Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.
Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian
2018-01-21
Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.
van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T
2015-05-01
Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of summer monsoon rainfall variability in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Mian Sabir; Lee, Seungho
2016-08-01
This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.
The variability of the rainfall rate as a function of area
NASA Astrophysics Data System (ADS)
Jameson, A. R.; Larsen, M. L.
2016-01-01
Distributions of drop sizes can be expressed as DSD = Nt × PSD, where Nt is the total number of drops in a sample and PSD is the frequency distribution of drop diameters (D). Their discovery permitted remote sensing techniques for rainfall estimation using radars and satellites measuring over large domains of several kilometers. Because these techniques depend heavily on higher moments of the PSD, there has been a bias toward attributing the variability of the intrinsic rainfall rates R over areas (σR) to the variability of the PSDs. While this variability does increase up to a point with increasing domain dimension L, the variability of the rainfall rate R also depends upon the variability in the total number of drops Nt. We show that while the importance of PSDs looms large for small domains used in past studies, it is the variability of Nt that dominates the variability of R as L increases to 1 km and beyond. The PSDs contribute to the variability of R through the relative dispersion of χ = D3Vt, where Vt is the terminal fall speed of drops of diameter D. However, the variability of χ is inherently limited because drop sizes and fall speeds are physically limited. In contrast, it is shown that the variance of Nt continuously increases as the domain expands for physical reasons explained below. Over domains larger than around 1 km, it is shown that Nt dominates the variance of the rainfall rate with increasing L regardless of the PSD.
Regional changes in extreme monsoon rainfall deficit and excess in India
NASA Astrophysics Data System (ADS)
Pal, Indrani; Al-Tabbaa, Abir
2010-04-01
With increasing concerns about climate change, the need to understand the nature and variability of monsoon climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with the changes in frequency and magnitudes of extreme monsoon rainfall deficiency and excess in India from 1871 to 2005. Five regions across India comprising variable climates were selected for the study. Apart from changes in individual regions, changing tendencies in extreme monsoon rainfall deficit and excess were also determined for the Indian region as a whole. The trends and their significance were assessed using non-parametric Mann-Kendall technique. The results show that intra-region variability for extreme monsoon seasonal precipitation is large and mostly exhibited a negative tendency leading to increasing frequency and magnitude of monsoon rainfall deficit and decreasing frequency and magnitude of monsoon rainfall excess.
Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania
Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.
2017-01-01
Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly. PMID:28536708
Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.
Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B
2017-01-01
Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.
NASA Astrophysics Data System (ADS)
Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony
2017-12-01
This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south-eastern parts of Ethiopia extending to the south-west covering Somali and Oromia regions. Similar trends are also observed in the greatest 3-, 5- and 10-day rainfall amounts. Changes in the consecutive dry and wet days showed that consecutive wet days during Belg and Kiremt seasons decreased significantly in many areas in Ethiopia while consecutive dry days increased. The consistency in the trends over large spatial areas confirms the robustness of the trends and serves as a basis for understanding the projected changes in the climate. These results were discussed in relation to their significance to agriculture.
NASA Astrophysics Data System (ADS)
Zabret, Katarina; Rakovec, Jože; Šraj, Mojca
2018-03-01
Rainfall partitioning is an important part of the ecohydrological cycle, influenced by numerous variables. Rainfall partitioning for pine (Pinus nigra Arnold) and birch (Betula pendula Roth.) trees was measured from January 2014 to June 2017 in an urban area of Ljubljana, Slovenia. 180 events from more than three years of observations were analyzed, focusing on 13 meteorological variables, including the number of raindrops, their diameter, and velocity. Regression tree and boosted regression tree analyses were performed to evaluate the influence of the variables on rainfall interception loss, throughfall, and stemflow in different phenoseasons. The amount of rainfall was recognized as the most influential variable, followed by rainfall intensity and the number of raindrops. Higher rainfall amount, intensity, and the number of drops decreased percentage of rainfall interception loss. Rainfall amount and intensity were the most influential on interception loss by birch and pine trees during the leafed and leafless periods, respectively. Lower wind speed was found to increase throughfall, whereas wind direction had no significant influence. Consideration of drop size spectrum properties proved to be important, since the number of drops, drop diameter, and median volume diameter were often recognized as important influential variables.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2017-03-01
The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.
Spatial variability of extreme rainfall at radar subpixel scale
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2018-01-01
Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.
NASA Astrophysics Data System (ADS)
Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang
2017-12-01
This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.
Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R
2012-01-01
Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202
Enhanced future variability during India's rainy season
NASA Astrophysics Data System (ADS)
Menon, Arathy; Levermann, Anders; Schewe, Jacob
2013-04-01
The Indian summer monsoon shapes the livelihood of a large share of the world's population. About 80% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall the day-to-day variability is crucial for the risk of flooding, national water supply and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the IPCC's AR-5, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. While all models show an increase in day-to-day variability, some models are more realistic in capturing the observed seasonal mean rainfall over India than others. While no model's monsoon rainfall exceeds the observed value by more than two standard deviations, half of the models simulate a significantly weaker monsoon than observed. The relative increase in day-to-day variability by the year 2100 ranges from 15% to 48% under the strongest scenario (RCP-8.5), in the ten models which capture seasonal mean rainfall closest to observations. The variability increase per degree of global warming is independent of the scenario in most models, and is 8% +/- 4% per K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change.
NASA Astrophysics Data System (ADS)
Meena, Hari Mohan; Machiwal, Deepesh; Santra, Priyabrata; Moharana, Pratap Chandra; Singh, D. V.
2018-05-01
Knowledge of rainfall variability is important for regional-scale planning and management of water resources in agriculture. This study explores spatio-temporal variations, trends, and homogeneity in monthly, seasonal, and annual rainfall series of 62 stations located in arid region of Rajasthan, India using 55 year (1957-2011) data. Box-whisker plots indicate presence of outliers and extremes in annual rainfall, which made the distribution of annual rainfall right-skewed. Mean and coefficient of variation (CV) of rainfall reveals a high inter-annual variability (CV > 200%) in the western portion where the mean annual rainfall is very low. A general gradient of the mean monthly, seasonal, and annual rainfall is visible from northwest to southeast direction, which is orthogonal to the gradient of CV. The Sen's innovative trend test is found over-sensitive in evaluating statistical significance of the rainfall trends, while the Mann-Kendall test identifies significantly increasing rainfall trends in June and September. Rainfall in July shows prominently decreasing trends although none of them are found statistically significant. Monsoon and annual rainfall show significantly increasing trends at only four stations. The magnitude of trends indicates that the rainfall is increasing at a mean rate of 1.11, 2.85, and 2.89 mm year-1 in August, monsoon season, and annual series. The rainfall is found homogeneous over most of the area except for few stations situated in the eastern and northwest portions where significantly increasing trends are observed. Findings of this study indicate that there are few increasing trends in rainfall of this Indian arid region.
NASA Astrophysics Data System (ADS)
Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang
2018-03-01
Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.
Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates
NASA Astrophysics Data System (ADS)
Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.
2017-12-01
Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, C.; Riley, W.J.
2009-11-01
Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less
Spatio-temporal analysis of annual rainfall in Crete, Greece
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia
2018-03-01
Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.
NASA Astrophysics Data System (ADS)
Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan
2015-05-01
Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.
Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berhe, Asmeret A.; Suttle, K. Blake; Burton, Sarah D.
2012-09-03
Shifts in regional precipitation patterns will be a major component of global climate change. Rainfall will show greater and more variable changes in response to rising earth surface temperatures than most other climatic variables, and will be a major driver of ecosystem change. We studied the consequences of predicted changes in California’s rainy season for storage and stabilization mechanisms of soil organic matter (SOM). In a controlled and replicated experiment, we amended rainfall over large plots of natural grassland in accordance with alternative scenarios of future climate change. Results show that increases in annual rainfall have important consequences for soilmore » C storage, but that the strength and even direction of these effects depend entirely on seasonal timing. Rainfall increases during the winter rainy season led to pronounced C loss from soil while rainfall increases after the typical rainy season increased soil C stocks. Analysis of mineral-OM associations reveals a powerful mechanism underlying this difference: increased winter rainfall vastly diminished the role of Fe and Al oxides in SOM stabilization. Dithionite extractable crystalline Fe oxides explained more than 35 percent of the variability in C storage in ambient control and spring-addition treatments, compared to less than 0.01 percent in the winter-addition treatment. Likewise, poorly crystalline Fe and Al oxides explained more than 25 and 40 percent of the variability in C storage, respectively, in the control and spring-addition treatments compared to less than 5 percent in the -winter-addition treatment. Increases in annual precipitation identical in amount but at three-month offsets produced opposite effects on soil C storage. These results highlight the complexity inherent in biospheric feedbacks to the climate system, and the way that careful experimentation can penetrate that complexity to improve predictions of ecosystem and climatic change.« less
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick; Chartin, Caroline; Degan, Francesca; Onda, Yuichi; Evrard, Olivier; Cerdan, Olivier; Ayrault, Sophie
2015-04-01
The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 led to the fallout of predominantly radiocesium (137Cs and 134Cs) on soils of the Fukushima Prefecture. This radiocesium was primarily fixated to fine soil particles. Subsequently, rainfall and snow melt run-off events result in significant quantities of radiocesium being eroded and transported throughout the coastal catchments and ultimately exported to the Pacific Ocean. Erosion models, such as the Universal Soil Loss Equation (USLE), relate rainfall directly to soil erosion in that an increase in rainfall one month will directly result in a proportional increase in sediment generation. Understanding the rainfall regime of the region is therefore fundamental to modelling and predicting long-term radiocesium export. Here, we analyze rainfall data for ~40 stations within a 100 km radius of the FDNPP. First we present general information on the rainfall regime in the region based on monthly and annual rainfall totals. Second we present general information on rainfall erosivity, the R-factor of the USLE equation and its relationship to the general rainfall data. Third we examine rainfall trends over the last 100 years at several of the rainfall stations to understand temporal trends and whether ~20 years of data is sufficient to calculate the R-factor for USLE models. Fourth we present monthly R-factor maps for the Fukushima coastal catchments impacted by the FDNPP accident. The variability of the rainfall in the region, particularly during the typhoon season, is likely resulting in a similar variability in the transfer and migration of radiocesium throughout the coastal catchments of the Fukushima Prefecture. Characterizing the region's rainfall variability is fundamental to modelling sediment and the concomitant radiocesium migration and transfer throughout these catchments and ultimately to the Pacific Ocean.
Interannual variability and predictability over the Arabian Penuinsula Winter monsoon region
NASA Astrophysics Data System (ADS)
Adnan Abid, Muhammad; Kucharski, Fred; Almazroui, Mansour; Kang, In-Sik
2016-04-01
Interannual winter rainfall variability and its predictability are analysed over the Arabian Peninsula region by using observed and hindcast datasets from the state-of-the-art European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal prediction System 4 for the period 1981-2010. An Arabian winter monsoon index (AWMI) is defined to highlight the Arabian Peninsula as the most representative region for the Northern Hemispheric winter dominating the summer rainfall. The observations show that the rainfall variability is relatively large over the northeast of the Arabian Peninsula. The correlation coefficient between the Nino3.4 index and rainfall in this region is 0.33, suggesting potentially some modest predictability, and indicating that El Nino increases and La Nina decreases the rainfall. Regression analysis shows that upper-level cyclonic circulation anomalies that are forced by El Nino Southern Oscillation (ENSO) are responsible for the winter rainfall anomalies over the Arabian region. The stronger (weaker) mean transient-eddy activity related to the upper-level trough induced by the warm (cold) sea-surface temperatures during El Nino (La Nina) tends to increase (decrease) the rainfall in the region. The model hindcast dataset reproduces the ENSO-rainfall connection. The seasonal mean predictability of the northeast Arabian rainfall index is 0.35. It is shown that the noise variance is larger than the signal over the Arabian Peninsula region, which tends to limit the prediction skill. The potential predictability is generally increased in ENSO years and is, in particular, larger during La Nina compared to El Nino years in the region. Furthermore, central Pacific ENSO events and ENSO events with weak signals in the Indian Ocean tend to increase predictability over the Arabian region.
The impact of inter-annual rainfall variability on food production in the Ganges basin
NASA Astrophysics Data System (ADS)
Siderius, Christian; Biemans, Hester; van Walsum, Paul; hellegers, Petra; van Ierland, Ekko; Kabat, Pavel
2014-05-01
Rainfall variability is expected to increase in the coming decades as the world warms. Especially in regions already water stressed, a higher rainfall variability will jeopardize food security. Recently, the impact of inter-annual rainfall variability has received increasing attention in regional to global analysis on water availability and food security. But the description of the dynamics behind it is still incomplete in most models. Contemporary land surface and hydrological models used for such analyses describe variability in production primarily as a function of yield, a process driven by biophysical parameters, thereby neglecting yearly variations in cropped area, a process driven largely by management decisions. Agricultural statistics for northern India show that the latter process could explain up to 40% of the observed inter-annual variation in food production in various states. We added a simple dynamic land use decision module to a land surface model (LPJmL) and analyzed to what extent this improved the estimation of variability in food production. Using this improved modelling framework we then assessed if and at which scale rainfall variability affects meeting the food self-sufficiency threshold. Early results for the Ganges Basin indicate that, while on basin level variability in crop production is still relatively low, several districts and states are highly affected (RSTD > 50%). Such insight can contribute to better recommendations on the most effective measures, at the most appropriate scale, to buffer variability in food production.
A comparative modeling analysis of multiscale temporal variability of rainfall in Australia
NASA Astrophysics Data System (ADS)
Samuel, Jos M.; Sivapalan, Murugesu
2008-07-01
The effects of long-term natural climate variability and human-induced climate change on rainfall variability have become the focus of much concern and recent research efforts. In this paper, we present the results of a comparative analysis of observed multiscale temporal variability of rainfall in the Perth, Newcastle, and Darwin regions of Australia. This empirical and stochastic modeling analysis explores multiscale rainfall variability, i.e., ranging from short to long term, including within-storm patterns, and intra-annual, interannual, and interdecadal variabilities, using data taken from each of these regions. The analyses investigated how storm durations, interstorm periods, and average storm rainfall intensities differ for different climate states and demonstrated significant differences in this regard between the three selected regions. In Perth, the average storm intensity is stronger during La Niña years than during El Niño years, whereas in Newcastle and Darwin storm duration is longer during La Niña years. Increase of either storm duration or average storm intensity is the cause of higher average annual rainfall during La Niña years as compared to El Niño years. On the other hand, within-storm variability does not differ significantly between different ENSO states in all three locations. In the case of long-term rainfall variability, the statistical analyses indicated that in Newcastle the long-term rainfall pattern reflects the variability of the Interdecadal Pacific Oscillation (IPO) index, whereas in Perth and Darwin the long-term variability exhibits a step change in average annual rainfall (up in Darwin and down in Perth) which occurred around 1970. The step changes in Perth and Darwin and the switch in IPO states in Newcastle manifested differently in the three study regions in terms of changes in the annual number of rainy days or the average daily rainfall intensity or both. On the basis of these empirical data analyses, a stochastic rainfall time series model was developed that incorporates the entire range of multiscale variabilities observed in each region, including within-storm, intra-annual, interannual, and interdecadal variability. Such ability to characterize, model, and synthetically generate realistic time series of rainfall intensities is essential for addressing many hydrological problems, including estimation of flood and drought frequencies, pesticide risk assessment, and landslide frequencies.
NASA Astrophysics Data System (ADS)
Lucero, Omar A.; Rozas, Daniel
Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Willgoose, G. R.; Cohen, S.
2009-12-01
Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.
Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil
NASA Astrophysics Data System (ADS)
Barros, A.; simoes, s
2002-05-01
During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.
NASA Astrophysics Data System (ADS)
Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny
2015-04-01
Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may get much worse as a result of more frequent, shorter, but more intense rainfall events.
Distributional changes in rainfall and river flow in Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.
Rainfall estimation with TFR model using Ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Asyiqotur Rohmah, Nabila; Apriliani, Erna
2018-03-01
Rainfall fluctuation can affect condition of other environment, correlated with economic activity and public health. The increasing of global average temperature is influenced by the increasing of CO2 in the atmosphere, which caused climate change. Meanwhile, the forests as carbon sinks that help keep the carbon cycle and climate change mitigation. Climate change caused by rainfall intensity deviations can affect the economy of a region, and even countries. It encourages research on rainfall associated with an area of forest. In this study, the mathematics model that used is a model which describes the global temperatures, forest cover, and seasonal rainfall called the TFR (temperature, forest cover, and rainfall) model. The model will be discretized first, and then it will be estimated by the method of Ensemble Kalman Filter (EnKF). The result shows that the more ensembles used in estimation, the better the result is. Also, the accurateness of simulation result is influenced by measurement variable. If a variable is measurement data, the result of simulation is better.
Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin
2013-11-01
Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions-the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers' perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers' perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.
NASA Astrophysics Data System (ADS)
Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin
2013-11-01
Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions—the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers’ perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers’ perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
Application of satellite precipitation data to analyse and model arbovirus activity in the tropics
2011-01-01
Background Murray Valley encephalitis virus (MVEV) is a mosquito-borne Flavivirus (Flaviviridae: Flavivirus) which is closely related to Japanese encephalitis virus, West Nile virus and St. Louis encephalitis virus. MVEV is enzootic in northern Australia and Papua New Guinea and epizootic in other parts of Australia. Activity of MVEV in Western Australia (WA) is monitored by detection of seroconversions in flocks of sentinel chickens at selected sample sites throughout WA. Rainfall is a major environmental factor influencing MVEV activity. Utilising data on rainfall and seroconversions, statistical relationships between MVEV occurrence and rainfall can be determined. These relationships can be used to predict MVEV activity which, in turn, provides the general public with important information about disease transmission risk. Since ground measurements of rainfall are sparse and irregularly distributed, especially in north WA where rainfall is spatially and temporally highly variable, alternative data sources such as remote sensing (RS) data represent an attractive alternative to ground measurements. However, a number of competing alternatives are available and careful evaluation is essential to determine the most appropriate product for a given problem. Results The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 product was chosen from a range of RS rainfall products to develop rainfall-based predictor variables and build logistic regression models for the prediction of MVEV activity in the Kimberley and Pilbara regions of WA. Two models employing monthly time-lagged rainfall variables showed the strongest discriminatory ability of 0.74 and 0.80 as measured by the Receiver Operating Characteristics area under the curve (ROC AUC). Conclusions TMPA data provide a state-of-the-art data source for the development of rainfall-based predictive models for Flavivirus activity in tropical WA. Compared to ground measurements these data have the advantage of being collected spatially regularly, irrespective of remoteness. We found that increases in monthly rainfall and monthly number of days above average rainfall increased the risk of MVEV activity in the Pilbara at a time-lag of two months. Increases in monthly rainfall and monthly number of days above average rainfall increased the risk of MVEV activity in the Kimberley at a lag of three months. PMID:21255449
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.
Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.
Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F
2017-10-15
According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017 Elsevier B.V. All rights reserved.
The Influence of ENSO to the Rainfall Variability in North Sumatra Province
NASA Astrophysics Data System (ADS)
Irwandi, H.; Pusparini, N.; Ariantono, J. Y.; Kurniawan, R.; Tari, C. A.; Sudrajat, A.
2018-04-01
The El Niño Southern Oscillation (ENSO) is a global phenomenon that affects the variability of rainfall in North Sumatra. The influence of ENSO will be different for each region. This review will analyse the influence of ENSO activity on seasonal and annual rainfall variability. In this research, North Sumatra Province will be divided into 4 (four) regions based on topographical conditions, such as: East Coast (EC), East Slope (ES), Mountains (MT), and West Coast (WC). The method used was statistical and descriptive analysis. Data used in this research were rainfall data from 15 stations / climate observation posts which spread in North Sumatera region and also anomaly data of Nino 3.4 region from period 1981-2016. The results showed that the active El Niño had an effect on the decreasing the rainfall during the period of DJF, JJA and SON in East Coast, East Slope, and Mountains with the decreasing of average percentage of annual rainfall up to 7%. On the contrary, the active La Nina had an effect on the addition of rainfall during the period DJF and JJA in the East Coast and Mountains with the increasing of average percentage of annual rainfall up to 6%.
Estimating the Risk of Domestic Water Source Contamination following Precipitation Events
Eisenhauer, Ian F.; Hoover, Christopher M.; Remais, Justin V.; Monaghan, Andrew; Celada, Marco; Carlton, Elizabeth J.
2016-01-01
Climate change is expected to increase precipitation extremes, threatening water quality. In low resource settings, it is unclear which water sources are most vulnerable to contamination following rainfall events. We evaluated the relationship between rainfall and drinking water quality in southwest Guatemala where heavy rainfall is frequent and access to safe water is limited. We surveyed 59 shallow household wells, measured precipitation, and calculated simple hydrological variables. We compared Escherichia coli concentration at wells where recent rainfall had occurred versus had not occurred, and evaluated variability in the association between rainfall and E. coli concentration under different conditions using interaction models. Rainfall in the past 24 hours was associated with greater E. coli concentrations, with the strongest association between rainfall and fecal contamination at wells where pigs were nearby. Because of the small sample size, these findings should be considered preliminary, but provide a model to evaluate vulnerability to climate change. PMID:27114298
NASA Astrophysics Data System (ADS)
von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich
1993-06-01
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.
Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2010-01-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.
Climate Factors as Important Determinants of Dengue Incidence in Curaçao.
Limper, M; Thai, K T D; Gerstenbluth, I; Osterhaus, A D M E; Duits, A J; van Gorp, E C M
2016-03-01
Macro- and microclimates may have variable impact on dengue incidence in different settings. We estimated the short-term impact and delayed effects of climate variables on dengue morbidity in Curaçao. Monthly dengue incidence data from 1999 to 2009 were included to estimate the short-term influences of climate variables by employing wavelet analysis, generalized additive models (GAM) and distributed lag nonlinear models (DLNM) on rainfall, temperature and relative humidity in relation to dengue incidence. Dengue incidence showed a significant irregular 4-year multi-annual cycle associated with climate variables. Based on GAM, temperature showed a U-shape, while humidity and rainfall exhibited a dome-shaped association, suggesting that deviation from mean temperature increases and deviation from mean humidity and rainfall decreases dengue incidence, respectively. Rainfall was associated with an immediate increase in dengue incidence of 4.1% (95% CI: 2.2-8.1%) after a 10-mm increase, with a maximum increase of 6.5% (95% CI: 3.2-10.0%) after 1.5 month lag. A 1 °C decrease of mean temperature was associated with a RR of 17.4% (95% CI: 11.2-27.0%); the effect was inversed for a 1°C increase of mean temperature (RR= 0.457, 95% CI: 0.278-0.752). Climate variables are important determinants of dengue incidence and provide insight into its short-term effects. An increase in mean temperature was associated with lower dengue incidence, whereas lower temperatures were associated with higher dengue incidence. © 2015 Blackwell Verlag GmbH.
Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability
NASA Astrophysics Data System (ADS)
Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.
2016-12-01
Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.
Entropy of stable seasonal rainfall distribution in Kelantan
NASA Astrophysics Data System (ADS)
Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad
2017-05-01
Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.
Effect of climatic variability on malaria trends in Baringo County, Kenya.
Kipruto, Edwin K; Ochieng, Alfred O; Anyona, Douglas N; Mbalanya, Macrae; Mutua, Edna N; Onguru, Daniel; Nyamongo, Isaac K; Estambale, Benson B A
2017-05-25
Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of malaria in selected health facilities within Baringo County, Kenya. Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observatory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones (riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A negative binomial regression model with lagged climate variables was used to model long-term monthly malaria cases. The seasonal Mann-Kendall trend test was then used to detect overall monotonic trends in malaria cases. Malaria cases increased significantly in the highland and midland zones over the study period. Changes in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively. Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmission, appropriate control measures can be initiated at the onset of short and after long rains seasons.
NASA Astrophysics Data System (ADS)
Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.
2017-12-01
There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.
Climate influence on dengue epidemics in Puerto Rico.
Jury, Mark R
2008-10-01
The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979-2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nino Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.
Zhang, Zhengzhong; Shan, Lishan; Li, Yi
2018-01-01
The resurrection plant Reaumuria soongorica is widespread across Asia, southern Europe, and North Africa and is considered to be a constructive keystone species in desert ecosystems, but the impacts of climate change on this species in desert ecosystems are unclear. Here, the morphological responses of R. soongorica to changes in rainfall quantity (30% reduction and 30% increase in rainfall quantity) and interval (50% longer drought interval between rainfall events) were tested. Stage-specific changes in growth were monitored by sampling at the beginning, middle, and end of the growing season. Reduced rainfall decreased the aboveground and total biomass, while additional precipitation generally advanced R. soongorica growth and biomass accumulation. An increased interval between rainfall events resulted in an increase in root biomass in the middle of the growing season, followed by a decrease toward the end. The response to the combination of increased rainfall quantity and interval was similar to the response to increased interval alone, suggesting that the effects of changes in rainfall patterns exert a greater influence than increased rainfall quantity. Thus, despite the short duration of this experiment, consequences of changes in rainfall regime on seedling growth were observed. In particular, a prolonged rainfall interval shortened the growth period, suggesting that climate change-induced rainfall variability may have significant effects on the structure and functioning of desert ecosystems.
Rainfall pattern variability as climate change impact in The Wallacea Region
NASA Astrophysics Data System (ADS)
Pujiastuti, I.; Nurjani, E.
2018-04-01
The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.
Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.
Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru
2012-06-15
Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.
Using CHIRPS Rainfall Dataset to detect rainfall trends in West Africa
NASA Astrophysics Data System (ADS)
Blakeley, S. L.; Husak, G. J.
2016-12-01
In West Africa, agriculture is often rain-fed, subjecting agricultural productivity and food availability to climate variability. Agricultural conditions will change as warming temperatures increase evaporative demand, and with a growing population dependent on the food supply, farmers will become more reliant on improved adaptation strategies. Development of such adaptation strategies will need to consider West African rainfall trends to remain relevant in a changing climate. Here, using the CHIRPS rainfall product (provided by the Climate Hazards Group at UC Santa Barbara), I examine trends in West African rainfall variability. My analysis will focus on seasonal rainfall totals, the structure of the rainy season, and the distribution of rainfall. I then use farmer-identified drought years to take an in-depth analysis of intra-seasonal rainfall irregularities. I will also examine other datasets such as potential evapotranspiration (PET) data, other remotely sensed rainfall data, rain gauge data in specific locations, and remotely sensed vegetation data. Farmer bad year data will also be used to isolate "bad" year markers in these additional datasets to provide benchmarks for identification in the future of problematic rainy seasons.
NASA Astrophysics Data System (ADS)
Fishman, R.
2013-12-01
Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.
Climate forcing and desert malaria: the effect of irrigation.
Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes
2011-07-14
Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease in the actual risk of disease. This implies that irrigation can lead to more endemic conditions for malaria, creating the potential for unexpectedly large epidemics in response to excess rainfall if these climatic events coincide with a relaxation of control over time. The implications of our findings for control policies of epidemic malaria in arid regions are discussed.
Interannual rainfall variability and SOM-based circulation classification
NASA Astrophysics Data System (ADS)
Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher
2018-01-01
Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Storch, H.; Zorita, E.; Cubasch, U.
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique. The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It ismore » shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM). The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous [open quotes]2 CO[sub 2][close quotes] doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of I mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the lberian Peninsula, the change is - 10 mm/month, with a minimum of - 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ([open quotes]business as usual[close quotes]) increase of CO[sub 2], the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different. 17 refs., 10 figs.« less
NASA Astrophysics Data System (ADS)
Verma, Ram Ratan; Srivastava, Tapendra Kumar; Singh, Pushpa
2018-01-01
Assessment of variability in climate extremes is crucial for managing their aftermath on crops. Sugarcane (Saccharum officinarum L.), a major C4 crop, dominates the Upper Gangetic Plain (UGP) in India and is vulnerable to both direct and indirect effects of changes in temperature and rainfall. The present study was taken up to assess the weekly, monthly, seasonal, and annual trends of rainfall and temperature variability during the period 1956-2015 (60 years) for envisaging the probabilities of different levels of rainfall suitable for sugarcane in UGP in the present climate scenario. The analysis revealed that 87% of total annual rainfall was received during southwest monsoon months (June-September) while post-monsoon (October to February) and pre-monsoon months (March-May) accounted for only 9.4 and 3.6%, respectively. There was a decline in both monthly and annual normal rainfall during the period 1986-2015 as compared to 1956-1985, and an annual rainfall deficiency of 205.3 mm was recorded. Maximum monthly normal rainfall deficiencies of 52.8, 84.2, and 54.0 mm were recorded during the months of July, August, and September, respectively, while a minimum rainfall deficiency of 2.2 mm was observed in November. There was a decline by 196.3 mm in seasonal normal rainfall during June-September (kharif). The initial probability of a week going dry was higher (> 70%) from the 1st to the 25th week; however, standard meteorological weeks (SMW) 26 to 37 had more than 50% probability of going wet. The normal annual maximum temperature (Tmax) decreased by 0.4 °C while normal annual minimum temperatures (Tmin) increased by 0.21 °C. Analysis showed that there was an increase in frequency of drought from 1986 onwards in the zone and a monsoon rainfall deficit by about 21.25% during June-September which coincided with tillering and grand growth stage of sugarcane. The imposed drought during the growth and elongation phase is emerging as a major constraint in realizing high cane productivity in the zone. Strategies for mitigating the negative impacts of rainfall and temperature variability on sugarcane productivity through improvement in existing adaptation strategies are proposed.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
Multi-model trends in East African rainfall associated with increased CO2
NASA Astrophysics Data System (ADS)
McHugh, Maurice J.
2005-01-01
Nineteen coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Program (CMIP) were used to analyze future rainfall conditions over East Africa under enhanced CO2 conditions. 80 year control runs of these models indicated that four models produced mean annual rainfall distributions closely resembling climatological means and all four models had normalized root mean square errors well within the bounds of observed variability. East African (10°N-20°S, 25°-50°E) rainfall data from transient 80 year experiments which featured CO2 increases of 1% per year were compared with 80 year control simulations. Results indicate enhanced annual and seasonal rainfall rates, and increased extreme wet period frequency. These results indicate that East Africa may face a future in which mosquito-borne diseases such as malaria and Rift Valley fever proliferate resulting from increased CO2.
Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi
2015-12-01
The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.
Analysis of water-level fluctuations of the US Highway 90 retention pond, Madison, Florida
Bridges, W.C.
1985-01-01
A closed basin stormwater retention pond, located 1 mile west of Madison, Florida, has a maximum storage capacity of 134.1 acre-feet at the overtopping altitude of 100.2 feet. The maximum observed altitude (July 1982 to March 1984) was 99.52 feet (126.7 acre-feet) on March 28, 1984. This report provides a technique for simulating net monthly change-in-altitude in response to rainfall and evaporation. A regression equation was developed which relates net monthly change in altitude (dependent variable) to rainfall and evaporation (independent variables). Rainfall frequency curves were developed using a log-Pearson Type III distribution of the annual, January through April, June through August, and July monthly rainfall totals for the years 1908-72, 1974, 1976-82. The altitude of the retention pond increased almost 7 feet during the 4-month period January through April 1983. The rainfall total was 35.1 inches, and the recurrence interval exceeded the 100-year January-April rainfall. (USGS)
NASA Astrophysics Data System (ADS)
Agnihotri, Rajesh; Dimri, A. P.; Joshi, H. M.; Verma, N. K.; Sharma, C.; Singh, J.; Sundriyal, Y. P.
2017-05-01
The entire Indo-Himalayan region from northwest (Kashmir) to northeast (Assam) is facing prevalence of floods and landslides in recent years causing massive loss of property, human and animal lives, infrastructure, and eventually threatening tourist activities substantially. Extremely intense rainfall event of 2013 C.E. (between 15 and 17 June) kicked off mammoth flash floods in the Kedarnath area of Uttarakhand state, resulting in huge socioeconomic losses to the state and country. Uttarakhand is an important hilly region attracting thousands of tourists every year owing to numerous shrines and forested mountainous tourist spots. Though recent studies indicate a plausible weakening of Indian summer monsoon rainfall overall, recurrent anomalous high rainfall events over northwest Himalaya (e.g. -2010, 2013, and 2016) point out the need for a thorough reassessment of long-term time series data of regional rainfall and ambient temperatures in order to trace signatures of a shifting pattern in regional meteorology, if any. Accordingly, here we investigate 100-year-long monthly rainfall and air temperature time series data for a selected grid (28.5°N, 31.25°N; 78.75°E, 81.25°E) covering most parts of Uttarakhand state. We also examined temporal variance in interrelationships among regional meteorological data (temperature and precipitation) and key global climate variability indices using advance statistical methods. Major findings are (i) significant increase in pre-monsoon air temperature over Uttarakhand after 1997, (ii) increasing upward trend in June-July rainfall and its relationship with regional May temperatures (iii) monsoonal rainfall (June, July, August, and September; JJAS) showing covariance with interannual variability in Eurasian snow cover (ESC) extent during the month of March, and (iv) enhancing tendency of anomalous high rainfall events during negative phases of Arctic Oscillation. Obtained results indicate that under warming scenario, JJ rainfall (over AS) may further increase with occasional extreme rainfall spells when AO index (March) is negative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh
Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less
Changes in the Structure and Propagation of the MJO with Increasing CO2
NASA Technical Reports Server (NTRS)
Adames, Angel F.; Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo
2017-01-01
Changes in the Madden-Julian Oscillation (MJO) with increasing CO2 concentrations are examined using the Goddard Institute for Space Studies Global Climate Model (GCM). Four simulations performed with fixed CO2 concentrations of 0.5, 1, 2 and 4 times pre-industrial levels using the GCM coupled with a mixed layer ocean model are analyzed in terms of the basic state, rainfall and moisture variability, and the structure and propagation of the MJO.The GCM simulates basic state changes associated with increasing CO2 that are consistent with results from earlier studies: column water vapor increases at approximately 7.1% K(exp -1), precipitation also increases but at a lower rate (approximately 3% K(exp -1)), and column relative humidity shows little change. Moisture and rainfall variability intensify with warming. Total moisture and rainfall variability increases at a rate that is similar to that of the mean state change. The intensification is faster in the MJO-related anomalies than in the total anomalies, though the ratio of the MJO band variability to its westward counterpart increases at a much slower rate. On the basis of linear regression analysis and space-time spectral analysis, it is found that the MJO exhibits faster eastward propagation, faster westward energy dispersion, a larger zonal scale and deeper vertical structure in warmer climates.
Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel
NASA Technical Reports Server (NTRS)
Zeng, Ning; Neelin, J. David; Lau, William K.-M.
1999-01-01
The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.
Validation of satellite-based rainfall in Kalahari
NASA Astrophysics Data System (ADS)
Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter
2018-06-01
Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.
Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship
NASA Astrophysics Data System (ADS)
Viswanathan, M. N.
1984-02-01
The determination of recharge levels of unconfined aquifers, recharged entirely by rainfall, is done by developing a model for the aquifer that estimates the water-table levels from the history of rainfall observations and past water-table levels. In the present analysis, the model parameters that influence the recharge were not only assumed to be time dependent but also to have varying dependence rates for various parameters. Such a model is solved by the use of a recursive least-squares method. The variable-rate parameter variation is incorporated using a random walk model. From the field tests conducted at Tomago Sandbeds, Newcastle, Australia, it was observed that the assumption of variable rates of time dependency of recharge parameters produced better estimates of water-table levels compared to that with constant-recharge parameters. It was observed that considerable recharge due to rainfall occurred on the very same day of rainfall. The increase in water-table level was insignificant for subsequent days of rainfall. The level of recharge very much depends upon the intensity and history of rainfall. Isolated rainfalls, even of the order of 25 mm day -1, had no significant effect on the water-table levels.
Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model
NASA Astrophysics Data System (ADS)
Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.
2015-12-01
Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.
Describing rainfall in northern Australia using multiple climate indices
NASA Astrophysics Data System (ADS)
Wilks Rogers, Cassandra Denise; Beringer, Jason
2017-02-01
Savanna landscapes are globally extensive and highly sensitive to climate change, yet the physical processes and climate phenomena which affect them remain poorly understood and therefore poorly represented in climate models. Both human populations and natural ecosystems are highly susceptible to precipitation variation in these regions due to the effects on water and food availability and atmosphere-biosphere energy fluxes. Here we quantify the relationship between climate phenomena and historical rainfall variability in Australian savannas and, in particular, how these relationships changed across a strong rainfall gradient, namely the North Australian Tropical Transect (NATT). Climate phenomena were described by 16 relevant climate indices and correlated against precipitation from 1900 to 2010 to determine the relative importance of each climate index on seasonal, annual and decadal timescales. Precipitation trends, climate index trends and wet season characteristics have also been investigated using linear statistical methods. In general, climate index-rainfall correlations were stronger in the north of the NATT where annual rainfall variability was lower and a high proportion of rainfall fell during the wet season. This is consistent with a decreased influence of the Indian-Australian monsoon from the north to the south. Seasonal variation was most strongly correlated with the Australian Monsoon Index, whereas yearly variability was related to a greater number of climate indices, predominately the Tasman Sea and Indonesian sea surface temperature indices (both of which experienced a linear increase over the duration of the study) and the El Niño-Southern Oscillation indices. These findings highlight the importance of understanding the climatic processes driving variability and, subsequently, the importance of understanding the relationships between rainfall and climatic phenomena in the Northern Territory in order to project future rainfall patterns in the region.
NASA Astrophysics Data System (ADS)
Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.
2012-04-01
Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.
NASA Astrophysics Data System (ADS)
Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.
2017-10-01
Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.
Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization.
Paul, Supantha; Ghosh, Subimal; Mathew, Micky; Devanand, Anjana; Karmakar, Subhankar; Niyogi, Dev
2018-03-02
While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Bompard, Philippe; Schertzer, Daniel
2015-04-01
Urban water management is becoming increasingly complex, due to the rapid increase of impervious areas, and the potential effects of climate change. The large amount of water generated in a very short period of time and the limited capacity of sewer systems increase the vulnerability of urban environments to flooding risk and make it necessary to implement specific devices in order to handle the volume of water generated. This complex situation in urban environments makes the use of hydrological models as well as the implementation of more accurate and reliable tools for flow and rainfall measurements essential for a good pluvial network management, the use of decision support tools such as real-time radar forecasting system, the developpement of general public communication and warning systems, and the implementation of management strategy participate on limiting the flood damages. The very high spatial variability characteristic of urban environments makes it necessary to integrate the variability of physical properties and precipitation at fine scales in modeling processes, suggesting a high resolution modeling approach. In this paper we suggest a comparison between two modeling approaches and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The first model used in this study is CANOE, which is a semi-distributed model widely used in France by practitioners for urban hydrology and urban water management. Two configurations of this model are be used in this study, the first one integrate 9 sub-catchments with sizes range from (1ha to 76ha), in the second configuration, the spatial resolution of this model has been improved with 45 sub-catchments with sizes range from (1ha to 14ha), the aim is to see how the semi-distributed model resolution affects it sensitivity to rainfall variability. The second model is Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Multi-Hydro has been set up at two resolutions, 10m and 5m. The validation of these two models is performed using 5 rainfall events that occurred between 2010 and 2013. Radar data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. Raingauge and flow measurements data comes from the General Council of Val-de-Marne County. In this validation part, the hydrological responses given by two models and the different configurations are compared to flow measurements. It appears that CANOE gives better results than Multi-Hydro model, especially when using raingauge data. For some events, we noticed that model responses given when using raingauge and radar data are different, suggesting a sign of sensitivity to the spatial variability of rainfall. 10 high-resolution rainfall events are used in the second part to study the sensitivity of each modeling approach to high rainfall variability. Radar data was available at four spatial resolutions (100, 200, 500 and 1000m) and two temporal resolutions (1min and 5min), for each event, two rainfall directions (parallel and perpendicular) are used, meaning that 16 hydrological responses are simulated for each event and the variability within it analyzed. First results suggest that the fully distributed model is more sensitive to high rainfall variability than the semi-distributed one, the increase of both hydrological model spatial resolution improves their sensitivity to rainfall variability. This study highlights some technical challenges facing the high-resolution modeling, especially the difficulty to obtain reliable input data at an acceptable resolution and also the high computation time noticed particularly for the semi-distributed model making it difficult to use it in real time. The authors greatly acknowledge partial financial support from the project RainGain (http://www.raingain.eu) of the EU Interreg program.
Observed Oceanic and Terrestrial Drivers of North African Climate
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.
2015-12-01
Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region. The current study represents the first attempt to separate the observed roles of oceanic and vegetation feedbacks across North Africa, and provides observational benchmark for model evaluation.
Barletta, M; Lucena, L R R; Costa, M F; Barbosa-Cintra, S C T; Cysneiros, F J A
2012-08-01
Mercury loads in tropical estuaries are largely controlled by the rainfall regime that may cause biodilution due to increased amounts of organic matter (both live and non-living) in the system. Top predators, as Trichiurus lepturus, reflect the changing mercury bioavailability situations in their muscle tissues. In this work two variables [fish weight (g) and monthly total rainfall (mm)] are presented as being important predictors of total mercury concentration (T-Hg) in fish muscle. These important explanatory variables were identified by a Weibull Regression model, which best fit the dataset. A predictive model using readily available variables as rainfall is important, and can be applied for human and ecological health assessments and decisions. The main contribution will be to further protect vulnerable groups as pregnant women and children. Nature conservation directives could also improve by considering monitoring sample designs that include this hypothesis, helping to establish complete and detailed mercury contamination scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
Climate and Leishmaniasis in French Guiana
Roger, Amaury; Nacher, Mathieu; Hanf, Matthieu; Drogoul, Anne Sophie; Adenis, Antoine; Basurko, Celia; Dufour, Julie; Sainte Marie, Dominique; Blanchet, Denis; Simon, Stephane; Carme, Bernard; Couppié, Pierre
2013-01-01
To study the link between climatic variables and the incidence of leishmaniasis a study was conducted in Cayenne, French Guiana. Patients infected between January 1994 and December 2010. Meteorological data were studied in relation to the incidence of leishmaniasis using an ARIMA model. In the final model, the infections were negatively correlated with rainfall (with a 2-month lag) and with the number of days with rainfall > 50 mm (lags of 4 and 7 months). The variables that were positively correlated were temperature and the Multivariate El Niño Southern Oscillation Index with lags of 8 and 4 months, respectively. Significantly greater correlations were observed in March for rainfall and in November for the Multivariate El Niño/Southern Oscillation Index. Climate thus seems to be a non-negligible explanatory variable for the fluctuations of leishmaniasis. A decrease in rainfall is linked to increased cases 2 months later. This easily perceptible point could lead to an interesting prevention message. PMID:23939706
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
NASA Technical Reports Server (NTRS)
Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang;
2015-01-01
The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.
AgMIP Regional Activities in a Global Framework: The Brazil Experience
NASA Technical Reports Server (NTRS)
Assad, Eduardo D.; Marin, Fabio R.; Valdivia, Roberto O.; Rosenzweig, Cynthia E.
2012-01-01
Climate variability and change are projected to increate the frequency of extreme high-temperature events, floods, and droughts, which can lead to subsequent changes in soil moister in many locations (Alexandrov and Hoogenboom, 2000). In Brazil, observations reveal a tendency for increasing frequency of extreme rainfall events particularly in south Brazil (Alexander et al., 2006; Carvalho et al., 2014; Groissman et al., 2005), as well as projections for increasing extremes in both maximum and minimum temperatures and high spatial variability for rainfall under the IPCC SRES A2 and B2 scenarios (Marengo et al., 2009).
Climate variability and environmental stress in the Sudan-Sahel zone of West Africa.
Mertz, Ole; D'haen, Sarah; Maiga, Abdou; Moussa, Ibrahim Bouzou; Barbier, Bruno; Diouf, Awa; Diallo, Drissa; Da, Evariste Dapola; Dabi, Daniel
2012-06-01
Environmental change in the Sudan-Sahel region of West Africa (SSWA) has been much debated since the droughts of the 1970s. In this article we assess climate variability and environmental stress in the region. Households in Senegal, Mali, Burkina Faso, Niger, and Nigeria were asked about climatic changes and their perceptions were compared across north-south and west-east rainfall gradients. More than 80% of all households found that rainfall had decreased, especially in the wettest areas. Increases in wind speeds and temperature were perceived by an overall 60-80% of households. Contrary to household perceptions, observed rainfall patterns showed an increasing trend over the past 20 years. However, August rainfall declined, and could therefore potentially explain the contrasting negative household perceptions of rainfall trends. Most households reported degradation of soils, water resources, vegetation, and fauna, but more so in the 500-900 mm zones. Adaptation measures to counter environmental degradation included use of manure, reforestation, soil and water conservation, and protection of fauna and vegetation. The results raise concerns for future environmental management in the region, especially in the 500-900 mm zones and the western part of SSWA.
NASA Astrophysics Data System (ADS)
Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha
2017-03-01
Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.
NASA Astrophysics Data System (ADS)
Jain, M.; DeFries, R. S.
2012-12-01
Climate change is predicted to negatively impact many agricultural communities across the globe, particularly smallholder farmers who often do not have access to appropriate technologies to reduce their vulnerability. To better predict which farmers will be most impacted by future climate change at a regional scale, we use remote sensing and agricultural census data to examine how cropping intensity and crop type have shifted based on rainfall variability across Gujarat, India from 1990 to 2010. Using household-level interviews, we then identify the socio-economic, biophysical, perceptional, and psychological factors associated with smallholder farmers who are the most impacted and the least able to adapt to contemporaneous rainfall variability. We interviewed 750 farmers in 2011 and 2012 that span a rainfall, irrigation, socio-economic, and caste gradient across central Gujarat. Our results show that farmers shift cropping practices in several ways based on monsoon onset, which farmers state is the main observable rainfall signal influencing cropping decisions during the monsoon season. When monsoon onset is delayed, farmers opt to plant more drought-tolerant crops, push back the date of sowing, and increase the number of irrigations used. Comparing self-reported income and yields, we find that switching crops does not improve agricultural income, shifting planting date does not influence crop yield, yet increasing the number of irrigations significantly increases yield. Future work will identify which social (e.g. social networks), psychological (e.g. risk preference), and knowledge (e.g. information sources) factors are associated with farmers who are best able to adapt to rainfall variability.
Modeling rainfall-runoff relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2013-08-01
The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
The western Pacific monsoon in CMIP5 models: Model evaluation and projections
NASA Astrophysics Data System (ADS)
Brown, Josephine R.; Colman, Robert A.; Moise, Aurel F.; Smith, Ian N.
2013-11-01
ability of 35 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate the western Pacific (WP) monsoon is evaluated over four representative regions around Timor, New Guinea, the Solomon Islands and Palau. Coupled model simulations are compared with atmosphere-only model simulations (with observed sea surface temperatures, SSTs) to determine the impact of SST biases on model performance. Overall, the CMIP5 models simulate the WP monsoon better than previous-generation Coupled Model Intercomparison Project Phase 3 (CMIP3) models, but some systematic biases remain. The atmosphere-only models are better able to simulate the seasonal cycle of zonal winds than the coupled models, but display comparable biases in the rainfall. The CMIP5 models are able to capture features of interannual variability in response to the El Niño-Southern Oscillation. In climate projections under the RCP8.5 scenario, monsoon rainfall is increased over most of the WP monsoon domain, while wind changes are small. Widespread rainfall increases at low latitudes in the summer hemisphere appear robust as a large majority of models agree on the sign of the change. There is less agreement on rainfall changes in winter. Interannual variability of monsoon wet season rainfall is increased in a warmer climate, particularly over Palau, Timor and the Solomon Islands. A subset of the models showing greatest skill in the current climate confirms the overall projections, although showing markedly smaller rainfall increases in the western equatorial Pacific. The changes found here may have large impacts on Pacific island countries influenced by the WP monsoon.
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.
Vegetation-rainfall feedbacks across the Sahel: a combined observational and modeling study
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.
2016-12-01
The Sahel rainfall is characterized by large interannual variability. Past modeling studies have concluded that the Sahel rainfall variability is primarily driven by oceanic forcings and amplified by land-atmosphere interactions. However, the relative importance of oceanic versus terrestrial drivers has never been assessed from observations. The current understanding of vegetation's impacts on climate, i.e. positive vegetation-rainfall feedback through the albedo, moisture, and momentum mechanisms, comes from untested models. Neither the positive vegetation-rainfall feedback, nor the underlying mechanisms, has been fully resolved in observations. The current study fills the knowledge gap about the observed vegetation-rainfall feedbacks, through the application of the multivariate statistical method Generalized Equilibrium Feedback Assessment (GEFA) to observational data. According to GEFA, the observed oceanic impacts dominate over terrestrial impacts on Sahel rainfall, except in the post-monsoon period. Positive leaf area index (LAI) anomalies favor an extended, wetter monsoon across the Sahel, largely due to moisture recycling. The albedo mechanism is not responsible for this positive vegetation feedback on the seasonal-interannual time scale, which is too short for a grass-desert transition. A low-level stabilization and subsidence is observed in response to increased LAI - potentially responsible for a negative vegetation-rainfall feedback. However, the positive moisture feedback overwhelms the negative momentum feedback, resulting in an observed positive vegetation-rainfall feedback. We further applied GEFA to a fully-coupled Community Earth System Model (CESM) control run, as an example of evaluating climate models against the GEFA-based observational benchmark. In contrast to the observed positive vegetation-rainfall feedbacks, CESM simulates a negative vegetation-rainfall feedback across Sahel, peaking in the pre-monsoon season. The simulated negative feedback is largely due to the low-level stabilization caused by increased LAI. Positive moisture feedback is present in the CESM simulation, but an order weaker than the observed and weaker than the negative momentum feedback, thereby leading to the simulated negative vegetation-rainfall feedbacks.
NASA Astrophysics Data System (ADS)
Yulihastin, E.; Trismidianto
2018-05-01
Diurnal rainfall during the active monsoon period is usually associated with the highest convective activity that often triggers extreme rainfall. Investigating diurnal rainfall behavior in the north coast of West Java is important to recognize the behavioral trends of data leading to such extreme events in strategic West Java because the city of Jakarta is located in this region. Variability of diurnal rainfall during the period of active monsoon on December-January-February (DJF) composite during the 2000-2016 period was investigated using hourly rainfall data from Tropical Rainfall Measuring Mission (TRMM) 3B41RT dataset. Through the Empirical Mode Decomposition method was appears that the diurnal rain cycle during February has increased significantly in its amplitude and frequency. It is simultaneously shows that the indication of extreme rainfall events is related to diurnal rain divergences during February shown through phase shifts. The diurnal, semidiurnal, and terdiurnal cycles appear on the characteristics of the DJF composite rainfall data during the 2000-2016 period.The significant increases in amplitude occurred during February are the diurnal (IMF 3) and terdiurnal (IMF 1) of rainfall cycles.
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
Mandal, S; Choudhury, B U; Satpati, L N
2015-12-01
In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress-tolerant cultivars to monsoon rainfall variability for sustaining rainfed rice production vis-à-vis food and livelihood security in vulnerable islands of coastal ecosystem.
Understanding Flood Seasonality and Its Temporal Shifts within the Contiguous United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Sheng; Li, Hong-Yi; Leung, L. Ruby
2017-07-01
Understanding the causes of flood seasonality is critical for better flood management. This study examines the seasonality of annual maximum floods (AMF) and its changes before and after 1980 at over 250 natural catchments across the contiguous United States. Using circular statistics to define a seasonality index, our analysis focuses on the variability of the flood occurrence date. Generally, catchments with more synchronized seasonal water and energy cycles largely inherit their seasonality of AMF from that of annual maximum rainfall (AMR). In contrast, the seasonality of AMF in catchments with loosely synchronized water and energy cycles are more influenced bymore » high antecedent storage, which is responsible for the amplification of the seasonality of AMF over that of AMR. This understanding then effectively explains a statistically significant shift of flood seasonality detected in some catchments in the recent decades. Catchments where the antecedent soil water storage has increased since 1980 exhibit increasing flood seasonality while catchments that have experienced increases in storm rainfall before the floods have shifted towards floods occurring more variably across the seasons. In the eastern catchments, a concurrent widespread increase in event rainfall magnitude and reduced soil water storage have led to a more variable timing of floods. Our findings of the role of antecedent storage and event rainfall on the flood seasonality provide useful insights for understanding future changes in flood seasonality as climate models projected changes in extreme precipitation and aridity over land.« less
Forecasting Andean rainfall and crop yield from the influence of El Nino on Pleiades visibility
Orlove; Chiang; Cane
2000-01-06
Farmers in drought-prone regions of Andean South America have historically made observations of changes in the apparent brightness of stars in the Pleiades around the time of the southern winter solstice in order to forecast interannual variations in summer rainfall and in autumn harvests. They moderate the effect of reduced rainfall by adjusting the planting dates of potatoes, their most important crop. Here we use data on cloud cover and water vapour from satellite imagery, agronomic data from the Andean altiplano and an index of El Nino variability to analyse this forecasting method. We find that poor visibility of the Pleiades in June-caused by an increase in subvisual high cirrus clouds-is indicative of an El Nino year, which is usually linked to reduced rainfall during the growing season several months later. Our results suggest that this centuries-old method of seasonal rainfall forecasting may be based on a simple indicator of El Nino variability.
Could Malaria Control Programmes be Timed to Coincide with Onset of Rainfall?
Komen, Kibii
2017-06-01
Malaria cases in South Africa's Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (-0.02, -0.01, -0.02, -0.00) and temperature (-46.61, -47.46, -48.14, -36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a 'malaria season'. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.
NASA Astrophysics Data System (ADS)
Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.
2016-12-01
Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.
NASA Astrophysics Data System (ADS)
Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk
2015-04-01
As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA
Temporal and spatial characteristics of annual and seasonal rainfall in Malawi
NASA Astrophysics Data System (ADS)
Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu
2010-05-01
An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation
Rainfall Morphology in Semi-Tropical Convergence Zones
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.
2000-01-01
Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.
Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas
NASA Astrophysics Data System (ADS)
Case, M. F.; Staver, A. C.
2017-12-01
Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.
NASA Astrophysics Data System (ADS)
Gebremicael, Tesfay G.; Mohamed, Yasir A.; Zaag, Pieter v.; Hagos, Eyasu Y.
2017-04-01
The Upper Tekezē-Atbara river sub-basin, part of the Nile Basin, is characterized by high temporal and spatial variability of rainfall and streamflow. In spite of its importance for sustainable water use and food security, the changing patterns of streamflow and its association with climate change is not well understood. This study aims to improve the understanding of the linkages between rainfall and streamflow trends and identify possible drivers of streamflow variabilities in the basin. Trend analyses and change-point detections of rainfall and streamflow were analysed using Mann-Kendall and Pettitt tests, respectively, using data records for 21 rainfall and 9 streamflow stations. The nature of changes and linkages between rainfall and streamflow were carefully examined for monthly, seasonal and annual flows, as well as indicators of hydrologic alteration (IHA). The trend and change-point analyses found that 19 of the tested 21 rainfall stations did not show statistically significant changes. In contrast, trend analyses on the streamflow showed both significant increasing and decreasing patterns. A decreasing trend in the dry season (October to February), short season (March to May), main rainy season (June to September) and annual totals is dominant in six out of the nine stations. Only one out of nine gauging stations experienced significant increasing flow in the dry and short rainy seasons, attributed to the construction of Tekezē hydropower dam upstream this station in 2009. Overall, streamflow trends and change-point timings were found to be inconsistent among the stations. Changes in streamflow without significant change in rainfall suggests factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the basin. Further studies are needed to verify and quantify the hydrological changes shown in statistical tests by identifying the physical mechanisms behind those changes. The findings from this study are useful as a prerequisite for studying the effects of catchment management dynamics on the hydrological variabilities in the basin.
Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity
NASA Astrophysics Data System (ADS)
Ulbrich, U.; Christoph, M.; Pinto, J. G.; Corte-Real, J.
1999-03-01
The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO.A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980
Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability
NASA Astrophysics Data System (ADS)
Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep
2015-05-01
A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.
Rainfall Climatology over Asir Region, Saudi Arabia
NASA Astrophysics Data System (ADS)
Sharif, H.; Furl, C.; Al-Zahrani, M.
2012-04-01
Arid and semi-arid lands occupy about one-third of the land surface of the earth and support about one-fifth of the world population. The Asir area in Saudi Arabia is an example of these areas faced with the problem of maintaining sustainable water resources. This problem is exacerbated by the high levels of population growth, land use changes, increasing water demand, and climate variability. In this study, the characteristics of decade-scale variations in precipitation are examined in more detail for Asir region. The spatio-temporal distributions of rainfall over the region are analyzed. The objectives are to identify the sensitivity, magnitude, and range of changes in annual and seasonal evapotranspiration resulting from observed decade-scale precipitation variations. An additional objective is to characterize orographic controls on the space-time variability of rainfall. The rainfall data is obtained from more than 30 rain gauges spread over the region.
NASA Astrophysics Data System (ADS)
Carey, A. M.; Paige, G. B.; Miller, S. N.; Carr, B. J.; Holbrook, W. S.
2014-12-01
In semi-arid rangeland environments understanding how surface and subsurface flow processes and their interactions are influenced by watershed and rainfall characteristics is critical. However, it is difficult to resolve the temporal variations between mechanisms controlling these processes and challenging to obtain field measurements that document their interactions. Better insight into how these complex systems respond hydrologically is necessary in order to refine hydrologic models and decision support tools. We are conducting field studies integrating high resolution, two-dimensional surface electrical resistivity imaging (ERI) with variable intensity rainfall simulation, to quantify real-time partitioning of rainfall into surface and subsurface response. These studies are being conducted at the hillslope scale on long-term runoff plots on four different ecological sites in the Upper Crow Creek Watershed in southeastern Wyoming. Variable intensity rainfall rates were applied using the Walnut Gulch Rainfall Simulator in which intensities were increased incrementally from 49 to 180 mm hr-1 and steady-state runoff rates for each intensity were measured. Two 13.5 m electrode arrays at 0.5 m spacing were positioned on the surface perpendicular to each plot and potentials were measured at given time intervals prior to, during and following simulations using a dipole-dipole array configuration. The configuration allows for a 2.47 m depth of investigation in which magnitude and direction of subsurface flux can be determined. We used the calculated steady state infiltration rates to quantify the variability in the partial area runoff response on the ecological sites. Coupling this information with time-lapse difference inversions of ERI data, we are able to track areas of increasing and decreasing resistivity in the subsurface related to localized areas of infiltration during and following rainfall events. We anticipate implementing this method across a variety of ecological sites in the Upper Crow Creek in order to characterize the variable hydrologic response of this complex rangeland watershed. This information is being used to refine current physically based hydrologic models and watershed assessment tools.
Recent variations in geopotential height associated with West African monsoon variability
NASA Astrophysics Data System (ADS)
Okoro, Ugochukwu K.; Chen, Wen; Nath, Debashis
2018-02-01
In the present study, the atmospheric circulation patterns associated with the seasonal West Africa (WA) monsoon (WAM) rainfall variability has been investigated. The observational rainfall data from the Climatic Research Unit (CRU) and atmospheric fields from the National Center for Environmental Prediction (NCEP) reanalysis 2, from 1979 to 2014, have been used. The rainfall variability extremes, classified as wet or dry years, are the outcomes of simultaneous 6-month SPI at the three rainfall zones, which shows increasing trends [Guinea Coast (GC = 0.012 year-1), Eastern Sudano Sahel (ESS = 0.045 year-1) and Western Sudano Sahel (WSS = 0.056 year-1) from Sen's slope]; however, it is significant only in the Sahel region (α = 0.05 and α = 0.001 at ESS and WSS, respectively, from Mann-Kendall test). The vertical profile of the geopotential height (GpH) during the wet and dry years reveals that the 700 hPa anomalies show remarkable pattern at about 8°N to 13°N. This shows varying correlation with the zonal averaged vertically integrated moisture flux convergence and rainfall anomalies, respectively, as well as the oceanic pulsations indexes [Ocean Nino Index (ONI) and South Atlantic Ocean dipole index (SAODI), significant from t test], identified as precursors to the Sahel and GC rainfall variability respectively. The role of GpH anomalies at 700 hPa has been identified as the facilitator to the West African Westerly Jet's input to the moisture flux transported over the WA. This is a new perspective of the circulation processes associated with WAM and serves as a basis for modeling investigations.
Climate science and famine early warning
Verdin, James P.; Funk, Chris; Senay, Gabriel B.; Choularton, R.
2005-01-01
Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.
Climate science and famine early warning.
Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard
2005-11-29
Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.
Climate science and famine early warning
Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard
2005-01-01
Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised. PMID:16433101
NASA Astrophysics Data System (ADS)
Vogt, N. D.; Fernandes, K.; Pinedo-Vasquez, M.; Brondizio, E. S.; Almeida, O.; Rivero, S.; Rabelo, F. R.; Dou, Y.; Deadman, P.
2014-12-01
In this paper we investigate inter-seasonal and annual co-variations of rainfall and flood levels with Caboclo production portfolios, and proportions of it they sell and consume, in the Amazon Estuary from August 2012 to August 2014. Caboclos of the estuary maintain a diverse and flexible land-use portfolio, with a shift in dominant use from agriculture to agroforestry and forestry since WWII (Vogt et al., 2014). The current landscape is configured for acai, shrimp and fish production. In the last decade the frequency of wet seasons with anomalous flood levels and duration has increased primarily from changes in rainfall and discharge from upstream basins. Local rainfall, though with less influence on extreme estuarine flood levels, is reported to be more sporadic and intense in wet season and variable in both wet and dry seasons, for yet unknown reasons. The current production portfolio and its flexibility are felt to build resilience to these increases in hydro-climatic variability and extreme events. What is less understood, for time and costliness of daily measures at household levels, is how variations in flood and rainfall levels affect shifts in the current production portfolio of estuarine Caboclos, and the proportions of it they sell and consume. This is needed to identify what local hydro-climatic thresholds are extreme for current livelihoods, that is, that most adversely affect food security and income levels. It is also needed identify the large-scale forcings driving those extreme conditions to build forecasts for when they will occur. Here we present results of production, rainfall and flood data collected daily in households from both the North and South Channel of the Amazon estuary over last two years to identify how they co-vary, and robustness of current production portfolio under different hydro-climatic conditions.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.
Rainfall and runoff variability in Ethiopia
NASA Astrophysics Data System (ADS)
Billi, Paolo; Fazzini, Massimiliano; Tadesse Alemu, Yonas; Ciampalini, Rossano
2014-05-01
Rainfall and river flow variability have been deeply investigated and and the impact of climate change on both is rather well known in Europe (EEA, 2012) or in other industrialized countries. Reports of international organizations (IPCC, 2012) and the scientific literature provide results and outlooks that were found contrasting and spatially incoherent (Manton et al., 2001; Peterson et al., 2002; Griffiths et al., 2003; Herath and Ratnayake, 2004) or weakened by limitation of data quality and quantity. According to IPCC (2012), in East Africa precipitation there are contrasting regional and seasonal variations and trends, though Easterling et al. (2000) and Seleshi and Camberlin (2006) report decreasing trends in heavy precipitation over parts of Ethiopia during the period 1965-2002. Literature on the impact of climate change on river flow is scarce in Africa and IPCC Technical Paper VI (IPCC, 2008) concluded that no evidence, based on instrumental records, has been found for a climate-driven globally widespread change in the magnitude/frequency of floods during the last decades (Rosenzweig et al., 2007), though increases in runoff and increased risk of flood events in East Africa are expected. Some papers have faced issues regarding rainfall and river flow variability in Ethiopia (e.g. Seleshi and Demaree, 1995; Osman and Sauerborn, 2002; Seleshi and Zanke, 2004; Meze-Hausken, 2004; Korecha and Barnston, 2006; Cheung et al., 2008) but their investigations are commonly geographically limited or used a small number of rain and flow gauges with the most recent data bound to the beginning of the last decade. In this study an attempt to depict rainfall and river flow variability, considering the longer as possible time series for the largest as possible number of meteo-stations and flow gauge evenly distributed across Ethiopia, is presented. 25 meteo-stations and 21 flow gauges with as much as possible continuous data records were selected. The length of the time series ranges between 35 to 50 and 9 to 49 years for rainfall and river flow, respectively. In order to improve the poor linear correlation model to describe rainfall gradient with altitude a simple topographic parameter is introduced capable to better depict the spatial variability of annual rainfall and its coefficient of variation. The small rains (Belg) were found to be much more unpredictable than the long, monsoon-type rains (Kiremt) and hence much more out of phase with the variation of annual precipitation amount that is significantly influenced by the Kiremt rains. In order to investigate the long term trends, rainfall anomalies were calculated as Z score for annual, Belg and Kiremt precipitation for all the stations and average values are calculated and plotted against time. The three Z trend lines obtained show no marked deviation from the mean as only an almost negligible decreasing trend is observed. Rainfall intensity in 24 hours is analyzed and the trend line of the maximum intensity averaged over the maximum value of each year recorded at each meteo-station is constructed. These data indicate a general decrease in daily rainfall intensity across Ethiopia with clear exceptions in a few selected areas. The same procedure, based on the Z scores, used to analyze rainfall variability is applied also to the river flow data and a similar result is obtained. If compared with rainfall, annual runoff shows a much wider range of variation among the study rivers. This issue is discussed and possible explanations are presented.
Examining spatial-temporal variability and prediction of rainfall in North-eastern Nigeria
NASA Astrophysics Data System (ADS)
Muhammed, B. U.; Kaduk, J.; Balzter, H.
2012-12-01
In the last 50 years rainfall in North-eastern Nigeria under the influence of the West African Monsoon (WAM) has been characterised by large annual variations with severe droughts recorded in 1967-1973, and 1983-1987. This variability in rainfall has a large impact on the regions agricultural output, economy and security where the majority of the people depend on subsistence agriculture. In the 1990s there was a sign of recovery with higher annual rainfall totals compared to the 1961-1990 period but annual totals were slightly above the long term mean for the century. In this study we examine how significant this recovery is by analysing medium-term (1980-2006) rainfall of the region using the Climate Research Unit (CRU) and National Centre for Environment Prediction (NCEP) precipitation ½ degree, 6 hourly reanalysis data set. Percentage coefficient of variation increases northwards for annual rainfall (10%-35%) and the number of rainy days (10%-50%). The standardized precipitation index (SPI) of the area shows 7 years during the period as very wet (1996, 1999, 2003 and 2004) with SPI≥1.5 and moderately wet (1993, 1998, and 2006) with values of 1.0≥SPI≤1.49. Annual rainfall indicates a recovery from the 1990s and onwards but significant increases (in the amount of rainfall and number of days recorded with rainfall) is only during the peak of the monsoon season in the months of August and September (p<0.05) with no significant increases in the months following the onset of rainfall. Forecasting of monthly rainfall was made using the Auto Regressive Integrated Moving Average (ARIMA) model. The model is further evaluated using 24 months rainfall data yielding r=0.79 (regression slope=0.8; p<0.0001) in the sub-humid part of the study area and r=0.65 (regression slope=0.59, and p<0.0001) in the northern semi-arid part. The results suggest that despite the positive changes in rainfall (without significant increases in the months following the onset of the monsoon), the area has not fully recovered from the drought years of the 1960s, 70s, and 80s. These findings also highlight the implications of the current recovery on rain fed agriculture and water resources in the study area. The strong correlation and a root mean square error of 64.8 mm between the ARIMA model and the rainfall data used for this study indicates that the model can be satisfactorily used in forecasting rainfall in the in the sub-humid part of North-eastern Nigeria over a 24 months period.
NASA Astrophysics Data System (ADS)
Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio
2018-03-01
Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.
NASA Astrophysics Data System (ADS)
Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao
2018-02-01
There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.
Organization of vertical shear of wind and daily variability of monsoon rainfall
NASA Astrophysics Data System (ADS)
Gouda, K. C.; Goswami, P.
2016-10-01
Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.
NASA Astrophysics Data System (ADS)
Zhou, Z. Q.; Xie, S. P.; Zhou, W.
2016-12-01
Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.
NASA Astrophysics Data System (ADS)
Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.
2016-08-01
Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.
Ganendran, L B; Sidhu, L A; Catchpole, E A; Chambers, L E; Dann, P
2016-08-01
Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.
NASA Astrophysics Data System (ADS)
Borodina, Aleksandra; Fischer, Erich M.; Knutti, Reto
2017-04-01
Model projections of heavy rainfall are uncertain. On timescales of few decades, internal variability plays an important role and therefore poses a challenge to detect robust model responses. We show that spatial aggregation across regions with intense heavy rainfall events, - defined as grid cells with high annual precipitation maxima (Rx1day), - allows to reduce the role of internal variability and thus to detect a robust signal during the historical period. This enables us to evaluate models with observational datasets and to constrain long-term projections of the intensification of heavy rainfall, i.e., to recalibrate full model ensemble consistent with observations resulting in narrower range of projections. In the regions of intense heavy rainfall, we found two present-day metrics that are related to a model's projection. The first metric is the observed relationship between the area-weighted mean of the annual precipitation maxima (Rx1day) and the global land temperatures. The second is the fraction of land exhibiting statistically significant relationships between local annual precipitation maxima (Rx1day) and global land temperatures over the historical period. The models that simulate high values in both metrics are those that are in better agreement with observations and show strong future intensification of heavy rainfall. This implies that changes in heavy rainfall are likely to be more intense than anticipated from the multi-model mean.
NASA Astrophysics Data System (ADS)
Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian
2017-09-01
The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.
Climate Change Impact on Variability of Rainfall Intensity in Upper Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Worku, L. Y.
2015-12-01
Extreme rainfall events are major problems in Ethiopia with the resulting floods that usually could cause significant damage to agriculture, ecology, infrastructure, disruption to human activities, loss of property, loss of lives and disease outbreak. The aim of this study was to explore the likely changes of precipitation extreme changes due to future climate change. The study specifically focuses to understand the future climate change impact on variability of rainfall intensity-duration-frequency in Upper Blue Nile basin. Precipitations data from two Global Climate Models (GCMs) have been used in the study are HadCM3 and CGCM3. Rainfall frequency analysis was carried out to estimate quantile with different return periods. Probability Weighted Method (PWM) selected estimation of parameter distribution and L-Moment Ratio Diagrams (LMRDs) used to find the best parent distribution for each station. Therefore, parent distributions for derived from frequency analysis are Generalized Logistic (GLOG), Generalized Extreme Value (GEV), and Gamma & Pearson III (P3) parent distribution. After analyzing estimated quantile simple disaggregation model was applied in order to find sub daily rainfall data. Finally the disaggregated rainfall is fitted to find IDF curve and the result shows in most parts of the basin rainfall intensity expected to increase in the future. As a result of the two GCM outputs, the study indicates there will be likely increase of precipitation extremes over the Blue Nile basin due to the changing climate. This study should be interpreted with caution as the GCM model outputs in this part of the world have huge uncertainty.
Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM
NASA Technical Reports Server (NTRS)
Yang, Song; Smith, Eric A.
2004-01-01
The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.
NASA Astrophysics Data System (ADS)
Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.
2005-12-01
Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest vegetation to crop land affects monsoon rainfall in two ways: 1) The presence of cropland increases the sensible heat release from ground, increasing the chances for development of forced convection; 2) Large scale irrigation associated with spring crop development creates a moister lower boundary layer thus inducing more moist instability and free convection in the succeeding season.
NASA Astrophysics Data System (ADS)
Polemio, Maurizio; Lonigro, Teresa
2013-04-01
Recent international researches have underlined the evidences of climate changes throughout the world. Among the consequences of climate change, there is the increase in the frequency and magnitude of natural disasters, such as droughts, windstorms, heat waves, landslides, floods and secondary floods (i.e. rapid accumulation or pounding of surface water with very low flow velocity). The Damaging Hydrogeological Events (DHEs) can be defined as the occurrence of one or more simultaneous aforementioned phenomena causing damages. They represent a serious problem, especially in DHE-prone areas with growing urbanisation. In these areas the increasing frequency of extreme hydrological events could be related to climate variations and/or urban development. The historical analysis of DHEs can support decision making and land-use planning, ultimately reducing natural risks. The paper proposes a methodology, based on both historical and time series approaches, used for describing the influence of climatic variability on the number of phenomena observed. The historical approach is finalised to collect phenomenon historical data. The historical flood and landslide data are important for the comprehension of the evolution of a study area and for the estimation of risk scenarios as a basis for civil protection purposes. Phenomenon historical data is useful for expanding the historical period of investigation in order to assess the occurrence trend of DHEs. The time series approach includes the collection and the statistical analysis of climatic and rainfall data (monthly rainfall, wet days, rainfall intensity, and temperature data together with the annual maximum of short-duration rainfall data, from 1 hour to 5 days), which are also used as a proxy for floods and landslides. The climatic and rainfall data are useful to characterise the climate variations and trends and to roughly assess the effects of these trends on river discharge and on the triggering of landslides. The time series approach is completed by tools to analyse simultaneously all data types. The methodology was tested considering a selected Italian region (Apulia, southern Italy). The data were collected in two databases: a damaging hydrogeological event database (1186 landslides and floods since 1918) and a climate database (from 1877; short-duration rainfall from 1921). A statistically significant decreasing trend of rainfall intensity and an increasing trend of temperature, landslides, and DHEs were observed. A generalised decreasing trend of short-duration rainfall was observed. If there is not an evident relationship between climate variability and the variability of DHE occurrences, the role of anthropogenic modifications (increasing use or misuse of flood- and landslide-prone areas) could be hypothesized to justify the increasing occurrences of floods and landslides.. This study identifies the advantages of a simplifying approach to reduce the intrinsic complexities of the spatial-temporal analysis of climate variability, permitting the simultaneous analysis of the modification of flood and landslide occurrences.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016
NASA Astrophysics Data System (ADS)
Rodrigo, F. S.
2018-02-01
In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.
Relationships between Tropical Rainfall Events and Regional Annual Rainfall Anomalies
NASA Astrophysics Data System (ADS)
Painter, C.; Varble, A.; Zipser, E. J.
2016-12-01
Regional annual precipitation anomalies strongly impact the health of regional ecosystems, water resources, agriculture, and the probability of flood and drought conditions. Individual event characteristics, including rain rate, areal coverage, and stratiform fraction are also crucial in considering large-scale impacts on these resources. Therefore, forecasting individual event characteristics is important and could potentially be improved through correlation with longer and better predicted timescale environmental variables such as annual rainfall. This study examines twelve years of retrieved rainfall characteristics from the Tropical Rainfall Measuring Mission (TRMM) satellite at a 5° x 5° resolution between 35°N and 35°S, as a function of annual rainfall anomaly derived from Global Precipitation Climatology Project data. Rainfall event characteristics are derived at a system scale from the University of Utah TRMM Precipitation Features database and at a 5-km pixel scale from TRMM 2A25 products. For each 5° x 5° grid box and year, relationships between these characteristics and annual rainfall anomaly are derived. Additionally, years are separated into wet and dry groups for each grid box and are compared versus one another. Convective and stratiform rain rates, along with system area and volumetric rainfall, generally increase during wetter years, and this increase is most prominent over oceans. This is in agreement with recent studies suggesting that convective systems become larger and rainier when regional annual rainfall increases or when the climate warms. Over some land regions, on the other hand, system rain rate, volumetric rainfall, and area actually decrease as annual rainfall increases. Therefore, land and ocean regions generally exhibit different relationships. In agreement with recent studies of extreme rainfall in a changing climate, the largest and rainiest systems increase in relative size and intensity compared to average systems, and do so as a function of annual rainfall in most tropical regions. However, select land regions such as the Congo fail to follow this tendency. Changes in seasonal and diurnal cycles of PF characteristics as a function of regional annual rainfall anomaly are also analyzed.
Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed
NASA Astrophysics Data System (ADS)
Demisse, N. S.; Bitew, M. M.; Gebremichael, M.
2012-12-01
The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.
Atmospheric Teleconnection and Climate Variability: Affecting Rice Productivity of Bihar, India
NASA Astrophysics Data System (ADS)
Saini, A.
2017-12-01
Climate variability brought various negative results to the environment around us and area under rice crop in Bihar has also faced a lot of negative impacts due to variability in temperature and rainfall. Location of Bihar in Northern Plain of India automatically makes it prime location for agriculture and therefore variability in climatic variables brings highly sensitive results to the agricultural production (especially rice). In this study, rainfall and temperature variables are taken into consideration to investigate the impact on rice cultivated area. Change in climate variable with the passage of time is prevailing since the start of geological time scale, how the variability in climate variables has affected the major crops. Climate index of Pacific Ocean and Indian Ocean influences the seasonal weather in Bihar and therefore role of ENSO and IOD is an interesting point of inquiry. Does there exists direct relation between climate variability and area under agricultural crops? How many important variables directly signals towards the change in area under agriculture production? These entire questions are answered with respect to change in area under rice cultivation of Bihar State of India. Temperature, rainfall and ENSO are a good indicator with respect to rice cultivation in Indian subcontinent. Impact on the area under rice has been signaled through ONI, Niño3 and DMI. Increasing range of temperature in the rice productivity declining years is observed since 1990.
NASA Astrophysics Data System (ADS)
Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.
2018-02-01
Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
NASA Astrophysics Data System (ADS)
Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.
2014-12-01
Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this trend is reversed.
Encounter risk analysis of rainfall and reference crop evapotranspiration in the irrigation district
NASA Astrophysics Data System (ADS)
Zhang, Jinping; Lin, Xiaomin; Zhao, Yong; Hong, Yang
2017-09-01
Rainfall and reference crop evapotranspiration are random but mutually affected variables in the irrigation district, and their encounter situation can determine water shortage risks under the contexts of natural water supply and demand. However, in reality, the rainfall and reference crop evapotranspiration may have different marginal distributions and their relations are nonlinear. In this study, based on the annual rainfall and reference crop evapotranspiration data series from 1970 to 2013 in the Luhun irrigation district of China, the joint probability distribution of rainfall and reference crop evapotranspiration are developed with the Frank copula function. Using the joint probability distribution, the synchronous-asynchronous encounter risk, conditional joint probability, and conditional return period of different combinations of rainfall and reference crop evapotranspiration are analyzed. The results show that the copula-based joint probability distributions of rainfall and reference crop evapotranspiration are reasonable. The asynchronous encounter probability of rainfall and reference crop evapotranspiration is greater than their synchronous encounter probability, and the water shortage risk associated with meteorological drought (i.e. rainfall variability) is more prone to appear. Compared with other states, there are higher conditional joint probability and lower conditional return period in either low rainfall or high reference crop evapotranspiration. For a specifically high reference crop evapotranspiration with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is increased with the decrease in frequency. For a specifically low rainfall with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is decreased with the decrease in frequency. When either the high reference crop evapotranspiration exceeds a certain frequency or low rainfall does not exceed a certain frequency, the higher conditional joint probability and lower conditional return period of various combinations likely cause a water shortage, but the water shortage is not severe.
Observed climate variability over Chad using multiple observational and reanalysis datasets
NASA Astrophysics Data System (ADS)
Maharana, Pyarimohan; Abdel-Lathif, Ahmat Younous; Pattnayak, Kanhu Charan
2018-03-01
Chad is the largest of Africa's landlocked countries and one of the least studied region of the African continent. The major portion of Chad lies in the Sahel region, which is known for its rapid climate change. In this study, multiple observational datasets are analyzed from 1950 to 2014, in order to examine the trend of precipitation and temperature along with their variability over Chad to understand possible impacts of climate change over this region. Trend analysis of the climatic fields has been carried out using Mann-Kendall test. The precipitation over Chad is mostly contributed during summer by West African Monsoon, with maximum northward limit of 18° N. The Atlantic Ocean as well as the Mediterranean Sea are the major source of moisture for the summer rainfall over Chad. Based on the rainfall time series, the entire study period has been divided in to wet (1950 to 1965), dry (1966 to 1990) and recovery period (1991 to 2014). The rainfall has decreased drastically for almost 3 decades during the dry period resulted into various drought years. The temperature increases at a rate of 0.15 °C/decade during the entire period of analysis. The seasonal rainfall as well as temperature plays a major role in the change of land use/cover. The decrease of monsoon rainfall during the dry period reduces the C4 cover drastically; this reduction of C4 grass cover leads to increase of C3 grass cover. The slow revival of rainfall is still not good enough for the increase of shrub cover but it favors the gradual reduction of bare land over Chad.
Hancock, G R; Verdon-Kidd, D; Lowry, J B C
2017-12-01
Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
A further assessment of vegetation feedback on decadal Sahel rainfall variability
NASA Astrophysics Data System (ADS)
Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia
2013-03-01
The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.
Rainfall Results of the Florida Area Cumulus Experiment, 1970-76.
NASA Astrophysics Data System (ADS)
Woodley, William L.; Jordan, Jill; Barnston, Anthony; Simpson, Joanne; Biondini, Ron; Flueck, John
1982-02-01
The Florida Area Cumulus Experiment of 1970-76 (FACE-1) is a single-area, randomized, exploratory experiment to determine whether seeding cumuli for dynamic effects (dynamic seeding) can be used to augment convective rainfall over a substantial target area (1.3 × 104 km2) in south Florida. Rainfall is estimated using S-band radar observations after adjustment by raingages. The two primary response variables are rain volumes in the total target (TT) and in the floating target (FT), the most intensely treated portion of the target. The experimental unit is the day and the main observational period is the 6 h after initiation of treatment (silver iodide flares on seed days and either no flares or placebos on control days). Analyses without predictors suggest apparent increases in both the location (means and medians) and the dispersion (standard deviation and interquartile range) characteristics of rainfall due to seeding in the FT and TT variables with substantial statistical support for the FT results and lesser statistical support for the TT results. Analyses of covariance using meteorologically meaningful predictor variables suggest a somewhat larger effect of seeding with stronger statistical support. These results are interpreted in terms of the FACE conceptual model.
The stochastic runoff-runon process: Extending its analysis to a finite hillslope
NASA Astrophysics Data System (ADS)
Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.
2016-10-01
The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their ;correlation scale;, that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.
NASA Astrophysics Data System (ADS)
Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel
2013-04-01
Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. Hybrid models - mixing geostatistics and machine learning, will be applied to study spatial non-stationarity of rainfall fields. The research will include rainfalls variability mapping and probabilistic analyses of extreme events. Key words: rainfall variability, Rwanda, extreme event, model, mapping, geostatistics.
NASA Astrophysics Data System (ADS)
Rogé, P.; Friedman, A. R.; Astier, M.; Altieri, M.
2015-12-01
The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to climatic variability. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management systems. We interpret farmers' narratives from a perspective of general agroecological resilience. In addition, we facilitated workshops in small farmers described their adaptation to past climate challenges and identified 14 indicators that they subsequently used to evaluate the condition of their agroecosystems. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Farmers reported that their cropping systems were changing for multiple reasons: more drought, later rainfall onset, decreased rural labor, and introduced labor-saving technologies. Examination of climate data found that farmers' climate narratives were largely consistent with the observational record. There have been increases in temperature and rainfall intensity, and an increase in rainfall seasonality that may be perceived as later rainfall onset. Farmers ranked landscape-scale indicators as more marginal than farmer management or soil quality indicators. From this analysis, farmers proposed strategies to improve the ability of their agroecosystems to cope with climatic variability. Notably, they recognized that social organizing and education are required for landscape-level indicators to be improved. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges. Climate change adaptation by small farmers involves much more than just a set of farming practices, but also community action to tackle collective problems.
Interannual variability of Indian monsoon rainfall
NASA Technical Reports Server (NTRS)
Paolino, D. A.; Shukla, J.
1984-01-01
The interannual variability of the Indian summer monsoon and its relationships with other atmospheric fluctuations were studied in hopes of gaining some insight into the predicability of the rainfall. Rainfall data for 31 meteorological subdivisions over India were provided by the India Meteorological Department (IMD). Fifty-three years of seasonal mean anomaly sea-level pressure (SLP) fields were used to determine if any relationships could be detected between fluctuations in Northern Hemisphere surface pressure and Indian monsoon rainfall. Three month running mean sea-level pressure anomalies at Darwin (close to one of the centers of the Southern Oscillation) were compiled for months preceding and following extreme years for rainfall averaged over all of India. Anomalies are small before the monsoon, but are quite large in months following the summer season. However, there is a large decrease in Darwin pressure for months preceding a heavy monsoon, while a deficient monsoon is preceded by a sharp increase in Darwin pressure. If a time series is constructed of the tendency of Darwin SLP between the Northern Hemisphere winter (DJF) and spring (MAM) and a correlation coefficient is computed between it and 81 years of rainfall average over all of India, one gets a C. C. of -.46, which is higher than any other previously computed predictor of the monsoon rainfall. This relationship can also be used to make a qualitative forecast for rainfall over the whole of India by considering the sign of the tendency in extreme monsoon years.
Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon
NASA Astrophysics Data System (ADS)
Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.
2017-12-01
The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.
Gaxiola, Aurora; Armesto, Juan J.
2015-01-01
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15–240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems. PMID:25852705
Gaxiola, Aurora; Armesto, Juan J
2015-01-01
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15-240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.
Assessment of impact of climate change and adaptation strategies on maize production in Uganda
NASA Astrophysics Data System (ADS)
Kikoyo, Duncan A.; Nobert, Joel
2016-06-01
Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
NASA Astrophysics Data System (ADS)
Gao, Qingjiu; Sun, Yuting; You, Qinglong
2016-12-01
The meridional location change of Meiyu rain belt and its relationship with the rainfall intensity and circulation background changes for the period 1958-2009 are examined using daily rainfall datasets from 756 stations in China, the 6-h ERA-Interim reanalyses, CRU monthly temperature and daily outgoing long-wave radiation (OLR) data from the US National Oceanic and Atmospheric Administration (NOAA). The results indicate that the Meiyu rain belt experienced a northward shift in the late 1990s in response to global warming. Moreover, the intensity of interannual and day-to-day variability of rainfall within Meiyu period has been increasing in the warming climate. The amplification of the variability within Meiyu period over the northern Yangtze-Huai River Valley (YHRV) is much larger than that of the southern YHRV. The large difference in the trends of variance within the Meiyu period between these two regions induces a spatial varying for different rainfall categories in terms of intensity. More significant positive trends in heavy and extreme heavy rainfall occur over northern YHRV compared with southern YHRV, which is a crucial indicator of changes in the rain band, despite the observation of an increase in heavy and very heavy rain events and a decrease in weak events throughout the entire YHRV. A composite of the atmospheric circulation indicates that intense northward horizontal transport and the convergence of water vapor fluxes are the immediate causes of the rain band shift. Besides, through forcing a northward extended convection over the tropics, the Pacific-Japan (P-J) pattern induces a northward expansion of western Pacific Subtropical High, leading to intensified convergence and enhanced rainfall over Northern YHRV.
Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model
NASA Astrophysics Data System (ADS)
Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.
2017-12-01
Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)
Modelling rainfall amounts using mixed-gamma model for Kuantan district
NASA Astrophysics Data System (ADS)
Zakaria, Roslinazairimah; Moslim, Nor Hafizah
2017-05-01
An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.
Geißler, Christian; Nadrowski, Karin; Kühn, Peter; Baruffol, Martin; Bruelheide, Helge; Schmid, Bernhard; Scholten, Thomas
2013-01-01
Throughfall kinetic energy (TKE) plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR) in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI). Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE) of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests. PMID:23457440
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2011-10-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Siderius, Christian; Biemans, Hester; van Walsum, Paul E. V.; van Ierland, Ekko C.; Kabat, Pavel; Hellegers, Petra J. G. J.
2016-01-01
One of the main manifestations of climate change will be increased rainfall variability. How to deal with this in agriculture will be a major societal challenge. In this paper we explore flexibility in land use, through deliberate seasonal adjustments in cropped area, as a specific strategy for coping with rainfall variability. Such adjustments are not incorporated in hydro-meteorological crop models commonly used for food security analyses. Our paper contributes to the literature by making a comprehensive model assessment of inter-annual variability in crop production, including both variations in crop yield and cropped area. The Ganges basin is used as a case study. First, we assessed the contribution of cropped area variability to overall variability in rice and wheat production by applying hierarchical partitioning on time-series of agricultural statistics. We then introduced cropped area as an endogenous decision variable in a hydro-economic optimization model (WaterWise), coupled to a hydrology-vegetation model (LPJmL), and analyzed to what extent its performance in the estimation of inter-annual variability in crop production improved. From the statistics, we found that in the period 1999–2009 seasonal adjustment in cropped area can explain almost 50% of variability in wheat production and 40% of variability in rice production in the Indian part of the Ganges basin. Our improved model was well capable of mimicking existing variability at different spatial aggregation levels, especially for wheat. The value of flexibility, i.e. the foregone costs of choosing not to crop in years when water is scarce, was quantified at 4% of gross margin of wheat in the Indian part of the Ganges basin and as high as 34% of gross margin of wheat in the drought-prone state of Rajasthan. We argue that flexibility in land use is an important coping strategy to rainfall variability in water stressed regions. PMID:26934389
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Wu, H. T.
2000-01-01
Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a hypothesis that anomalous wind forcings derived from the anticyclone may be instrumental in inducing a strong biennial modulation to natural ENSO cycles.
Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N
2013-01-01
The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall
NASA Astrophysics Data System (ADS)
Chang, P.; Saravanan, R.; Giannini, A.
2003-04-01
The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.
NASA Astrophysics Data System (ADS)
Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.
2017-12-01
We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.
[Characteristics of rainfall and runoff in urban drainage based on the SWMM model.
Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke
2016-11-18
The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.
Brandt, Martin; Tappan, G. Gray; Aziz Diouf, Abdoul; Beye, Gora; Mbow, Cheikh; Fensholt, Rasmus
2017-01-01
The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall) led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.
NASA Astrophysics Data System (ADS)
Xie, J.; Wang, M.; Liu, K.
2017-12-01
The 2008 Wenchuan Ms 8.0 earthquake caused overwhelming destruction to vast mountains areas in Sichuan province. Numerous seismic landslides damaged the forest and vegetation cover, and caused substantial loose sediment piling up in the valleys. The movement and fill-up of loose materials led to riverbeds aggradation, thus made the earthquake-struck area more susceptible to flash floods with increasing frequency and intensity of extreme rainfalls. This study investigated the response of sediment and river channel evolution to different rainfall scenarios after the Wenchuan earthquake. The study area was chosen in a catchment affected by the earthquake in Northeast Sichuan province, China. We employed the landscape evolution model CAESAR-lisflood to explore the material migration rules and then assessed the potential effects under two rainfall scenarios. The model parameters were calibrated using the 2013 extreme rainfall event, and the experimental rainfall scenarios were of different intensity and frequency over a 10-year period. The results indicated that CAESAR-lisflood was well adapted to replicate the sediment migration, particularly the fluvial processes after earthquake. With respect to the effects of rainfall intensity, the erosion severity in upstream gullies and the deposition severity in downstream channels, correspondingly increased with the increasing intensity of extreme rainfalls. The modelling results showed that buildings in the catchment suffered from flash floods increased by more than a quarter from the normal to the enhanced rainfall scenarios in ten years, which indicated a potential threat to the exposures nearby the river channel, in the context of climate change. Simulation on landscape change is of great significance, and contributes to early warning of potential geological risks after earthquake. Attention on the high risk area by local government and the public is highly suggested in our study.
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou
2018-02-01
The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.
NASA Astrophysics Data System (ADS)
Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-04-01
Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.
Rainfall extremes from TRMM data and the Metastatistical Extreme Value Distribution
NASA Astrophysics Data System (ADS)
Zorzetto, Enrico; Marani, Marco
2017-04-01
A reliable quantification of the probability of weather extremes occurrence is essential for designing resilient water infrastructures and hazard mitigation measures. However, it is increasingly clear that the presence of inter-annual climatic fluctuations determines a substantial long-term variability in the frequency of occurrence of extreme events. This circumstance questions the foundation of the traditional extreme value theory, hinged on stationary Poisson processes or on asymptotic assumptions to derive the Generalized Extreme Value (GEV) distribution. We illustrate here, with application to daily rainfall, a new approach to extreme value analysis, the Metastatistical Extreme Value Distribution (MEVD). The MEVD relaxes the above assumptions and is based on the whole distribution of daily rainfall events, thus allowing optimal use of all available observations. Using a global dataset of rain gauge observations, we show that the MEVD significantly outperforms the Generalized Extreme Value distribution, particularly for long average recurrence intervals and when small samples are available. The latter property suggests MEVD to be particularly suited for applications to satellite rainfall estimates, which only cover two decades, thus making extreme value estimation extremely challenging. Here we apply MEVD to the TRMM TMPA 3B42 product, an 18-year dataset of remotely-sensed daily rainfall providing a quasi-global coverage. Our analyses yield a global scale mapping of daily rainfall extremes and of their distributional tail properties, bridging the existing large gaps in ground-based networks. Finally, we illustrate how our global-scale analysis can provide insight into how properties of local rainfall regimes affect tail estimation uncertainty when using the GEV or MEVD approach. We find a dependence of the estimation uncertainty, for both the GEV- and MEV-based approaches, on the average annual number and on the inter-annual variability of rainy days. In particular, estimation uncertainty decreases 1) as the mean annual number of wet days increases, and 2) as the variability in the number of rainy days, expressed by its coefficient of variation, decreases. We tentatively explain this behavior in terms of the assumptions underlying the two approaches.
Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.
Mishra, Anoop Kumar
2013-12-01
Rainfall is an extremely variable parameter in both space and time. Rain gauge density is very crucial in order to quantify the rainfall amount over a region. The level of rainfall accuracy is highly dependent on density and distribution of rain gauge stations over a region. Indian Space Research Organisation (ISRO) have installed a number of Automatic Weather Station (AWS) rain gauges over Indian region to study rainfall. In this paper, the effect of rain gauge density over daily accumulated rainfall is analyzed using ISRO AWS gauge observations. A region of 50 km × 50 km box over southern part of Indian region (Bangalore) with good density of rain gauges is identified for this purpose. Rain gauge numbers are varied from 1-8 in 50 km box to study the variation in the daily accumulated rainfall. Rainfall rates from the neighbouring stations are also compared in this study. Change in the rainfall as a function of gauge spacing is studied. Use of gauge calibrated satellite observations to fill the gauge station value is also studied. It is found that correlation coefficients (CC) decrease from 82% to 21% as gauge spacing increases from 5 km to 40 km while root mean square error (RMSE) increases from 8.29 mm to 51.27 mm with increase in gauge spacing from 5 km to 40 km. Considering 8 rain gauges as a standard representative of rainfall over the region, absolute error increases from 15% to 64% as gauge numbers are decreased from 7 to 1. Small errors are reported while considering 4 to 7 rain gauges to represent 50 km area. However, reduction to 3 or less rain gauges resulted in significant error. It is also observed that use of gauge calibrated satellite observations significantly improved the rainfall estimation over the region with very few rain gauge observations.
A Study on Regional Rainfall Frequency Analysis for Flood Simulation Scenarios
NASA Astrophysics Data System (ADS)
Jung, Younghun; Ahn, Hyunjun; Joo, Kyungwon; Heo, Jun-Haeng
2014-05-01
Recently, climate change has been observed in Korea as well as in the entire world. The rainstorm has been gradually increased and then the damage has been grown. It is very important to manage the flood control facilities because of increasing the frequency and magnitude of severe rain storm. For managing flood control facilities in risky regions, data sets such as elevation, gradient, channel, land use and soil data should be filed up. Using this information, the disaster situations can be simulated to secure evacuation routes for various rainfall scenarios. The aim of this study is to investigate and determine extreme rainfall quantile estimates in Uijeongbu City using index flood method with L-moments parameter estimation. Regional frequency analysis trades space for time by using annual maximum rainfall data from nearby or similar sites to derive estimates for any given site in a homogeneous region. Regional frequency analysis based on pooled data is recommended for estimation of rainfall quantiles at sites with record lengths less than 5T, where T is return period of interest. Many variables relevant to precipitation can be used for grouping a region in regional frequency analysis. For regionalization of Han River basin, the k-means method is applied for grouping regions by variables of meteorology and geomorphology. The results from the k-means method are compared for each region using various probability distributions. In the final step of the regionalization analysis, goodness-of-fit measure is used to evaluate the accuracy of a set of candidate distributions. And rainfall quantiles by index flood method are obtained based on the appropriate distribution. And then, rainfall quantiles based on various scenarios are used as input data for disaster simulations. Keywords: Regional Frequency Analysis; Scenarios of Rainfall Quantile Acknowledgements This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
NASA Astrophysics Data System (ADS)
Conway, Declan; Dalin, Carole; Landman, Willem A.; Osborn, Timothy J.
2017-12-01
Hydropower comprises a significant and rapidly expanding proportion of electricity production in eastern and southern Africa. In both regions, hydropower is exposed to high levels of climate variability and regional climate linkages are strong, yet an understanding of spatial interdependences is lacking. Here we consider river basin configuration and define regions of coherent rainfall variability using cluster analysis to illustrate exposure to the risk of hydropower supply disruption of current (2015) and planned (2030) hydropower sites. Assuming completion of the dams planned, hydropower will become increasingly concentrated in the Nile (from 62% to 82% of total regional capacity) and Zambezi (from 73% to 85%) basins. By 2030, 70% and 59% of total hydropower capacity will be located in one cluster of rainfall variability in eastern and southern Africa, respectively, increasing the risk of concurrent climate-related electricity supply disruption in each region. Linking of nascent regional electricity sharing mechanisms could mitigate intraregional risk, although these mechanisms face considerable political and infrastructural challenges.
NASA Astrophysics Data System (ADS)
Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka
2016-04-01
Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our hierarchical MC model with the semi-parametric model in preserving rainfall variability in daily, monthly, and multi-year scales. To calibrate the parameters of both models and assess their ability to preserve observed statistics, we have used ground based data from 15 raingauge stations around Australia, which consist a wide range of climate zones including coastal, monsoonal, and arid climate characteristics. In preliminary results, both models show comparative performances in preserving the multi-year variability of rainfall depth and occurrence. However, the semi-parametric model shows a tendency of overestimating the mean rainfall depth, while our model shows a tendency of overestimating the number of wet days. We will discuss further the relative merits of the both models for hydrology simulation in the presentation.
Vegetation response to rainfall seasonality and interannual variability in tropical dry forests
NASA Astrophysics Data System (ADS)
Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.
2015-12-01
We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.
Detecting Climate Variability in Tropical Rainfall
NASA Astrophysics Data System (ADS)
Berg, W.
2004-05-01
A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.
An Investigation of the Hydroclimate Variability of Eastern Africa
NASA Astrophysics Data System (ADS)
Smith, K. A.; Semazzi, F. H. M.
2015-12-01
The flow of the Victoria Nile, and the productivity of the dams along it, is determined by the level of Lake Victoria, which is primarily dictated by the rainfall and temperature variability over the Lake Victoria Basin. Notwithstanding the indisputable decline of water resources over the lake basin during the Long Rains of March - May, there is a strong indication based on IPCC climate projections that this trend, which has persisted for several decades, will reverse in the next few decades. This phenomenon has come to be known as the Eastern-Central African climate change paradox and could have profound implications on sustainable development for the next few decades in Lake Victoria Basin. The purpose of this study is to investigate the climate variability associated with the East African Climate Change Paradox for the recent decades. This research analyzes observations to understand the sources of variability and potential physical mechanisms related to the decline in precipitation over Eastern Africa. We then investigate the hydrological factors involved in the decline of Lake Victoria levels in the context of the decline in rainfall. While East Africa has been experiencing persistent decline of the Long Rains for multiple decades, this same decline is not seen in annual rainfall. The remaining seasons show an increase in rainfall which is compensating for the decline of the Long Rains. It is possible that the Long Rains season is shifting in such a way that the season starts earlier, in February, and ending sooner. The corresponding annual Lake Victoria levels modeled using observed rainfall do not decline in the recent decades, except when the Long Rains seasonal variability is considered without variability from other seasons. This shift could impact hydroelectric power planning on a monthly or seasonal time scale, and could potentially have a large impact on agriculture, since it would shift the growing season in the region.
Tsyganov, Andrey N; Keuper, Frida; Aerts, Rien; Beyens, Louis
2013-01-01
Extreme precipitation events are recognised as important drivers of ecosystem responses to climate change and can considerably affect high-latitude ombrotrophic bogs. Therefore, understanding the relationships between increased rainfall and the biotic components of these ecosystems is necessary for an estimation of climate change impacts. We studied overall effects of increased magnitude, intensity and frequency of rainfall on assemblages of Sphagnum-dwelling testate amoebae in a field climate manipulation experiment located in a relatively dry subarctic bog (Abisko, Sweden). The effects of the treatment were estimated using abundance, species diversity and structure of living and empty shell assemblages of testate amoebae in living and decaying layers of Sphagnum. Our results show that increased rainfall reduced the mean abundance and species richness of living testate amoebae. Besides, the treatment affected species structure of both living and empty shell assemblages, reducing proportions of hydrophilous species. The effects are counterintuitive as increased precipitation-related substrate moisture was expected to have opposite effects on testate amoeba assemblages in relatively dry biotopes. Therefore, we conclude that other rainfall-related factors such as increased infiltration rates and frequency of environmental disturbances can also affect testate amoeba assemblages in Sphagnum and that hydrophilous species are particularly sensitive to variation in these environmental variables.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
NASA Astrophysics Data System (ADS)
Taibi, S.; Meddi, M.; Mahé, G.; Assani, A.
2017-01-01
This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1-5, 5-10, 10-20, 20-50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10-20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.
NASA Astrophysics Data System (ADS)
Abeysingha, N. S.; Singh, Man; Sehgal, V. K.; Khanna, Manoj; Pathak, Himanshu
2016-02-01
Trend analysis of hydro-climatic variables such as streamflow, rainfall, and temperature provides useful information for effective water resources planning, designing, and management. Trends in observed streamflow at four gauging stations in the Gomti River basin of North India were assessed using the Mann-Kendall and Sen's slope for the 1982 to 2012 period. The relationships between trends in streamflow and rainfall were studied by correlation analyses. There was a gradual decreasing trend of annual, monsoonal, and winter seasonal streamflow ( p < 0.05) from the midstream to the downstream of the river and also a decreasing trend of annual streamflow for the 5-year moving averaged standardized anomalies of streamflow for the entire basin. The declining trend in the streamflow was attributed partly to the increased water withdrawal, to increased air temperature, to higher population, and partly to significant reducing trend of post monsoon rainfall especially at downstream. Upstream gauging station showed a significant increasing trend of streamflow (1.6 m3/s/year) at annual scale, and this trend was attributed to the significant increasing trend of catchment rainfall (9.54 mm/year). It was further evident in the significant coefficient of positive correlation ( ρ = 0.8) between streamflow and catchment rainfall. The decreasing trend in streamflow and post-monsoon rainfall especially towards downstream area with concurrent increasing trend of temperature indicates a drying tendency of the Gomti River basin over the study period. The results of this study may help stakeholders to design streamflow restoration strategies for sustainable water management planning of the Gomti River basin.
Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall
NASA Astrophysics Data System (ADS)
Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik
2016-02-01
Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.
A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2007-06-01
Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.
2017-12-01
In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.
Background & Aims: Projections based on climate models suggest that the frequency of extreme rainfall events will continue to rise over the next several decades. We aim to investigate the temporal relationship between daily variability of rainfall and acute gastrointestinal illne...
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Caparrini, Francesca
2013-04-01
The need for accurate distributed hydrological modelling has constantly increased in last years for several purposes: agricultural applications, water resources management, hydrological balance at watershed scale, floods forecast. The main input for the hydrological numerical models is rainfall data that present, at the same time, a large availability of measures (in gauged regions, with respect to other micro-meteorological variables) and the most complex spatial patterns. While also in presence of densely gauged watersheds the spatial interpolation of the rainfall is a non-trivial problem, due to the spatial intermittence of the variable (especially at finer temporal scales), ungauged regions need an alternative source of rainfall data in order to perform the hydrological modelling. Such source can be constituted by the satellite-estimated rainfall fields, with reference to both geostationary and polar-orbit platforms. In this work the rainfall product obtained by the Aqua-AIRS sensor were used in order to assess the feasibility of the use of satellite-based rainfall as input for distributed hydrological modelling. The MOBIDIC (MOdello di BIlancio Distribuito e Continuo) model, developed at the Department of civil and Environmental Engineering of the University of Florence and operationally used by Tuscany Region and Umbria Region for flood prediction and management, was used for the experiments. In particular three experiments were carried on: a) hydrological simulation with the use of rain-gauges data, b) simulation with the use of satellite-only rainfall estimates, c) simulation with the combined use of the two sources of data in order to obtain an optimal estimate of the actual rainfall fields. The domain of the study was the central Italy. Several critical events occurred in the area were analyzed. A discussion of the results is provided.
What rainfall events trigger landslides on the West Coast US?
NASA Astrophysics Data System (ADS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia
2016-04-01
A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.
Variability of rainfall over small areas
NASA Technical Reports Server (NTRS)
Runnels, R. C.
1983-01-01
A preliminary investigation was made to determine estimates of the number of raingauges needed in order to measure the variability of rainfall in time and space over small areas (approximately 40 sq miles). The literature on rainfall variability was examined and the types of empirical relationships used to relate rainfall variations to meteorological and catchment-area characteristics were considered. Relations between the coefficient of variation and areal-mean rainfall and area have been used by several investigators. These parameters seemed reasonable ones to use in any future study of rainfall variations. From a knowledge of an appropriate coefficient of variation (determined by the above-mentioned relations) the number rain gauges needed for the precise determination of areal-mean rainfall may be calculated by statistical estimation theory. The number gauges needed to measure the coefficient of variation over a 40 sq miles area, with varying degrees of error, was found to range from 264 (10% error, mean precipitation = 0.1 in) to about 2 (100% error, mean precipitation = 0.1 in).
Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).
