radiation of 1.9 Wm-2 globally, and a related spin down of the simulated hydrological cycle. Wild et al (2004), based on observational evidence, estimated that the decrease in downward solar radiation between the 1950s and 1980s may have overcompensated the increase in the greenhouse-gas-induced downward thermal radiation during the same period, thus implying a decrease in the surface radiation balance over this period. This fits well with the overall decrease in global terrestrial precipitation between the 1950s and 1980s seen in figure 1(a). This decrease is on the order of 30-40 mm, which corresponds to roughly 3 Wm-2 latent heat equivalent, and which would imply a similar decrease in surface net radiation. Assuming further a decreasing net surface thermal cooling of -1 Wm-2 over this period (Wild et al 2004), this would require an overall decline of about 4 Wm-2 in surface solar radiation to balance it, which is not unrealistic. Since the 1980s, however, there are indications that downward solar radiation overall has recovered and contributed to the increase in the radiative imbalance at the surface, which had increased already due to the increasing downward thermal radiation (Wild et al 2008, see also figure 1(b). This increase in the surface radiation balance, estimated at 2 Wm-2 decade-1 in Wild et al (2008), fits the observational evidence for a recent increase in terrestrial precipitation and associated intensification of the hydrological cycle (figure 1(a)). Improved knowledge of variations of the components of the surface radiation balance is therefore a key to our understanding of past, present and future variations in the intensity of the hydrological cycle. Surface radiation balance and the hydrological cycle in climate models A number of recent studies have pointed out that climate models driven with all known historical forcings simulate smaller changes in precipitation than observed over recent decades (Zhang et al 2007, Wentz et al 2007, Allan and Soden 2007, Liepert and Previdi 2009, Wild et al 2008, Wild 2009a), and may underestimate the increase in precipitation extremes with global warming (Allan and Soden 2008). For the present study, in figure 2 we compare precipitation changes during the 20th century over land surfaces as observed (blue lines, equivalent to figure 1(a)) and simulated by 18 individual coupled atmosphere-ocean models (CMIP3 models) used in the IPCC-AR4 report (in red). Shown are annual anomalies with respect to the 20th century means (dashed lines) as well as superimposed 11-year running means (solid lines) that highlight the decadal variations in both models and observations. None of the models captures the observed decadal variations during the 20th century. Particularly, none of the models qualitatively reproduces the sequence of increase in the 1930s/1940s, decrease from 1950s to the 1980s and renewed increase to 2000, and the correlations between observations and models are insignificant. Standard deviations of the 11-year running means, indicative of the amplitude of decadal variations in the 20th century annual precipitation, amount to 10.7 mm in the GHNC observations and 5.0 mm on average in the models (with a range from 2.6 mm to 10.6 mm). The closest standard deviation to the observations with 10.6 mm is found in the miroc_medres model simulation; however this simulation does not reproduce the main temporal characteristics of the observed time series either (figure 2). Thus, none of the models is capable of simulating the full extent and temporal evolution of decadal variations in 20th century terrestrial precipitation (see also Liepert and Previdi 2009). Here we argue that, among other possibilities, inadequacies in the simulation of surface radiation balance may contribute to the poor simulation of decadal variations in precipitation during the 20th century seen in figure 2. A closer lookat the simulated evolution of the radiation balance over land surfaces during the 20th century seems to confirm this. Specifically, only half of the models qualitatively reproduce the decrease in the terrestrial surface radiation balance between the 1950s and 1980s and the subsequent recovery as indicated in estimates based on observations. Quantitatively, from 1950 to 1985, the linear change in the model-calculated surface radiation balance is on average almost zero, as opposed to the observational evidence for declining surface radiation balance over this period (Wild et al 2004). Over the period 1985-2000, the multi-model mean amounts to an increase of 0.22 Wm-2 decade-1 (with a range from -0.10 to 0.57 Wm-2 decade-1, which is an order of magnitude smaller than for example the estimate given in Wild et al (2008). Figure 2 Figure 2. Terrestrial precipitation anomalies during the 20th century as observed (in blue) and simulated by various models used in the IPCC 4th assessment report and in the Coupled Model Intercomparison Project (CMIP3) (in red). Annual mean time series given as dashed lines, 11-year running means as solid lines. Reference period is the entire 20th century. Annual precipitation observations from GHCN (Peterson and Vose 1997), units mm. Truly global observational estimates of precipitation changes (covering both land and oceans) exist only since 1987 with the advent of satellite data from the Special Sensor Microwave Imager (SSM/I). Based on these observations, Wentz et al (2007) determined an increase in global mean precipitation of 13.2 +/- 4.8 mm yr-1 decade-1 over the period 1987-2006. To induce such an increase, which corresponds to a latent heat release of approximately 1 Wm-2 per decade, an increase in the globally averaged surface radiation balance of at least the same amount would be required accordingly. We obtained this estimate under the assumption of (1) an unchanged sensible heat flux and (2) an unchanged top of atmosphere radiation balance and corresponding surface heat uptake by the ocean and landmasses, so that globally the change in surface net radiation is balanced by the change in latent heat flux. Regarding assumption (1), the global mean sensible heat flux is an order of magnitude smaller than the latent heat flux, and therefore even large relative changes in sensible heating would be small in absolute terms. Assumption (2) is a conservative assumption and can be considered an upper limit because ocean and land heat uptake has likely subtracted a portion of the radiative energy available for evaporation (see, e.g., Hansen et al 2005) over recent decades. Therefore, if the Wentz et al (2007) estimated precipitation increase is unbiased, this would likely require a global mean surface radiation increase of more than 1 Wm-2 per decade (cf also the estimated 2 Wm-2 per decade increase in surface net radiation over land surfaces in Wild et al (2008)). Current climate models, on the other hand, show a much smaller average increase of less than 0.3 Wm-2 per decade. The underestimation of decadal scale variations in downward solar radiation and a lack of dimming and brightening in the models (Romanou et al 2007, Bodas-Salcedo et al 2008, Wild 2009b, Ruckstuhl and Norris 2009) could have affected the simulations of the surface radiation balance. While the response to the gradually increasing greenhouse gases in the thermal component of the surface energy balance is well understood and adequately simulated, much more uncertainties are apparent in the solar component. Since the hydrological cycle may respond particularly sensitive to non-homogeneous short-living types of solar forcings such as aerosols (see discussion above), the identification of the origins of the uncertainties in the solar forcings is of primary importance for predicting future changes. Uncertainties may be related to weaknesses in three areas: (1) Deficiencies in the parameterization of the relevant processes: aerosol-cloud interactions are still poorly understood and related model representations are subject to considerable uncertainties or entirely neglected. Note that only few models include the effects of aerosols on clouds, which dominate the hydrological response as shown in Romanou et al (2007). Furthermore, many models only consider the temporal variations in scattering sulphur aerosol and neglect changes in other aerosol types such as absorbing black carbon or desert dust, which would enhance the degree of freedom of aerosol-cloud interactions and change the stability of the atmosphere. (2) Uncertainties in the highly variable spatial and temporal distributions of global aerosol fields used in the 20th century simulations as e.g. shown by Ruckstuhl and Norris (2009). Also, most models still prescribe fixed spatial aerosol burdens in the atmosphere, rather than aerosol and aerosol precursor emission fields, which could enhance the degree of freedom of the global aerosol system. (3) Shortcomings in the representation of the natural variability in atmosphere/ocean exchanges of energy and water that result in variations of convection and consequently in cloudiness and humidity. For example state-of-the-art climate models do not realistically reproduce decadal variations in the ocean atmosphere system such as Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) or El Nino-Southern Oscillation (ENSO) that may have significant effects. Conclusions To summarize, we emphasize the prominent role of the surface radiation balance as a key determinant of the intensity of the global hydrological cycle. There are indications that the surface radiation balance underwent significant decadal variations during the 20th century, which are reflected in the variations of the intensity of the global hydrological cycle. The current generation of climate models does not show such strong variability in either of these quantities. Here we point to the inadequate representation of surface solar dimming and brightening as a potential cause of these model deficiencies. This is further supported by the recent evidence that solar forcings are more effective in altering the intensity of the global hydrological cycle than their thermal (greenhouse-gas-forced) counterparts. Improved knowledge of variations of the components of the surface radiation balance as well as their underlying forcing factors are therefore key to our understanding of past, present and future variations in the intensity of the hydrological cycle. The recent implementation of advanced space-borne and surface-based monitoring systems should allow for more rigorous constraints of the radiative drivers behind the hydrological cycle. Together with improved modelling capabilities, including sophisticated interactive aerosol and cloud microphysics schemes, these advances should result in more realistic simulations and predictions of the intensity of the hydrological cycle in the near future. Acknowledgements Particular thanks go to Professor Christoph Schär for his valuable input to the manuscript and for his support. Richard Allan's comments on the manuscript were highly appreciated. This study is part of the National Centre for Competence in Climate Research (NCCR Climate) project HYCLIM (Intensification of the water cycle: scenarios, processes and extremes) supported by the Swiss National Science Foundation, and was further sponsored by National Aeronautics and Space Agency Modeling Analysis and Prediction Program NASA-MAP grant NNX09AV16G. We acknowledge the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, US Department of Energy. References Allan R P 2007 Improved simulation of water vapour and clear-sky radiation using 24-hour forecasts from ERA40 Tellus A 59 336-43 Allan R P and Soden B J 2007 Large discrepancy between observed and simulated precipitation trends Geophys. Res. Lett. 34 L18705 Allan R P and Soden B J 2008 Precipitation extremes and the amplification of atmospheric warming Science 321 1481-4 Allen M R and Ingram W 2002 Constraints on future changes in climate and the hydrologic cycle Nature 419 224-32 Andrews T, Forster P M and Gregory J M 2009 A surface energy perspective on climate change J. Climate 22 2557-70 Baumgartner A and Reichel E 1975 The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff (Amsterdam: Elsevier) 179 pp Bodas-Salcedo A, Ringer M A and Jones A 2008 Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1) J. Climate 21 4723-48 Gilgen H, Wild M and Ohmura A 1998 Means and trends of shortwave irradiance at the surface estimated from GEBA