Chang, C L; Chiueh, P T; Lo, S L
2007-12-01
It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.
Climate Change Impact on Rainfall: How will Threaten Wheat Yield?
NASA Astrophysics Data System (ADS)
Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.
2018-05-01
Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.
Global warming induced hybrid rainy seasons in the Sahel
NASA Astrophysics Data System (ADS)
Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald
2016-10-01
The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.
NASA Astrophysics Data System (ADS)
Guo, Danlu; Westra, Seth; Maier, Holger R.
2017-11-01
Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific water resource systems.
NASA Astrophysics Data System (ADS)
Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa
2018-02-01
Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.
Dowry Deaths: Response to Weather Variability in India.
Sekhri, Sheetal; Storeygard, Adam
2014-11-01
We examine the effect of rainfall shocks on dowry deaths using data from 583 Indian districts for 2002-2007. We find that a one standard deviation decline in annual rainfall from the local mean increases reported dowry deaths by 7.8 percent. Wet shocks have no apparent effect. We examine patterns of other crimes to investigate whether an increase in general unrest during economic downturns explains the results but do not find supportive evidence. Women's political representation in the national parliament has no apparent mitigating effect on dowry deaths.
Dowry Deaths: Response to Weather Variability in India☆
Sekhri, Sheetal; Storeygard, Adam
2014-01-01
We examine the effect of rainfall shocks on dowry deaths using data from 583 Indian districts for 2002–2007. We find that a one standard deviation decline in annual rainfall from the local mean increases reported dowry deaths by 7.8 percent. Wet shocks have no apparent effect. We examine patterns of other crimes to investigate whether an increase in general unrest during economic downturns explains the results but do not find supportive evidence. Women’s political representation in the national parliament has no apparent mitigating effect on dowry deaths. PMID:25386044
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
NASA Astrophysics Data System (ADS)
Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.
2016-04-01
Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.
Impacts of Climate Change and Variability on Water Resources in the Southeast USA
Ge Sun; Peter V. Caldwell; Steven G. McNulty; Aris P. Georgakakos; Sankar Arumugam; James Cruise; Richard T. McNider; Adam Terando; Paul A. Conrads; John Feldt; Vasu Misra; Luigi Romolo; Todd C. Rasmussen; Daniel A. Marion
2013-01-01
Key FindingsClimate change is affecting the southeastern USA, particularly increases in rainfall variability and air temperature, which have resulted in more frequent hydrologic extremes, such as high‐intensity storms (tropical storms and hurricanes), flooding, and drought events.Future climate warming likely will...
NASA Astrophysics Data System (ADS)
Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van
2018-01-01
Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.
NASA Astrophysics Data System (ADS)
Ongoma, Victor; Chen, Haishan; Omony, George William
2018-01-01
This study investigates the variability of extreme rainfall events over East Africa (EA), using indices from the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis was based on observed daily rainfall from 23 weather stations, with length varying within 1961 and 2010. The indices considered are: wet days ( R ≥1 mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity index (SDII), heavy precipitation days ( R ≥ 10 mm), very heavy precipitation days ( R ≥ 20 mm), and severe precipitation ( R ≥ 50 mm). The non-parametric Mann-Kendall statistical analysis was carried out to identify trends in the data. Temporal precipitation distribution was different from station to station. Almost all indices considered are decreasing with time. The analysis shows that the PRCPTOT, very heavy precipitation, and severe precipitation are generally declining insignificantly at 5 % significant level. The PRCPTOT is evidently decreasing over Arid and Semi-Arid Land (ASAL) as compared to other parts of EA. The number of days that recorded heavy rainfall is generally decreasing but starts to rise in the last decade although the changes are insignificant. Both PRCPTOT and heavy precipitation show a recovery in trend starting in the 1990s. The SDII shows a reduction in most areas, especially the in ASAL. The changes give a possible indication of the ongoing climate variability and change which modify the rainfall regime of EA. The results form a basis for further research, utilizing longer datasets over the entire region to reduce the generalizations made herein. Continuous monitoring of extreme events in EA is critical, given that rainfall is projected to increase in the twenty-first century.
Projecting Changes in S. Florida Rainfall for the 21st century: Scenarios, Downscaling and Analysis
NASA Astrophysics Data System (ADS)
Cioffi, F.; Lall, U.; Monti, A.
2013-12-01
A Non-Homogeneous hidden Markov Models (NHMM) is developed using a 65-years record (1948-2012) of daily rainfall amount at nineteen stations in South Florida and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds on the specific latitude of 27N (ZW27N) from 10 to 1000 hPa. The NHMM fitted is then used for predicting future rainfall patterns under global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly includes a consideration of seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can also be modeled. The results of the simulations obtained by using the downscaling model NHMM, with predictors derived from the simulations of CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, seems to indicate that, as a consequence of increase of CO2 concentration and temperature, South Florida should be subjected to more frequent dry conditions for the most part of the year, due mainly to a reduction of number of wet days and, at the same time, the territory should be also affected by extreme rainfall events that are more intense than the present ones. What appears from results is an increases of rainfall variability. This scenario seems coherent with the trends of rainfall patterns observed in the XX century. An investigation on the causes of such hydrologic changes, and specifically on the role of North Atlantic Subtropical High is pursued.
Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe
NASA Astrophysics Data System (ADS)
Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.
2016-04-01
In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.
SUB-PIXEL RAINFALL VARIABILITY AND THE IMPLICATIONS FOR UNCERTAINTIES IN RADAR RAINFALL ESTIMATES
Radar estimates of rainfall are subject to significant measurement uncertainty. Typically, uncertainties are measured by the discrepancies between real rainfall estimates based on radar reflectivity and point rainfall records of rain gauges. This study investigates how the disc...
Drayna, Patrick; McLellan, Sandra L.; Simpson, Pippa; Li, Shun-Hwa; Gorelick, Marc H.
2010-01-01
Background Microbial water contamination after periods of heavy rainfall is well described, but its link to acute gastrointestinal illness (AGI) in children is not well known. Objectives We hypothesize an association between rainfall and pediatric emergency department (ED) visits for AGI that may represent an unrecognized, endemic burden of pediatric disease in a major U.S. metropolitan area served by municipal drinking water systems. Methods We conducted a retrospective time series analysis of visits to the Children’s Hospital of Wisconsin ED in Wauwatosa, Wisconsin. Daily visit totals of discharge International Classification of Diseases, 9th Revision codes of gastroenteritis or diarrhea were collected along with daily rainfall totals during the study period from 2002 to 2007. We used an autoregressive moving average model, adjusting for confounding variables such as sewage release events and season, to look for an association between daily visits and rainfall after a lag of 1–7 days. Results A total of 17,357 AGI visits were identified (mean daily total, 7.9; range, 0–56). Any rainfall 4 days prior was significantly associated with an 11% increase in AGI visits. Expected seasonal effects were also seen, with increased AGI visits in winter months. Conclusions We observed a significant association between rainfall and pediatric ED visits for AGI, suggesting a waterborne component of disease transmission in this population. The observed increase in ED visits for AGI occurred in the absence of any disease outbreaks reported to public health officials in our region, suggesting that rainfall-associated illness may be underestimated. Further study is warranted to better address this association. PMID:20515725
Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales
Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.
2017-01-01
Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288
A method to combine spaceborne radar and radiometric observations of precipitation
NASA Astrophysics Data System (ADS)
Munchak, Stephen Joseph
This dissertation describes the development and application of a combined radar-radiometer rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) satellite. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution (PSD), and cloud water path (cLWP) are retrieved for each radar profile. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, FL shows agreement within 2% which exceeds previous algorithms' ability to match rainfall at these two sites. The algorithm is then applied to two years of TRMM data over oceans to determine the sources of DSD variability. Three correlated sets of variables representing storm dynamics, background environment, and cloud microphysics are found to account for approximately 50% of the variability in the absolute and reflectivity-normalized median drop size. Structures of radar reflectivity are also identified and related to drop size, with these relationships being confirmed by ground-based polarimetric radar data from the North American Monsoon Experiment (NAME). Regional patterns of DSD and the sources of variability identified herein are also shown to be consistent with previous work documenting regional DSD properties. In particular, mid-latitude regions and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone. Due to properties of the DSD and rain water/cloud water partitioning that change with column water vapor, it is shown that increases in water vapor in a global warming scenario could lead to slight (1%) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties.
NASA Astrophysics Data System (ADS)
Chiang, Shou-Hao; Chen, Chi-Farn
2016-04-01
Flood, as known as the most frequent natural hazard in Taiwan, has induced severe damages of residents and properties in urban areas. The flood risk is even more severe in Tainan since 1990s, with the significant urban development over recent decades. Previous studies have indicated that the characteristics and the vulnerability of flood are affected by the increase of impervious surface area (ISA) and the changing climate condition. Tainan City, in southern Taiwan is selected as the study area. This study uses logistic regression to functionalize the relationship between rainfall variables, ISA and historical flood events. Specifically, rainfall records from 2001 to 2014 were collected and mapped, and Landsat images of year 2001, 2004, 2007, 2010 and 2014 were used to generate the ISA with SVM (support vector machine) classifier. The result shows that rainfall variables and ISA are significantly correlated to the flood occurrence in Tainan City. With applying the logistic function, the likelihood of flood occurrence can be estimated and mapped over the study area. This study suggests the method is simple and feasible for rapid flood susceptibility mapping, when real-time rainfall observations can be available, and it has potential for future flood assessment, with incorporating climate change projections and urban growth prediction.
An Experimental Study of Small-Scale Variability of Raindrop Size Distribution
NASA Technical Reports Server (NTRS)
Tokay, Ali; Bashor, Paul G.
2010-01-01
An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss-Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported5%more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm/h, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter averaging periods. The correlations decreased with increasing separation distance. For rain rate, the correlations were higher than previous gauge-based studies. This was attributed to the differences in data processing and the difference in rainfall characteristics in different climate regions. It was also considered that the gauge sampling errors could be a factor. In this regard, gauge measurements were simulated employing existing disdrometer dataset. While a difference was noticed in cumulative distribution of rain occurrence between the simulated gauge and disdrometer observations, the correlations in simulated gauge measurements did not differ from the disdrometer measurements.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
Rainfall and streamflow from small tree-covered and fern-covered and burned watersheds in Hawaii
H. W. Anderson; P. D. Duffy; Teruo Yamamoto
1966-01-01
Streamflow from two 30-acre watersheds near Honolulu was studied by using principal components regression analysis. Models using data on monthly, storm, and peak discharges were tested against several variables expressing amount and intensity of rainfall, and against variables expressing antecedent rainfall. Explained variation ranged from 78 to 94 percent. The...
NASA Astrophysics Data System (ADS)
Ghosh, Prosenjit; Rangarajan, Ravi; Thirumalai, Kaustubh; Naggs, Fred
2017-11-01
Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability.
Climate variability risks for electricity supply
NASA Astrophysics Data System (ADS)
Kling, Harald
2017-12-01
Hydropower represents about 20% of sub-Saharan electricity, and expansion is underway. Rainfall varies year-to-year in geographical clusters, increasing the risk of climate-related electricity supply disruption in dry years.
Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming
2015-06-01
Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.
Missing pieces of the puzzle: understanding decadal variability of Sahel Rainfall
NASA Astrophysics Data System (ADS)
Vellinga, Michael; Roberts, Malcolm; Vidale, Pier-Luigi; Mizielinski, Matthew; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane; Bain, Caroline
2015-04-01
The instrumental record shows that substantial decadal fluctuations affected Sahel rainfall from the West African monsoon throughout the 20th century. Climate models generally underestimate the magnitude of decadal Sahel rainfall changes compared to observations. This shows that the processes that control low-frequency Sahel rainfall change are misrepresented in most CMIP5-era climate models. Reliable climate information of future low-frequency rainfall changes thus remains elusive. Here we identify key processes that control the magnitude of the decadal rainfall recovery in the Sahel since the mid-1980s. We show its sensitivity to model resolution and physics in a suite of experiments with global HadGEM3 model configurations at resolutions between 130-25 km. The decadal rainfall trend increases with resolution and at 60-25 km falls within the observed range. Higher resolution models have stronger increases of moisture supply and of African Easterly wave activity. Easterly waves control the occurrence of strong organised rainfall events which carry most of the decadal trend. Weak rainfall events occur too frequently at all resolutions and at low resolution contribute substantially to the decadal trend. All of this behaviour is seen across CMIP5, including future scenarios. Additional simulations with a global 12km version of HadGEM3 show that treating convection explicitly dramatically improves the properties of Sahel rainfall systems. We conclude that interaction between convective scale and global scale processes is key to decadal rainfall changes in the Sahel. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.Crown Copyright
Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
Li, Fang; Zhao, Wenzhi; Liu, Hu
2015-03-01
The influences of previous-year precipitation and episodic rainfall events on dryland plants and communities are poorly quantified in the temperate desert region of Northwest China. To evaluate the thresholds and lags in the response of aboveground net primary productivity (ANPP) to variability in rainfall pulses and seasonal precipitation along the precipitation-productivity gradient in three desert ecosystems with different precipitation regimes, we collected precipitation data from 2000 to 2012 in Shandan (SD), Linze (LZ) and Jiuquan (JQ) in northwestern China. Further, we extracted the corresponding MODIS Normalized Difference Vegetation Index (NDVI, a proxy for ANPP) datasets at 250 m spatial resolution. We then evaluated different desert ecosystems responses using statistical analysis, and a threshold-delay model (TDM). TDM is an integrative framework for analysis of plant growth, precipitation thresholds, and plant functional type strategies that capture the nonlinear nature of plant responses to rainfall pulses. Our results showed that: (1) the growing season NDVIINT (INT stands for time-integrated) was largely correlated with the warm season (spring/summer) at our mildly-arid desert ecosystem (SD). The arid ecosystem (LZ) exhibited a different response, and the growing season NDVIINT depended highly on the previous year's fall/winter precipitation and ANPP. At the extremely arid site (JQ), the variability of growing season NDVIINT was equally correlated with the cool- and warm-season precipitation; (2) some parameters of threshold-delay differed among the three sites: while the response of NDVI to rainfall pulses began at about 5 mm for all the sites, the maximum thresholds in SD, LZ, and JQ were about 55, 35 and 30 mm respectively, increasing with an increase in mean annual precipitation. By and large, more previous year's fall/winter precipitation, and large rainfall events, significantly enhanced the growth of desert vegetation, and desert ecosystems should be much more adaptive under likely future scenarios of increasing fall/winter precipitation and large rainfall events. These results highlight the inherent complexity in predicting how desert ecosystems will respond to future fluctuations in precipitation.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2012-03-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Factors governing the total rainfall yield from continental convective clouds
NASA Technical Reports Server (NTRS)
Rosenfeld, Daniel; Gagin, Abraham
1989-01-01
Several important factors that govern the total rainfall from continental convective clouds were investigated by tracking thousands of convective cells in Israel and South Africa. The rainfall volume yield (Rvol) of the individual cells that build convective rain systems has been shown to depend mainly on the cloud-top height. There is, however, considerable variability in this relationship. The following factors that influence the Rvol were parameterized and quantitatively analyzed: (1) cloud base temperature, (2)atmospheric instability, and (3) the extent of isolation of the cell. It is also shown that a strong low level forcing increases the duration of Rvol of clouds reaching the same vertical extent.
O'Reagain, P J; Scanlan, J C
2013-03-01
Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise-level simulations run for breeder herds nevertheless show that poor economic performance can occur under constant stocking and even under variable stocking in some circumstances. Modelling and research results both suggest that a form of constrained flexible stocking should be applied to manage for climate variability. Active adaptive management and research will be required as future climate changes make managing for rainfall variability increasingly challenging.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
Enhanced future variability during India's rainy season
NASA Astrophysics Data System (ADS)
Menon, Arathy; Levermann, Anders; Schewe, Jacob
2013-06-01
The Indian summer monsoon shapes the livelihood of a large share of the world's population. About 80% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall, the day-to-day variability is crucial for the risk of flooding, national water supply, and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the AR-5 of the Intergovernmental Panel on Climate Change, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. The relative increase by the period 2071-2100 with respect to the control period 1871-1900 ranges from 13% to 50% under the strongest scenario (Representative Concentration Pathways, RCP-8.5), in the 10 models with the most realistic monsoon climatology; and 13% to 85% when all the 20 models are considered. The spread across models reduces when variability increase per degree of global warming is considered, which is independent of the scenario in most models, and is 8% ± 4%/K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change.
Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016
NASA Astrophysics Data System (ADS)
Li, Chunxiang; Tian, Qinhua; Yu, Rong; Zhou, Baiquan; Xia, Jiangjiang; Burke, Claire; Dong, Buwen; Tett, Simon F. B.; Freychet, Nicolas; Lott, Fraser; Ciavarella, Andrew
2018-01-01
May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961-2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015-2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.
Validation of crowdsourced automatic rain gauge measurements in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2016-04-01
The increasing number of privately owned weather stations and the facilitating role the internet to make this data publicly available, has led to several online platforms that collect and visualize crowdsourced weather data. This has resulted in ever increasing freely available datasets of weather measurements generated by amateur weather enthusiasts. Because of the lack of quality control and the frequent absence of metadata, these measurements are often considered as unreliable. Given the often large variability of weather variables in space and time, and the generally low number of official weather stations, this growing quantity of crowdsourced data may become an important additional source of information. Amateur weather observations have become more frequent over the past decade due to weather stations becoming more user-friendly and affordable. The variables measured by these weather stations are temperature, pressure and dew point, and in some cases wind and rainfall. Meteorological data from crowdsourced automatic weather stations in cities have primarily been used to examine the urban heat island effect. Thus far, these studies have focused on the comparison of the crowdsourced station temperature measurements with a nearby WMO-standard weather station, which is often located in a rural area or the outskirts of a city, generally not being representative of the city center. Instead of temperature, the rainfall measurements by the stations are examined. This research focuses on the combined ability of a large number of privately owned weather stations in an urban setting to correctly monitor rainfall. A set of 64 automatic weather stations distributed over Amsterdam (The Netherlands) that have at least 3 months of precipitation measurement during one year are evaluated. Precipitation measurements from stations are compared to a merged radar-gauge precipitation product. Disregarding sudden jumps in station measured precipitation, the accumulative rainfall over time in most stations showed an underestimation of rainfall compared to the accumulative values found in the corresponding radar pixel of the reference. Special consideration is given to the identification of faulty measurements without the need to obtain additional meta-data, such as setup and surroundings. This validation will show the potential of crowdsourced automatic weather stations for future urban rainfall monitoring.
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2017-04-01
Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.
Underestimated interannual variability of East Asian summer rainfall under climate change
NASA Astrophysics Data System (ADS)
Ren, Yongjian; Song, Lianchun; Xiao, Ying; Du, Liangmin
2018-02-01
This study evaluates the performance of climate models in simulating the climatological mean and interannual variability of East Asian summer rainfall (EASR) using Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the observation, the interannual variability of EASR during 1979-2005 is underestimated by the CMIP5 with a range of 0.86 16.08%. Based on bias correction of CMIP5 simulations with historical data, the reliability of future projections will be enhanced. The corrected EASR under representative concentration pathways (RCPs) 4.5 and 8.5 increases by 5.6 and 7.5% during 2081-2100 relative to the baseline of 1986-2005, respectively. After correction, the areas with both negative and positive anomalies decrease, which are mainly located in the South China Sea and central China, and southern China and west of the Philippines, separately. In comparison to the baseline, the interannual variability of EASR increases by 20.8% under RCP4.5 but 26.2% under RCP8.5 in 2006-2100, which is underestimated by 10.7 and 11.1% under both RCPs in the original CMIP5 simulation. Compared with the mean precipitation, the interannual variability of EASR is notably larger under global warming. Thus, the probabilities of floods and droughts may increase in the future.
Are revised models better models? A skill score assessment of regional interannual variability
NASA Astrophysics Data System (ADS)
Sperber, Kenneth R.; Participating AMIP Modelling Groups
1999-05-01
Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.
Are revised models better models? A skill score assessment of regional interannual variability
NASA Astrophysics Data System (ADS)
Participating AMIP Modelling Groups,; Sperber, Kenneth R.
Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2015-04-01
Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Chaves, Oscar M; Sánchez-López, Sónia; Aureli, Filippo; Stoner, Kathryn E
2011-12-01
Understanding how species cope with variations in climatic conditions, forest types and habitat amount is a fundamental challenge for ecologists and conservation biologists. We used data from 18 communities of Mesoamerican spider monkeys (Ateles geoffroyi) throughout their range to determine whether their activity patterns are affected by climatic variables (temperature and rainfall), forest types (seasonal and nonseasonal forests), and forest condition (continuous and fragmented). Data were derived from 15 published and unpublished studies carried out in four countries (Mexico, El Salvador, Costa Rica, and Panama), cumulatively representing more than 18 years (221 months, >3,645 hr) of behavioral observations. Overall, A. geoffroyi spent most of their time feeding (38.4 ± 14.0%, mean ± SD) and resting (36.6 ± 12.8%) and less time traveling (19.8 ± 11.3%). Resting and feeding were mainly affected by rainfall: resting time increased with decreasing rainfall, whereas feeding time increased with rainfall. Traveling time was negatively related to both rainfall and maximum temperature. In addition, both resting and traveling time were higher in seasonal forests (tropical dry forest and tropical moist forest) than in nonseasonal forests (tropical wet forest), but feeding time followed the opposite pattern. Furthermore, spider monkeys spent more time feeding and less time resting (i.e., higher feeding effort) in forest fragments than in continuous forest. These findings suggest that global climate changes and habitat deforestation and fragmentation in Mesoamerica will threaten the survival of spider monkeys and reduce the distributional range of the species in the coming decades. © 2011 Wiley Periodicals, Inc.
Temporal changes in climatic variables and their impact on crop yields in southwestern China
NASA Astrophysics Data System (ADS)
Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei
2014-08-01
Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing—a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series ( P < 0.05). Increased sunshine hours were observed during the oilseed rape growth period ( P < 0.05). Rainy days decreased slightly in annual and oilseed rape growth time series ( P < 0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall ( P < 0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity ( P < 0.01). Tobacco yield increased with mean temperature ( P < 0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.
Temporal changes in climatic variables and their impact on crop yields in southwestern China.
Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei
2014-08-01
Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (P<0.05). Increased sunshine hours were observed during the oilseed rape growth period (P<0.05). Rainy days decreased slightly in annual and oilseed rape growth time series (P<0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall (P<0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity (P<0.01). Tobacco yield increased with mean temperature (P<0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.
Potential impact of climate variability on respiratory diseases in infant and children in Semarang
NASA Astrophysics Data System (ADS)
Budiyono; Rismawati; Jati, S. P.; Ginandjar, P.
2017-02-01
Temperature, humidity, and rainfall may influence respiratory disease, including acute respiratory infection (ARI) and pneumonia. In Semarang, the temperature and humidity has increased 0.1°C and 1.6% respectively during 2002-2011. ARI and pneumonia in children under 5 years had increased during 2012-2014. This study aimed to analyze the relationship of climate variability and ARI and pneumonia incidence. It was an ecological study. Subject consisted of patients visited primary health care of Bandarharjo from 2011 to 2015. Pneumonia was related to infants (<1-year-old) and children (1-4 years old), while ARI was related to children (≥5 years old). Data of climate was obtained from Agency for Meteorology, Climatology and Geophysics (BMKG) Semarang. Pearson correlation (α=0.05) was used to analyse the correlation of the 60 samples. Mean of temperature was 27.96° C, relative humidity was 74.73%, and rainfall was 179.98 mm/month. The total of ARI was 38523 cases and pneumonia was 1558 cases. Temperature, humidity, and rainfall had no correlation to pneumonia. Humidity had a significant correlation to ARI on female children and total ARI (r=0.3 and r=0.26; p-value=0.02 and 0.04 respectively). Rainfall and temperature had no correlation to total ARI. This study concluded humidity has potential impact to ARI.
Interannual and intra-annual variability of rainfall in Haiti (1905-2005)
NASA Astrophysics Data System (ADS)
Moron, Vincent; Frelat, Romain; Jean-Jeune, Pierre Karly; Gaucherel, Cédric
2015-08-01
The interannual variability of annual and monthly rainfall in Haiti is examined from a database of 78 rain gauges in 1905-2005. The spatial coherence of annual rainfall is rather low, which is partly due to Haiti's rugged landscape, complex shoreline, and surrounding warm waters (mean sea surface temperatures >27 °C from May to December). The interannual variation of monthly rainfall is mostly shaped by the intensity of the low-level winds across the Caribbean Sea, leading to a drier- (or wetter-) than-average rainy season associated with easterly (or westerly) anomalies, increasing (or decreasing) winds. The varying speed of low-level easterlies across the Caribbean basin may reflect at least four different processes during the year: (1) an anomalous trough/ridge over the western edge of the Azores high from December to February, peaking in January; (2) a zonal pressure gradient between Eastern Pacific and the tropical Northern Atlantic from May/June to September, with a peak in August (i.e. lower-than-average rainfall in Haiti is associated with positive sea level pressure anomalies over the tropical North Atlantic and negative sea level pressure anomalies over the Eastern Pacific); (3) a local ocean-atmosphere coupling between the speed of the Caribbean Low Level Jet and the meridional sea surface temperature (SST) gradient across the Caribbean basin (i.e. colder-than-average SST in the southern Caribbean sea is associated with increased easterlies and below-average rainfall in Haiti). This coupling is triggered when the warmest Caribbean waters move northward toward the Gulf of Mexico; (4) in October/November, a drier- (or wetter-) than-usual rainy season is related to an almost closed anticyclonic (or cyclonic) anomaly located ENE of Haiti on the SW edge of the Azores high. This suggests a main control of the interannual variations of rainfall by intensity, track and/or recurrence of tropical depressions traveling northeast of Haiti. During this period, the teleconnection of Haitian rainfall with synchronous Atlantic and Eastern Pacific SST is at a minimum.
NASA Astrophysics Data System (ADS)
Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven
2015-04-01
Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.
NASA Astrophysics Data System (ADS)
Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.
2018-01-01
Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.
NASA Astrophysics Data System (ADS)
Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng
2018-03-01
The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.
The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit
NASA Astrophysics Data System (ADS)
Lee, June-Yi; Kwon, MinHo; Yun, Kyung-Sook; Min, Seung-Ki; Park, In-Hong; Ham, Yoo-Geun; Jin, Emilia Kyung; Kim, Joo-Hong; Seo, Kyong-Hwan; Kim, WonMoo; Yim, So-Young; Yoon, Jin-Ho
2017-05-01
Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.
Monitoring 2015 drought in West Java using Normalized Difference Water Index (NDWI)
NASA Astrophysics Data System (ADS)
Febrina Amalo, Luisa; Ma’rufah, Ummu; Ayu Permatasari, Prita
2018-05-01
Drought is a slow developing phenomenon that accumulates over period and affecting various sectors. It is one of natural hazards that occurs each year, particularly in Indonesia over Australian Monsoon period. During drought event, vegetation’s cover can be affected by water stress. Normalized Difference Water Index (NDWI) is a method for water resource assessment and known to be strongly related to the plant water content. NDWI is produced from MODIS bands Near-infrared (NIR) and Short Wave Infrared (SWIR). This research aims to monitor drought using NDWI in West Java during El Niño 2015 and its impact on rainfall variability. The result showed rainfall was decreased significantly starting from May-June, then increased in November. According to NDWI, it also showed that mostly West Java Region affected by drought during May-November. Very strong drought occurred on September-November. On December, areal extent of drought was decreasing significantly because rainfall had increased during November. Generally, areal extent of drought in West Java was dominated by strong and moderate drought. It implied that El Niño 2015, give great impact on increasing drought and decreasing rainfall in West Java. NDWI can be detected drought occurrence as it have good correlation with rainfall spatially.
Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region
NASA Astrophysics Data System (ADS)
Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg
2015-04-01
Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.
NASA Astrophysics Data System (ADS)
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.
2016-12-01
One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
de Jong, Pieter; Tanajura, Clemente Augusto Souza; Sánchez, Antonio Santos; Dargaville, Roger; Kiperstok, Asher; Torres, Ednildo Andrade
2018-09-01
By the end of this century higher temperatures and significantly reduced rainfall are projected for the Brazilian North and Northeast (NE) regions due to Global Warming. This study examines the impact of these long-term rainfall changes on the Brazilian Northeast's hydroelectric production. Various studies that use different IPCC models are examined in order to determine the average rainfall reduction by the year 2100 in comparison to baseline data from the end of the 20th century. It was found that average annual rainfall in the NE region could decrease by approximately 25-50% depending on the emissions scenario. Analysis of historical rainfall data in the São Francisco basin during the last 57years already shows a decline of more than 25% from the 1961-90 long-term average. Moreover, average annual rainfall in the basin has been below its long-term average every year bar one since 1992. If this declining trend continues, rainfall reduction in the basin could be even more severe than the most pessimistic model projections. That is, the marked drop in average rainfall projected for 2100, based on the IPCC high emissions scenario, could actually eventuate before 2050. Due to the elasticity factor between rainfall and streamflow and because of increased amounts of irrigation in the São Francisco basin, the reduction in the NE's average hydroelectric production in the coming decades could be double the predicted decline in rainfall. Conversely, it is estimated that wind power potential in the Brazilian NE will increase substantially by 2100. Therefore both wind and solar power will need to be significantly exploited in order for the NE region to sustainably replace lost hydroelectric production. Copyright © 2018 Elsevier B.V. All rights reserved.
Global intensification in observed short-duration rainfall extremes
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.
2017-12-01
Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.
Southern Hemisphere rainfall variability over the past 200 years
NASA Astrophysics Data System (ADS)
Gergis, Joëlle; Henley, Benjamin J.
2017-04-01
This study presents an analysis of three palaeoclimate rainfall reconstructions from the Southern Hemisphere regions of south-eastern Australia (SEA), southern South Africa (SAF) and southern South America (SSA). We provide a first comparison of rainfall variations in these three regions over the past two centuries, with a focus on identifying synchronous wet and dry periods. Despite the uncertainties associated with the spatial and temporal limitations of the rainfall reconstructions, we find evidence of dynamically-forced climate influences. An investigation of the twentieth century relationship between regional rainfall and the large-scale climate circulation features of the Pacific, Indian and Southern Ocean regions revealed that Indo-Pacific variations of the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole dominate rainfall variability in SEA and SAF, while the higher latitude Southern Annular Mode (SAM) exerts a greater influence in SSA. An assessment of the stability of the regional rainfall-climate circulation modes over the past two centuries revealed a number of non-stationarities, the most notable of which occurs during the early nineteenth century around 1820. This corresponds to a time when the influence of ENSO on SEA, SAF and SSA rainfall weakens and there is a strengthening of the influence of SAM. We conclude by advocating the use of long-term palaeoclimate data to estimate decadal rainfall variability for future water resource management.
Introducing hydrological information in rainfall intensity-duration thresholds
NASA Astrophysics Data System (ADS)
Greco, Roberto; Bogaard, Thom
2016-04-01
Regional landslide hazard assessment is mainly based on empirically derived precipitation-intensity-duration (PID) thresholds. Generally, two features of rainfall events are plotted to discriminate between observed occurrence and absence of occurrence of mass movements. Hereafter, a separation line is drawn in logarithmic space. Although successfully applied in many case studies, such PID thresholds suffer from many false positives as well as limited physical process insight. One of the main limitations is indeed that they do not include any information about the hydrological processes occurring along the slopes, so that the triggering is only related to rainfall characteristics. In order to introduce such an hydrological information in the definition of rainfall thresholds for shallow landslide triggering assessment, in this study the introduction of non-dimensional rainfall characteristics is proposed. In particular, rain storm depth, intensity and duration are divided by a characteristic infiltration depth, a characteristic infiltration rate and a characteristic duration, respectively. These latter variables depend on the hydraulic properties and on the moisture state of the soil cover at the beginning of the precipitation. The proposed variables are applied to the case of a slope covered with shallow pyroclastic deposits in Cervinara (southern Italy), for which experimental data of hourly rainfall and soil suction were available. Rainfall thresholds defined with the proposed non-dimensional variables perform significantly better than those defined with dimensional variables, either in the intensity-duration plane or in the depth-duration plane.
The local and global climate forcings induced inhomogeneity of Indian rainfall.
Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J
2018-04-16
India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.
NASA Astrophysics Data System (ADS)
Adirosi, Elisa; Tokay, Ali; Roberto, Nicoletta; Gorgucci, Eugenio; Montopoli, Mario; Baldini, Luca
2017-04-01
Ground based weather radars are highly used to generate rainfall products for meteorological and hydrological applications. However, weather radar quantitative rainfall estimation is obtained at a certain altitude that depends mainly on the radar elevation angle and on the distance from the radar. Therefore, depending on the vertical variability of rainfall, a time-height ambiguity between radar measurement and rainfall at the ground can affect the rainfall products. The vertically pointing radars (such as the Micro Rain Radar, MRR) are great tool to investigate the vertical variability of rainfall and its characteristics and ultimately, to fill the gap between the ground level and the first available radar elevation. Furthermore, the knowledge of rain Drop Size Distribution (DSD) variability is linked to the well-known problem of the non-uniform beam filling that is one of the main uncertainties of Global Precipitation Measurement (GPM) mission Dual frequency Precipitation Radar (DPR). During GPM Ground Validation Iowa Flood Studies (IFloodS) field experiment, data collected with 2D video disdrometers (2DVD), Autonomous OTT Parsivel2 Units (APU), and MRR profilers at different sites were available. In three different sites co-located APU, 2DVD and MRR are available and covered by the S-band Dual Polarimetric Doppler radar (NPOL). The first elevation height of the radar beam varies, among the three sites, between 70 m and 1100 m. The IFloodS set-up has been used to compare disdrometers, MRR and NPOL data and to evaluate the uncertainties of those measurements. First, the performance of disdrometers and MRR in determining different rainfall parameters at ground has been evaluated and then the MRR based parameters have been compared with the ones obtained from NPOL data at the lowest elevations. Furthermore, the vertical variability of DSD and integral rainfall parameters within the MRR bins (from ground to 1085 m each 35 m) has been investigated in order to provide some insight on the variability of the rainfall microphysical characteristics within about 1 km above the ground.
Rainfall and temperature changes and variability in the Upper East Region of Ghana
NASA Astrophysics Data System (ADS)
Issahaku, Abdul-Rahaman; Campion, Benjamin Betey; Edziyie, Regina
2016-08-01
The aim of the research was to assess the current trend and variation in rainfall and temperature in the Upper East Region, Ghana, using time series moving average analysis and decomposition methods. Meteorological data obtained from the Ghana Meteorological Agency in Accra, Ghana, from 1954 to 2014 were used in the models. The additive decomposition model was used to analyze the rainfall because the seasonal variation was relatively constant over time, while the multiplicative model was used for both the daytime and nighttime temperatures because their seasonal variations increase over time. The monthly maximum and the minimum values for the entire period were as follows: rainfall 455.50 and 0.00 mm, nighttime temperature 29.10°C and 13.25°C and daytime temperature 41.10°C and 26.10°C, respectively. Also, while rainfall was decreasing, nighttime and daytime temperatures were increasing in decadal times. Since both the daytime and nighttime temperatures were increasing and rainfall was decreasing, climate extreme events such as droughts could result and affect agriculture in the region, which is predominantly rain fed. Also, rivers, dams, and dugouts are likely to dry up in the region. It was also observed that there was much variation in rainfall making prediction difficult. Day temperatures were generally high with the months of March and April have been the highest. The months of December recorded the lowest night temperature. Inhabitants are therefore advised to sleep in well-ventilated rooms during the warmest months and wear protective clothing during the cold months to avoid contracting climate-related diseases.