J. Climate 11 2042-61 Hansen J et al 2005 Earth's energy imbalance: confirmation and implications Science 308 1431-5 IPCC 2007 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (Cambridge: Cambridge University Press) 996 pp Jonkman S N 2005 Global perspectives on loss of human life caused by floods Natural Hazards 34 151-75 Lambert F H and Webb M J 2008 Dependency of global mean precipitation on surface temperature Geophys. Res. Lett. 35 L16706 Liepert B G 2002 Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990 Geophy. Res. Lett. 29 1421 Liepert B G 2010 The physical concept of climate forcing Wiley Interdisciplinary Reviews—Climate Change submitted Liepert B G, Feichter J, Lohmann U and Roeckner E 2004 Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett. 31 L06207 Liepert B G and Previdi M 2009 Do models and observations disagree on the rainfall response to global warming? J. Climate 22 3156-66 Ohmura A and Wild M 2002 Is the hydrological cycle accelerating? Science 298 1345-6 Ramanathan V, Crutzen P J, Kiehl J T and Rosenfeld D 2001 Aerosol, climate and the hydrological cycle Science 294 2119-24 Romanou A, Liepert B, Schmidt G A, Rossow W B, Ruedy R A and Zhang Y 2007 20th century changes in surface solar irradiance in simulations and observations Geophys. Res. Lett. 34 L05713 Peterson T C and Vose R S 1997 An overview of the Global Historical Climatology Network temperature database Bull. Am. Meteorol. Soc. 78 2837-49 Philipona R, Dürr B, Marty C, Ohmura A and Wild M 2004 Radiative forcing—measured at Earth's surface—corroborate the increasing greenhouse effect Geophys. Res. Lett. 31 L03202 Richter I and Xie S-P 2008 Muted precipitation increase in global warming simulations: a surface evaporation perspective J. Geophys. Res. 113 D24118 Ruckstuhl C and Norris J 2009 How do aerosol histories affect solar 'dimming' and 'brightening' over Europe? IPCC-AR4 models versus observations J. Geophys. Res. 114 D00D04 Stanhill G and Cohen S 2001 Global dimming: a review of the evidence for a widespread and significant reduction in global radiation Agri. Forest Meteorol. 107 255-78 Streets D G, Yan F, Chin M, Diehl T, Mahowald N, Schultz M, Wild M, Wu Y and Yu C 2009 Discerning human and natural signatures in regional aerosol trends, 1980-2006 J. Geophys. Res. 114 D00D18 Trenberth K E et al 2007 Observations: surface and atmospheric climate change Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (Cambridge: Cambridge University Press) Wentz F J, Ricciardulli L, Hilburn K and Mears C 2007 How much more rain will global warming bring? Science 317 233-35 Wild M 2009a Global dimming and brightening: a review J. Geophys. Res. 114 D00D16 Wild M 2009b How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth- century daytime and nighttime warming? J. Geophys. Res. 114 D00D11 Wild M, Grieser J and Schär C 2008 Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle Geophys. Res. Lett. 35 L17706 Wild M, Ohmura A, Gilgen H and Rosenfeld D 2004 On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle Geophys. Res. Lett. 31 L11201 Wild M et al 2005 From dimming to brightening: decadal changes in surface solar radiation Science 308 847-50 Yang F, Kumar A, Schlesinger M E and Wang W 2003 Intensity of hydrological cycles in warmer climates J. Climate 16 2419-23 Zhang X et al 2007 Detection of human influence on twentieth-century precipitation trends Nature 448 461-5
Finite-size radiation force correction for inviscid spheres in standing waves.
Marston, Philip L
2017-09-01
Yosioka and Kawasima gave a widely used approximation for the acoustic radiation force on small liquid spheres surrounded by an immiscible liquid in 1955. Considering the liquids to be inviscid with negligible thermal dissipation, in their approximation the force on the sphere is proportional to the sphere's volume and the levitation position in a vertical standing wave becomes independent of the size. The analysis given here introduces a small correction term proportional to the square of the sphere's radius relative to the aforementioned small-sphere force. The significance of this term also depends on the relative density and sound velocity of the sphere. The improved approximation is supported by comparison with the exact partial-wave-series based radiation force for ideal fluid spheres in ideal fluids.
Idealized Cloud-System Resolving Modeling for Tropical Convection Studies
NASA Astrophysics Data System (ADS)
Anber, Usama M.
A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.
NASA Astrophysics Data System (ADS)
Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.
2017-07-01
This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K/day) and + 15 ± 6 W/m2 for BC aerosol (heating rate of + 0.15 ± 0.06 K/day). These values of radiative forcing and heating rate for BC aerosol represent about 70% of their values for composite aerosol, which highlights the crucial role that BC aerosols play in modifying the radiation budget and climate.
The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Remer, Lorraine
1999-01-01
Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Kravitz, Ben; Lu, Jian
Here we demonstrate that changes of the North Atlantic subtropical high (NASH) and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO2 increase can both be understood as a remote response to changes in the African and Indian monsoon systems. Despite different sources and patterns of radiative forcing (increase in CO2 concentration vs. changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are very similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing. Anmore » increase in energy input over land drives a westward displacement of the coupled NASH-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. Ultimately, this study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence
NASA Astrophysics Data System (ADS)
Stevenson, David S.; Doherty, Ruth M.; Sanderson, Michael G.; Collins, William J.; Johnson, Colin E.; Derwent, Richard G.
2004-09-01
A chemistry-climate model has been applied to study the radiative forcings generated by aircraft NOx emissions through changes in ozone and methane. Four numerical experiments, where an extra pulse of aircraft NOx was emitted into the model atmosphere for a single month (January, April, July, or October), were compared to a control experiment, allowing the aircraft impact to be isolated. The extra NOx produces a short-lived (few months) pulse of ozone that generates a positive radiative forcing. However, the NOx and O3 both generate OH, which leads to a reduction in CH4. A detailed analysis of the OH budget reveals the spatial structure and chemical reactions responsible for the generation of the OH perturbation. Methane's long lifetime means that the CH4 anomaly decays slowly (perturbation lifetime of 11.1 years). The negative CH4 anomaly also has an associated negative O3 anomaly, and both of these introduce a negative radiative forcing. There are important seasonal differences in the response of O3 and CH4 to aircraft NOx, related to the annual cycle in photochemistry; the O3 radiative forcing calculations also have a seasonal dependence. The long-term globally integrated annual mean net forcing calculated here is approximately zero, although earlier work suggests a small net positive forcing. The model design (e.g., upper tropospheric chemistry, convection parameterization) and experimental setup (pulse magnitude and duration) may somewhat influence the results: further work with a range of models is required to confirm these results quantitatively.
Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.
Jacobson, M Z
2001-02-08
Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon--soot--that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed) or incorporated within them (internally mixed), or a black-carbon core could be surrounded by a well mixed shell. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1992-01-01
This paper focuses on the role of cloud- and surface-atmosphere forcing on the net radiation balance and their potential impact on the general circulation at climate time scales. The globally averaged cloud-forcing estimates and cloud sensitivity values taken from various recent studies are summarized. It is shown that the net radiative heating over the tropics is principally due to high clouds, while the net cooling in mid- and high latitudes is dominated by low and middle clouds.
Trapp, Robert J.; Diffenbaugh, Noah S.; Brooks, Harold E.; Baldwin, Michael E.; Robinson, Eric D.; Pal, Jeremy S.
2007-01-01
Severe thunderstorms comprise an extreme class of deep convective clouds and produce high-impact weather such as destructive surface winds, hail, and tornadoes. This study addresses the question of how severe thunderstorm frequency in the United States might change because of enhanced global radiative forcing associated with elevated greenhouse gas concentrations. We use global climate models and a high-resolution regional climate model to examine the larger-scale (or “environmental”) meteorological conditions that foster severe thunderstorm formation. Across this model suite, we find a net increase during the late 21st century in the number of days in which these severe thunderstorm environmental conditions (NDSEV) occur. Attributed primarily to increases in atmospheric water vapor within the planetary boundary layer, the largest increases in NDSEV are shown during the summer season, in proximity to the Gulf of Mexico and Atlantic coastal regions. For example, this analysis suggests a future increase in NDSEV of 100% or more in locations such as Atlanta, GA, and New York, NY. Any direct application of these results to the frequency of actual storms also must consider the storm initiation.
Simulated responses of terrestrial aridity to black carbon and sulfate aerosols
NASA Astrophysics Data System (ADS)
Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.
2016-01-01
Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.
Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.
2012-01-01
Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.
The Dynamics of Hadley Circulation Variability and Change
NASA Astrophysics Data System (ADS)
Davis, Nicholas Alexander
The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to radiative forcings. It is found that it is primarily the eddy response to greenhouse-gas-like forcings that causes Hadley cell expansion. However, the mean flow changes in the Hadley circulation itself crucially mediate this eddy response such that the full response comes about due to eddy-mean flow interactions. A theoretical scaling for the Hadley cell width based on moist static energy is developed to provide an improved framework to understand climate change responses of the general circulation. The scaling predicts that expansion is driven by increases in the surface latent heat flux and the width of the rising branch of the circulation and opposed by increases in tropospheric radiative cooling. A reduction in subtropical moist static energy flux divergence by the eddies is key, as it tilts the energetic balance in favor of expansion.
Radiation testing of GaAs on CRRES and LIPS experiment
NASA Technical Reports Server (NTRS)
Trumble, T. M.; Masloski, K.
1984-01-01
The radiation damage of solar cells has become a prime concern to the U.S. Air Force due to longer satellite lifetime requirements. Flight experiments were undertaken on the Navy Living Plume Shield (LPS) satellite and the NASA/Air Force Combined Release and Radiation Effects Satellite (CRRES) to complement existing radiation testing. Each experiment, the rationale behind it, and its approach and status are presented. The effect of space radiation on gallium arsenide (GaAs) solar cells was the central parameter investigated. Specifications of the GaAs solar cells are given.
Wang, Shiying; Wang, Claudia Y; Unnikrishnan, Sunil; Klibanov, Alexander L; Hossack, John A; Mauldin, F William
2015-11-01
The objective of this study was to optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom-modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as "control peak"). In agreement with in vitro results, the control peak phenomenon was observed in vivo in a murine model. This study provides the first optical observation of microbubble-binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called control peak was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging.
Wang, Shiying; Wang, Claudia Y.; Unnikrishnan, Sunil; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William
2015-01-01
Objectives To optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Materials and Methods Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Results Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as “control peak”). In agreement with in vitro results, the “control peak” phenomenon was observed in vivo in a murine model. Conclusions This study provides the first optical observation of microbubble binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called “control peak” was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force, and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging. PMID:26135018
NASA Astrophysics Data System (ADS)
Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa
2006-05-01
The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this method will include, ex vivo and in vivo, stiffness and temperature.
Confronting the Uncertainty in Aerosol Forcing Using Comprehensive Observational Data
NASA Astrophysics Data System (ADS)
Johnson, J. S.; Regayre, L. A.; Yoshioka, M.; Pringle, K.; Sexton, D.; Lee, L.; Carslaw, K. S.
2017-12-01
The effect of aerosols on cloud droplet concentrations and radiative properties is the largest uncertainty in the overall radiative forcing of climate over the industrial period. In this study, we take advantage of a large perturbed parameter ensemble of simulations from the UK Met Office HadGEM-UKCA model (the aerosol component of the UK Earth System Model) to comprehensively sample uncertainty in aerosol forcing. Uncertain aerosol and atmospheric parameters cause substantial aerosol forcing uncertainty in climatically important regions. As the aerosol radiative forcing itself is unobservable, we investigate the potential for observations of aerosol and radiative properties to act as constraints on the large forcing uncertainty. We test how eight different theoretically perfect aerosol and radiation observations can constrain the forcing uncertainty over Europe. We find that the achievable constraint is weak unless many diverse observations are used simultaneously. This is due to the complex relationships between model output responses and the multiple interacting parameter uncertainties: compensating model errors mean there are many ways to produce the same model output (known as model equifinality) which impacts on the achievable constraint. However, using all eight observable quantities together we show that the aerosol forcing uncertainty can potentially be reduced by around 50%. This reduction occurs as we reduce a large sample of model variants (over 1 million) that cover the full parametric uncertainty to around 1% that are observationally plausible.Constraining the forcing uncertainty using real observations is a more complex undertaking, in which we must account for multiple further uncertainties including measurement uncertainties, structural model uncertainties and the model discrepancy from reality. Here, we make a first attempt to determine the true potential constraint on the forcing uncertainty from our model that is achievable using a comprehensive set of real aerosol and radiation observations taken from ground stations, flight campaigns and satellite. This research has been supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund, and by the NERC funded GASSP project.
Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound
Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.
2013-01-01
The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529
NASA Technical Reports Server (NTRS)
Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.
1991-01-01
The optical constants of four polycyclic aromatic hydrocarbon (PAH) molecules (benzene, pyrene, pentacene, and coronene) are determined from their measured laboratory absorption spectra. The Planck mean of the radiation pressure cross section is computed for each molecule and for amorphous carbon (AC) grains, and semiempirically estimated for large PAH molecules up to 400 carbon atoms. Assuming that PAHs are present in carbon-rich stellar outflows, the radiation pressure forces acting on them are calculated and compared with the radiation forces on AC particles. The results show that PAHs possess very different optical properties from AC grains. Small PAHs may experience an 'inverse greenhouse' effect in the inner part of the envelope, as they decouple from the gas close to the photosphere. The radiation pressure force on PAHs is always much less than the force at work on AC grains, and PAH molecules do not affect significantly the dynamics of the outflow.
Acoustic radiation force elasticity imaging in diagnostic ultrasound.
Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L
2013-04-01
The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.
NASA Astrophysics Data System (ADS)
Asmat, A.; Jalal, K. A.; Ahmad, N.
2018-02-01
The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.
Modeling prescribed fire impacts on local to regional air quality and potential climate effects
Biomass burning, including wildfires and prescribed burns, are of increasing concern due to the potential impacts on ambient air quality. The direct and indirect radiative forcings associated the particulate matter from biomass burning are also raising questions regarding the pot...
NASA Astrophysics Data System (ADS)
Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Ruby; Wang, Hailong; Yang, Ben; Fan, Jiwen; Yan, Huiping; Yang, Xiu-Qun; Liu, Dongqing
2017-04-01
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr-1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shi; Qian, Yun; Zhao, Chun
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
Zhong, Shi; Qian, Yun; Zhao, Chun; ...
2017-04-27
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
Aerosol Absorption and Radiative Forcing
NASA Technical Reports Server (NTRS)
Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier
2007-01-01
We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0.02W m(sup -2). The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.
New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Zhang, Zhibo
2013-01-01
Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.
Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring; Bruus, Henrik
2012-11-21
We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.
Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai
2016-05-24
A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.
Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai
2016-01-01
A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324
Validation and application of MODIS-derived clean snow albedo and dust radiative forcing
NASA Astrophysics Data System (ADS)
Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.
2012-12-01
Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
NASA Astrophysics Data System (ADS)
Qian, Y.; Gustafson, W. I.; Leung, R.; Ghan, S. J.
2008-12-01
Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%, however, snowpack reduction is nonlinearly accelerated.
NASA Astrophysics Data System (ADS)
Qian, Yun; Gustafson, William I.; Leung, L. Ruby; Ghan, Steven J.
2009-02-01
Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow-covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%; however, snowpack reduction is nonlinearly accelerated.
Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations
NASA Astrophysics Data System (ADS)
Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar; Forster, Piers M.; Hodnebrog, Øivind; Andrews, Timothy; Boucher, Olivier; Faluvegi, Gregory; Iversen, Trond; Kasoar, Matthew; Kharin, Viatcheslav; Kirkevâg, Alf; Lamarque, Jean-François; Olivié, Dirk; Richardson, Thomas; Shawki, Dilshad; Shindell, Drew; Smith, Christopher J.; Takemura, Toshihiko; Voulgarakis, Apostolos
2017-11-01
We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled-climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m-2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m-2 based on five of the models) is countered by negative rapid adjustments (-0.64 W m-2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m-2—about 20% lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.
Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions
NASA Technical Reports Server (NTRS)
Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.;
2002-01-01
ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.
Response to marine cloud brightening in a multi-model ensemble
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; ...
2018-01-19
In this paper we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to –1.9 Wm –2, with a substantial inter-model spread of –0.6 to –2.5 Wm –2. The large spread is partly relatedmore » to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) –0.96 [–0.17 to –1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of –2.35 [–0.57 to –2.96]% due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
Response to marine cloud brightening in a multi-model ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars
In this paper we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to –1.9 Wm –2, with a substantial inter-model spread of –0.6 to –2.5 Wm –2. The large spread is partly relatedmore » to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) –0.96 [–0.17 to –1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of –2.35 [–0.57 to –2.96]% due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
NASA Astrophysics Data System (ADS)
Naik, Vaishali; Horowitz, Larry W.; Fiore, Arlene M.; Ginoux, Paul; Mao, Jingqiu; Aghedo, Adetutu M.; Levy, Hiram
2013-07-01
We describe and evaluate atmospheric chemistry in the newly developed Geophysical Fluid Dynamics Laboratory chemistry-climate model (GFDL AM3) and apply it to investigate the net impact of preindustrial (PI) to present (PD) changes in short-lived pollutant emissions (ozone precursors, sulfur dioxide, and carbonaceous aerosols) and methane concentration on atmospheric composition and climate forcing. The inclusion of online troposphere-stratosphere interactions, gas-aerosol chemistry, and aerosol-cloud interactions (including direct and indirect aerosol radiative effects) in AM3 enables a more complete representation of interactions among short-lived species, and thus their net climate impact, than was considered in previous climate assessments. The base AM3 simulation, driven with observed sea surface temperature (SST) and sea ice cover (SIC) over the period 1981-2007, generally reproduces the observed mean magnitude, spatial distribution, and seasonal cycle of tropospheric ozone and carbon monoxide. The global mean aerosol optical depth in our base simulation is within 5% of satellite measurements over the 1982-2006 time period. We conduct a pair of simulations in which only the short-lived pollutant emissions and methane concentrations are changed from PI (1860) to PD (2000) levels (i.e., SST, SIC, greenhouse gases, and ozone-depleting substances are held at PD levels). From the PI to PD, we find that changes in short-lived pollutant emissions and methane have caused the tropospheric ozone burden to increase by 39% and the global burdens of sulfate, black carbon, and organic carbon to increase by factors of 3, 2.4, and 1.4, respectively. Tropospheric hydroxyl concentration decreases by 7%, showing that increases in OH sinks (methane, carbon monoxide, nonmethane volatile organic compounds, and sulfur dioxide) dominate over sources (ozone and nitrogen oxides) in the model. Combined changes in tropospheric ozone and aerosols cause a net negative top-of-the-atmosphere radiative forcing perturbation (-1.05 W m-2) indicating that the negative forcing (direct plus indirect) from aerosol changes dominates over the positive forcing due to ozone increases, thus masking nearly half of the PI to PD positive forcing from long-lived greenhouse gases globally, consistent with other current generation chemistry-climate models.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, S. H. L.; Lau, G.