NASA Astrophysics Data System (ADS)
Ayal, D. Y., Sr.; Abshare, M. W. M.; Desta, S. D.; Filho, W. L.
2015-12-01
Desalegn Yayeh Ayal P.O.BOX 150129 Addis Ababa University Ethiopia Mobil +251910824784 Abstract Smallholder farmers' near term scenario (2010-2039) vulnerability nature and magnitude was examined using twenty-two exposure, sensitivity and adaptive capacity vulnerability indicators. Assessment of smallholder farmers' vulnerability to climate variability revealed the importance of comprehending exposure, sensitivity and adaptive capacity induces. Due to differences in level of change in rainfall, temperature, drought frequency, their environmental interaction and variations on adaptive capacity the nature and magnitude of smallholder farmers vulnerability to physical, biological and epidemiological challenges of crop and livestock production varied within and across agro-ecologies. Highlanders' sensitive relates with high population density, erosion and crop disease and pest damage occurrence. Whereas lowlanders will be more sensitive to high crop disease and pest damage, provenance of livestock disease, absence of alternative water sources, less diversified agricultural practices. However, with little variations in the magnitude and nature of vulnerability, both highlanders and lowlanders are victims of climate variability and change. Given the ever increasing population, temperature and unpredictable nature of rainfall variability, the study concluded that future adaptation strategies should capitalize on preparing smallholder farmers for both extremes- excess rainfall and flooding on the one hand and severe drought on the other.
NASA Astrophysics Data System (ADS)
Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; da Cunha, Elias Rodrigues; Correa, Caio Cezar Guedes; Torres, Francisco Eduardo; Bacani, Vitor Matheus; Gois, Givanildo; Ribeiro, Larissa Pereira
2016-04-01
The State of Mato Grosso do Sul (MS) located in Brazil Midwest is devoid of climatological studies, mainly in the characterization of rainfall regime and producers' meteorological systems and rain inhibitors. This state has different soil and climatic characteristics distributed among three biomes: Cerrado, Atlantic Forest and Pantanal. This study aimed to apply the cluster analysis using Ward's algorithm and identify those meteorological systems that affect the rainfall regime in the biomes. The rainfall data of 32 stations (sites) of the MS State were obtained from the Agência Nacional de Águas (ANA) database, collected from 1954 to 2013. In each of the 384 monthly rainfall temporal series was calculated the average and applied the Ward's algorithm to identify spatial and temporal variability of rainfall. Bartlett's test revealed only in January homogeneous variance at all sites. Run test showed that there was no increase or decrease in trend of monthly rainfall. Cluster analysis identified five rainfall homogeneous regions in the MS State, followed by three seasons (rainy, transitional and dry). The rainy season occurs during the months of November, December, January, February and March. The transitional season ranges between the months of April and May, September and October. The dry season occurs in June, July and August. The groups G1, G4 and G5 are influenced by South Atlantic Subtropical Anticyclone (SASA), Chaco's Low (CL), Bolivia's High (BH), Low Levels Jet (LLJ) and South Atlantic Convergence Zone (SACZ) and Maden-Julian Oscillation (MJO). Group G2 is influenced by Upper Tropospheric Cyclonic Vortex (UTCV) and Front Systems (FS). The group G3 is affected by UTCV, FS and SACZ. The meteorological systems' interaction that operates in each biome and the altitude causes the rainfall spatial and temporal diversity in MS State.
NASA Astrophysics Data System (ADS)
Ho, Michelle; Kiem, Anthony S.; Verdon-Kidd, Danielle C.
2015-10-01
From ˜1997 to 2009 the Murray-Darling Basin (MDB), Australia's largest water catchment and reputed "food bowl," experienced a severe drought termed the "Millennium Drought" or "Big Dry" followed by devastating floods in the austral summers of 2010/2011, 2011/2012, and 2012/2013. The magnitude and severity of these extreme events highlight the limitations associated with assessing hydroclimatic risk based on relatively short instrumental records (˜100 years). An option for extending hydroclimatic records is through the use of paleoclimate records. However, there are few in situ proxies of rainfall or streamflow suitable for assessing hydroclimatic risk in Australia and none are available in the MDB. In this paper, available paleoclimate records are reviewed and those of suitable quality for hydroclimatic risk assessments are used to develop preinstrumental information for the MDB. Three different paleoclimate reconstruction techniques are assessed using two instrumental rainfall networks: (1) corresponding to rainfall at locations where rainfall-sensitive Australian paleoclimate archives currently exist and (2) corresponding to rainfall at locations identified as being optimal for explaining MDB rainfall variability. It is shown that the optimized rainfall network results in a more accurate model of MDB rainfall compared to reconstructions based on rainfall at locations where paleoclimate rainfall proxies currently exist. This highlights the importance of first identifying key locations where existing and as yet unrealized paleoclimate records will be most useful in characterizing variability. These results give crucial insight as to where future investment and research into developing paleoclimate proxies for Australia could be most beneficial, with respect to better understanding instrumental, preinstrumental and potential future variability in the MDB.
NASA Astrophysics Data System (ADS)
Deal, Eric; Braun, Jean
2017-04-01
Climatic forcing undoubtedly plays an important role in shaping the Earth's surface. However, precisely how climate affects erosion rates, landscape morphology and the sedimentary record is highly debated. Recently there has been a focus on the influence of short-term variability in rainfall and river discharge on the relationship between climate and erosion rates. Here, we present a simple probabilistic argument, backed by modelling, that demonstrates that the way the Earth's surface responds to short-term climatic forcing variability is primarily determined by the existence and magnitude of erosional thresholds. We find that it is the ratio between the threshold magnitude and the mean magnitude of climatic forcing that determines whether variability matters or not and in which way. This is a fundamental result that applies regardless of the nature of the erosional process. This means, for example, that we can understand the role that discharge variability plays in determining fluvial erosion efficiency despite doubts about the processes involved in fluvial erosion. We can use this finding to reproduce the main conclusions of previous studies on the role of discharge variability in determining long-term fluvial erosion efficiency. Many aspects of the landscape known to influence discharge variability are affected by human activity, such as land use and river damming. Another important control on discharge variability, rainfall intensity, is also expected to increase with warmer temperatures. Among many other implications, our findings help provide a general framework to understand and predict the response of the Earth's surface to changes in mean and variability of rainfall and river discharge associated with the anthropogenic activity. In addition, the process independent nature of our findings suggest that previous work on river discharge variability and erosion thresholds can be applied to other erosional systems.
Impact of climate variability on the transmission risk of malaria in northern Côte d'Ivoire.
M'Bra, Richard K; Kone, Brama; Soro, Dramane P; N'krumah, Raymond T A S; Soro, Nagnin; Ndione, Jacques A; Sy, Ibrahima; Ceccato, Pietro; Ebi, Kristie L; Utzinger, Jürg; Schindler, Christian; Cissé, Guéladio
2018-01-01
Since the 1970s, the northern part of Côte d'Ivoire has experienced considerable fluctuation in its meteorology including a general decrease of rainfall and increase of temperature from 1970 to 2000, a slight increase of rainfall since 2000, a severe drought in 2004-2005 and flooding in 2006-2007. Such changing climate patterns might affect the transmission of malaria. The purpose of this study was to analyze climate and environmental parameters associated with malaria transmission in Korhogo, a city in northern Côte d'Ivoire. All data were collected over a 10-year period (2004-2013). Rainfall, temperature and Normalized Difference Vegetation Index (NDVI) were the climate and environmental variables considered. Association between these variables and clinical malaria data was determined, using negative binomial regression models. From 2004 to 2013, there was an increase in the annual average precipitation (1100.3-1376.5 mm) and the average temperature (27.2°C-27.5°C). The NDVI decreased from 0.42 to 0.40. We observed a strong seasonality in these climatic variables, which resembled the seasonality in clinical malaria. An incremental increase of 10 mm of monthly precipitation was, on average, associated with a 1% (95% Confidence interval (CI): 0.7 to 1.2%) and a 1.2% (95% CI: 0.9 to 1.5%) increase in the number of clinical malaria episodes one and two months later respectively. A 1°C increase in average monthly temperature was, on average, associated with a decline of a 3.5% (95% CI: 0.1 to 6.7%) in clinical malaria episodes. A 0.1 unit increase in monthly NDVI was associated with a 7.3% (95% CI: 0.8 to 14.1%) increase in the monthly malaria count. There was a similar increase for the preceding-month lag (6.7% (95% CI: 2.3% to 11.2%)). The study results can be used to establish a malaria early warning system in Korhogo to prepare for outbreaks of malaria, which would increase community resilience no matter the magnitude and pattern of climate change.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
Analysis of global oceanic rainfall from microwave data
NASA Technical Reports Server (NTRS)
Rao, M.
1978-01-01
A Global Rainfall Atlas was prepared from Nimbus 5 ESMR data. The Atlas includes global oceanic rainfall maps based on weekly, monthly and seasonal averages, complete through the end of 1975. Similar maps for 1973 and 1974 were studied. They reveal several previously unknown areas of enhanced rainfall and preliminary data on interannual variability of oceanic rainfall.
Droughts, rainfall and rural water supply in northern Nigeria
NASA Astrophysics Data System (ADS)
Tarhule, Aondover Augustine
Knowledge concerning various aspects of drought and water scarcity is required to predict, and to articulate strategies to minimize the effects of future events. This thesis investigated different aspects of droughts and rainfall variability at several time scales and described the dynamics of water supply and use in a rural village in northeastern Nigeria. The parallel existence of measured climatic records and information on famine/folklore events is utilized to calibrate the historical information against the measured data. It is shown that famines or historical droughts occurred when the cumulative deficit of rainfall fell below 1.3 times the standard deviation of the long-term mean rainfall. The study demonstrated that famine chronologies are adequate proxy for drought events, providing a means for the reconstruction of the drought/climatic history of the region. Analysis of recent changes in annual rainfall characteristics show that the series of annual rainfall and number of rain days experienced a discontinuity during the 1960's, caused largely by the decrease in the frequency of moderate to high intensity rain events. The periods prior to and after the change point are homogenous and provide an objective basis for the estimation of changes in rainfall characteristics, drought parameters and for demarcating the region into sub-zones. Rainfall variability was unaffected by the abrupt change. Furthermore, the variability is independently distributed and adequately described by the normal distribution. This allows estimates of the probability of various magnitudes or thresholds of variability. The effects of droughts and rainfall variability are most strongly felt in rural areas. Analysis of the patterns of water supply and use in a typical rural village revealed that the hydrologic system is driven by the local rainfall. Perturbations in the rains propagate through the system with short lag time between the various components. Where fadama aquifers occur, they offer a major supplement of water for six to seven months during the dry season. Under traditional systems, the pattern of water withdrawal from the fadama aquifers is designed to accommodate the diverse interests of different groups and to minimize the potential for conflict. The results contribute to our understanding of drought and water scarcity and are useful in various practical applications.
Indian Monsoon Rainfall Variability During the Common Era: Implications on the Ancient Civilization
NASA Astrophysics Data System (ADS)
Pothuri, D.
2017-12-01
Indian monsoon rainfall variability was reconstructed during last two millennia by using the δ18Ow from a sediment core in the Krishna-Godavari Basin. Higher δ18Ow values during Dark Age Cold Period (DACP) (1550 to 1250 years BP) and Little Ice Age (LIA) (700 to 200 years BP) represent less Indian monsoon rainfall. Whereas during Medieval Warm Period (MWP) (1200 to 800 years BP) and major portion of Roman Warm Period (RWP) 2000 to 1550 years BP) document more rainfall in the Indian subcontinent as evident from lower δ18Ow values. A significant correlation exist between the Bay of Bengal (BoB) sea surface temperature (SST) and Indian monsoon proxy (i.e. δ18Ow), which suggests that; (i) the forcing mechanism of the Indian monsoon rainfall variability during last two millennia was controlled by the thermal contrast between the Indian Ocean and Asian Land Mass, and (ii) the evaporation processes in the BoB and associated SST are strongly coupled with the Indian Monsoon variability over the last two millennia.
NASA Astrophysics Data System (ADS)
Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.
2015-01-01
In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming may notably modulate the ISM rainfall in future climate. Both extreme wet and dry episodes are likely to intensify and regionally extend in future climate with enhanced propensity of short active and long break spells. The SM (WM) could also be more wet (dry) in future due to the increment in longer active (break) spells. However, future changes in the spatial pattern during active/break phase of SM and WM are geographically inconsistent among the models. The results point out the growing climate-related vulnerability over Indian subcontinent, and further suggest the requisite of profound adaptation measures and better policy making in future.
Variable ecological conditions promote male helping by changing banded mongoose group composition.
Marshall, Harry H; Sanderson, Jennifer L; Mwanghuya, Francis; Businge, Robert; Kyabulima, Solomon; Hares, Michelle C; Inzani, Emma; Kalema-Zikusoka, Gladys; Mwesige, Kenneth; Thompson, Faye J; Vitikainen, Emma I K; Cant, Michael A
2016-01-01
Ecological conditions are expected to have an important influence on individuals' investment in cooperative care. However, the nature of their effects is unclear: both favorable and unfavorable conditions have been found to promote helping behavior. Recent studies provide a possible explanation for these conflicting results by suggesting that increased ecological variability, rather than changes in mean conditions, promote cooperative care. However, no study has tested whether increased ecological variability promotes individual-level helping behavior or the mechanisms involved. We test this hypothesis in a long-term study population of the cooperatively breeding banded mongoose, Mungos mungo , using 14 years of behavioral and meteorological data to explore how the mean and variability of ecological conditions influence individual behavior, body condition, and survival. Female body condition was more sensitive to changes in rainfall leading to poorer female survival and pronounced male-biased group compositions after periods of high rainfall variability. After such periods, older males invested more in helping behavior, potentially because they had fewer mating opportunities. These results provide the first empirical evidence for increased individual helping effort in more variable ecological conditions and suggest this arises because of individual differences in the effect of ecological conditions on body condition and survival, and the knock-on effect on social group composition. Individual differences in sensitivity to environmental variability, and the impacts this has on the internal structure and composition of animal groups, can exert a strong influence on the evolution and maintenance of social behaviors, such as cooperative care.
Variable ecological conditions promote male helping by changing banded mongoose group composition
Sanderson, Jennifer L.; Mwanghuya, Francis; Businge, Robert; Kyabulima, Solomon; Hares, Michelle C.; Inzani, Emma; Kalema-Zikusoka, Gladys; Mwesige, Kenneth; Thompson, Faye J.; Vitikainen, Emma I. K.; Cant, Michael A.
2016-01-01
Ecological conditions are expected to have an important influence on individuals’ investment in cooperative care. However, the nature of their effects is unclear: both favorable and unfavorable conditions have been found to promote helping behavior. Recent studies provide a possible explanation for these conflicting results by suggesting that increased ecological variability, rather than changes in mean conditions, promote cooperative care. However, no study has tested whether increased ecological variability promotes individual-level helping behavior or the mechanisms involved. We test this hypothesis in a long-term study population of the cooperatively breeding banded mongoose, Mungos mungo, using 14 years of behavioral and meteorological data to explore how the mean and variability of ecological conditions influence individual behavior, body condition, and survival. Female body condition was more sensitive to changes in rainfall leading to poorer female survival and pronounced male-biased group compositions after periods of high rainfall variability. After such periods, older males invested more in helping behavior, potentially because they had fewer mating opportunities. These results provide the first empirical evidence for increased individual helping effort in more variable ecological conditions and suggest this arises because of individual differences in the effect of ecological conditions on body condition and survival, and the knock-on effect on social group composition. Individual differences in sensitivity to environmental variability, and the impacts this has on the internal structure and composition of animal groups, can exert a strong influence on the evolution and maintenance of social behaviors, such as cooperative care. PMID:27418750
Caster, Joshua J.; Sankey, Joel B.
2016-04-11
In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.
Numerical modeling of rainfall thresholds for shallow landsliding in the Seattle, Washington, area
Godt, Jonathan W.; McKenna, Jonathan P.
2008-01-01
The temporal forecasting of landslide hazard has typically relied on empirical relations between rainfall characteristics and landslide occurrence to identify conditions that may cause shallow landslides. Here, we describe an alternate, deterministic approach to define rainfall thresholds for landslide occurrence in the Seattle, Washington, area. This approach combines an infinite slope-stability model with a variably saturated flow model to determine the rainfall intensity and duration that leads to shallow failure of hillside colluvium. We examine the influence of variation in particle-size distribution on the unsaturated hydraulic properties of the colluvium by performing capillary-rise tests on glacial outwash sand and three experimental soils with increasing amounts of fine-grained material. Observations of pore-water response to rainfall collected as part of a program to monitor the near-surface hydrology of steep coastal bluffs along Puget Sound were used to test the numerical model results and in an inverse modeling procedure to determine the in situ hydraulic properties. Modeling results are given in terms of a destabilizing rainfall intensity and duration, and comparisons with empirical observations of landslide occurrence and triggering rainfall indicate that the modeling approach may be useful for forecasting landslide occurrence.
An inverse approach to perturb historical rainfall data for scenario-neutral climate impact studies
NASA Astrophysics Data System (ADS)
Guo, Danlu; Westra, Seth; Maier, Holger R.
2018-01-01
Scenario-neutral approaches are being used increasingly for climate impact assessments, as they allow water resource system performance to be evaluated independently of climate change projections. An important element of these approaches is the generation of perturbed series of hydrometeorological variables that form the inputs to hydrologic and water resource assessment models, with most scenario-neutral studies to-date considering only shifts in the average and a limited number of other statistics of each climate variable. In this study, a stochastic generation approach is used to perturb not only the average of the relevant hydrometeorological variables, but also attributes such as the intermittency and extremes. An optimization-based inverse approach is developed to obtain hydrometeorological time series with uniform coverage across the possible ranges of rainfall attributes (referred to as the 'exposure space'). The approach is demonstrated on a widely used rainfall generator, WGEN, for a case study at Adelaide, Australia, and is shown to be capable of producing evenly-distributed samples over the exposure space. The inverse approach expands the applicability of the scenario-neutral approach in evaluating a water resource system's sensitivity to a wider range of plausible climate change scenarios.
NASA Astrophysics Data System (ADS)
Hürlimann, Marcel; Abancó, Clàudia; Moya, Jose; Berenguer, Marc
2015-04-01
Empirical rainfall thresholds are a widespread technique in debris-flow hazard assessment and can be established by statistical analysis of historic data. Typically, data from one or several rain gauges located nearby the affected catchment is used to define the triggering conditions. However, this procedure has been demonstrated not to be accurate enough due to the spatial variability of convective rainstorms. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, 28 torrential flows (debris flows and debris floods) have occurred and rainfall data of 25 of them are available with a 5-minutes frequency of recording ("event rainfalls"). Other 142 rainfalls that did not trigger events ("no event rainfalls) were also collected and analysed. The goal of this work was threefold: a) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential events and others that did not; b) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment; c) estimate the uncertainty derived from the use of rain gauges located outside the catchment based on the spatial correlation depicted by radar rainfall maps. The results of the statistical analysis showed that the parameters that more distinguish between the two populations of rainfalls are the rainfall intensities, the mean rainfall and the total precipitation. On the other side, the storm duration and the antecedent rainfall are not significantly different between "event rainfalls" and "no event rainfalls". Four different ID rainfall thresholds were derived based on the dataset of the first 5 years and tested using the 2014 dataset. The results of the test indicated that the threshold corresponding to the 90% percentile showed the best performance. Weather radar data was used to analyse the spatial variability of the triggering rainfalls. The analysis indicates that rain gauges outside the catchment may be considered useful or not to describe the rainfall depending on the type of rainfall. For widespread rainfalls, further rain gauges can give a reliable measurement, because the spatial correlation decreases slowly with the distance between the rain gauge and the debris-flow initiation area. Contrarily, local storm cells show higher space-time variability and, therefore, representative rainfall measurements are obtained only by the closest rain gauges. In conclusion, the definition of rainfall thresholds is a delicate task. When the rainfall records are coming from gauges that are outside the catchment under consideration, the data should be carefully analysed and crosschecked with radar data (especially for small convective cells).
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Astrophysics Data System (ADS)
Williams, Charles; Turner, Andrew
2015-04-01
It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i.e. uncoupled over India and coupled elsewhere, preliminary results suggest an increase in rainfall, surface temperature and pressure over northern India and the Himalayas, as well as a decrease in rainfall over the Bay of Bengal and the Maritime Continent. Other metrics, such as the northward propagation of intraseasonal rainfall variability and sensible and latent heat fluxes, are also discussed.
Impact of rainfall spatial variability on Flash Flood Forecasting
NASA Astrophysics Data System (ADS)
Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin
2014-05-01
According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.
Modelling Ecuador's rainfall distribution according to geographical characteristics.
NASA Astrophysics Data System (ADS)
Tobar, Vladimiro; Wyseure, Guido
2017-04-01
It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.
Biotic context and soil properties modulate native plant responses to enhanced rainfall.
Eskelinen, Anu; Harrison, Susan
2015-11-01
The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment. In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables. Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity. The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Saatchi, S.; Asefi, S.
2012-04-01
During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits
Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly of Last Decade
NASA Astrophysics Data System (ADS)
Saatchi, S. S.; Asefi Najafabady, S.
2011-12-01
During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits.
Evaluation of common bean lines for adaptation to high temperatures in Honduras
USDA-ARS?s Scientific Manuscript database
As in other regions worldwide, common bean (Phaseolus vulgaris L.) production in Central America and the Caribbean (CA/C) region is threatened by effects of climate change including increasing temperatures and drought due to variable rainfall patterns. One of the main alternatives for increasing ada...
Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...
NASA Technical Reports Server (NTRS)
Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.
2013-01-01
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.
Inter-event variability in urban stormwater runoff response associated with hydrologic connectivity
NASA Astrophysics Data System (ADS)
Hondula, K. L.
2015-12-01
Urbanization alters the magnitude and composition of hydrologic and biogeochemical fluxes from watersheds, with subsequent deleterious consequences for receiving waters. Projected changes in storm characteristics such as rainfall intensity and event size are predicted to amplify these impacts and render current regulations inadequate for protecting surface water quality. As stormwater management practices (BMPs) are increasingly being relied upon to reduce excess nutrient pollution in runoff from residential development, empirical investigation of their performance across a range of conditions is warranted. Despite substantial investment in urban and suburban BMPs, significant knowledge gaps exist in understanding how landscape structure and precipitation event characteristics influence the amount of stormwater runoff and associated nutrient loads from these complex catchments. Increasing infiltration of stormwater before it enters the sewer network (source control) is hypothesized to better mimic natural hydrologic and biogeochemical fluxes compared to more centralized BMPs at sewer outlets such as wet and dry ponds. Rainfall and runoff quality and quantity were monitored in four small (1-5 ha) residential catchments in Maryland to test the efficacy of infiltration-based stormwater management practices in comparison to end-of-pipe BMPs. Results indicated that reduced hydrologic connectivity associated with infiltration-based practices affected the relationship between the magnitude of rainfall events and water yield , but only for small precipitation events: compared to end-of-pipe BMPs, source control was associated with both lower runoff ratios and lower nutrient export per area for a given rainfall event size. We found variability in stormwater runoff responses (water yield, quality, and nutrient loads) was associated with precipitation event size, antecedent rainfall, and hydrologic connectivity as quantified by a modified directional connectivity index. Accounting for the interactive effects of landscape structure and precipitation event characteristics can reduce the uncertainty surrounding stormwater runoff responses in complex urban watersheds.
Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall.
Haverd, Vanessa; Ahlström, Anders; Smith, Benjamin; Canadell, Josep G
2017-02-01
Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state-of-the-art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi-arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse-response behaviour of the drought-adapted biota of these systems, a response that is estimated to be as much as half of that from the CO 2 fertilization effect during 1990-2013. Mesic ecosystems, lacking drought-adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi-arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there. © 2016 John Wiley & Sons Ltd.
Reconstruction of rainfall in Zafra (southwest Spain) from 1750 to 1840 from documentary sources
NASA Astrophysics Data System (ADS)
Fernández-Fernández, M. I.; Gallego, M. C.; Domínguez-Castro, F.; Vaquero, J. M.; Moreno González, J. M.; Castillo Durán, J.
2011-11-01
This work presents the first high-resolution reconstruction of rainfall in southwestern Spain during the period 1750-1840. The weather descriptions used are weekly reports describing the most relevant events that occurred in the Duchy of Feria. An index was defined to characterise the weekly rainfall. Monthly indices were obtained by summing the corresponding weekly indices, obtaining cumulative monthly rainfall indices. The reconstruction method consisted of establishing a linear correlation between the monthly rainfall index and monthly instrumental data (1960-1990). The correlation coefficients were greater than 0.80 for all months. The rainfall reconstruction showed major variability similar to natural variability. The reconstructed rainfall series in Zafra was compared with the rainfall series of Cadiz, Gibraltar and Lisbon for the period 1750-1840, with all four series found to have a similar pattern. The influence of the North Atlantic Oscillation (NAO) on the winter rainfall reconstruction was found to behave similarly to that of modern times. Other studies described are of the SLP values over the entire North Atlantic in the months with extreme values of rainfall, and unusual meteorological events (hail, frost, storms and snowfall) in the reports of the Duchy of Feria.
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Kwon, MinHo
2014-03-01
East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.
Revadekar, J V; Varikoden, Hamza; Murumkar, P K; Ahmed, S A
2018-02-01
The Western Ghats (WG) of India are basically north-south oriented mountains having narrow zonal width with a steep rising western face. The summer monsoon winds during June to September passing over the Arabian Sea are obstructed by the WG and thus orographically uplift to produce moderate-to-heavy precipitation over the region. However, it is seen that characteristic features of rainfall distribution during the season vary from north to south. Also its correlation with all-India summer monsoon rainfall increases from south to north. In the present study, an attempt is also made to examine long-term as well as short-term trends and variability in summer monsoon rainfall over different subdivisions of WG using monthly rainfall data for the period 1871-2014. Konkan & Goa and Coastal Karnataka show increase in rainfall from 1871 to 2014 in all individual summer monsoon months. Short-term trend analysis based on 31-year sliding window indicates that the trends are not monotonous, but has epochal behavior. In recent epoch, magnitudes of negative trends are consistently decreasing and have changed its sign to positive during 1985-2014. It has been observed that Indian Ocean Dipole (IOD) plays a dominant positive role in rainfall over entire WG in all summer monsoon months, whereas role of Nino regions are asymmetric over WG rainfall. Indian summer monsoon is known for its negative relationship with Nino SST. Negative correlations are also seen for WG rainfall with Nino regions but only during onset and withdrawal phase. During peak monsoon months July and August subdivisions of WG mostly show positive correlation with Nino SST. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Blakeley, S. L.; Husak, G. J.; Harrison, L.; Funk, C. C.; Osgood, D. E.; Peterson, P.
2017-12-01
Index insurance is increasingly used as a safety net and productivity tool in order to improve the resilience of small-holder farmers in developing countries. In West Africa, there are already index insurance projects in many countries, and various non-governmental organizations are eager to expand implementation of this risk management tool. Often, index insurance payouts rely on rainfall to determine drought years, but designation of years based on precipitation variations is particularly complex in places like West Africa where precipitation is subject to much natural variability across timescales [Giannini 2003, among others]. Furthermore, farmers must also rely on other weather factors for good crop yields, such as the availability of moisture for their plants to absorb and maximum daily temperatures staying within an acceptable range for the crops. In this presentation, the payouts of an index based on rainfall (as measured by the Climate Hazards Group Infrared Precipitation with Stations {CHIRPS} dataset) is compared to the payouts of an index using reference evapotranspiration data (using the ASCE's Penmen-Monteith formula and MERRA-2 drivers). The West African rainfall index exhibits a fair amount of long-term variability, reflective of the Atlantic Multidecadal Oscillation, but the reference evapotranspiration index shows different variability, through changes in radiative forcing and temperatures. Therefore, the use of rainfall for an index is appropriate for capturing rainfall deficits, but reference evapotranspiration may also be an appropriate addition to an index or as a stand-alone index for capturing crop stress. In summary, the results point to farmer input as an invaluable source of knowledge in determining the most appropriate dataset as an index for crop insurance. Alessandra Giannini, R Saravanan, and P Chang. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302(5647):1027-1030, 2003.
NASA Astrophysics Data System (ADS)
Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.
2014-12-01
Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.
Tree ring reconstructed rainfall over the southern Amazon Basin
NASA Astrophysics Data System (ADS)
Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward
2017-07-01
Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.
Characterizing multiscale variability of zero intermittency in spatial rainfall
NASA Technical Reports Server (NTRS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1994-01-01
In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure of intermittency that describes the size distribution of 'voids' (nonrainy areas imbedded inside rainy areas) as a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall intermittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are demsonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude winter storm monitored by a meteorological radar in Norman, Oklahoma.
SUBPIXEL-SCALE RAINFALL VARIABILITY AND THE EFFECTS ON SEPARATION OF RADAR AND GAUGE RAINFALL ERRORS
One of the primary sources of the discrepancies between radar-based rainfall estimates and rain gauge measurements is the point-area difference, i.e., the intrinsic difference in the spatial dimensions of the rainfall fields that the respective data sets are meant to represent. ...
NASA Astrophysics Data System (ADS)
Tongwane, Mphethe Isaac; Moeletsi, Mokhele Edmond
2015-05-01
Intra-seasonal rainfall distribution was identified as a priority gap that needs to be addressed for southern Africa to cope with agro-meteorological risks. The region in the northwest of Lesotho is appropriate for crop cultivation due to its relatively favourable climatic conditions and soils. High rainfall variability is often blamed for poor agricultural production in this region. This study aims to determine the onset of rains, cessation of rains and rainy season duration using historical climate data. Temporal variability of these rainy season characteristics was also investigated. The earliest and latest onset dates of the rainy season are during the last week of October at Butha-Buthe and the third week of November at Mapoteng, respectively. Cessation of the season is predominantly in the first week of April making the season approximately 137-163 days long depending on the location. Average seasonal rainfall ranged from 474 mm at Mapoteng to 668 mm at Butha-Buthe. Onset and cessation of the rainfall season vary by 4-7 weeks and 1 week, respectively. Mean coefficient of variation of seasonal rainfall is 39 %, but monthly variations are higher. These variations make annual crop management and planning difficult each year. Trends show a decrease in the rainfall amounts but improvements in both the temporal distribution of annual rainfall, onset and cessation dates.
NASA Astrophysics Data System (ADS)
Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed
2017-04-01
One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.
Classic Maya civilization collapse associated with reduction in tropical cyclone activity
NASA Astrophysics Data System (ADS)
Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.
2013-12-01
In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.
Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps
NASA Astrophysics Data System (ADS)
Bel, Coraline; Liébault, Frédéric; Navratil, Oldrich; Eckert, Nicolas; Bellot, Hervé; Fontaine, Firmin; Laigle, Dominique
2017-08-01
This paper investigates the occurrence of debris flow due to rainfall forcing in the Réal Torrent, a very active debris flow-prone catchment in the Southern French Prealps. The study is supported by a 4-year record of flow responses and rainfall events, from three high-frequency monitoring stations equipped with geophones, flow stage sensors, digital cameras, and rain gauges measuring rainfall at 5-min intervals. The classic method of rainfall intensity-duration (ID) threshold was used, and a specific emphasis was placed on the objective identification of rainfall events, as well as on the discrimination of flow responses observed above the ID threshold. The results show that parameters used to identify rainfall events significantly affect the ID threshold and are likely to explain part of the threshold variability reported in the literature. This is especially the case regarding the minimum duration of rain interruption (MDRI) between two distinct rainfall events. In the Réal Torrent, a 3-h MDRI appears to be representative of the local rainfall regime. A systematic increase in the ID threshold with drainage area was also observed from the comparison of the three stations, as well as from the compilation of data from experimental debris-flow catchments. A logistic regression used to separate flow responses above the ID threshold, revealed that the best predictors are the 5-min maximum rainfall intensity, the 48-h antecedent rainfall, the rainfall amount and the number of days elapsed since the end of winter (used as a proxy of sediment supply). This emphasizes the critical role played by short intense rainfall sequences that are only detectable using high time-resolution rainfall records. It also highlights the significant influence of antecedent conditions and the seasonal fluctuations of sediment supply.
Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables
Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.
2003-01-01
Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593
Kim, Young-Min; Kim, Jihyun; Han, Youngshin; Jeon, Byoung-Hak; Cheong, Hae-Kwan; Ahn, Kangmo
2017-01-01
The effects of weather and air pollution on the severity and persistence of atopic dermatitis (AD) are important issues that have not been investigated in detail. The objective of our study was to determine the short-term effects of meteorological variables and air pollution on AD symptoms in children. We enrolled 177 AD patients with 5 years or younger from the Seoul Metropolitan Area, Korea, and followed for 17 months between August 2013 and December 2014. Symptoms records of 35,158 person-days, including itching, sleep disturbance, erythema, dry skin, oozing, and edema, were obtained. We estimated the effect of meteorological variables including daily mean temperature, relative humidity (RH), diurnal temperature range (DTR), rainfall and air pollutants including particulate matter with an aerodynamic diameter ≤10 μm (PM10), nitrogen dioxide (NO2), and tropospheric ozone (O3) on AD symptoms using a generalized linear mixed model with adjustment for related confounding factors. A 5°C increase in outdoor temperature and a 5% increase in outdoor RH was associated with 12.8% (95% confidence intervals (CI): 10.5, 15.2) and 3.3% (95% CI: 1.7, 4.7) decrease in AD symptoms, respectively, on the same day. An increase of rainfall by 5 mm increased AD symptoms by 7.3% (95% CI: 3.6, 11.1) for the days with <40 mm rainfall. The risk of AD symptoms increased by 284.9% (95% CI: 67.6, 784.2) according to a 5°C increase in DTR when it was >14°C. An increase in PM10, NO2, and O3 by 10 units increased the risk of AD symptoms on the same day by 3.2% (95% CI: 1.5, 4.9), 5.0% (95% CI: 1.4, 8.8), and 6.1% (95% CI: 3.2, 9.0), respectively. Exposure to meteorological variables and air pollutants are associated with AD symptoms in young children.
Subash, N; Gangwar, B; Singh, Rajbir; Sikka, A K
2015-01-01
Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of 8.8 % in system productivity. This study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature variability under a rice-rice cropping system in humid, subhumid, and semiarid ecosystems.
NASA Astrophysics Data System (ADS)
Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.
2014-05-01
The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.
NASA Astrophysics Data System (ADS)
Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.
2015-02-01
The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.
Critical scales to explain urban hydrological response: an application in Cranbrook, London
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; Gaitan, Santiago; Ochoa Rodriguez, Susana; van de Giesen, Nick
2018-04-01
Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an important role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban hydrological response. Nine rainfall events, measured with a dual polarimetric X-Band radar instrument at the CAESAR site (Cabauw Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this case study, and (4) scaling factors allow the adequate rainfall resolution to be selected to obtain a given level of accuracy in the calculation of hydrological response.
Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon
2013-01-01
Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160
Colombo, Nicola; Gruber, Stephan; Martin, Maria; Malandrino, Mery; Magnani, Andrea; Godone, Danilo; Freppaz, Michele; Fratianni, Simona; Salerno, Franco
2018-10-15
Three hypotheses exist to explain how meteorological variables drive the amount and concentration of solute-enriched water from rock glaciers: (1) Warm periods cause increased subsurface ice melt, which releases solutes; (2) rain periods and the melt of long-lasting snow enhance dilution of rock-glacier outflows; and (3) percolation of rain through rock glaciers facilitates the export of solutes, causing an opposite effect as that described in hypothesis (2). This lack of detailed understanding likely exists because suitable studies of meteorological variables, hydrologic processes and chemical characteristics of water bodies downstream from rock glaciers are unavailable. In this study, a rock-glacier pond in the North-Western Italian Alps was studied on a weekly basis for the ice-free seasons 2014 and 2015 by observing the meteorological variables (air temperature, snowmelt, rainfall) assumed to drive the export of solute-enriched waters from the rock glacier and the hydrochemical response of the pond (water temperature as a proxy of rock-glacier discharge, stable water isotopes, major ions and selected trace elements). An intra-seasonal pattern of increasing solute export associated with higher rock-glacier discharge was found. Specifically, rainfall, after the winter snowpack depletion and prolonged periods of atmospheric temperature above 0 °C, was found to be the primary driver of solute export from the rock glacier during the ice-free season. This occurs likely through the flushing of isotopically- and geochemically-enriched icemelt, causing concomitant increases in the rock-glacier discharge and the solute export (SO 4 2- , Mg 2+ , Ca 2+ , Ni, Mn, Co). Moreover, flushing of microbially-active sediments can cause increases in NO 3 - export. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, X.; Huete, A. R.; Xie, Z.; Giovannini, L.; Eamus, D.; Poulter, B.; Ponce-Campos, G. E.; Guanter, L.; Cleverly, J. R.
2016-12-01
An exceptionally large global land sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the fate, persistence and spatially explicit attribution of this carbon sink remain unknown. Meanwhile, recent studies have identified semi-arid ecosystems to be particularly sensitive to hydroclimatic variability, and there is some debate whether ecosystem sensitivity to rainfall has increased or been altered. To address these questions, we conducted an observation-based study to characterise the link between hydroclimatic variations and the Australian carbon sink using a novel coupling of satellite retrievals of atmospheric CO2 and photosynthetic activity (grenness and chlorophyll fluorescence), with in-situ flux tower measurement of net ecosystem exchange. We further quantified spatial variations and temporal shift in rainfall sensitivity across Australia over the past three decades. Our results show the 2010-11 La Niña induced land carbon sink was primarily ascribed to savannas and grasslands. However, when all biomes were normalised by their respective areas and rainfall, shrublands were found to be most efficient in taking up carbon in 2010-11. We found the 2010-11 land sink was highly transient and rapidly dissipated through subsequent drought and enhanced fire emission. The size of the 2010-11 carbon sink (0.97 Pg) was reduced by 51% in 2011-12 (0.48 Pg), and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 21st-century land carbon sink from La Niña-induced wet pulses in 2000-01, demonstrating a repetitive nature of this land sink. Given a significant increasing trend in extreme wet year precipitation, we predict that carbon sink episodes over Australia will exert greater future impacts on global carbon cycle-climate feedback in the coming decades. In addition, we found semi-arid eastern Australia not only exhibited amplified response to rainfall variability, but also experienced a large increase in rainfall sensitivity since 1980s. By contrast, a decline in sensitivity of vegetation to rainfall over arid central Australia is recorded. Further studies are needed to attribute these shifts in sensitivity to environmental changes, such as CO2 fertilisation, or changes in vegetation structure and species composition.
NASA Astrophysics Data System (ADS)
Sperber, K. R.; Palmer, T. N.
1996-11-01
The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model.The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. Models with resolution T42 performed more poorly than lower-resolution models. The higher resolution models were predominantly spectral. At low resolution, spectral versus gridpoint numerics performed with nearly equal verisimilitude. At low resolution, moisture convergence closure was slightly more preferable than other convective closure techniques. At high resolution, the models that used moisture convergence closure performed very poorly, suggesting that moisture convergence may be problematic for models with horizontal resolution T42.
Multiple benefits of alloparental care in a fluctuating environment.
Guindre-Parker, Sarah; Rubenstein, Dustin R
2018-02-01
Although cooperatively breeding vertebrates occur disproportionately in unpredictable environments, the underlying mechanism shaping this biogeographic pattern remains unclear. Cooperative breeding may buffer against harsh conditions (hard life hypothesis), or additionally allow for sustained breeding under benign conditions (temporal variability hypothesis). To distinguish between the hard life and temporal variability hypotheses, we investigated whether the number of alloparents at a nest increased reproductive success or load-lightening in superb starlings ( Lamprotornis superbus ), and whether these two types of benefits varied in harsh and benign years. We found that mothers experienced both types of benefits consistent with the temporal variability hypothesis, as larger contingents of alloparents increased the number of young fledged while simultaneously allowing mothers to reduce their provisioning rates under both harsh and benign rainfall conditions. By contrast, fathers experienced load-lightening only under benign rainfall conditions, suggesting that cooperative breeding may serve to take advantage of unpredictable benign breeding seasons when they do occur. Cooperative breeding in unpredictable environments may thus promote flexibility in offspring care behaviour, which could mitigate variability in the cost of raising young. Our results highlight the importance of considering how offspring care decisions vary among breeding roles and across fluctuating environmental conditions.
Multiple benefits of alloparental care in a fluctuating environment
2018-01-01
Although cooperatively breeding vertebrates occur disproportionately in unpredictable environments, the underlying mechanism shaping this biogeographic pattern remains unclear. Cooperative breeding may buffer against harsh conditions (hard life hypothesis), or additionally allow for sustained breeding under benign conditions (temporal variability hypothesis). To distinguish between the hard life and temporal variability hypotheses, we investigated whether the number of alloparents at a nest increased reproductive success or load-lightening in superb starlings (Lamprotornis superbus), and whether these two types of benefits varied in harsh and benign years. We found that mothers experienced both types of benefits consistent with the temporal variability hypothesis, as larger contingents of alloparents increased the number of young fledged while simultaneously allowing mothers to reduce their provisioning rates under both harsh and benign rainfall conditions. By contrast, fathers experienced load-lightening only under benign rainfall conditions, suggesting that cooperative breeding may serve to take advantage of unpredictable benign breeding seasons when they do occur. Cooperative breeding in unpredictable environments may thus promote flexibility in offspring care behaviour, which could mitigate variability in the cost of raising young. Our results highlight the importance of considering how offspring care decisions vary among breeding roles and across fluctuating environmental conditions. PMID:29515910
From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact
Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael
2005-01-01
General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096
A role of high impact weather events in waterborne disease outbreaks in Canada, 1975 - 2001.
Thomas, Kate M; Charron, Dominique F; Waltner-Toews, David; Schuster, Corinne; Maarouf, Abdel R; Holt, John D
2006-06-01
Recent outbreaks of Escherichia coli O157:H7, Campylobacter, and Cryptosporidium have heightened awareness of risks associated with contaminated water supply. The objectives of this research were to describe the incidence and distribution of waterborne disease outbreaks in Canada in relation to preceding weather conditions and to test the association between high impact weather events and waterborne disease outbreaks. We examined extreme rainfall and spring snowmelt in association with 92 Canadian waterborne disease outbreaks between 1975 and 2001, using case-crossover methodology. Explanatory variables including accumulated rainfall, air temperature, and peak stream flow were used to determine the relationship between high impact weather events and the occurrence of waterborne disease outbreaks. Total maximum degree-days above 0 degrees C and accumulated rainfall percentile were associated with outbreak risk. For each degree-day above 0 degrees C the relative odds of an outbreak increased by a factor of 1.007 (95% confidence interval [CI] = 1.002 - 1.012). Accumulated rainfall percentile was dichotomized at the 93rd percentile. For rainfall events greater than the 93rd percentile the relative odds of an outbreak increased by a factor of 2.283 (95% [CI] = 1.216 - 4.285). These results suggest that warmer temperatures and extreme rainfall are contributing factors to waterborne disease outbreaks in Canada. This could have implications for water management and public health initiatives.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.
2017-04-01
This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial distribution of recharge (both average value and its uncertainty) from the difference in P and EA in each area. A complete analysis of potential short-term (2016-2045) future climate scenarios in continental Spain has been performed by considering different sources of uncertainty. It is based on the historical climatic data for the period 1976-2005 and the climatic models simulations (for the control [1976-2005] and future scenarios [2016-2045]) performed in the frame of the CORDEX EU project. The most pessimistic emission scenario (RCP8.5) has been considered. For the RCP8.5 scenario we have analyzed the time series generated by simulating with 5 Regional Climatic models (CCLM4-8-17, RCA4, HIRHAM5, RACMO22E, and WRF331F) nested to 4 different General Circulation Models (GCMs). Two different conceptual approaches (bias correction and delta change techniques) have been applied to generate potential future climate scenarios from these data. Different ensembles of obtained time series have been proposed to obtain more representative scenarios by considering all the simulations or only those providing better approximations to the historical statistics based on a multicriteria analysis. This was a step to analyze future potential impacts on the aquifer recharge by simulating them within a rainfall-recharge model. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.
Indian summer monsoon variability forecasts in the North American multimodel ensemble
NASA Astrophysics Data System (ADS)
Singh, Bohar; Cash, Ben; Kinter, James L., III
2018-04-01
The representation of the seasonal mean and interannual variability of the Indian summer monsoon rainfall (ISMR) in nine global ocean-atmosphere coupled models that participated in the North American Multimodal Ensemble (NMME) phase 1 (NMME:1), and in nine global ocean-atmosphere coupled models participating in the NMME phase 2 (NMME:2) from 1982-2009, is evaluated over the Indo-Pacific domain with May initial conditions. The multi-model ensemble (MME) represents the Indian monsoon rainfall with modest skill and systematic biases. There is no significant improvement in the seasonal forecast skill or interannual variability of ISMR in NMME:2 as compared to NMME:1. The NMME skillfully predicts seasonal mean sea surface temperature (SST) and some of the teleconnections with seasonal mean rainfall. However, the SST-rainfall teleconnections are stronger in the NMME than observed. The NMME is not able to capture the extremes of seasonal mean rainfall and the simulated Indian Ocean-monsoon teleconnections are opposite to what are observed.
A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis
NASA Astrophysics Data System (ADS)
Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.
2018-02-01
A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.
Interannual Rainfall Variability in the Tropical Atlantic Region
NASA Technical Reports Server (NTRS)
Gu, Guojun
2005-01-01
Rainfall variability on seasonal and interannual-to-interdecadal time scales in the tropical Atlantic is quantified using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP). The ITCZ measured by monthly rainfall between 15-37.5 deg W attains its peak as moving to the northernmost latitude (4-10 deg N) during July-September in which the most total rainfall is observed in the tropical Atlantic basin (17.5 deg S-22.5 deg N, 15 deg-37.5 deg W); the ITCZ becomes weakest during January-February with the least total rainfall as it moves to the south. In contrast, rainfall variability on interannual to interdecadal time scales shows a quite different seasonal preference. The most intense interannual variability occurs during March-May when the ITCZ tends to be near the equator and becomes weaker. Significant, negative correlations between the ITCZ strength and latitude anomalies are observed during boreal spring and early summer. The ITCZ strength and total rainfall amount in the tropical Atlantic basin are significantly modulated by the Pacific El Nino and the Atlantic equatorial mode (or Atlantic Nino) particularly during boreal spring and summer; whereas the impact of the Atlantic interhemispheric mode is considerably weaker. Regarding the anomalous latitudes of the ITCZ, the influence can come from both local, i.e., the Atlantic interhemispheric and equatorial modes, and remote forcings, i. e., El Nino; however, a direct impact of El Nino on the latitudes of the ITCZ can only be found during April-July, not in winter and early spring in which the warmest SST anomalies are usually observed in the equatorial Pacific.
NASA Astrophysics Data System (ADS)
Rahman, Md. Rejaur; Lateh, Habibah
2017-04-01
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.
Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira
NASA Astrophysics Data System (ADS)
Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís
2017-04-01
Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.
Time trend of malaria in relation to climate variability in Papua New Guinea.
Park, Jae-Won; Cheong, Hae-Kwan; Honda, Yasushi; Ha, Mina; Kim, Ho; Kolam, Joel; Inape, Kasis; Mueller, Ivo
2016-01-01
This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021), and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions.
NASA Astrophysics Data System (ADS)
Lonigro, Teresa; Santaloia, Francesca; Polemio, Maurizio
2014-05-01
The aim of this work is to present a methodology, based both on the use methods of time series analyses and of geospatial analyses of monthly climatic data (rainfall, wet days, rainfall intensity, and temperature), annual maximum of short-duration rainfall (from 1 hour to 5 days), historical modification of land use, and population variations in order to characterise the effects of these variables on the occurrence of landsliding in Daunia area, located on the eastern margin of the Southern Apennines thrust belt (southern Italy). Rock strata (mainly) interbedded with clayey marls, clays and silty-clays outcrop in this area. Due to the intense strain history, these successions are found to be from stratified to deeply fractured, up to be disrupted and floating as blocks in a clayey matrix. In turn, the clay units are laminated to intensely fissured and characterised by very poor mechanical properties (Santaloia et al., 2012). The statistical analyses deal with data coming from published databases, integrated by public and private documents, referring to a wide time span. Climate data records from 1877 to 2008 were elaborated, in particular the data coming from sixteen rainfall gauges, ten of which were also thermometric. Moreover, some monthly indices of rainfall, wet days, rainfall intensity, temperature, and landslide occurrence were introduced to simplify the analysis of parameters, characterised by spatial and temporal variability. The population records are from the 19th century up to now while the time period of reference for the land use data is from 1930 up to now. As concerns the landslide events, they were collected from 1918 to 2006. The main source of these records is the AVI database, an existing Italian database that collects data about damaging floods and landslides from 1918 to 1996. This dataset was integrated up to 2006 by consulting newspapers, scientific publications, technical reports, written by the researchers of the CNR-IRPI for the Civil Protection, and also documents belonging to a research project (PS_119; Cotecchia et al. 2010). According to the landslide data collected, the landslide events resulted to be 175 in the study area. The trend analyses show that the landslide occurrence was increased with the time, despite of the rainfall and temperature data are not prone to landsliding. As a matter of fact, the trend of both the monthly rainfall and the rainfall intensity decreases, and the temperature and the wet days show a positive trend during the period of reference. The trend of the short-duration rainfall results generally to decrease. Not existing an evident relationship between climate variability and the increase of landslide occurrence, some other factors should be considered, as, for instance, the poor mechanical soil properties, the role of anthropogenic modifications and the mismanagement of risk-prone areas. In this regards, the preliminary results obtained from the data analyses of the land use and the populations could partly justify the increasing trend of landslide occurrence. More details on previous results of this research activity were recently published (Cotecchia et al., 2010; Polemio and Lonigro, 2011 and 2013; Santaloia et al., 2012). References Cotecchia F., Santaloia F., Lollino P., C. Vitone, G. Mitaritonna (2010) "Deterministic landslide hazard assessment at regional scale". Geoflorida 2010, : 3130-3139. Santaloia F, Cotecchia F, Vitone C (2012) "Applicazione dei metodi avanzati al fronte appenninico apulo-lucano: analisi di I livello. In: Cascini L. (Ed) "Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma)"; 130-140, Padova:Composervice srl. Polemio M., Lonigro T. (2011) "Variabilità climatica e ricorrenza delle calamità idrogeologiche in Puglia". In: "Le modificazioni climatiche e i rischi naturali", Polemio M. (Ed.), CNR IRPI, Bari, pp. 13-16. Polemio M., Lonigro T. (2013) "Climate variability and landslide occurrence in Apulia (southern Italy)". In: C. Margottini et al. (eds.), Landslide Science and Practice, Springer-Verlag Berlin Heidelberg, 4: 37-41.
Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W
2007-01-01
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were
Calibrating multiple isotopic proxies in a modern aragonite speleothem from northeast India
NASA Astrophysics Data System (ADS)
Ronay, E.; Oster, J. L.; Sharp, W. D.; Marks, N.; Erhardt, A.; Breitenbach, S. F. M.
2017-12-01
Uranium, strontium, and calcium isotope ratios in calcite speleothems are used as proxies for water-soil-rock interactions and prior calcite precipitation, and thus provide information about effective rainfall amount variations, primarily in semi-arid or highly seasonal regions. However, less is known about how these proxies function in humid regions and in aragonite speleothems. In this study, we use meteorological data to calibrate (234U/238U)i and 87Sr/86Sr in a modern aragonite speleothem from northeast India, the rainiest place on Earth, to determine how these proxies reflect effective monsoon rainfall amount. MAW-0201 is an annually laminated aragonite stalagmite that grew from 1960-2013 in Mawmluh Cave, Meghalaya, India. Rainfall here is extremely seasonal due to the Indian Summer Monsoon (ISM), which brings several meters of rain to the region each summer, but with inter-annual variability in total rainfall. The δ18O in Mawmluh dripwater and speleothems reflects moisture source and transport, rather than rainfall amount. Variations in Mg, U, and Ba concentrations in MAW-0201 show seasonal and multi-annual variability. U and Mg are closely correlated, but multi-year periods show significant anti-correlation. The Mg and U distribution coefficients in calcite and aragonite indicate correlated periods are times of prior calcite precipitation (PCP) and anti-correlated periods are times of prior aragonite precipitation (PAP) in the epikarst. We use δ44/40Ca to test this hypothesis, as Ca isotopes fractionate differently during calcite and aragonite precipitation and speleothem δ44/40Ca will record unique PAP and PCP fingerprints. We propose such shifts from PCP to PAP reflect hydrologic variability and/or flow path changes, which provide a useful tool for understanding epikarst hydrology but may also be a complicating factor in speleothem-based paleoclimate interpretations. Preliminary (234U/238U)i (always <1) and 87Sr/86Sr spanning 1991-2009 each show significant variability outside of analytical error. (234U/238U)i displays a decadal trend, gradually increasing until 2000 and decreasing to the end of the record. Several years in the 87Sr/86Sr record have anomalously high values, which may reflect increased sea spray input and provide unique information on the wind component of the ISM.
Limantol, Andrew Manoba; Keith, Bruce Edward; Azabre, Bismark Atiayure; Lennartz, Bernd
2016-01-01
Rain-fed agriculture remains the source of employment for a majority of Ghana's population, particularly in northern Ghana where annual rainfall is low. The purpose of this study is to examine farmers' perceptions and adaptation practices to climate change and variability in accordance with actual recorded weather data of the Vea catchment in Upper East Region of northern Ghana during the time interval from 1972 to 2012. Climatic data over 41-years (1972-2012) from four stations in vicinity of the catchment was evaluated to identify actual weather outcomes. A survey questionnaire targeting farmers with at least 30-years of farming experience in the area was administered in six of the eleven agricultural enumeration areas in the catchment covering 305 km(2). Of the 466 farmers interviewed, 79 % utilized rain-fed practices while 21 % utilized some form of irrigation. Results indicate that nearly 90 % of the farmers interviewed believe that temperature increased over the past 30-years, while over 94 % of the farmers believe that amount of rainfall, duration, intensity and rainy days has decreased. Nearly 96 % of the farmers believe that their farms are extremely vulnerable to decreased rainfall, droughts and changed timing of rainfall events. Climatic data of the catchment indicates a rising trend in temperature but no long-term changes in annual and monthly rainfall, thereby possibly increasing levels of evapotranspiration. While no statistical differences were found between rain-fed and irrigation agricultural types regarding receipt of external support, their approaches to climatic change adaptation do differ. Patently, 94 and 90 % of farmers relying on rain-fed and irrigation strategies respectively receive some form of support, primarily via extension services. Farmers using rain-fed practices adjust to climate variability by varying crop types via rotation without fertilizer while farmers employing irrigation practices are more likely to offset climate variability with a greater use of fertilizer application. The Vea catchment faces rising temperature and evapotranspiration trends. Farmers are aware of these climatic changes and are adapting strategies to cope with the effects but require support. Adequate extension services and irrigation facilities are needed to assist farmers in order to sustain their livelihoods on the long run.
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...
2015-12-18
The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less
Interannual and Decadal Variability of Summer Rainfall over South America
NASA Technical Reports Server (NTRS)
Zhou, Jiayu; Lau, K.-M.
1999-01-01
Using the CPC (Climate Prediction Center) Merged Analysis of Precipitation product along with the Goddard Earth Observing System reanalysis and the Climate Analysis Center sea surface temperature (SST) data, we conduct a diagnostic study of the interannual and decadal scale variability of summer rainfall over South America. Results show three leading modes of rainfall variation identified with interannual, decadal, and long-term trend variability. Together, these modes explain more than half the total variance. The first mode is highly correlated with El Nino/southern oscillation (ENSO), showing severe drought over Northeast Brazil and copious rainfall over the Ecuador coast and the area of Uruguay-Southern Brazil in El Nino years. This pattern is attributed to the large scale zonal shift of the Walker circulation and local Hadley cell anomaly induced by positive (negative) SST anomaly over the eastern (western) equatorial Pacific. In El Nino years, two convective belts indicated by upper tropospheric velocity potential trough and mid-tropospheric rising motion, which are somewhat symmetric about the equator, extend toward the northeast and the southeast into the tropical North and South Atlantic respectively. Sandwiched between the ascent is a region of descending motion over Northeast Brazil. The southern branch of the anomalous Hadley cell is dynamically linked to the increase of rainfall over Uruguay-Southern Brazil. The regional response of anomalous circulation shows a stronger South American summer monsoon and an enhanced (weakened) subtropical high over the South Atlantic (South Pacific) Ocean. The decadal variation displays a meridional shift of the Intertropical Convergence Zone (ITCZ), which is tie to the anomalous cross-equatorial SST gradient over the Atlantic and the eastern Pacific. In conjunction with this mode is a large scale mass swing between the polar regions and midlatitudes in both hemispheres. Over the South Atlantic and the South Pacific, the changes of the strength of the subtropical high and the associated surface wind are dynamically consistent with the distribution of local SST anomalies, suggesting the importance of the atmospheric forcing in the decadal time scale. The decadal mode also presents a weak summer monsoon in its positive phase, which reduces the moisture supply from the equatorial Atlantic and the Amazon Basin and results in negative rainfall anomalies over the central Andes and Gran Chaco. The long-term trend shows decrease of rainfall from the northwest coast to the southeast subtropical region and a southward shift of Atlantic ITCZ that leads to increased rainfall over northern and eastern Brazil. Our result shows a close link of this mode to the observed SST warming trend over the subtropical South Atlantic and a remote connection to the interdecadal SST variation over the extratropical North Atlantic found in previous studies.
Comparison between fully distributed model and semi-distributed model in urban hydrology modeling
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Giangola-Murzyn, Agathe; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe
2013-04-01
Water management in urban areas is becoming more and more complex, especially because of a rapid increase of impervious areas. There will also possibly be an increase of extreme precipitation due to climate change. The aims of the devices implemented to handle the large amount of water generate by urban areas such as storm water retention basins are usually twofold: ensure pluvial flood protection and water depollution. These two aims imply opposite management strategies. To optimize the use of these devices there is a need to implement urban hydrological models and improve fine-scale rainfall estimation, which is the most significant input. In this paper we suggest to compare two models and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The average impervious coefficient is approximately 34%. In this work two types of models are used. The first one is CANOE which is semi-distributed. Such models are widely used by practitioners for urban hydrology modeling and urban water management. Indeed, they are easily configurable and the computation time is reduced, but these models do not take fully into account either the variability of the physical properties or the variability of the precipitations. An alternative is to use distributed models that are harder to configure and require a greater computation time, but they enable a deeper analysis (especially at small scales and upstream) of the processes at stake. We used the Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Four heavy rainfall events that occurred between 2009 and 2011 are analyzed. The data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. The closest radar of the Météo-France network is a C-band one located at 37 km West. In this work we compare the hydrological response of two models for the 4 rainfall events first with the available radar data. Then a particular focus is made on the impact of small-scale unmeasured rainfall variability (i.e. occurring at scales below the available one). More precisely scaling properties of rainfall are used to generate an ensemble of downscaled rainfall fields (simply by continuing the underlying cascade process whose relevant parameters are estimated on the available range of scales). An ensemble of hydrological responses is then simulated, and the variability within it analyzed. It appears that the associated uncertainty is significant and should be taken into account. Finally we will discuss the interest of deploying X-band radars (which provide an hectometric resolution) in urban environment and the potential benefits of using these models and small-scale rainfall data for the management of sewerage and retentions basin. Further analysis on these issues will be carried out next year with the installation of an X-band radar near Marne-la-Vallée (located at roughly 10 Km of the studied catchment) in the framework of the RainGain project (European project financed by the Interreg IVB funds).
Impacts of rainfall spatial variability on hydrogeological response
NASA Astrophysics Data System (ADS)
Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.
2015-02-01
There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.
Leyk, Stefan; Runfola, Dan; Nawrotzki, Raphael J; Hunter, Lori M; Riosmena, Fernando
2017-08-01
Migration provides a strategy for rural Mexican households to cope with, or adapt to, weather events and climatic variability. Yet prior studies on "environmental migration" in this context have not examined the differences between choices of internal (domestic) or international movement. In addition, much of the prior work relied on very coarse spatial scales to operationalize the environmental variables such as rainfall patterns. To overcome these limitations, we use fine-grain rainfall estimates derived from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The rainfall estimates are combined with Population and Agricultural Census information to examine associations between environmental changes and municipal rates of internal and international migration 2005-2010. Our findings suggest that municipal-level rainfall deficits relative to historical levels are an important predictor of both international and internal migration, especially in areas dependent on seasonal rainfall for crop productivity. Although our findings do not contradict results of prior studies using coarse spatial resolution, they offer clearer results and a more spatially nuanced examination of migration as related to social and environmental vulnerability and thus higher degrees of confidence.
NASA Astrophysics Data System (ADS)
Heidinger, H.; Jones, C.; Carvalho, L. V.
2015-12-01
Extreme rainfall is important for the Andean region because of the large contribution of these events to the seasonal totals and consequent impacts on water resources for agriculture, water consumption, industry and hydropower generation, as well as the occurrence of floods and landslides. Over Central and Southern Peruvian Andes (CSPA), rainfall exceeding the 90th percentile contributed between 44 to 100% to the total Nov-Mar 1979-2010 rainfall. Additionally, precipitation from a large majority of stations in the CSPA exhibits statistically significant spectral peaks on intraseasonal time-scales (20 to 70 days). The Madden-Julian Oscillation (MJO) is the most important intraseasonal mode of atmospheric circulation and moist convection in the tropics and the occurrence of extreme weather events worldwide. Mechanisms explaining the relationships between the MJO and precipitation in the Peruvian Andes have not been properly described yet. The present study examines the relationships between the activity and phases of the MJO and the occurrence of extreme rainfall over the CSPA. We found that the frequency of extreme rainfall events increase in the CSPA when the MJO is active. MJO phases 5, 6 and 7 contribute to the overall occurrence of extreme rainfall events over the CSPA. However, how the MJO phases modulate extreme rainfall depends on the location of the stations. For instance, extreme precipitation (above the 90th percentile) in stations in the Amazon basin are slightly more sensitive to phases 2, 3 and 4; the frequency of extremes in stations in the Pacific basin increases in phases 5, 6 and 7 whereas phase 2, 3 and 7 modulates extreme precipitation in stations in the Titicaca basin. Greater variability among stations is observed when using the 95th and 99th percentiles to identify extremes. Among the main mechanisms that explain the increase in extreme rainfall events in the Peruvian Andes is the intensification of the easterly moisture flux anomalies, which are favored during certain phases of the MJO. Here dynamical mechanisms linking the MJO to the occurrence of extreme rainfall in stations in the Peruvian Andes are investigated using composites of integrated moisture flux and geopotential height anomalies.
NASA Astrophysics Data System (ADS)
Molina, A.; Vanacker, V.; Brisson, E.; Balthazar, V.
2012-04-01
Interactions between human activities and the physical environment have increasingly transformed the hydrological functioning of Andean ecosystems. In these human-modified landscapes, land use/-cover change may have a profound effect on riverine water and sediment fluxes. The hydrological impacts of land use/-cover change are diverse, as changes in vegetation affect the various components of the hydrological cycle including evapotranspiration, infiltration and surface runoff. Quantitative data for tropical mountain regions are scarce, as few long time series on rainfall, water discharge and land use are available. Furthermore, time series of rainfall and streamflow data in tropical mountains are often highly influenced by large inter- and intra-annual variability. In this paper, we analyse the hydrological response to complex forest cover change for a catchment of 280 km2 located in the Ecuadorian Andes. Forest cover change in the Pangor catchment was reconstructed based on airphotos (1963, 1977), LANDSAT TM (1991) and ETM+ data (2001, 2009). From 1963, natural vegetation was converted to agricultural land and pine plantations: forests decreased by a factor 2, and paramo decreased by 20 km2 between 1963 and 2009. For this catchment, there exists an exceptionally long record of rainfall and streamflow data that dates back from the '70s till now, but large variability in hydrometeorological data exists that is partly related to ENSO events. Given the nonstationary and nonlinear character of the ENSO-related changes in rainfall, we used the Hilbert-Huang transformation to detrend the time series of the river flow data from inter- and intra-annual fluctuations in rainfall. After applying adaptive data analysis based on empirical model decomposition techniques, it becomes apparent that the long-term trend in streamflow is different from the long-term trend in rainfall data. While the streamflow data show a long-term decrease in monthly flow, the rainfall data have a trend of increasing and then decreasing precipitation amounts. These results suggest that the land use changes had an important impact on the total water yield of the catchment. Interestingly, the effect of reforestation in the upper part of the catchment with its associated decrease in water yield seems to be dominant over the effect of deforestation in the lower part of the basin.
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.; Huffman, George J.; Curtis, Scott
2006-01-01
Global and large regional rainfall variations and possible long-term changes are examined using the 26-year (1979-2004) GPCP monthly dataset (Adler et al., 2003). Our emphasis is to discriminate among variations due to ENSO, volcanic events, and possible long-term climate changes in the tropics. Although the global linear change of precipitation in the data set is near zero during the time period, an increase in tropical rainfall is noted, with a weaker decrease over northern hemisphere middle latitudes. Focusing on the tropics (25degS-25degN), the data set indicates an upward trend (0.06 mm/day/decade) and a downward trend (-0.02 mm/day/decade) over tropical ocean and land, respectively. This corresponds to an about 4.9% increase (ocean) and 1.6% decrease (land) during the entire 26-year time period. Techniques are applied to isolate and quantify variations due to ENSO and two major volcanic eruptions (El Chichon, March 1982; Pinatubo, June 1991) in order to examine longer time-scale changes. The ENSO events generally do not impact the tropical total rainfall, but, of course, induce significant anomalies with opposite signs over tropical land and ocean. The impact of the two volcanic eruptions is estimated to be about a 5% reduction in tropical rainfall over both land and ocean. A modified data set (with ENSO and volcano effects removed) retains the same approximate linear change slopes, but with reduced variance, thereby increasing the confidence levels associated with the long-term rainfall changes in the tropics 2
Optimization of rainfall networks using information entropy and temporal variability analysis
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-04-01
Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.
NASA Astrophysics Data System (ADS)
Johnson, Fiona; Sharma, Ashish
2011-04-01
Empirical scaling approaches for constructing rainfall scenarios from general circulation model (GCM) simulations are commonly used in water resources climate change impact assessments. However, these approaches have a number of limitations, not the least of which is that they cannot account for changes in variability or persistence at annual and longer time scales. Bias correction of GCM rainfall projections offers an attractive alternative to scaling methods as it has similar advantages to scaling in that it is computationally simple, can consider multiple GCM outputs, and can be easily applied to different regions or climatic regimes. In addition, it also allows for interannual variability to evolve according to the GCM simulations, which provides additional scenarios for risk assessments. This paper compares two scaling and four bias correction approaches for estimating changes in future rainfall over Australia and for a case study for water supply from the Warragamba catchment, located near Sydney, Australia. A validation of the various rainfall estimation procedures is conducted on the basis of the latter half of the observational rainfall record. It was found that the method leading to the lowest prediction errors varies depending on the rainfall statistic of interest. The flexibility of bias correction approaches in matching rainfall parameters at different frequencies is demonstrated. The results also indicate that for Australia, the scaling approaches lead to smaller estimates of uncertainty associated with changes to interannual variability for the period 2070-2099 compared to the bias correction approaches. These changes are also highlighted using the case study for the Warragamba Dam catchment.
Brenes-Arguedas, T; Roddy, A B; Coley, P D; Kursar, Thomas A
2011-06-01
In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.
Thomey, Michell L; Collins, Scott L; Friggens, Michael T; Brown, Renee F; Pockman, William T
2014-11-01
For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.
Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W
2006-01-01
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.
Coping with droughts and floods: A Case study of Kanyemba, Mbire District, Zimbabwe
NASA Astrophysics Data System (ADS)
Bola, G.; Mabiza, C.; Goldin, J.; Kujinga, K.; Nhapi, I.; Makurira, H.; Mashauri, D.
Most of Southern Africa is affected by extreme weather events, droughts and floods being the most common. The frequency of floods and droughts in Southern Africa in general, of which the Zambezi River Basin is part of, has been linked to climate change. Droughts and floods impact on the natural environment, and directly and indirectly impact on livelihoods. In the Middle Zambezi River Basin, which is located between Kariba and Cahora Bassa dams, extreme weather events are exacerbated by human activities, in particular the operation of both the Kariba and the Cahora Bassa reservoirs. To understand better, whether, and in what ways extreme weather events impact on livelihoods, this study used both quantitative and qualitative research methods to analyse rainfall variability and coping strategies used by households in the river basin. Data collection was done using semi-structured interviews, focus group discussions and structured questionnaires which were administered to 144 households. An analysis of rainfall variability and Cahora Bassa water level over 23 years was carried out. The study found that perceptions of households were that average rainfall has decreased over the years, and dry-spells have become more frequent. Furthermore, households perceived flood events to have increased over the last two decades. However, the analysis of rainfall variability revealed that the average rainfall received between 1988 and 2011 had not changed but the frequency of dry-spells and floods had increased. The occurrence of floods in the study area was found to be linked to heavy local rain and backflow from Cahora Bassa dam. The study found that households adopted a number of strategies to cope with droughts and floods, such as vegetable farming and crop production in the floodplain, taking on local jobs that brought in wages, planting late and livestock disposals. Some households also resorted to out-migration on a daily basis to Zambia or Mozambique. The study concluded that coping mechanisms were found to be inflexible and poorly suited to adapt to floods and droughts. The study recommends the implementation of adaptation measures such as the cultivation of drought-resistant crop varieties, irrigation and off-farm employment opportunities.
A 305-year continuous monthly rainfall series for the island of Ireland (1711-2016)
NASA Astrophysics Data System (ADS)
Murphy, Conor; Broderick, Ciaran; Burt, Timothy P.; Curley, Mary; Duffy, Catriona; Hall, Julia; Harrigan, Shaun; Matthews, Tom K. R.; Macdonald, Neil; McCarthy, Gerard; McCarthy, Mark P.; Mullan, Donal; Noone, Simon; Osborn, Timothy J.; Ryan, Ciara; Sweeney, John; Thorne, Peter W.; Walsh, Seamus; Wilby, Robert L.