2016-12-01
Part of organic carbon defined as brown carbon (BrC) has been found to absorb solar radiation, especially in near-ultraviolet and blue bands, but their radiation impact is far less understood than black carbon (BC). Rapid adjustment thought to occur within a few weeks, induced by aerosol radiative effect and thereby alter cloud cover or other climate components. These effects are particularly pronounced for absorbing aerosols. The data gathered is from an online coupled model, WRF-Chem. A two-simulation test is conducted from July 8 to July 15. The baseline simulation doesn't account for aerosol-radiation interactions, whereas the sensitivity run includes it. The differences between these two simulations represent total effects of the aerosol instantaneous radiative forcing and subsequent rapid adjustment. In Figure 1, without cloud effect (clear sky), at the top of atmosphere (TOA), the SW radiation changes are negative in the PRD region, representing an overall cooling effect of aerosols. However, in the atmosphere (ATM), aerosols heat the atmosphere by absorbing incoming solar radiation with an average of 2.4 W/m2 (Table 1). After including rapid adjustment (all sky), the radiation change pattern becomes significantly different, especially at TOA and surface (SFC). This may be caused by cloud cover change due to rapid adjustment. The magnitude of SW radiation changes for all sky at all levels is smaller than that for clear sky. This result suggests the rapid adjustment counteracts the instantaneous radiative forcing of aerosols. At TOA, the cooling effect of the aerosol is 74% lower for all sky compared with clear sky, highlighting an overall warming effect of rapid adjustment in the PRD region. Aerosol-induced changes (W/m2) TOA ATM SFC Clear Sky -9.2 2.4 -11.6 All Sky -2.4 1.9 -4.3 Table 1. Aerosol-induced averaged changes in shortwave radiation due to aerosol-radiation interactions in the Pearl River Delta. The test shows the rapid adjustment of aerosols offsets part of the aerosol instantaneous negative radiation forcing, especially at TOA and SFC. The only absorbing aerosol species included in the test is BC. If absorption effects of dust and BrC are considered, the contribution of instantaneous radiative forcing and rapid adjustment may change.
Is 2 Degrees Achievable? The Cold Turkey Experiment
NASA Astrophysics Data System (ADS)
Schwartz, S. E.
2017-12-01
The 2015 Paris Agreement calls for collective international action to hold the increase in global average temperature to well below 2˚C above preindustrial levels and to pursue efforts to limit the increase to 1.5°C. How much would carbon dioxide emissions have to be reduced to achieve these objectives, or can these objectives even be achieved at all? These questions are examined using a global energy balance model to carry out a "cold turkey" experiment in which emissions from fossil fuel combustion are abruptly halted; this is a limiting case for any practically achievable gradual reduction in emissions. The model study halts emissions not just of CO2 but also of atmospheric aerosols and precursor gases. These aerosols are thought to be offsetting a substantial but highly uncertain fraction of the radiative forcing of anthropogenic CO2 by scattering solar radiation and by increasing cloud reflectivity. In contrast to CO2, which would persist in the atmosphere for decades to centuries, aerosols would be removed almost immediately after cessation of emissions. Consequently, at least in the early decades following abrupt cessation of emissions, net forcing and global temperature would likely increase, not decrease. The magnitude of the temperature increase that would ensue depends on Earth's climate sensitivity and current aerosol forcing. These quantities are quite uncertain but are strongly correlated through observational constraints. Within present uncertainty it cannot be stated with confidence whether the 2˚C target could be achieved even if emissions were abruptly halted. Future global CO2 emissions consistent with achieving the 2˚C target range from as much as 100 years at current emission rates if Earth's climate sensitivity is at the low end of the range estimated by the IPCC 2013 Assessment Report, to zero, the committed temperature increase already exceeding the 2˚C limit, if sensitivity is at the high end of the IPCC range. Figure. Global mean forcing and temperature response, for AR5 range of aerosol forcing and climate sensitivity, following abrupt cessation of emissions of CO2 and aerosols and precursor gases from fossil fuel combustion. Solid curves denote time-dependent forcing and response; dashed curves, response for CO2 maintained at its present value; dotted lines, instantaneous response.
NASA Astrophysics Data System (ADS)
Luo, Lifeng; Robock, Alan; Mitchell, Kenneth E.; Houser, Paul R.; Wood, Eric F.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Wen, Fenghua; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan
2003-11-01
Atmospheric forcing used by land surface models is a critical component of the North American Land Data Assimilation System (NLDAS) and its quality crucially affects the final product of NLDAS and our work on model improvement. A three-year (September 1996-September 1999) retrospective forcing data set was created from the Eta Data Assimilation System and observations and used to run the NLDAS land surface models for this period. We compared gridded NLDAS forcing with station observations obtained from networks including the Oklahoma Mesonet and Atmospheric Radiation Measurement/Cloud and Radiation Testbed at the southern Great Plains. Differences in all forcing variables except precipitation between the NLDAS forcing data set and station observations are small at all timescales. While precipitation data do not agree very well at an hourly timescale, they do agree better at longer timescales because of the way NLDAS precipitation forcing is generated. A small high bias in downward solar radiation and a low bias in downward longwave radiation exist in the retrospective forcing. To investigate the impact of these differences on land surface modeling we compared two sets of model simulations, one forced by the standard NLDAS product and one with station-observed meteorology. The differences in the resulting simulations of soil moisture and soil temperature for each model were small, much smaller than the differences between the models and between the models and observations. This indicates that NLDAS retrospective forcing provides an excellent state-of-the-art data set for land surface modeling, at least over the southern Great Plains region.
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
Sapozhnikov, Oleg A.; Bailey, Michael R.
2013-01-01
A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086
Airborne Solar Radiant Flux Measurements During ACE-2
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, Philip B.; Jonsson, Haflidi
2000-01-01
Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. In the ACE 2 program the solar radiant fluxes were measured on the Pelican aircraft and the UK Met Office C130. This poster will show results from the measurements for the aerosol effects during the clear column days. We will compare the results with calculations of the radiant fluxes.
Net radiative forcing from widespread deployment of photovoltaics.
Nemet, Gregory F
2009-03-15
If photovoltaics (PV) are to contribute significantly to stabilizing the climate, they will need to be deployed on the scale of multiple terawatts. Installation of that much PV would cover substantial portions of the Earth's surface with dark-colored, sunlight-absorbing panels, reducing the Earth's albedo. How much radiative forcing would result from this change in land use? How does this amount compare to the radiative forcing avoided by substituting PV for fossil fuels? This analysis uses a series of simple equations to compare the two effects and finds that substitution dominates; the avoided radiative forcing due to substitution of PV for fossil fuels is approximately 30 times largerthan the forcing due to albedo modification. Sensitivity analysis, including discounting of future costs and benefits, identifies unfavorable yet plausible configurations in which the albedo effect substantially reduces the climatic benefits of PV. The value of PV as a climate mitigation option depends on how it is deployed, not just how much it is deployed--efficiency of PV systems and the carbon intensity of the substituted energy are particularly important
Axial acoustic radiation force on a sphere in Gaussian field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen
2015-10-28
Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated.more » Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.« less
Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy
2013-03-01
This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.
Global warming without global mean precipitation increase?
Salzmann, Marc
2016-01-01
Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558
Global warming without global mean precipitation increase?
Salzmann, Marc
2016-06-01
Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.
The acoustic radiation force on a heated (or cooled) rigid sphere - Theory
NASA Technical Reports Server (NTRS)
Lee, C. P.; Wang, T. G.
1984-01-01
A finite amplitude sound wave can exert a radiation force on an object due to second-order effect of the wave field. The radiation force on a rigid small sphere (i.e., in the long wavelength limit), which has a temperature different from that of the environment, is presently studied. This investigation assumes no thermally induced convection and is relevant to material processing in the absence of gravity. Both isotropic and nonisotropic temperature profiles are considered. In this calculation, the acoustic effect and heat transfer process are essentially decoupled because of the long wavelength limit. The heat transfer information required for determining the force is contained in the parameters, which are integrals over the temperature distribution.
U.S. Air Force Radiation in Space experiment for Gemini 6 flight
1965-12-10
S65-58941 (27 Aug. 1965) --- U.S. Air Force Weapons Laboratory D-8 (Radiation in Space) experiment for Gemini-6 spaceflight. Kennedy Space Center alternative photo number is 104-KSC-65C-5533. Photo credit: NASA
Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols
NASA Astrophysics Data System (ADS)
Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.
2011-11-01
Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Qian, Yun; Fast, Jerome D.
2011-07-13
Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less
NASA Astrophysics Data System (ADS)
Shia, R.
2012-12-01
The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02
NASA Technical Reports Server (NTRS)
Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.;
2011-01-01
The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed all pollution sulfate or BC. Averaged over 1970-2000, the respective radiative forcings relative to the full experiment were +0.3 and -0.3 Watts per square meter; the average surface air temperature changes were +0.2 degrees and -0.03 C. The small impact of BC reduction on surface temperature resulted from reduced stability and loss of low-level clouds.
NASA Astrophysics Data System (ADS)
Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.
2006-05-01
The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.
Limits to the Indirect Aerosol Forcing in Stratocumulus
NASA Technical Reports Server (NTRS)
Ackerman, Andrew; Toon, O.; Stevens, D.; Coakley, J., Jr.
2003-01-01
The indirect radiative forcing of aerosols is poorly constrained by the observational data underlying the simple cloud parameterizations in GCMs. signal of cloud response to increased aerosol concentrations from meteorological noise. Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ measurements showing no average change in cloud water relative to the surrounding clouds. Both results contradict the expectation of cloud water increasing in polluted clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. The simulations also show that increases in cloud water from suppressing drizzle by increased droplet concentrations are favored at night or at extremely low droplet concentrations. At typical droplet concentrations we find that the Twomey effect on cloud albedo is amplified very little by the secondary indirect effect of drizzle suppression, largely because the absorption of solar radiation by cloud water reduces boundary-layer mixing in the daytime and thereby restricts any possible increase in cloud water from drizzle suppression. The cloud and boundary layer respond to radiative heating variations on a time scale of hours, and on longer time scales respond to imbalances between large-scale horizontal advection and the entrainment of inversion air. We analyze the co-varying response of cloud water, cloud thickness, width of droplet size distributions, and dispersion of the optical depth, as well as the overall response of cloud albedo, to changes in droplet concentrations. We also dissect the underlying physical mechanisms through sensitivity studies. Ship tracks represent an ideal natural laboratory to extricate the
Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere
NASA Technical Reports Server (NTRS)
Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.
2003-01-01
We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).
Kapatkin, Amy S; Nordquist, Barbro; Garcia, Tanya C; Griffin, Maureen A; Theon, Alain; Kim, Sun; Hayashi, Kei
2016-07-19
To determine if a single low dose of radiation therapy in dogs with osteoarthritis of the elbow joint was associated with a detectable improvement in their lameness and pain as documented by force platform gait analysis. In this cohort longitudinal observational study, five Labrador Retrievers with lameness due to elbow osteoarthritis that was unresponsive to medical treatment were removed from all non-steroidal anti-inflammatory and analgesic medications. A single treatment of radiation therapy delivering 10 Gray was performed on the affected elbow joint(s). Force platform gait analysis was used to assess the ground reaction forces of a limb affected with elbow osteoarthritis both before and after radiation therapy. Significant differences occurred in the weight-bearing on an affected limb with elbow osteoarthritis after radiation therapy at weeks six and 14. Change due to treatment was particularly apparent in dogs with unilateral elbow osteoarthritis. Administering a single low dose of radiation therapy may have a short-term benefit in dogs with elbow osteoarthritis, which is similar to the evidence supporting the use of radiation therapy in horses with orthopaedic disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Kravitz, Ben; Lu, Jian
In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...
2018-04-16
In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
NASA Astrophysics Data System (ADS)
Alifa, M.; Batibeniz, F.; Rastogi, D.; Evans, K. J.; Ashfaq, M.; Pal, J. S.
2017-12-01
Severe thunderstorms are a main cause of catastrophic loss in the United States, due to their production of severe weather conditions such as torrential rainfall, hail, destructive surface winds, dangerous lightning, and tornadoes. Using an eleven-member, high resolution ensemble of global climate model experiments, we investigate the change in severe thunderstorm frequency associated with enhanced global radiative forcing under the RCP 8.5 emissions scenario for the period 1966-2050. We find a mid-century increase in the occurrence of severe thunderstorm environments by manifold, especially in the spring and summer seasons of the southeastern United States. This positive trend is driven by an increase in atmospheric water vapor, which causes increases in convective available potential energy (CAPE) and decreases in convective inhibition encouraging severe thunderstorm environments. Vertical wind shear, another measure that characterizes thunderstorm environments, is predicted to decrease by 2050, suggesting less severe storms. However, the significant increase in CAPE overcompensates for the decrease in shear, leading to mid-century increases in the number of days with severe thunderstorm environmental conditions and hence in the frequency of severe thunderstorm environments. The projected changes can potentially increase the vulnerability of our urban populations and ecosystems, which in the absence of climate change mitigation, suggest the need for adaptation strategies by our policy makers.
How Has Human-induced Climate Change Affected California Drought Risk?
NASA Astrophysics Data System (ADS)
Cheng, L.; Hoerling, M. P.; Aghakouchak, A.; Livneh, B.; Quan, X. W.; Eischeid, J. K.
2015-12-01
The current California drought has cast a heavy burden on statewide agriculture and water resources, further exacerbated by concurrent extreme high temperatures. Furthermore, industrial-era global radiative forcing brings into question the role of long-term climate change on CA drought. How has human-induced climate change affected California drought risk? Here, observations and model experimentation are applied to characterize this drought employing metrics that synthesize drought duration, cumulative precipitation deficit, and soil moisture depletion. The model simulations show that increases in radiative forcing since the late 19th Century induces both increased annual precipitation and increased surface temperature over California, consistent with prior model studies and with observed long-term change. As a result, there is no material difference in the frequency of droughts defined using bivariate indicators of precipitation and near-surface (10-cm) soil moisture, because shallow soil moisture responds most sensitively to increased evaporation driven by warming, which compensates the increase in the precipitation. However, when using soil moisture within a deep root zone layer (1-m) as co-variate, droughts become less frequent because deep soil moisture responds most sensitively to increased precipitation. The results illustrate the different land surface responses to anthropogenic forcing that are relevant for near-surface moisture exchange and for root zone moisture availability. The latter is especially relevant for agricultural impacts as the deep layer dictates moisture availability for plants, trees, and many crops. The results thus indicate the net effect of climate change has made agricultural drought less likely, and that the current severe impacts of drought on California's agriculture has not been substantially caused by long-term climate changes.
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
NASA Astrophysics Data System (ADS)
Matt, Felix; Burkhart, John F.
2017-04-01
Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.
Extended optical theorem in isotropic solids and its application to the elastic radiation force
NASA Astrophysics Data System (ADS)
Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.
2017-04-01
In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.
NASA Astrophysics Data System (ADS)
Pathak, B.
2015-12-01
The diurnal evolution of shortwave solar radiance at the surface has been investigated from Kipp and Zonen CNR4 net radiometer measurements in a humid sub-tropical location Dibrugarh in the North Eastern region of India. Data for a total of 345 clear days within a span of two years during March 2013- January 2015 are analyzed which are further utilized to validate the Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) simulated flux. The diurnal evolution of solar radiation maximizes in its amplitude in monsoon months (JJAS) and is minimum during the winter months (DJF) prescribed by the Northern Hemisphere routine. The net shortwave radiation increases from the minimum value of ~100 Wm-2 at the beginning of the year and attains maximum ~300 Wm-2 during monsoon. Both the measured and model simulated diurnal and seasonal solar flux exhibit similar behaviour at the surface with good correlation with R2~ 0.98-0.99. The present study also focuses on the validation of the surface albedo and the albedo retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by the CNR4 net Radiometer measurements, which again shows a good agreement. This validation is essential for the reliability of satellite retrieved surface reflectance that are being utilised in the radiative transfer models. In order to study the influence of the aerosols upon the incoming solar irradiances the aerosol radiative forcing (ARF) and aerosol radiative forcing efficiency (ARFE) is estimated. The ARFEsurface during the Winter is the highest (-75.02 ± 8.03 W m-2 τ-1) and minimum during Retreating Monsoon (ON) (-58.40 ±25.03 W m-2 τ-1). For both the modeled and the field based estimation, the aerosol radiative forcing obtained during the study period ranged from -39 ±6 Wm-2 to -10 ±4 Wm-2 at the surface and 10±3 Wm-2 to 28±7 Wm-2 at the atmosphere and -7±4 Wm-2 to -10 ±3 Wm-2 at the TOA. The measured and the model ARF values differ by 5 - 8 % in winter and premonsoon and almost ~6% in monsoon. The average atmospheric heating rate is maximum in pre-monsoon for both the estimations. The observation of ARF is further compared with the ICTP's RegCM4 model in order to acquire the model utility in the location where measurements are not feasible.
NASA Astrophysics Data System (ADS)
Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.
2017-12-01
In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is discussed.
Lidar characterizations of atmospheric aerosols and clouds
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.
2017-12-01
Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and cloud properties for addressing both direct and indirect radiative forcing.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numericalmore » simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.« less
NASA Technical Reports Server (NTRS)
Perlwitz, Jan; Tegen, Ina; Miller, Ron L.
2000-01-01
The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.
Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990
NASA Technical Reports Server (NTRS)
Schweiger, Axel J.; Key, Jeffrey R.
1994-01-01
Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, R.W.; Thomas, G.E.; Solomon, S.
The Garcia-Solomon two-dimensional model was used to study the effect of doubled carbon-dioxide on the middle atmosphere. The model has been improved to include non-LTE CO{sub 2} cooling in the 15 micron band above 70 km and new chemical heating and heating efficiencies. The effect of doubling CO{sub 2} on the temperature is found to be large at the stratopause (about 10-12K cooling) and at the mesopause (about 6-12K cooling). In the stratosphere, dynamical feedbacks on the heating rate caused by the temperature changes are small compared to the radiative changes while in the mesosphere they can be large. Inmore » fact, calculations with the present dynamical heating rate used in the doubled CO{sub 2} energy equation indicate that the radiative forcing alone could cause a temperature increase of about 10K in the polar summer mesopause region. The dynamical feedbacks which oppose this positive radiative forcing are discussed. 18 refs., 3 figs.« less
NASA Technical Reports Server (NTRS)
Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.
2008-01-01
Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.
Radiative Importance of Aerosol-Cloud Interaction
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
1999-01-01
Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have even greater consequences. Presently we know that through the use of fossil fuel and land-use changes we have increased the concentration of greenhouse gases in the atmosphere. In parallel, we have seen a modest increase of global temperature in the last century. These two observations have been linked as cause and effect by climate models, but this connection is still experimentally not verified. The spatial and seasonal distribution of aerosol forcing is different from that of greenhouse gases, thus generating a different spatial fingerprint of climate change. This fingerprint was suggested as a method to identify the response of the climate system to anthropogenic forcing of greenhouse gases and aerosol. The aerosol fingerprint may be the only way to firmly establish the presence (or absence) of human impact on climate. Aerosol-cloud interaction through the indirect effect will be an important component of establishing this fingerprint.
Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki
2011-11-15
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to themore » nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.« less
Could geoengineering research help answer one of the biggest questions in climate science?
NASA Astrophysics Data System (ADS)
Wood, Robert; Ackerman, Thomas; Rasch, Philip; Wanser, Kelly
2017-07-01
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in quantifying the radiative forcing of climate, and hinders our ability to determine Earth's climate sensitivity to greenhouse gas increases. Representation of aerosol-cloud interactions in global models is particularly challenging because these interactions occur on typically unresolved scales. Observational studies show influences of aerosol on clouds, but correlations between aerosol and clouds are insufficient to constrain aerosol forcing because of the difficulty in separating aerosol and meteorological impacts. In this commentary, we argue that this current impasse may be overcome with the development of approaches to conduct control experiments whereby aerosol particle perturbations can be introduced into patches of marine low clouds in a systematic manner. Such cloud perturbation experiments constitute a fresh approach to climate science and would provide unprecedented data to untangle the effects of aerosol particles on cloud microphysics and the resulting reflection of solar radiation by clouds. The control experiments would provide a critical test of high-resolution models that are used to develop an improved representation aerosol-cloud interactions needed to better constrain aerosol forcing in global climate models.
In Situ Measurement of Aerosol Extinction
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)
2001-01-01
Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.
Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.
Bintanja, R; Krikken, F
2016-12-02
Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.
NASA Astrophysics Data System (ADS)
Wei, Wei; Marston, Philip L.