2018-03-01
A continuous 305-year (1711-2016) monthly rainfall series (IoI_1711) is created for the Island of Ireland. The post 1850 series draws on an existing quality assured rainfall network for Ireland, while pre-1850 values come from instrumental and documentary series compiled, but not published by the UK Met Office. The series is evaluated by comparison with independent long-term observations and reconstructions of precipitation, temperature and circulation indices from across the British-Irish Isles. Strong decadal consistency of IoI_1711 with other long-term observations is evident throughout the annual, boreal spring and autumn series. Annually, the most recent decade (2006-2015) is found to be the wettest in over 300 years. The winter series is probably too dry between the 1740s and 1780s, but strong consistency with other long-term observations strengthens confidence from 1790 onwards. The IoI_1711 series has remarkably wet winters during the 1730s, concurrent with a period of strong westerly airflow, glacial advance throughout Scandinavia and near unprecedented warmth in the Central England Temperature record - all consistent with a strongly positive phase of the North Atlantic Oscillation. Unusually wet summers occurred in the 1750s, consistent with proxy (tree-ring) reconstructions of summer precipitation in the region. Our analysis shows that inter-decadal variability of precipitation is much larger than previously thought, while relationships with key modes of climate variability are time-variant. The IoI_1711 series reveals statistically significant multi-centennial trends in winter (increasing) and summer (decreasing) seasonal precipitation. However, given uncertainties in the early winter record, the former finding should be regarded as tentative. The derived record, one of the longest continuous series in Europe, offers valuable insights for understanding multi-decadal and centennial rainfall variability in Ireland, and provides a firm basis for benchmarking other long-term records and reconstructions of past climate. Correlation of Irish rainfall with other parts of Europe increases the utility of the series for understanding historical climate in further regions.
The Estimation of Future Pump Capacity for the Urban Drainage System under Climate Change
NASA Astrophysics Data System (ADS)
Kang, Narae; Noh, Huiseong; Kim, Yonsoo; Lee, Jongso; Kim, Hungsoo
2013-04-01
In the recent years, flash flood and local heavy rainfall have been frequently occurred in Korea and this may be due to the climate change. Korea Meteorological Administration(KMA) and IPCC AR5 reported new greenhouse gas scenario called RCPs(Representative concentration pathways) which are becoming an interesting subject in the field of water resources. These days, the urban areas in the Korean Peninsula have been suffered from the floods, almost every year, by the localized heavy rainfall and this abnormal rainfall may be due to the climate change. Also, the runoff in the urban area has increased due to the rapid urbanization and so the current design rainfall could not be proper any more for accommodating the abnormal runoff capacity. When we determine the frequency of drainage facilities, the maximum flood discharge from the recorded rainfall intensity is used as the design capacity of the facilities. However, there is a need to examine the future rainfall tendency for the re-establishment of the design criteria of the facilities under the climate change, since the recorded rainfall intensity does not reflect the trend of the abnormal rainfall which can be occurred. This study tries to analyze the variability and trend of future rainfall using RCP scenarios and estimate the future capacity at existing pumping station for the urban drainage system. The future projection periods are set to the next 90 years(2011-2100) and are divided into three cases; Target I : 2011~2040 yrs, Target II : 2041~2070 yrs, and Target III : 2071~2100 yrs. The study area is Incheon-city, Korea which has 9 pumping stations. According to the RCP 8.5 scenario which is the worst scenario of RCPs, the Target I design rainfall is increased by 20%, Target II increased by 33%, and Target III increased by 74% compared with the reference period(1970-2010). When considering the impact of climate change, 3 of 9 pumping stations are expected to have no difficulty in the future rainfall. But, the capacities of 6 pumping stations will not be sufficient for the future rainfall and runoff. Therefore, it is expected to construct more pumping stations allowable 6 times of existing pump capacity especially for Target III(2071-2100). ACKNOWLEDGMENT This research was supported by a grant 'The development of disaster risk assessment technique for flood prevention facilities considering the multi risk factors' [NEMA-NH-2010-33] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Mukabutera, Assumpta; Thomson, Dana R; Hedt-Gauthier, Bethany L; Atwood, Sidney; Basinga, Paulin; Nyirazinyoye, Laetitia; Savage, Kevin P; Habimana, Marcellin; Murray, Megan
2017-12-01
Public health interventions are often implemented at large scale, and their evaluation seems to be difficult because they are usually multiple and their pathways to effect are complex and subject to modification by contextual factors. We assessed whether controlling for rainfall-related variables altered estimates of the efficacy of a health programme in rural Rwanda and have a quantifiable effect on an intervention evaluation outcomes. We conducted a retrospective quasi-experimental study using previously collected cross-sectional data from the 2005 and 2010 Rwanda Demographic and Health Surveys (DHS), 2010 DHS oversampled data, monthly rainfall data collected from meteorological stations over the same period, and modelled output of long-term rainfall averages, soil moisture, and rain water run-off. Difference-in-difference models were used. Rainfall factors confounded the PIH intervention impact evaluation. When we adjusted our estimates of programme effect by controlling for a variety of rainfall variables, several effectiveness estimates changed by 10% or more. The analyses that did not adjust for rainfall-related variables underestimated the intervention effect on the prevalence of ARI by 14.3%, fever by 52.4% and stunting by 10.2%. Conversely, the unadjusted analysis overestimated the intervention's effect on diarrhoea by 56.5% and wasting by 80%. Rainfall-related patterns have a quantifiable effect on programme evaluation results and highlighted the importance and complexity of controlling for contextual factors in quasi-experimental design evaluations. © 2017 John Wiley & Sons Ltd.
Climate Variability and Yields of Major Staple Food Crops in Northern Ghana
NASA Astrophysics Data System (ADS)
Amikuzuno, J.
2012-12-01
Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas Pappas; Vidale, Pier Luigi; Turner, Andrew George; Demory, Marie-Estelle; Guo, Liang
2018-06-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951-2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models.
NASA Astrophysics Data System (ADS)
Kamal, A. H. M.
2016-12-01
Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.
Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall
NASA Astrophysics Data System (ADS)
Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern
2017-04-01
Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation, accretionary pellet formation, rapid surface sealing and infiltration-excess overland flow generation whilst a coarse surface layer demonstrated exclusively rainsplash-driven particle detachment throughout the rainfall simulations. This experimental protocol has the potential to quantitatively examine the effects of a variety of individual parameters in RTL initiation under controlled conditions.
NASA Astrophysics Data System (ADS)
Chagas, V. B. P.; Chaffe, P. L. B.
2017-12-01
It is unknown to what extent the hydrological responses to changes in the rainfall regime vary across forested and non-forested landscapes. Southern Brazil is approximately 570000 km² and was naturally covered mostly by tropical and subtropical forests. In the last century, a large proportion of forests were replaced by agricultural activities. The rainfall regime has also changed substantially in the last decades. The annual rainfall, number and magnitude of extreme events, and number of non-rainy days have increased in most of the area. In this study, we investigated the changes in the regime of 142 streamflow gauges and 674 rainfall gauges in Southern Brazil, from 1975 to 2010. The changes in the regime were analyzed for forested basins (i.e., with more than 50% forest coverage) and non-forested basins (i.e., with less than 20% forest coverage). The area of the river basins ranged from 100 to 60000 km². We analyzed a total of six signatures that represent the regime, including annual averages, seasonality, floods, and droughts. The statistical trends of the signatures were calculated using the Mann-Kendall test and the Sen's slope. The results showed that the majority of basins with opposing signal trends for mean annual streamflow and rainfall are non-forested basins (i.e., basins with higher anthropogenic impacts). Forested basins had a lower correlation between trends in the streamflow and rainfall trends for the seasonality and the average duration of drought events. There was a lower variability in the annual maximum 1-day streamflow trends in the forested basins. Additionally, despite a decrease in the 31-day rainfall minima and an increase in the seasonality, in forested basins the 7-day streamflow minima increases were substantially larger than in non-forested basins. In summary, the forested basins were less responsive to the changes in the precipitation 1-day maxima, seasonality, number of dry days, and 31-day minima.
Uganda rainfall variability and prediction
NASA Astrophysics Data System (ADS)
Jury, Mark R.
2018-05-01
This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.
A First Approach to Global Runoff Simulation using Satellite Rainfall Estimation
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Hossain, Faisal; Curtis, Scott; Huffman, George J.
2007-01-01
Many hydrological models have been introduced in the hydrological literature to predict runoff but few of these have become common planning or decision-making tools, either because the data requirements are substantial or because the modeling processes are too complicated for operational application. On the other hand, progress in regional or global rainfall-runoff simulation has been constrained by the difficulty of measuring spatiotemporal variability of the primary causative factor, i.e. rainfall fluxes, continuously over space and time. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and space-borne radar sensors. Motivated by the recent increasing availability of global remote sensing data for estimating precipitation and describing land surface characteristics, this note reports a ballpark assessment of quasi-global runoff computed by incorporating satellite rainfall data and other remote sensing products in a relatively simple rainfall-runoff simulation approach: the Natural Resources Conservation Service (NRCS) runoff Curve Number (CN) method. Using an Antecedent Precipitation Index (API) as a proxy of antecedent moisture conditions, this note estimates time-varying NRCS-CN values determined by the 5-day normalized API. Driven by multi-year (1998-2006) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis, quasi-global runoff was retrospectively simulated with the NRCS-CN method and compared to Global Runoff Data Centre data at global and catchment scales. Results demonstrated the potential for using this simple method when diagnosing runoff values from satellite rainfall for the globe and for medium to large river basins. This work was done with the simple NRCS-CN method as a first-cut approach to understanding the challenges that lie ahead in advancing the satellite-based inference of global runoff. We expect that the successes and limitations revealed in this study will lay the basis for applying more advanced methods to capture the dynamic variability of the global hydrologic process for global runoff monltongin real time. The essential ingredient in this work is the use of global satellite-based rainfall estimation.
Simulation of Rainfall Variability Over West Africa
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
Ocean eddies and climate predictability
NASA Astrophysics Data System (ADS)
Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo
2017-12-01
A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.
Ocean eddies and climate predictability.
Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo
2017-12-01
A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.
NASA Astrophysics Data System (ADS)
Nair, Archana; Acharya, Nachiketa; Singh, Ankita; Mohanty, U. C.; Panda, T. C.
2013-11-01
In this study the predictability of northeast monsoon (Oct-Nov-Dec) rainfall over peninsular India by eight general circulation model (GCM) outputs was analyzed. These GCM outputs (forecasts for the whole season issued in September) were compared with high-resolution observed gridded rainfall data obtained from the India Meteorological Department for the period 1982-2010. Rainfall, interannual variability (IAV), correlation coefficients, and index of agreement were examined for the outputs of eight GCMs and compared with observation. It was found that the models are able to reproduce rainfall and IAV to different extents. The predictive power of GCMs was also judged by determining the signal-to-noise ratio and the external error variance; it was noted that the predictive power of the models was usually very low. To examine dominant modes of interannual variability, empirical orthogonal function (EOF) analysis was also conducted. EOF analysis of the models revealed they were capable of representing the observed precipitation variability to some extent. The teleconnection between the sea surface temperature (SST) and northeast monsoon rainfall was also investigated and results suggest that during OND the SST over the equatorial Indian Ocean, the Bay of Bengal, the central Pacific Ocean (over Nino3 region), and the north and south Atlantic Ocean enhances northeast monsoon rainfall. This observed phenomenon is only predicted by the CCM3v6 model.
The influence of climate, topography and land-use on the hydrology of ephemeral upland catchments
NASA Astrophysics Data System (ADS)
Daly, E.; Webb, J.; Dresel, E.
2016-12-01
We report on an on-going project aimed at determining the effects of climate variability and land use change on water resources in ephemeral productive catchments. Meteorological data (including rainfall, solar radiation, air temperature, humidity and wind speed), streamflow and groundwater levels were collected continuously for over five years in seven ephemeral catchments in southeastern Australia. The catchments, dominated by either pasture for grazing (four) or Eucalyptus globulus (blue gum) plantations of different ages (three), were located in three different geological settings. Rainfall varied from higher than the long-term average of this area for the initial years of the study period to much drier than the long-term average for the last two years. Groundwater levels in the farm sites remained stable or slightly increased through the study period, while levels declined in all the plantation catchments, where evapotranspiration rates were greater than rainfall. The trees intercept groundwater recharge and in some areas of the catchments directly access groundwater. Streamflow occurred mainly during winter, with short-term flows in summer caused by sporadic large rainfall events. Despite the large annual rainfall variability, flow rates in each year were similar in most catchments, with the duration of flow being important in determining the annual flow. The frequency rather than the amount of rainfall events determines the generation of streamflow in the two catchments with steeper slopes. The effect of the tree plantations on streamflow varied from a substantial reduction in one catchment to no effect in another, where the tree rows are oriented predominantly downslope, allowing greater runoff. In the third plantation catchment, geology is the main driver of runoff due to capture into underlying karst conduits.
NASA Astrophysics Data System (ADS)
Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.
2011-12-01
The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.
NASA Astrophysics Data System (ADS)
Mondal, P.; Jain, M.; DeFries, R. S.; Galford, G. L.; Small, C.
2013-12-01
Agriculture is the largest employment sector in India, where food productivity, and thus food security, is highly dependent on seasonal rainfall and temperature. Projected increase in temperature, along with less frequent but intense rainfall events, will have a negative impact on crop productivity in India in the coming decades. These changes, along with continued ground water depletion, could have serious implications for Indian smallholder farmers, who are among some of the most vulnerable communities to climatic and economic changes. Hence baseline information on agricultural sensitivity to climate variability is important for strategies and policies that promote adaptation to climate variability. This study examines how cropping patterns in different agro-ecological zones in India respond to variations in precipitation and temperature. We specifically examine: a) which climate variables most influence crop cover for monsoon and winter crops? and b) how does the sensitivity of crop cover to climate variability vary in different agro-ecological regions with diverse socio-economic factors? We use remote sensing data (2000-01 - 2012-13) for cropping patterns (developed using MODIS satellite data), climate parameters (derived from MODIS and TRMM satellite data) and agricultural census data. We initially assessed the importance of these climate variables in two agro-ecoregions: a predominantly groundwater irrigated, cash crop region in western India, and a region in central India primarily comprised of rain-fed or surface water irrigated subsistence crops. Seasonal crop cover anomaly varied between -25% and 25% of the 13-year mean in these two regions. Predominantly climate-dependent region in central India showed high anomalies up to 200% of the 13-year crop cover mean, especially during winter season. Winter daytime mean temperature is overwhelmingly the most important climate variable for winter crops irrespective of the varied biophysical and socio-economic conditions across the study regions. Despite access to groundwater irrigation, crop cover in the western Indian study region showed substantial fluctuations during monsoon, probably due to changing planting strategies. This region is less sensitive to precipitation compared to the central Indian study region with predominantly climate-dependent irrigation from surface water. In western Indian study region a greater number of rainy days, increased intensity of rainfall, and cooler daytime and nighttime temperatures lead to increased crop cover during monsoon season, compared to in the central Indian study region where monsoon timing and amount of total rainfall are the most important factors of crop cover. Our findings indicate that different regions respond differently to climate, since socio-economic factors, such as irrigation access, market influences, demography, and policies play critical role in agricultural production. In the wake of projected precipitation and temperature changes, better access to irrigation and heat-tolerant high-yielding crop varieties will be crucial for future food production.
Seasonal variation and climate change impact in Rainfall Erosivity across Europe
NASA Astrophysics Data System (ADS)
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano
2017-04-01
Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2018-02-01
Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.
NASA Astrophysics Data System (ADS)
Ascott, M.; Macdonald, D.; Lapworth, D.; Tindimugaya, C.
2017-12-01
Quantification of the impact of climate change on water resources is essential for future resource planning. Unfortunately, climate change impact studies in African regions are often hindered by the extent in variability in future rainfall predictions, which also diverge from current drying trends. To overcome this limitation, "scenario-neutral" methods have been developed which stress a hydrological system using a wide range of climate futures to build a "climate response surface". We developed a hydrological model and scenario-neutral framework to quantify climate change impacts on river flows in the Katonga catchment, Uganda. Using the lumped catchment model GR4J, an acceptable calibration to historic daily flows (1966 - 2010, NSE = 0.69) was achieved. Using a delta change approach, we then systematically changed rainfall and PET inputs to develop response surfaces for key metrics, developed with Ugandan water resources planners (e.g. Q5, Q95). Scenarios from the CMIP5 models for 2030s and 2050s were then overlain on the response surface. The CMIP5 scenarios show consistent increases in temperature but large variability in rainfall increases, which results in substantial variability in increases in river flows. The developed response surface covers a wide range of climate futures beyond the CMIP5 projections, and can help water resources planners understand the sensitivity of water resource systems to future changes. When future climate scenarios are available, these can be directly overlain on the response surface without the need to re-run the hydrological model. Further work will consider using scenario-neutral approaches in more complex, semi-distributed models (e.g. SWAT), and will consider land use and socioeconomic change.
Salimon, Cleber; Anderson, Liana
2017-05-22
Despite the knowledge of the influence of rainfall on vegetation dynamics in semiarid tropical Brazil, few studies address and explore quantitatively the various aspects of this relationship. Moreover, Northeast Brazil is expected to have its rainfall reduced by as much as 60% until the end of the 21st Century, under scenario AII of the IPCC Report 2010. We sampled and analyzed satellite-derived monthly rainfall and a vegetation index data for 40 sites with natural vegetation cover in Paraíba State, Brazil from 2001 to 2012. In addition, the anomalies for both variables were calculated. Rainfall variation explained as much as 50% of plant productivity, using the vegetation index as a proxy, and rainfall anomaly explained 80% of the vegetation productivity anomaly. In an extreme dry year (2012), with 65% less rainfall than average for the period 2001-2012, the vegetation index decreased by 25%. If such decrease persists in a long term trend in rainfall reduction, this could lead to a disruption in this ecosystem functioning and the dominant vegetation could become even more xeric or desert-like, bringing serious environmental, social and economical impacts.
The influence of climate variables on dengue in Singapore.
Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo
2011-12-01
In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.
Why continuous simulation? The role of antecedent moisture in design flood estimation
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Westra, S.; Sharma, A.
2012-06-01
Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.
Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model
NASA Astrophysics Data System (ADS)
Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir
2017-10-01
In this study, the performance of the Generalized LInear Modelling of daily CLImate sequence (GLIMCLIM) statistical downscaling model was assessed to simulate extreme rainfall indices and annual maximum daily rainfall (AMDR) when downscaled daily rainfall from National Centers for Environmental Prediction (NCEP) reanalysis and Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCM) (four GCMs and two scenarios) output datasets and then their changes were estimated for the future period 2041-2060. The model was able to reproduce the monthly variations in the extreme rainfall indices reasonably well when forced by the NCEP reanalysis datasets. Frequency Adapted Quantile Mapping (FAQM) was used to remove bias in the simulated daily rainfall when forced by CMIP5 GCMs, which reduced the discrepancy between observed and simulated extreme rainfall indices. Although the observed AMDR were within the 2.5th and 97.5th percentiles of the simulated AMDR, the model consistently under-predicted the inter-annual variability of AMDR. A non-stationary model was developed using the generalized linear model for local, shape and scale to estimate the AMDR with an annual exceedance probability of 0.01. The study shows that in general, AMDR is likely to decrease in the future. The Onkaparinga catchment will also experience drier conditions due to an increase in consecutive dry days coinciding with decreases in heavy (>long term 90th percentile) rainfall days, empirical 90th quantile of rainfall and maximum 5-day consecutive total rainfall for the future period (2041-2060) compared to the base period (1961-2000).
Seasonal forecasts in the Sahel region: the use of rainfall-based predictive variables
NASA Astrophysics Data System (ADS)
Lodoun, Tiganadaba; Sanon, Moussa; Giannini, Alessandra; Traoré, Pierre Sibiry; Somé, Léopold; Rasolodimby, Jeanne Millogo
2014-08-01
In the Sahel region, seasonal predictions are crucial to alleviate the impacts of climate variability on populations' livelihoods. Agricultural planning (e.g., decisions about sowing date, fertilizer application date, and choice of crop or cultivar) is based on empirical predictive indices whose accuracy to date has not been scientifically proven. This paper attempts to statistically test whether the pattern of rainfall distribution over the May-July period contributes to predicting the real onset date and the nature (wet or dry) of the rainy season, as farmers believe. To that end, we considered historical records of daily rainfall from 51 stations spanning the period 1920-2008 and the different agro-climatic zones in Burkina Faso. We performed (1) principal component analysis to identify climatic zones, based on the patterns of intra-seasonal rainfall, (2) and linear discriminant analysis to find the best rainfall-based variables to distinguish between real and false onset dates of the rainy season, and between wet and dry seasons in each climatic zone. A total of nine climatic zones were identified in each of which, based on rainfall records from May to July, we derived linear discriminant functions to correctly predict the nature of a potential onset date of the rainy season (real or false) and that of the rainy season (dry or wet) in at least three cases out of five. These functions should contribute to alleviating the negative impacts of climate variability in the different climatic zones of Burkina Faso.
NASA Astrophysics Data System (ADS)
Si, D.; Hu, A.
2017-12-01
The interdecadal oceanic variabilities can be generated from both internal and external processes, and these variabilities can significantly modulate our climate on global and regional scale, such as the warming slowdown in the early 21st century, and the rainfall in East Asia. By analyzing simulations from a unique Community Earth System Model (CESM) Large Ensemble (CESM_LE) project, we show that the Interdecadal Pacific Oscillation (IPO) is primarily an internally generated oceanic variability, while the Atlantic Multidecadal Oscillation (AMO) may be an oceanic variability generated by internal oceanic processes and modulated by external forcings in the 20th century. Although the observed relationship between IPO and the Yangtze-Huaihe River valley (YHRV) summer rainfall in China is well simulated in both the preindustrial control and 20th century ensemble, none of the 20th century ensemble members can reproduce the observed time evolution of both IPO and YHRV due to the unpredictable nature of IPO on multidecade timescale. On the other hand, although CESM_LE cannot reproduce the observed relationship between AMO and Huanghe River valley (HRV) summer rainfall of China in the preindustrial control simulation, this relationship in the 20th century simulations is well reproduced, and the chance to reproduce the observed time evolution of both AMO and HRV rainfall is about 30%, indicating the important role of the interaction between the internal processes and the external forcing to realistically simulate the AMO and HRV rainfall.
NASA Astrophysics Data System (ADS)
Restrepo-Estrada, Camilo; de Andrade, Sidgley Camargo; Abe, Narumi; Fava, Maria Clara; Mendiondo, Eduardo Mario; de Albuquerque, João Porto
2018-02-01
Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison made with real streamflow measurements. This is a significant improvement on the respective values of 39% and 58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-warning systems.
NASA Astrophysics Data System (ADS)
Cayuela, C.; Llorens, P.; Sánchez-Costa, E.; Levia, D. F.; Latron, J.
2018-05-01
Stemflow, despite being a small proportion of gross rainfall, is an important and understudied flux of water in forested areas. Recent studies have highlighted its complexity and relative importance for understanding soil and groundwater recharge. Stemflow dynamics offer an insight into how rain water is stored and released from the stems of trees to the soil. Past attempts have been made to understand the variability of stemflow under different types of vegetation, but rather few studies have focused on the combined influence of biotic and abiotic factors on inter and intra-storm stemflow variability, and none in Mediterranean climates. This study presents stemflow data collected at high temporal resolution for two species with contrasting canopies and bark characteristics: Quercus pubescens Willd. (downy oak) and Pinus sylvestris L. (Scots pine) in the Vallcebre research catchments (NE of Spain, 42° 12‧N, 1° 49‧E). The main objective was to understand how the interaction of biotic and abiotic factors affected stemflow dynamics. Mean stemflow production was low for both species (∼1% of incident rainfall) and increased with rainfall amount. However, the magnitude of the response depended on the combination of multiple biotic and abiotic factors. Both species produced similar stemflow volumes and the largest differences were found among trees of the same species. The combined analysis of biotic and abiotic factors showed that funneling ratios and stemflow dynamics were highly influenced by the interaction of rainfall intensity and tree size.
Have Tropical Cyclones Been Feeding More Extreme Rainfall?
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Zhou, Y. P.; Wu, H.-T.
2008-01-01
We have conducted a study of the relationship between tropical cyclone (TC) and extreme rain events using GPCP and TRMM rainfall data, and storm track data for July through November (JASON) in the North Atlantic (NAT) and the western North Pacific (WNP). Extreme rain events are defined in terms of percentile rainrate, and TC-rain by rainfall associated with a named TC. Results show that climatologically, 8% of rain events and 17% of the total rain amount in NAT are accounted by TCs, compared to 9% of rain events and 21% of rain amount in WNP. The fractional contribution of accumulated TC-rain to total rain, Omega, increases nearly linearly as a function of rainrate. Extending the analyses using GPCP pentad data for 1979-2005, and for the post-SSM/I period (1988-2005), we find that while there is no significant trend in the total JASON rainfall over NAT or WNP, there is a positive significant trend in heavy rain over both basins for the 1979-2005 period, but not for the post-SSM/I period. Trend analyses of Omega for both periods indicate that TCs have been feeding increasingly more to rainfall extremes in NAT, where the expansion of the warm pool area can explain slight more than 50% of the change in observed trend in total TC rainfall. In WNP, trend signals for Omega are mixed, and the long-term relationship between TC rain and warm pool areas are strongly influenced by interannual and interdecadal variability.
NASA Astrophysics Data System (ADS)
Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.
2018-05-01
This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain, but a weaker ENSO/IOD signal over the southern part of the region. This signal is consistent and robust in all global and regional model simulations. The projected increase in OND rainfall over the eastern horn of Africa might be linked with the mean changes in SST over Indian and Pacific Ocean basins and the associated Walker circulations.
Xu, Zuxin; Xiong, Lijun; Li, Huaizheng; Liao, Zhengliang; Yin, Hailong; Wu, Jun; Xu, Jin; Chen, Hao
2017-04-01
For storm drainages inappropriately connected with sewage, wet weather discharge is a major factor that adversely affects receiving waters. A study of the wet weather influences of rainfall-discharge variables on storm drainages connected with sewage was conducted in the downtown Shanghai area (374 ha). Two indicators, event mean concentration (EMC) and event pollutant load per unit area (EPL), were used to describe the pollution discharge during 20 rain events. The study showed that the total rainfall and discharge volume were important factors that affect the EMCs and EPLs of the chemical oxygen demand, total phosphorus, and especially those of NH 4 + -N. The pollutant concentrations at the beginning of the discharge and the discharge period were also major factors that influence the EMCs of these three pollutants. Regression relationships between the rainfall-discharge variables and discharge volume/ EPLs (R 2 = 0.824-0.981) were stronger than the relationships between the rainfall-discharge variables and EMCs. These regression equations can be considered reliable in the system, with a relative validation error of less than ±10% for the discharge volume, and less than ±20% for the EPLs. The results presented in this paper provide guidance for effectively controlling pollution in similar storm drainages.
NASA Astrophysics Data System (ADS)
Martín, Verónica; Barreiro, Marcelo
2015-04-01
Southeastern South America (SESA) rainfall presents large variability from interannual to multidecadal times scales and is influenced by the tropical Pacific, Atlantic and Indian oceans. At the same time, these tropical oceans interact with each other inducing sea surface temperature anomalies in remote basins through atmospheric and oceanic teleconnections. In this study we employ a tool from complex networks to analyze the collective influence of the three tropical oceans on austral spring rainfall variability over SESA during the 20th century. To do so we construct a climate network considering as nodes the observed Niño3.4, Tropical North Atlantic (TNA), and Indian Ocean Dipole (IOD) indices, together with an observed or simulated precipitation (PCP) index over SESA. The mean network distance is considered as a measure of synchronization among all these phenomena during the 20th century. The approach allowed to uncover large interannual and interdecadal variability in the interaction among nodes. In particular, there are two main synchronization periods characterized by different interactions among the oceanic and precipitation nodes. Whereas in the '30s El Niño and the TNA were the main tropical oceanic phenomena that influenced SESA precipitation variability, during the '70s they were El Niño and the IOD. Simulations with an Atmospheric General Circulation Model reproduced the overall behavior of the collective influence of the tropical oceans on rainfall over SESA, and allowed to study the circulation anomalies that characterized the synchronization periods. In agreement with previous studies, the influence of El Niño on SESA precipitation variability might be understood through an increase of the northerly transport of moisture in lower levels and advection of cyclonic vorticity in upper levels. On the other hand, the interaction between the IOD and PCP can be interpreted in two possible ways. One possibility is that both nodes (IOD and PCP) are forced by El Niño. Another possibility is that the Indian Ocean warming influences rainfall over Southeastern South America through the eastward propagation of Rossby waves as suggested previously. Finally, the influence of TNA on SESA precipitation persists even when El Niño signal is removed, suggesting that SST anomalies in the tropical north Atlantic can directly influence SESA precipitation and further studies are needed to elucidate this connection. KEY WORDS: climate networks, synchronization events, climate variability, tropical ocean teleconnections, tropic-extratropic teleconnections, precipitation over SESA.
Spatial variability of mountain stream dynamics along the Ethiopian Rift Valley escarpment
NASA Astrophysics Data System (ADS)
Asfaha, Tesfaalem-Ghebreyohannes; Frankl, Amaury; Zenebe, Amanuel; Haile, Mitiku; Nyssen, Jan
2014-05-01
Changes in hydrogeomorphic characteristics of mountain streams are generally deemed to be controlled mainly by land use/cover changes and rainfall variability. This study investigates the spatial variability of peak discharge in relation to land cover, rainfall and topographic variables in eleven catchments of the Ethiopian Rift Valley escarpment (average slope gradient = 48% (± 13%). Rapid deforestation of the escarpment in the second half of the 20th century resulted in the occurrence of strong flash floods, transporting large amounts of discharge and sediment to the lower graben bottom. Due to integrated reforestation interventions as of the 1980s, many of these catchments do show improvement in vegetation cover at various degrees. Daily rainfall was measured using seven non-recording rain gauges, while peak stage discharges were measured after floods using crest stage gauges installed at eleven stream reaches. Peak discharges were calculated using the Manning's equation. Daily area-weighted rainfall was computed for each catchment using the Thiessen Polygon method. To estimate the vegetation cover of each catchment, the Normalized Difference Vegetation Index was calculated from Landsat TM imagery (mean = 0.14 ± 0.05). In the rainy season of 2012, there was a positive correlation between daily rainfall and peak discharge in each of the monitored catchments. In a multiple linear regression analysis (R² = 0.83; P<0.01), average daily peak discharge in all rivers was positively related with rainfall depth and catchment size and negatively with vegetation cover (as represented by average NDVI values). Average slope gradient of the catchments and Gravelius's compactness index did not show a statistically significant relation with peak discharge. This study shows that though the average vegetation cover of the catchments is still relatively low, differences in vegetation cover, together with rainfall variability plays a determining role in the amount of peak discharges in flashy mountain streams.
Climate change in Lagos state, Nigeria: what really changed?
Sojobi, Adebayo Olatunbosun; Balogun, Isaac Idowu; Salami, Adebayo Wahab
2015-10-01
Our study revealed periodicities of 2.3 and 2.25 years in wet and dry seasons and periodicities of 2 to 5 years on seasonal and annual timescales. Minimum temperature (Tmin), maximum temperature (Tmax) and evaporation recorded increases of 2.47, 1.37 and 28.37 %, respectively, but a reduction of 19.58 % in rainfall on decadal timescale. Periodicity of 8 to 12 years was also observed in annual Tmax. Cramer's test indicated a warming trend with significant Tmax increase in February, April, July, August, October and November during 2000-2009 on decadal monthly timescale, a significant decline in Summer rainfall but significant Tmax increase in Spring, Autumn and Winter on decadal seasonal timescale. The low correlation of rainfall with temperature parameters and evaporation indicates that advection of moisture into Lagos State seems to be the dominant mechanism controlling rainfall within the State alongside other tropical and extra-tropical factors. In addition, our study revealed that the persistent state of minimum temperature often precedes the arrival and reversal of the phase of maximum temperature. Furthermore, our study also revealed that extreme and high variable rainfalls, which are associated with the increased warming trend, had periodicities of 1 to 3 years with a probability of 86.45 % of occurring every 3 years between April and September. It is recommended that government and private sector should give financial and technical supports to climate researches in order to appropriately inform policy making to improve the adaptive capacity and resilience of Lagos State against climate change impacts and guard against maladaptation.
NASA Astrophysics Data System (ADS)
Thomas, Nicholas W.; Arenas Amado, Antonio; Schilling, Keith E.; Weber, Larry J.
2016-10-01
This research systematically analyzed the influence of antecedent soil wetness, rainfall depth, and the subsequent impact on peak flows in a 45 km2 watershed. Peak flows increased with increasing antecedent wetness and rainfall depth, with the highest peak flows occurring under intense precipitation on wet soils. Flood mitigation structures were included and investigated under full and empty initial storage conditions. Peak flows were reduced at the outlet of the watershed by 3-17%. The highest peak flow reductions occurred in scenarios with dry soil, empty project storage, and low rainfall depths. These analyses showed that with increased rainfall depth, antecedent moisture conditions became increasingly less impactful. Scaling invariance of peak discharges were shown to hold true within this basin and were fit through ordinary least squares regression for each design scenario. Scale-invariance relationships were extrapolated beyond the outlet of the analyzed basin to the point of intersection of with and without structure scenarios. In each scenario extrapolated peak discharge benefits depreciated at a drainage area of approximately 100 km2. The associated drainage area translated to roughly 2 km downstream of the Beaver Creek watershed outlet. This work provides an example of internal watershed benefits of structural flood mitigation efforts, and the impact the may exert outside of the basin. Additionally, the influence of 1.8 million in flood reduction tools was not sufficient to routinely address downstream flood concerns, shedding light on the additional investment required to alter peak flows in large basins.
The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.
NASA Astrophysics Data System (ADS)
Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias
2003-05-01
The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.
Jenkins, Michael B; Truman, Clint C; Siragusa, Gregory; Line, Eric; Bailey, J Stan; Frye, Jonathan; Endale, Dinku M; Franklin, Dorcas H; Schomberg, Harry H; Fisher, Dwight S; Sharpe, Ronald R
2008-09-15
Poultry litter provides nutrients for crop and pasture production; however, it also contains fecal bacteria, sex hormones (17beta-estradiol and testosterone) and antibiotic residues that may contaminate surface waters. Our objective was to quantify transport of fecal bacteria, estradiol, testosterone and antibiotic residues from a Cecil sandy loam managed since 1991 under no-till (NT) and conventional tillage (CT) to which either poultry litter (PL) or conventional fertilizer (CF) was applied based on the nitrogen needs of corn (Zea mays L) in the Southern Piedmont of NE Georgia. Simulated rainfall was applied for 60 min to 2 by 3-m field plots at a constant rate in 2004 and variable rate in 2005. Runoff was continuously measured and subsamples taken for determining flow-weighted concentrations of fecal bacteria, hormones, and antibiotic residues. Neither Salmonella, nor Campylobacter, nor antimicrobial residues were detected in litter, soil, or runoff. Differences in soil concentrations of fecal bacteria before and after rainfall simulations were observed only for Escherichia coli in the constant rainfall intensity experiment. Differences in flow-weighted concentrations were observed only for testosterone in both constant and variable intensity rainfall experiments, and were greatest for treatments that received poultry litter. Total loads of E. coli and fecal enterococci, were largest for both tillage treatments receiving poultry litter for the variable rainfall intensity. Load of testosterone was greatest for no-till plots receiving poultry litter under variable rainfall intensity. Poultry litter application rates commensurate for corn appeared to enhance only soil concentrations of E. coli, and runoff concentrations of testosterone above background levels.