2005-09-01
Using an appropriate grouping of terms, a radiation force expression for cylinders in a standing wave based on far-field scattering [W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202-208 (2004)] is transformed to an expression given elsewhere [F. G. Mitri, Eur. Phys. J. B 44, 71-78 (2005)]. Mitri's result is from a near-field derivation for the specific case of a circular cylinder. In the usual case, in an ideal lossless media the far-field derivation is not an approximation. The far-field derivation also applies to noncircular objects having mirror symmetry about the incident wave vector. Some general and historical aspects of far-field derivations of optical and acoustical radiation force (going back to 1909) will be noted. Our formulation yields a simple low-frequency approximation for the radiation force on elliptical cylinders by introducing approximations for the partial-wave scattering coefficients of elliptical cylinders first derived by Rayleigh. [Work supported by NASA.
Quantifying the climate-change consequences of shifting land use between forest and agriculture.
Kirschbaum, Miko U F; Saggar, Surinder; Tate, Kevin R; Thakur, Kailash P; Giltrap, Donna L
2013-11-01
Land-use change between forestry and agriculture can cause large net emissions of carbon dioxide (CO2), and the respective land uses associated with forest and pasture lead to different on-going emission rates of methane (CH4) and nitrous oxide (N2O) and different surface albedo. Here, we quantify the overall net radiative forcing and consequent temperature change from specified land-use changes. These different radiative agents cause radiative forcing of different magnitudes and with different time profiles. Carbon emission can be very high when forests are cleared. Upon reforestation, the former carbon stocks can be regained, but the rate of carbon sequestration is much slower than the rate of carbon loss from deforestation. A production forest may undergo repeated harvest and regrowth cycles, each involving periods of C emission and release. Agricultural land, especially grazed pastures, have much higher N2O emissions than forests because of their generally higher nitrogen status that can be further enhanced through intensification of the nitrogen cycle by animal excreta. Because of its longevity in the atmosphere, N2O concentrations build up nearly linearly over many decades. CH4 emissions can be very high from ruminant animals grazing on pastures. Because of its short atmospheric longevity, the CH4 concentration from a converted pasture accumulates for only a few decades before reaching a new equilibrium when emission of newly produced CH4 is balanced by the oxidation of previously emitted CH4. Albedo changes generally have the opposite radiative forcing from those of the GHGs and partly negate their radiative forcing. Overall and averaged over 100 years, CO2 is typically responsible for 50% of radiative forcing and CH4 and N2O for 25% each. Albedo changes can negate the radiative forcing by the three greenhouse gases by 20-25%. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zamora, Misti; Zeng, Liming; Shao, Min; Wu, Yusheng; Zheng, Jun; Wang, Yuan; Collins, Don; Zhang, Renyi
2016-04-01
Black carbon (BC) particles, produced from incomplete fossil fuel combustion and biomass burning, are ubiquitous in the atmosphere and have profound impacts on air quality, human health, weather, and climate. For example, in areas identified as aerosol hotspots, which include many urban centers and megacities worldwide, solar heating by BC particles has been shown to be comparable to warming due to the greenhouse gases2. Although BC represents a key short-lived climate forcer, its direct radiative forcing remains highly uncertain. In particular, the available results of absorption enhancement of BC particles during atmospheric aging are conflicting from the previous studies, leading to a large uncertainty in global radiative transfer calculation. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China and Houston, US, using a novel chamber approach. BC aging exhibits two distinct stages - initial transformation from a fractal to spherical morphology with little absorption variation and the subsequent growth of fully compact particles with a maximum absorption enhancement factor of 2.4. The variation in BC direct radiative forcing is highly dependent of the rate and timescale of aging, with an estimated increase of 0.45 (0.21 - 0.80) W m-2 from fresh to fully aged particles. Our results reveal a high climatic impact in polluted environments due to rapid aging and a clear distinction between urban cities in developed and developing countries for BC particles, highlighting a larger than recognized co-benefit in air quality improvement and climate protection by BC mediation.
NASA Astrophysics Data System (ADS)
Landry, Jean-Sébastien; Parrott, Lael; Price, David T.; Ramankutty, Navin; Damon Matthews, H.
2016-09-01
The ongoing major outbreak of mountain pine beetle (MPB) in forests of western North America has led to considerable research efforts. However, many questions remain unaddressed regarding its long-term impacts, especially when accounting for the range of possible responses from the non-target vegetation (i.e., deciduous trees and lower-canopy shrubs and grasses). We used the Integrated BIosphere Simulator (IBIS) process-based ecosystem model along with the recently incorporated Marauding Insect Module (MIM) to quantify, over 240 years, the impacts of various MPB outbreak regimes on lodgepole pine merchantable biomass, ecosystem carbon, surface albedo, and the net radiative forcing on global climate caused by the changes in ecosystem carbon and albedo. We performed simulations for three locations in British Columbia, Canada, with different climatic conditions, and four scenarios of various coexisting vegetation types with variable growth release responses. The impacts of MPB outbreaks on merchantable biomass (decrease) and surface albedo (increase) were similar across the 12 combinations of locations and vegetation coexistence scenarios. The impacts on ecosystem carbon and radiative forcing, however, varied substantially in magnitude and sign, depending upon the presence and response of the non-target vegetation, particularly for the two locations not subjected to growing-season soil moisture stress; this variability represents the main finding from our study. Despite major uncertainty in the value of the resulting radiative forcing, a simple analysis also suggested that the MPB outbreak in British Columbia will have a smaller impact on global temperature over the coming decades and centuries than a single month of global anthropogenic CO2 emissions from fossil fuel combustion and cement production. Moreover, we found that (1) outbreak severity (i.e., per-event mortality) had a stronger effect than outbreak return interval on the variables studied, (2) MPB-induced changes in carbon dynamics had a stronger effect than concurrent changes in albedo on net radiative forcing, and (3) the physical presence of MPB-killed dead standing trees was potentially beneficial to tree regrowth. Given that the variability of pre-outbreak vegetation characteristics can lead to very different regeneration pathways, the four vegetation coexistence scenarios we simulated probably only sampled the range of possible responses.
Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth
NASA Astrophysics Data System (ADS)
Kandel, Robert S.
1994-06-01
Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.
Simulated responses of terrestrial aridity to black carbon and sulfate aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Gettelman, A.; Xu, Y.
Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less
Simulated responses of terrestrial aridity to black carbon and sulfate aerosols
Lin, L.; Gettelman, A.; Xu, Y.; ...
2016-01-27
Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less
Lin, L.; Gettelman, A.; Xu, Y.; ...
2016-01-27
Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of globalmore » mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.« less
NASA Technical Reports Server (NTRS)
Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko
1999-01-01
A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.
Solar radiation pressure effects on the Helios spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1976-01-01
A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Operation HARDTACK. Project 2.13. Gamma Radiation and Induced Activity from Very-Low-Yield Bursts
1983-10-01
of the Air Force Special Weapons Center; Clarence Slover of the Lexington Signal Depot, who processed the LSD film dosimeters; and Fred Rlggln of...indicated by an increase in fluorescence upon illumi- nation by ultraviolet light. The glass needles were air mailed to Brooklyn Naval Shipyard im
McConnell, Joseph R.; Aristarain, Alberto J.; Banta, J. Ryan; Edwards, P. Ross; Simões, Jefferson C.
2007-01-01
Crustal dust in the atmosphere impacts Earth's radiative forcing directly by modifying the radiation budget and affecting cloud nucleation and optical properties, and indirectly through ocean fertilization, which alters carbon sequestration. Increased dust in the atmosphere has been linked to decreased global air temperature in past ice core studies of glacial to interglacial transitions. We present a continuous ice core record of aluminum deposition during recent centuries in the northern Antarctic Peninsula, the most rapidly warming region of the Southern Hemisphere; such a record has not been reported previously. This record shows that aluminosilicate dust deposition more than doubled during the 20th century, coincident with the ≈1°C Southern Hemisphere warming: a pattern in parallel with increasing air temperatures, decreasing relative humidity, and widespread desertification in Patagonia and northern Argentina. These results have far-reaching implications for understanding the forces driving dust generation and impacts of changing dust levels on climate both in the recent past and future. PMID:17389397
An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.
1994-01-01
In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Weihuan; France, David M.; Yu, Wenhua
At present, single-phase liquid, forced convection cooled heat sinks with fins are used to cool power electronics in hybrid electric vehicles (HEVs). Although use of fins in the cooling channels increases heat transfer rates considerably, a second low-temperature radiator and associated pumping system are still required in HEVs. This additional cooling system adds weight and cost while decreasing the efficiency of HEVs. With the objective of eliminating this additional low-temperature radiator and pumping system in HEVs, an alternative cooling technology, subcooled boiling in the cooling channels, was investigated in the present study. Numerical heat transfer simulations were performed using subcooledmore » boiling in the power electronics cooling channels with the coolant supplied from the existing main engine cooling system. Results show that this subcooled boiling system is capable of removing 25% more heat from the power electronics than the conventional forced convection cooling technology, or it can reduce the junction temperature of the power electronics at the current heat removal rate. With the 25% increased heat transfer option, high heat fluxes up to 250 W/cm(2) (typical for wideband-gap semiconductor applications) are possible by using the subcooled boiling system.« less
Climate engineering of vegetated land for hot extremes mitigation: an ESM sensitivity study
NASA Astrophysics Data System (ADS)
Wilhelm, Micah; Davin, Edouard; Seneviratne, Sonia
2014-05-01
Mitigation efforts to reduce anthropogenic climate forcing have thus far proven inadequate, as evident from accelerating greenhouse gas emissions. Many subtropical and mid-latitude regions are expected to experience longer and more frequent heat waves and droughts within the next century. This increased occurrence of weather extremes has important implications for human health, mortality and for socio-economic factors including forest fires, water availability and agricultural production. Various solar radiation management (SRM) schemes that attempt to homogeneously counter the anthropogenic forcing have been examined with different Earth System Models (ESM). Land climate engineering schemes have also been investigated which reduces the amount of solar radiation that is absorbed at the surface. However, few studies have investigated their effects on extremes but rather on mean climate response. Here we present the results of a series of climate engineering sensitivity experiments performed with the Community Earth System Model (CESM) version 1.0.2 at 2°-resolution. This configuration entails 5 fully coupled model components responsible for simulating the Earth's atmosphere, land, land-ice, ocean and sea-ice that interact through a central coupler. Historical and RCP8.5 scenarios were performed with transient land-cover changes and prognostic terrestrial Carbon/Nitrogen cycles. Four sets of experiments are performed in which surface albedo over snow-free vegetated grid points is increased by 0.5, 0.10, 0.15 and 0.20. The simulations show a strong preferential cooling of hot extremes throughout the Northern mid-latitudes during boreal summer. A strong linear scaling between the cooling of extremes and additional surface albedo applied to the land model is observed. The strongest preferential cooling is found in southeastern Europe and the central United States, where increases of soil moisture and evaporative fraction are the largest relative to the control simulation. This preferential cooling is found to intensify in the future scenario. Cloud cover strongly limits the efficacy of a given surface albedo increase to reflect incoming solar radiation back into space. As anthropogenic forcing increases, cloud cover decreases over much of the northern mid-latitudes in CESM.
RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Calvin, Katherine V.; Smith, Steven J.
2011-07-29
Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m{sup -2} in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, includingmore » shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5 W m{sup -2}, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.« less
Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B
2015-01-01
Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.
Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder
NASA Astrophysics Data System (ADS)
Liang, Shen; Chaohui, Wang
2018-03-01
In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.
Can increasing carbon dioxide cause climate change?
Lindzen, Richard S.
1997-01-01
The realistic physical functioning of the greenhouse effect is reviewed, and the role of dynamic transport and water vapor is identified. Model errors and uncertainties are quantitatively compared with the forcing due to doubling CO2, and they are shown to be too large for reliable model evaluations of climate sensitivities. The possibility of directly measuring climate sensitivity is reviewed. A direct approach using satellite data to relate changes in globally averaged radiative flux changes at the top of the atmosphere to naturally occurring changes in global mean temperature is described. Indirect approaches to evaluating climate sensitivity involving the response to volcanic eruptions and Eocene climate change are also described. Finally, it is explained how, in principle, a climate that is insensitive to gross radiative forcing as produced by doubling CO2 might still be able to undergo major changes of the sort associated with ice ages and equable climates. PMID:11607742
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2018-02-01
The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wang, Hailong; Smith, Steven J.
Due to US air pollution regulations, aerosol and precursor emissions have decreased during recent decades, while changes in emissions in other regions of the world also influence US aerosol trends through long-range transport. We examine here the relative roles of these domestic and foreign emission changes on aerosol concentrations and direct radiative forcing (DRF) at the top of the atmosphere over the continental US. Long-term (1980-2014) trends and aerosol source apportionment are quantified in this study using a global aerosol-climate model equipped with an explicit aerosol source tagging technique. Due to US emission control policies, the annual mean near-surface concentrationmore » of particles, consisting of sulfate, black carbon, and primary organic aerosol, decreases by about –1.1 (±0.1) / –1.4 (±0.1) μg m -3 in western US and –3.3 (±0.2) / –2.9 (±0.2) μg m -3 in eastern US during 2010–2014, as compared to those in 1980–1984. Meanwhile, decreases in US emissions lead to a warming of +0.48 (±0.03) / –0.46 (±0.03) W m -2 in western US and +1.41 (±0.07) /+1.32 (±0.09) W m -2 in eastern US through changes in aerosol DRF. Increases in emissions from East Asia generally have a modest impact on US air quality, but mitigated the warming effect induced by reductions in US emissions by 25% in western US and 7% in eastern US. Thus, as US domestic aerosol and precursor emissions continue to decrease, foreign emissions may become increasingly important to radiative forcing over the US.« less
Yang, Yang; Wang, Hailong; Smith, Steven J.; ...
2018-05-23
Due to US air pollution regulations, aerosol and precursor emissions have decreased during recent decades, while changes in emissions in other regions of the world also influence US aerosol trends through long-range transport. We examine here the relative roles of these domestic and foreign emission changes on aerosol concentrations and direct radiative forcing (DRF) at the top of the atmosphere over the continental US. Long-term (1980-2014) trends and aerosol source apportionment are quantified in this study using a global aerosol-climate model equipped with an explicit aerosol source tagging technique. Due to US emission control policies, the annual mean near-surface concentrationmore » of particles, consisting of sulfate, black carbon, and primary organic aerosol, decreases by about –1.1 (±0.1) / –1.4 (±0.1) μg m -3 in western US and –3.3 (±0.2) / –2.9 (±0.2) μg m -3 in eastern US during 2010–2014, as compared to those in 1980–1984. Meanwhile, decreases in US emissions lead to a warming of +0.48 (±0.03) / –0.46 (±0.03) W m -2 in western US and +1.41 (±0.07) /+1.32 (±0.09) W m -2 in eastern US through changes in aerosol DRF. Increases in emissions from East Asia generally have a modest impact on US air quality, but mitigated the warming effect induced by reductions in US emissions by 25% in western US and 7% in eastern US. Thus, as US domestic aerosol and precursor emissions continue to decrease, foreign emissions may become increasingly important to radiative forcing over the US.« less
Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang
2015-01-01
The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.
Response to marine cloud brightening in a multi-model ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars
Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to −1.9 W m −2, with a substantial inter-model spread of −0.6 to −2.5 W m −2. The large spread is partly related to the considerable differences inmore » clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
NASA Astrophysics Data System (ADS)
Dinh, Tra; Fueglistaler, Stephan
2016-04-01
Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.
NASA Astrophysics Data System (ADS)
Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.
2017-12-01
Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.
Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation
NASA Astrophysics Data System (ADS)
Porth, Oliver J. G.
2011-11-01
In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz force, such that we obtain an increased stability of relativistic flows. Accordingly, the non-axisymmetric modes applied to the field-line foot-points saturate quickly, with no signs of enhanced dissipation or disruption near the jet launching site.
Source attribution of black carbon and its direct radiative forcing in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wang, Hailong; Smith, Steven J.
The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, andmore » 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m −2) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.« less
Kang, Na; Kumar, K Raghavendra; Yu, Xingna; Yin, Yan
2016-09-01
Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007-August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440-870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440-870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α') were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3-4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.
Source attribution of black carbon and its direct radiative forcing in China
Yang, Yang; Wang, Hailong; Smith, Steven J.; ...
2017-03-30
The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, andmore » 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m −2) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.« less
Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-01-01
Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330
Motion in a modified Chermnykh's restricted three-body problem with oblateness
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Leke, Oni
2014-03-01
In this paper, the restricted problem of three bodies is generalized to include a case when the passively gravitating test particle is an oblate spheroid under effect of small perturbations in the Coriolis and centrifugal forces when the first primary is a source of radiation and the second one an oblate spheroid, coupled with the influence of the gravitational potential from the belt. The equilibrium points are found and it is seen that, in addition to the usual three collinear equilibrium points, there appear two new ones due to the potential from the belt and the mass ratio. Two triangular equilibrium points exist. These equilibria are affected by radiation of the first primary, small perturbation in the centrifugal force, oblateness of both the test particle and second primary and the effect arising from the mass of the belt. The linear stability of the equilibrium points is explored and the stability outcome of the collinear equilibrium points remains unstable. In the case of the triangular points, motion is stable with respect to some conditions which depend on the critical mass parameter; influenced by the small perturbations, radiating effect of the first primary, oblateness of the test body and second primary and the gravitational potential from the belt. The effects of each of the imposed free parameters are analyzed. The potential from the belt and small perturbation in the Coriolis force are stabilizing parameters while radiation, small perturbation in the centrifugal force and oblateness reduce the stable regions. The overall effect is that the region of stable motion increases under the combine action of these parameters. We have also found the frequencies of the long and short periodic motion around stable triangular points. Illustrative numerical exploration is rendered in the Sun-Jupiter and Sun-Earth systems where we show that in reality, for some values of the system parameters, the additional equilibrium points do not in general exist even when there is a belt to interact with.
Building an open-source simulation platform of acoustic radiation force-based breast elastography
NASA Astrophysics Data System (ADS)
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-03-01
Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.
Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.
2017-10-01
California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.
NASA Astrophysics Data System (ADS)
Wang, Xiaocong
2017-04-01
Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.
Climate change and maize yield in southern Africa: what can farm management do?
Rurinda, Jairos; van Wijk, Mark T; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E
2015-12-01
There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options - planting date, fertilizer use and cultivar choice - using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069 and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. © 2015 John Wiley & Sons Ltd.
Meridional Modes and Increasing Pacific Decadal Variability Under Anthropogenic Forcing
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele
2018-01-01
Pacific decadal variability has strong impacts on the statistics of weather, atmosphere extremes, droughts, hurricanes, marine heatwaves, and marine ecosystems. Sea surface temperature (SST) observations show that the variance of the El Niño-like decadal variability has increased by 30% (1920-2015) with a stronger coupling between the major Pacific climate modes. Although we cannot attribute these trends to global climate change, the examination of 30 members of the Community Earth System Model Large Ensemble (LENS) forced with the RCP8.5 radiative forcing scenario (1920-2100) suggests that significant anthropogenic trends in Pacific decadal variance will emerge by 2020 in response to a more energetic North Pacific Meridional Mode (PMM)—a well-known El Niño precursor. The PMM is a key mechanism for energizing and coupling tropical and extratropical decadal variability. In the LENS, the increase in PMM variance is consistent with an intensification of the winds-evaporation-SST thermodynamic feedback that results from a warmer mean climate.
Satellite Remote Sensing of Fires, Smoke and Regional Radiative Energy Budgets
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Barbieri, Kristine; Welch, Ronald M.; Yang, Shi-Keng
1997-01-01
Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 and 1986 biomass burning season. The results are characterized for four major eco-systems, namely: (1) Tropical Rain Forest (TRF), (2) Tropical Broadleaf Seasonal (TBS), (3) Mild/Warm/Hot Grass/Shrub (MGS), and (4) Savanna/Grass and Seasonal Woods (SGW). Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment [ERBE) data, the direct regional radiative forcing of biomass burning aerosols are computed. The results show that more than 70% of the fires occur in the MGS and SGW eco-systems due to agricultural practices. The smoke generated from biomass burning has negative net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires have mean net radiative forcing values ranging between -25.6 to -33.9 W/sq m for 1985 and between -12.9 to -40.8 W/sq m for 1986. These results confirm that the regional net radiative impact of biomass burning is one of cooling.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng
1998-01-01
Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale, thereby reducing the uncertainties in current global aerosol radiative forcing values.
A Multidisciplinary Approach to Assessing the Causal Components of Climate Change
NASA Astrophysics Data System (ADS)
Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.
2004-05-01
Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Sohn, B. J.
1990-01-01
Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered,more » with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).« less
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.
2018-05-01
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
Management of radiation therapy patients with cardiac defibrillator or pacemaker.
Salerno, Francesca; Gomellini, Sara; Caruso, Cristina; Barbara, Raffaele; Musio, Daniela; Coppi, Tamara; Cardinale, Mario; Tombolini, Vincenzo; de Paula, Ugo
2016-06-01
The increasing growth of population with cardiac implantable electronic devices (CIEDs) such as Pacemaker (PM) and Implantable Cardiac Defibrillators (ICD), requires particular attention in management of patients needing radiation treatment. This paper updates and summarizes some recommendations from different international guidelines. Ionizing radiation and/or electromagnetic interferences could cause device failure. Current approaches to treatment in patients who have these devices vary among radiation oncology centres. We refer to the German Society of Radiation Oncology and Cardiology guidelines (ed. 2015); to the Society of Cardiology Australia and New Zealand Statement (ed. 2015); to the guidelines in force in the Netherlands (ed. 2012) and to the Italian Association of Radiation Oncology recommendations (ed. 2013) as reported in the guidelines for the treatment of breast cancer in patients with CIED. Although there is not a clear cut-off point, risk of device failure increases with increasing doses. Cumulative dose and pacing dependency have been combined to categorize patients into low-, medium- and high-risk groups. Measures to secure patient safety are described for each category. The use of energy ≤6MV is preferable and it's strongly recommended not to exceed a total dose of 2 Gy to the PM and 1 Gy for ICD. Given the dangers of device malfunction, radiation oncology departments should adopt all the measures designed to minimize the risk to patients. For this reason, a close collaboration between cardiologist, radiotherapist and physicist is necessary.
Microphysical modeling of cirrus. 2: Sensitivity studies
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.; Kinne, Stefan; Heymsfield, Andrew J.
1994-01-01
The one-dimensional cirrus model described in part 1 of this issue has been used to study the sensitivity of simulated cirrus microphysical and radiative properties to poorly known model parameters, poorly understood physical processes, and environmental conditions. Model parameters and physical processes investigated include nucleation rate, mode of nucleation (e.g., homogeneous freezing of aerosols and liquid droplets or heterogeneous deposition), ice crystal shape, and coagulation. These studies suggest that the leading sources of uncertainty in the model are the phase change (liquid-solid) energy barrier and the ice-water surface energy which dominate the homogeneous freezing nucleation rate and the coagulation sticking efficiency at low temperatures which controls the production of large ice crystals (radii greater than 100 mcirons). Environmental conditions considered in sensitivity tests were CN size distribution, vertical wind speed, and cloud height. We found that (unlike stratus clouds) variations in the total number of condensation nuclei (NC) have little effect on cirrus microphysical and radiative properties, since nucleation occurs only on the largest CN at the tail of the size distribution. The total number of ice crystals which nucleate has little or no relationship to the number of CN present and depends primarily on the temperature and the cooling rate. Stronger updrafts (more rapid cooling) generate higher ice number densities, ice water content, cloud optical depth, and net radiative forcing. Increasing the height of the clouds in the model leads to an increase in ice number density, a decrease in effective radius, and a decrease in ice water content. The most prominent effect of increasing cloud height was a rapid increase in the net cloud radiative forcing which can be attributed to the change in cloud temperature as well as change in cloud ice size distributions. It has long been recognized that changes in cloud height or cloud area have the greatest potential for causing feedbacks on climate change. Our results suggest that variations in vertical velocity or cloud microphysical changes associatd with cloud height changes may also be important.
Self-organization of granular media in airborne ultrasonic fields
NASA Astrophysics Data System (ADS)
Bobrovskaya, A. I.; Stepanenko, D. A.; Minchenya, V. T.
2012-05-01
The article presents results of experimental and theoretical studies of behaviour of granular media (powder materials) in airborne ultrasonic field created by flexurally-vibrating ring-shaped waveguide with resonant frequency in the range 20-40 kHz. Experiments show that action of acoustic radiation forces results in formation of ordered structures in the form of ultrathin walls (monolayers) with number corresponding to the number of ring nodal points. Action of secondary radiation forces (König forces) results in formation of collateral (secondary) walls situated nearby primary walls. Experimental observations are compared with results of modelling of acoustic radiation force field inside the ring by means of COMSOL Multiphysics and MathCad software. Results of the studies can be used in development of devices for ultrasonic separation and concentration of particles as well as for formation of ordered monolayers from spherical particles.
Dependence of nanomechanical modification of polymers on plasma-induced cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, S.; Komvopoulos, K.
2007-01-01
The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less
NASA Astrophysics Data System (ADS)
Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.
2018-03-01
The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.;
2014-01-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.
NASA Technical Reports Server (NTRS)
Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick
1991-01-01
An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.
Large contribution of natural aerosols to uncertainty in indirect forcing
NASA Astrophysics Data System (ADS)
Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R.
2013-11-01
The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.
Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging
NASA Astrophysics Data System (ADS)
Doherty, Joshua Ryan
The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard in human carotid artery plaques. It is shown in this capstone experiment that lipid filled regions in MRI correspond to areas of increased displacement in ARFI imaging while calcium and loose matrix components in MRI correspond to uniformly low displacements in ARFI imaging. This dissertation provides evidence to support that ARFI imaging may provide important prognostic and diagnostic information regarding stroke risk via measurements of plaque stiffness. More generally, the results have important implications for all acoustic radiation force based imaging methods used clinically.
Seasonality of Forcing by Carbonaceous Aerosols
NASA Astrophysics Data System (ADS)
Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.
2006-12-01
Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol burden is most sensitive to convection and scavenging in warm and cold clouds, and compare seasonally modeled AOD with that retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS).
Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E
2000-01-01
The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated.
NASA Astrophysics Data System (ADS)
Potter, S.; Solvik, K.; Erb, A.; Goetz, S. J.; Johnstone, J. F.; Mack, M. C.; Randerson, J. T.; Roman, M. O.; Schaaf, C. L.; Turetsky, M. R.; Veraverbeke, S.; Wang, Z.; Rogers, B. M.
2017-12-01
Boreal forest dynamics including succession, composition, carbon cycling, and surface-atmosphere energy exchanges are largely driven by fire. In Alaska and Canada, burned area and fire frequency have increased since the 1970s, and are projected to continue increasing into the 21st century. In contrast to other biomes, alterations to surface albedo from fires in North American boreal forests are one of the primary feedbacks to climate. Understanding how altered fire regimes impact vegetation composition and energy budgets is therefore critical to forecasting regional and global climate change. High-severity fires cause winter and spring albedo to increase due to increased snow exposure and replacement of evergreen conifers by deciduous broadleaf trees. Although summer albedo decreases initially due to the deposition of black carbon and charred surfaces, it typically increases for several decades thereafter when younger and brighter deciduous trees dominate. The net effect of these albedo changes is expected to result in substantive radiative cooling, but there has been little research to examine how albedo trajectories differ spatially and temporally as a result of differences in burn severity, species composition, topography, climate and soil properties, and what the associated implications for future energy balances are. Here we investigate drivers of post-fire monthly albedo trajectories across Canada and Alaska using a new Collection V006 500 m MODIS daily blue-sky albedo product and historical fires from the Canadian and Alaskan National Fire Databases. The impacts of varying fuel type, landscape position, soils, climate, and burn severity on monthly albedo trajectories are explored using a Random Forest model. This information is then used to predict long-term monthly albedo and radiative forcing for fires that occurred during the MODIS era (2001-2012). We find that higher severity burns in denser forests and environmental conditions that promote either deciduous vegetation or slower tree growth result in the largest increases in post fire albedo and radiative cooling. This understanding and our geospatial products may be relevant for management focused on limiting the climate impacts from intensifying boreal fire regimes.
Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing
Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S.; Chhajlani, R. K.
2016-05-15
The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss,more » but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.« less
Harmonic motion detection in a vibrating scattering medium.
Urban, Matthew W; Chen, Shigao; Greenleaf, James
2008-09-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10 degrees or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.
Mitri, F G; Fellah, Z E A
2006-07-01
The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.
Harmonic Motion Detection in a Vibrating Scattering Medium
Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.
2008-01-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892
NASA Technical Reports Server (NTRS)
Wise, J.
1979-01-01
Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.
Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.
2015-01-01
Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775
Model-based optical coherence elastography using acoustic radiation force
NASA Astrophysics Data System (ADS)
Aglyamov, Salavat; Wang, Shang; Karpiouk, Andrei; Li, Jiasong; Emelianov, Stanislav; Larin, Kirill V.
2014-02-01
Acoustic Radiation Force (ARF) stimulation is actively used in ultrasound elastography to estimate mechanical properties of tissue. Compared with ultrasound imaging, OCT provides advantage in both spatial resolution and signal-to-noise ratio. Therefore, a combination of ARF and OCT technologies can provide a unique opportunity to measure viscoelastic properties of tissue, especially when the use of high intensity radiation pressure is limited for safety reasons. In this presentation we discuss a newly developed theoretical model of the deformation of a layered viscoelastic medium in response to an acoustic radiation force of short duration. An acoustic impulse was considered as an axisymmetric force generated on the upper surface of the medium. An analytical solution of this problem was obtained using the Hankel transform in frequency domain. It was demonstrated that layers at different depths introduce different frequency responses. To verify the developed model, experiments were performed using tissue-simulating, inhomogeneous phantoms of varying mechanical properties. The Young's modulus of the phantoms was varied from 5 to 50 kPa. A single-element focused ultrasound transducer (3.5 MHz) was used to apply the radiation force with various durations on the surface of phantoms. Displacements on the phantom surface were measured using a phase-sensitive OCT at 25 kHz repetition frequency. The experimental results were in good agreement with the modeling results. Therefore, the proposed theoretical model can be used to reconstruct the mechanical properties of tissue based on ARF/OCT measurements.