Indian summer monsoon rainfall: Dancing with the tunes of the sun
NASA Astrophysics Data System (ADS)
Hiremath, K. M.; Manjunath, Hegde; Soon, Willie
2015-02-01
There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.
Effect of monthly areal rainfall uncertainty on streamflow simulation
NASA Astrophysics Data System (ADS)
Ndiritu, J. G.; Mkhize, N.
2017-08-01
Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic monthly rainfalls were 86 and 90% of the mean naturalised streamflow. In calibration, 33% of the naturalised flow located within the streamflow ranges with historic rainfall simulations and using stochastic rainfalls increased this to 66%. In validation the respective percentages of naturalised flows located within the simulated streamflow ranges were 32 and 72% respectively. The analysis reveals that monthly areal rainfall uncertainty is significant and incorporating it into streamflow simulation would add validity to the results.
NASA Astrophysics Data System (ADS)
Tian, F.; Sivapalan, M.; Li, H.; Hu, H.
2007-12-01
The importance of diagnostic analysis of hydrological models is increasingly recognized by the scientific community (M. Sivapalan, et al., 2003; H. V. Gupta, et al., 2007). Model diagnosis refers to model structures and parameters being identified not only by statistical comparison of system state variables and outputs but also by process understanding in a specific watershed. Process understanding can be gained by the analysis of observational data and model results at the specific watershed as well as through regionalization. Although remote sensing technology can provide valuable data about the inputs, state variables, and outputs of the hydrological system, observational rainfall-runoff data still constitute the most accurate, reliable, direct, and thus a basic component of hydrology related database. One critical question in model diagnostic analysis is, therefore, what signature characteristic can we extract from rainfall and runoff data. To this date only a few studies have focused on this question, such as Merz et al. (2006) and Lana-Renault et al. (2007), still none of these studies related event analysis with model diagnosis in an explicit, rigorous, and systematic manner. Our work focuses on the identification of the dominant runoff generation mechanisms from event analysis of rainfall-runoff data, including correlation analysis and analysis of timing pattern. The correlation analysis involves the identification of the complex relationship among rainfall depth, intensity, runoff coefficient, and antecedent conditions, and the timing pattern analysis aims to identify the clustering pattern of runoff events in relation to the patterns of rainfall events. Our diagnostic analysis illustrates the changing pattern of runoff generation mechanisms in the DMIP2 test watersheds located in Oklahoma region, which is also well recognized by numerical simulations based on TsingHua Representative Elementary Watershed (THREW) model. The result suggests the usefulness of rainfall-runoff event analysis for model development as well as model diagnostics.
Understanding extreme rainfall events in Australia through historical data
NASA Astrophysics Data System (ADS)
Ashcroft, Linden; Karoly, David John
2016-04-01
Historical climate data recovery is still an emerging field in the Australian region. The majority of Australia's instrumental climate analyses begin in 1900 for rainfall and 1910 for temperature, particularly those focussed on extreme event analysis. This data sparsity for the past in turn limits our understanding of long-term climate variability, constraining efforts to predict the impact of future climate change. To address this need for improved historical data in Australia, a new network of recovered climate observations has recently been developed, centred on the highly populated southeastern Australian region (Ashcroft et al., 2014a, 2014b). The dataset includes observations from more than 39 published and unpublished sources and extends from British settlement in 1788 to the formation of the Australian Bureau of Meteorology in 1908. Many of these historical sources provide daily temperature and rainfall information, providing an opportunity to improve understanding of the multidecadal variability of Australia's extreme events. In this study we combine the historical data for three major Australian cities - Melbourne, Sydney and Adelaide - with modern observations to examine extreme rainfall variability over the past 174 years (1839-2013). We first explore two case studies, combining instrumental and documentary evidence to support the occurrence of severe storms in Sydney in 1841 and 1844. These events appear to be at least as extreme as Sydney's modern 24-hour rainfall record. Next we use a suite of rainfall indices to assess the long-term variability of rainfall in southeastern Australia. In particular, we focus on the stationarity of the teleconnection between the El Niño-Southern Oscillation (ENSO) phenomenon and extreme rainfall events. Using ENSO reconstructions derived from both palaeoclimatic and documentary sources, we determine the historical relationship between extreme rainfall in southeastern Australia and ENSO, and examine whether or not this relationship has remained stable since the early to mid-19th century. Ashcroft, L., Gergis, J., Karoly, D.J., 2014a. A historical climate dataset for southeastern Australia, 1788-1859. Geosci. Data J. 1, 158-178. doi:10.1002/gdj3.19 Ashcroft, L., Karoly, D.J., Gergis, J., 2014b. Southeastern Australian climate variability 1860-2009: A multivariate analysis. Int. J. Climatol. 34, 1928-1944. doi:10.1002/joc.3812
Documentary reconstruction of monsoon rainfall variability over western India, 1781-1860
NASA Astrophysics Data System (ADS)
Adamson, George C. D.; Nash, David J.
2014-02-01
Investigations into the climatic forcings that affect the long-term variability of the Indian summer monsoon are constrained by a lack of reliable rainfall data prior to the late nineteenth century. Extensive qualitative and quantitative meteorological information for the pre-instrumental period exists within historical documents, although these materials have been largely unexplored. This paper presents the first reconstruction of monsoon variability using documentary sources, focussing on western India for the period 1781-1860. Three separate reconstructions are generated, for (1) Mumbai, (2) Pune and (3) the area of Gujarat bordering the Gulf of Khambat. A composite chronology is then produced from the three reconstructions, termed the Western India Monsoon Rainfall reconstruction (WIMR). The WIMR exhibits four periods of generally deficient monsoon rainfall (1780-1785, 1799-1806, 1830-1838 and 1845-1857) and three of above-normal rainfall (1788-1794, 1813-1828 and 1839-1844). The WIMR shows good correspondence with a dendroclimatic drought reconstruction for Kerala, although agreement with the western Indian portion of the tree-ring derived Monsoon Asia Drought Atlas is less strong. The reconstruction is used to examine the long-term relationship between the El Nino-Southern Oscillation (ENSO) and monsoon rainfall over western India. This exhibits peaks and troughs in correlation over time, suggesting a regular long-term fluctuation. This may be an internal oscillation in the ENSO-monsoon system or may be related to volcanic aerosol forcings. Further reconstructions of monsoon rainfall are necessary to validate this. The study highlights uncertainties in existing published rainfall records for 1817-1846 for western India.
Soil conservation service curve number: How to take into account spatial and temporal variability
NASA Astrophysics Data System (ADS)
Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.
2012-09-01
The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.
Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.
2005-01-01
Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made. Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux. Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even though rainfall was far above average during the study, wetland evaporation volumetrically exceeded rainfall. Ground-water inflow was effective in partially offsetting the negative residual between rainfall and evaporation, thus adding to wetland storage. Ground-water inflow was most common at both wetlands when rainfall continued for days or weeks, or during a week with more than about 2.5 inches of rainfall. Large decreases in wetland storage were associated with large negative fluxes of evaporation and ground-water exchange. The response of wetland water levels to rainfall showed a strong and similar relation at both study sites; however, the greater variability in the relation of wetland water-level change to rainfall at higher rainfall rates indicated that hydrologic processes other than rainfall became more important in the response of the wetland. Changes in wetland water levels seemed to be related more to vertical gradients than to lateral gradients. The largest wetland water-level rises were associated mostly with lower vertical gradients, when vertical head differences were below the 18-month average; however, at the Lyonia large wetland, extremely large lateral gradients toward the wetland during late June 2002 may have contributed to substantial gains in wetland water. During the remainder of the study, wetland water-level rises were associated mostly with decreasing vertical gradients and highly variable lateral gradients. Conversely, wetland water-level decreases were associated mostly with increasing vertical gradients and lateral gradients away from the wetland, particularly during the dry season. The potential for lateral ground-water exchange with the wetlands varied substantially more than that for vertical exchange. Potential for vertical losses of wetland water to ground water was highest during a dry period from December 2001 to June 2002, during the wet season of 2002, and for several months into the following dry season. Lateral he
North Pacific Westerly Jet Influence of the Winter Hawaii Rainfall in the last 21,000 years
NASA Astrophysics Data System (ADS)
Li, S.; Elison Timm, O.
2017-12-01
Hawaii rainfall has a strong seasonality which has more rainfall during the winter than summer. Part of the winter rainfall is from extratropical weather disturbances. Kona lows (KL) are important contributors to the annual rainfall budget of the Hawaiian Islands. KL activity is found to have a strong relationship with the North Pacific climate variability. The goal of the research is to test the hypothesis that changes in the strength and position of the upper level zonal wind jet is a key driver for regional rainfall changes. The main objectives are (1) to identify the relationship between North Pacific westerly jet strength and KL activity in present day climate, (2) to test the stability of this relationship under past climatic conditions, and (3) to explore the teleconnection between Hawaii and North America. For the present-day analysis of the westerly jet, the zonal wind at 250hPa is used from ERA-interim data from 1979-2014. The potential vorticity is used as a measure of extratropical synoptic activity. The Hawaii Rainfall Index is from the Rainfall Atlas of Hawaii (seasonal means, 1920-2012). For the paleoclimatic study, the transient TraCE-21ka simulation is used for the zonal wind - Hawaii rainfall analysis. The results of present-day analysis show that when the jet extends farther into the eastern Pacific sector the Kona Low activity is reduced, less winter rainfall is observed over Hawaii and more rainfall over the California region. The jet position-rainfall relationship was investigated within the TrACE-21 simulation. For the TraCE-21ka dataset, there is an increasing rainfall trend from 21kBP to 14kBP; this period coincides with a gradual decrease in the strength of the westerly wind jet. The results show that the westerly jet strength has a strong influence of the Kona Low activity and the rainfall over Hawaii both in the present and the past.
NASA Astrophysics Data System (ADS)
Stager, J. C.; Mayewski, P. A.; White, J.; Chase, B. M.; Neumann, F. H.; Meadows, M. E.; King, C. D.; Dixon, D. A.
2011-12-01
The austral westerlies strongly influence precipitation and ocean circulation in the southern temperate zone, with important consequences for cultures and ecosystems. Global climate models anticipate poleward contraction of the austral westerlies with future warming, but the available paleoclimate records that might test these models have been largely limited to South America, are not fully consistent with each other, and may be complicated by influences from other climatic factors. Here we present the first fine-interval diatom and sedimentological records from the winter rainfall region of South Africa, representing precipitation during the last 1400 yr. Inferred rainfall increased ~1400-1200 cal yr BP and most notably during the Little Ice Age with pulses centered on ~600, 530, 470, 330, 200, and 90 cal yr BP. Synchronous fluctuations in Antarctic ice core chemistry strongly suggest that these variations are linked to changes in the westerlies. Partial inconsistencies among South African and South American records warn against the simplistic application of local-scale histories to the Southern Hemisphere as a whole. Nonetheless, these findings in general do support model projections of increasing aridity in austral winter rainfall zones with future warming.
NASA Astrophysics Data System (ADS)
Los, Sietse
2017-04-01
Vegetation is water limited in large areas of Spain and therefore a close link exists between vegetation greenness observed from satellite and moisture availability. Here we exploit this link to infer spatial and temporal variability in moisture from MODIS NDVI data and thermal data. Discrepancies in the precipitation - vegetation relationship indicate areas with an alternative supply of water (i.e. not rainfall), this can be natural where moisture is supplied by upwelling groundwater, or can be artificial where crops are irrigated. As a result spatial and temporal variability in vegetation in the La Mancha Plain appears closely linked to topography, geology, rainfall and land use. Crop land shows large variability in year-to-year vegetation greenness; for some areas this variability is linked to variability in rainfall but in other cases this variability is linked to irrigation. The differences in irrigation treatment within one plant functional type, in this case crops, will lead to errors in land surface models when ignored. The magnitude of these effects on the energy, carbon and water balance are assessed at the scale of 250 m to 200 km. Estimating the water balance correctly is of particular important since in some areas in Spain more water is used for irrigation than is supplemented by rainfall.
Climate variables as predictors for seasonal forecast of dengue occurrence in Chennai, Tamil Nadu
NASA Astrophysics Data System (ADS)
Subash Kumar, D. D.; Andimuthu, R.
2013-12-01
Background Dengue is a recently emerging vector borne diseases in Chennai. As per the WHO report in 2011 dengue is one of eight climate sensitive disease of this century. Objective Therefore an attempt has been made to explore the influence of climate parameters on dengue occurrence and use for forecasting. Methodology Time series analysis has been applied to predict the number of dengue cases in Chennai, a metropolitan city which is the capital of Tamil Nadu, India. Cross correlation of the climate variables with dengue cases revealed that the most influential parameters were monthly relative humidity, minimum temperature at 4 months lag and rainfall at one month lag (Table 1). However due to intercorrelation of relative humidity and rainfall was high and therefore for predictive purpose the rainfall at one month lag was used for the model development. Autoregressive Integrated Moving Average (ARIMA) models have been applied to forecast the occurrence of dengue. Results and Discussion The best fit model was ARIMA (1,0,1). It was seen that the monthly minimum temperature at four months lag (β= 3.612, p = 0.02) and rainfall at one month lag (β= 0.032, p = 0.017) were associated with dengue occurrence and they had a very significant effect. Mean Relative Humidity had a directly significant positive correlation at 99% confidence level, but the lagged effect was not prominent. The model predicted dengue cases showed significantly high correlation of 0.814(Figure 1) with the observed cases. The RMSE of the model was 18.564 and MAE was 12.114. The model is limited by the scarcity of the dataset. Inclusion of socioeconomic conditions and population offset are further needed to be incorporated for effective results. Conclusion Thus it could be claimed that the change in climatic parameters is definitely influential in increasing the number of dengue occurrence in Chennai. The climate variables therefore can be used for seasonal forecasting of dengue with rise in minimum temperature and rainfall at a city level. Table 1. Cross correlation of climate variables with dengue cases in Chennai ** p<0.01,*p<0.05
Drivers of Water Quality Variability in Northern Coastal Ecuador
Hubbard, Alan E.; Nelson, Kara L.; Eisenberg, Joseph N.S.
2012-01-01
The microbiological safety of water is commonly measured using indicator organisms, but the spatiotemporal variability of these indicators can make interpretation of data difficult. Here we systematically explore variability in E.coli concentrations in surface source and household drinking water in a rural Ecuadorian village over one year. We observed more variability in water quality on an hourly basis (up to 2.4-log difference) than on a daily (2.2-log difference) or weekly basis (up to 1.8-log difference). E.coli counts were higher in the wet season than in the dry season for both source (0.42-log difference; p<0.0001) and household (0.11-log difference; p=0.077) samples. In the wet season, a one-cm increase in weekly rainfall was associated with a 3% decrease (p=0.006) in E.coli counts in source samples and a 6% decrease (p=0.012) in household samples. Each additional person in the river when source samples were collected was associated with a 4% increase (p=0.026) in E.coli counts in the wet season. Factors affecting household water quality included rainfall, water source, and covering the container. The variability can be understood as a combination of environmental (e.g., seasonal and soil processes) and other drivers (e.g., human river use, water practices and sanitation), each working at different timescales. PMID:19368173
Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment
NASA Astrophysics Data System (ADS)
Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.
2018-05-01
Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some rainfall erosivity indices and their ability to distinguish the type of involved soil erosion processes.
Recent trends in rainfall and temperature over North West India during 1871-2016
NASA Astrophysics Data System (ADS)
Saxena, Rani; Mathur, Prasoon
2018-03-01
Rainfall and temperature are the most important environmental factors influencing crop growth, development, and yield. The northwestern (NW) part of India is one of the main regions of food grain production of the country. It comprises of six meteorological subdivisions (Haryana, Punjab, West Rajasthan, East Rajasthan, Gujarat and Saurashtra, Kutch and Diu). In this study, attempts were made to study variability and trends in rainfall and temperature during 30-year climate normal periods (CN) and 10-year decadal excess or deficit rainfall frequency during the historical period from 1871 to 2016. The Mann-Kendall and Spearman's rank correlation (Spearman's rho) tests were used to determine significance of trends. Least square linear fitting method was adopted to find out the slopes of the trend lines. The long-term mean annual rainfall over North West India is 587.7 mm (standard deviation of 153.0 mm and coefficient of variation 26.0). There was increasing trend in minimum and maximum temperatures during post monsoon season in entire study period and current climate normal period (1991-2016) due to which the sowing of rabi season crops may be delayed and there may be germination problem too. There was a non-significant decreasing trend in rainfall during monsoon season and an increasing trend in rainfall during post monsoon over North West India during entire study period. During current CN5 (1991-2016), all the subdivision (except the Saurashtra region) showed a decreasing trend in rainfall during monsoon season which is a matter of concern for kharif crops and those rabi crops which are grown as rainfed on conserved soil moisture. The decadal annual and seasonal frequencies of excess and deficit years results revealed that the annual total deficit rainfall years (24) exceeded total excess rainfall years (22) in North West India during the entire study period. While during the current decadal period (2011 to 2016), single year was the excess year and 2 years were deficit rainfall years in all subdivisions (except East Rajasthan) on annual basis.
Exploring public databases to characterize urban flood risks in Amsterdam
NASA Astrophysics Data System (ADS)
Gaitan, Santiago; ten Veldhuis, Marie-claire; van de Giesen, Nick
2015-04-01
Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to decide upon investment to reduce their impacts. Obvious flooding factors affecting flood risk include sewer systems performance and urban topography. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall and socioeconomic characteristics may help to explain probability and impacts of urban flooding. Several public databases were analyzed: complaints about flooding made by citizens, rainfall depths (15 min and 100 Ha spatio-temporal resolution), grids describing number of inhabitants, income, and housing price (1Ha and 25Ha resolution); and buildings age. Data analysis was done using Python and GIS programming, and included spatial indexing of data, cluster analysis, and multivariate regression on the complaints. Complaints were used as a proxy to characterize flooding impacts. The cluster analysis, run for all the variables except the complaints, grouped part of the grid-cells of central Amsterdam into a highly differentiated group, covering 10% of the analyzed area, and accounting for 25% of registered complaints. The configuration of the analyzed variables in central Amsterdam coincides with a high complaint count. Remaining complaints were evenly dispersed along other groups. An adjusted R2 of 0.38 in the multivariate regression suggests that explaining power can improve if additional variables are considered. While rainfall intensity explained 4% of the incidence of complaints, population density and building age significantly explained around 20% each. Data mining of public databases proved to be a valuable tool to identify factors explaining variability in occurrence of urban pluvial flooding, though additional variables must be considered to fully explain flood risk variability.
NASA Astrophysics Data System (ADS)
Baum, R. L.; Coe, J. A.; Kean, J. W.; Jones, E. S.; Godt, J.
2015-12-01
Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m. Typical values of saturated hydraulic conductivity of soils and regolith units mapped in the source areas range from about 10-4 - 10-6 m/s, with a median value of 2.8 x 10-5 m/s based on number of source areas in each map unit. Rainfall intensities varied spatially and temporally, from 0 to 2.5 x 10-5 m/s (90 mm/hour), with two periods of relatively heavy rainfall on September 12 - 13. The distribution of debris flows appears to correlate with total storm rainfall, and reported times of greatest landslide activity coincide with times of heaviest rainfall. Process-based models of rainfall infiltration and slope stability (TRIGRS) representing the observed ranges of regolith depth, hydraulic conductivity, and rainfall intensity, provide additional insights about the timing and distribution of debris flows from this storm. For example, small debris flows from shallower source areas (<2 m) occurred late on September 11 and in the early morning of September 12, whereas large debris flows from deeper (3 - 5 m) source areas in the western part of the affected area occurred late on September 12. Timing of these flows can be understood in terms of the time required for pore pressure rise depending on regolith depth and rainfall intensity. The variable hydraulic properties combined with variable regolith depth and slope angles account for much of the observed range in timing in areas of similar rainfall intensity and duration. Modeling indicates that the greatest and most rapid pore pressure rise likely occurred in areas of highest rainfall intensity and amount. This is consistent with the largest numbers of debris flows occurring on steep canyon walls in areas of high total storm rainfall.
Soil water dynamics of lateritic catchments as affected by forest clearing for pasture
NASA Astrophysics Data System (ADS)
Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.
1987-10-01
Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water holding capacity of the surface lateritic soils, the drainage beyond 1 m is substantially increased under pasture, and this results in an increased recharge to the underlying aquifer.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc
2015-04-01
Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.
Projections of Rainfall and Temperature from CMIP5 Models over BIMSTEC Countries
NASA Astrophysics Data System (ADS)
Pattnayak, K. C.; Kar, S. C.; Ragi, A. R.
2014-12-01
Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand reveals that the magnitudes are more in 2070 to 2100 of RCP8.5. Inter-model comparison show that there are large more uncertainties within the CMIP5 model projections.
NASA Astrophysics Data System (ADS)
Charan Pattnayak, Kanhu; Kar, Sarat Chandra; Kumari Pattnayak, Rashmita
2015-04-01
Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand reveals that the magnitudes are more in 2070 to 2100 of RCP8.5. Inter-model comparison show that there are large more uncertainties within the CMIP5 model projections.
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2018-06-01
Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.
Accounting for Rainfall Spatial Variability in Prediction of Flash Floods
NASA Astrophysics Data System (ADS)
Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.
2016-12-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
Accounting for rainfall spatial variability in the prediction of flash floods
NASA Astrophysics Data System (ADS)
Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.
2017-04-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
NASA Astrophysics Data System (ADS)
Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing
2018-03-01
Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.
NASA Astrophysics Data System (ADS)
Wang, F.; Notaro, M.; Yu, Y.; Mao, J.; Shi, X.; Wei, Y.
2016-12-01
North (N.) African rainfall is characterized by dramatic interannual to decadal variability with serious socio-economic ramifications. The Sahel and West African Monsoon (WAM) region experienced a dramatic shift to persistent drought by the late 1960s, while the Horn of Africa (HOA) underwent drying since the 1990s. Large disagreementregarding the dominant oceanic drivers of N. African hydrologic variability exists among modeling studies, leading to notable spread in Sahel summer rainfall projections for this century among Coupled Model Intercomparison Project models. In order to gain a deeper understanding of the oceanic drivers of N. African rainfall and establish a benchmark for model evaluation, a statistical method, the multivariate Generalized Equilibrium Feedback Assessment, is validated and applied to observations and a control run from the Community Earth System Model (CESM). This study represents the first time that the dominant oceanic drivers of N. African rainfall were evaluated and systematically compared between observations and model simulations. CESM and the observations consistently agree that tropical oceanic modes are the dominant controls of N. African rainfall. During the monsoon season, CESM and observations agree that an anomalously warm eastern tropical Pacific shifts the Walker Circulation eastward, with its descending branch supporting Sahel drying. CESM and the observations concur that a warmer tropical eastern Atlantic favors a southward-shifted Intertropical Convergence Zone, which intensifies WAM monsoonal rainfall. An observed reduction in Sahel rainfall accompanies this enhanced WAM rainfall, yet is confined to the Atlantic in CESM. During the short rains, both observations and CESM indicate that a positive phase of tropical Indian Ocean dipole (IOD) mode [anomalously warm (cold) in western (eastern) Indian] enhances HOA rainfall. The observed IOD impacts are limited to the short rains, while the simulated impacts are year-round.
Identification of MJO Signal on Various Elevation Station Rainfall in Southern Papua, Indonesia
NASA Astrophysics Data System (ADS)
Sakya, A. E.; Permana, D.; Makmur, E. E. S.; Handayani, A. S.; Hanggoro, W.; Setyadi, G.
2016-12-01
The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The characteristic of the MJO during its propagation through the Maritime Continent has always been a challenge to comprehend despite decades of research attempts in that region. Unique topography over the Maritime Continent is believed to act as one of the vanguard of precipitation triggered by the MJO. Such condition leads to a maximize amplitude of the diurnal cycle of precipitation over land on phase 2 and 5, even before the arrival of the MJO. Papua in Indonesia is one of the wettest regions on Earth and is at the heart of the MJO envelope. Aiming to investigate the effect of topography and coastline distance on MJO in southern Papua, 14 years of rainfall data from 12 stations in PTFI AWS network at various elevations (9 meters to 4400 meters above sea level) have been utilized. The results show a strong MJO modulation in rainfall variability with variance of 30 - 100 days in the region. These results suggest a strong impact of MJO on rainfall at various elevations in southern Papua which confirm the previous studies. The peak rainfall rates were observed at phase 3 at lower elevation and coastline stations and phase 4 at middle and high elevation stations. The study also investigated the relationship between MJO phases and diurnal precipitation cycle at all stations. At low elevation and coastline stations, diurnal rainfall variation is more variable with high rainfall observed at afternoon to midnight and after midnight. This is due to the local effect of land-sea breeze system. While in middle and high elevation stations, rainfall peak was observed at afternoon to midnight. The results show the impact of MJO in diurnal rainfall variation at all stations.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-01-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-12-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
NASA Astrophysics Data System (ADS)
Vásquez P., Isela L.; de Araujo, Lígia Maria Nascimento; Molion, Luiz Carlos Baldicero; de Araujo Abdalad, Mariana; Moreira, Daniel Medeiros; Sanchez, Arturo; Barbosa, Humberto Alves; Rotunno Filho, Otto Corrêa
2018-02-01
The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.
NASA Astrophysics Data System (ADS)
Fraedrich, K.
2014-12-01
Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.
Vegetation Response to Changing Climate - A Case Study from Gandaki River Basin in Nepal Himalaya
NASA Astrophysics Data System (ADS)
Panthi, J., Sr.; Kirat, N. H.; Dahal, P.
2015-12-01
The climate of the Himalayan region is changing rapidly - temperature is increasingly high and rainfall has become unpredictable. IPCC predicts that average annual mean temperature over the Asian land mass, including the Himalayas, will increase by about 3°C by the 2050s and about 5°C by the 2080s and the average annual precipitation in this region will increase by 10-30% by 2080s. Climate and the human activities can influence the land cover status and the eco-environmental quality. There are enough evidences that there is strong interaction between climate variability and ecosystems. A project was carried out in Gandaki river basin in central Nepal to analyze the relationship of NDVI vegetation index with the temperature, rainfall and snowcover information. The relationships were analyzed for different landuses classes-grassland, forest and agriculture. Results show that the snowcover area is decreasing at the rate of 0.15% per year in the basin. The NDVI shows seasonal fluctuations and lightly correlated with the rainfall and temperature.
NASA Astrophysics Data System (ADS)
Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2011-12-01
In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C-band radar data is used. This analysis highlights the interest of implementing X-band radars in urban areas. Indeed such radars provide the rainfall data at a hectometric resolution that would enable a better nowcasting and management of storm water. The multifractal properties of the simulated hydrographs were analysed with the help of simulated rainfall fields of resolution 111 m x 111 m x 1 min, lasting 4 hours, and corresponding to a 5 year return period event. On the whole, the discharge exhibits a good scaling behaviour over the range 4 h - 5 min. Both UM parameters tend to be greater for the discharge than for the rainfall. The notion of maximum probable singularity was used to clarify the consequences on the assessment of extremes. It appears that the urban drainage network basically reproduces the extremes, or only slightly damps them, at least in terms of multifractal statistics. The results were obtained with the financial support from the EU FP7 SMARTesT Project and the Chair "Hydrology for Resilient Cities" (sponsored by Veolia) of Ecole des Ponts ParisTech.
NASA Astrophysics Data System (ADS)
Chahinian, Nanée; Moussa, Roger; Andrieux, Patrick; Voltz, Marc
2006-07-01
Tillage operations are known to greatly influence local overland flow, infiltration and depressional storage by altering soil hydraulic properties and soil surface roughness. The calibration of runoff models for tilled fields is not identical to that of untilled fields, as it has to take into consideration the temporal variability of parameters due to the transient nature of surface crusts. In this paper, we seek the application of a rainfall-runoff model and the development of a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled plot (3240 m 2) located in southern France. The selected model couples the (Morel-Seytoux, H.J., 1978. Derivation of equations for variable rainfall infiltration. Water Resources Research. 14(4), 561-568). Infiltration equation to a transfer function based on the diffusive wave equation. The parameters to be calibrated are the hydraulic conductivity at natural saturation Ks, the surface detention Sd and the lag time ω. A two-step calibration procedure is presented. First, eleven rainfall-runoff events are calibrated individually and the variability of the calibrated parameters are analysed. The individually calibrated Ks values decrease monotonously according to the total amount of rainfall since tillage. No clear relationship is observed between the two parameters Sd and ω, and the date of tillage. However, the lag time ω increases inversely with the peakflow of the events. Fairly good agreement is observed between the simulated and measured hydrographs of the calibration set. Simple mathematical laws describing the evolution of Ks and ω are selected, while Sd is considered constant. The second step involves the collective calibration of the law of evolution of each parameter on the whole calibration set. This procedure is calibrated on 11 events and validated on ten runoff inducing and four non-runoff inducing rainfall events. The suggested calibration methodology seems robust and can be transposed to other gauged sites.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.
2002-01-01
The tropics and extratropics are two dynamically distinct regimes. The coupling between these two regimes often defies simple analytical treatment. Progress in understanding of the dynamical interaction between the tropics and extratropics relies on better observational descriptions to guide theoretical development. However, global analyses currently contain significant errors in primary hydrological variables such as precipitation, evaporation, moisture, and clouds, especially in the tropics. Tropical analyses have been shown to be sensitive to parameterized precipitation processes, which are less than perfect, leading to order-one discrepancies between estimates produced by different data assimilation systems. One strategy for improvement is to assimilate rainfall observations to constrain the analysis and reduce uncertainties in variables physically linked to precipitation. At the Data Assimilation Office at the NASA Goddard Space Flight Center, we have been exploring the use of tropical rain rates derived from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments in global data assimilation. Results show that assimilating these data improves not only rainfall and moisture fields but also related climate parameters such as clouds and radiation, as well as the large-scale circulation and short-range forecasts. These studies suggest that assimilation of microwave rainfall observations from space has the potential to significantly improve the quality of 4-D assimilated datasets for climate investigations (Hou et al. 2001). In the next few years, there will be a gradual increase in microwave rain products available from operational and research satellites, culminating to a target constellation of 9 satellites to provide global rain measurements every 3 hours with the proposed Global Precipitation Measurement (GPM) mission in 2007. Continued improvements in assimilation methodology, rainfall error estimates, and model parameterizations are needed to ensure that we derive maximum benefits from these observations.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar
2017-03-01
Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.
East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River
NASA Technical Reports Server (NTRS)
Weng, H.-Y.; Lau, K.-M.
1999-01-01
One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, M.N.
Worldwide ship datasets of sea surface temperature (SST), sea level pressure (SLP), and surface vector wind are analyzed for a July-September composite of five Sahelian wet years (1950, 1952, 1953, 1954, 1958) minus five Sahelian dry years (1972, 1973, 1982, 1983, 1984) (W - D). The results are compared with fields for a number of individual years and for 1988 minus 1987 (88 - 87); Sahelian rainfall in 1988 was near the 1951-80 normal, whereas 1987 was very dry. An extensive study of the geostrophic consistency of trends in pressure gradients and observed wind was undertaken. The results suggest, duringmore » the period 1949-88, a mean increase in reported wind speed of about 16% that cannot be explained by trends in geostrophic winds derived from seasonal mean SLP. Estimates of the wind bias are averaged for 18 ocean regions. A map of correlations between Sahelian rainfall and SLP in all available ocean regions is shown to be field significant. Remote atmospheric associations with Sahelian rainfall are consistent with recent suggestions that SST forcing from the tropical Atlantic and the other ocean basins may contribute to variability in seasonal Sahelian rainfall. It is suggested that wetter years in the Sahel are often accompanied by a stronger surface monsoonal flow over the western Indian Ocean and low SLP in the tropical western Pacific near New Guinea, and that there is increased cyclonicity over the extratropical eastern North Atlantic and northwest Europe. In the tropical Atlantic, W - D shows many of the features identified by previous authors. However, the 88-87 fields do not reflect these large-scale tropical Atlantic changes. Instead there is only local strengthening of the pressure gradient and wind flow from Brazil to Senegal. Further individual years are presented (1958, 1972, 1975) to provide specific examples.« less
NASA Astrophysics Data System (ADS)
Karoly, David; Black, Mitchell; Grose, Michael; King, Andrew
2017-04-01
The island state of Tasmania, in southeast Australia, received record low average rainfall of 21 mm in October 2015, 17% of the 1961-90 normal. This had major impacts across the state, affecting agriculture and hydroelectric power generation and preconditioning the landscape for major bushfires the following summer. Rainfall in Tasmania is normally high throughout the year, with variations in Austral spring associated with mean sea level pressure (MSLP) and circulation variations due to El Niño, the Indian Ocean dipole (IOD), and the southern annular mode (SAM). Spring rainfall is declining and projected to decrease further in Tasmania We have investigated the roles of anthropogenic climate change, the 2015/16 El Niño, and internal atmospheric variability on this record low October rainfall using observational data, regional climate simulations driven by specified sea surface temperatures (SSTs) from the weather@home Australia and New Zealand (w@h ANZ) project, and coupled climate model simulations from the Coupled Model Intercomparison Project phase 5. Anthropogenic climate change and the strong El Niño in 2015 very likely increased the chances of breaking the previous record low rainfall in 1965. In terms of contributions to the magnitude of this rainfall deficit, internal atmospheric variability as indicated by the Pacific-South American MSLP pattern was likely the main contributor, with El Niño next and a smaller but significant contribution from anthropogenic climate change. In this case, it was the MSLP and circulation changes associated with anthropogenic climate change in the Southern Hemisphere middle and high latitudes and not the thermodynamic effects of anthropogenic climate change that contributed to this event. Karoly, D. J., M.T. Black, M.R. Grose and A. D. King (2016) The roles of climate change and El Niño in the record low rainfall in October 2015 in Tasmania, Australia [in "Explaining Extremes of 2015 from a Climate Perspective"]. Bull. Am. Met. Soc., 97, S127-S130.
Ingole, Vijendra; Juvekar, Sanjay; Muralidharan, Veena; Sambhudas, Somnath; Rocklöv, Joacim
2012-01-01
Background Research in mainly developed countries has shown that some changes in weather are associated with increased mortality. However, due to the lack of accessible data, few studies have examined such effects of weather on mortality, particularly in rural regions in developing countries. Objective In this study, we aimed to investigate the relationship between temperature and rainfall with daily mortality in rural India. Design Daily mortality data were obtained from the Health and Demographic Surveillance System (HDSS) in Vadu, India. Daily mean temperature and rainfall data were obtained from a regional meteorological center, India Meteorological Department (IMD), Pune. A Poisson regression model was established over the study period (January 2003–May 2010) to assess the short-term relationship between weather variables and total mortality, adjusting for time trends and stratifying by both age and sex. Result Mortality was found to be significantly associated with daily ambient temperatures and rainfall, after controlling for seasonality and long-term time trends. Children aged 5 years or below appear particularly susceptible to the effects of warm and cold temperatures and heavy rainfall. The population aged 20–59 years appeared to face increased mortality on hot days. Most age groups were found to have increased mortality rates 7–13 days after rainfall events. This association was particularly evident in women. Conclusion We found the level of mortality in Vadu HDSS in rural India to be highly affected by both high and low temperatures and rainfall events, with time lags of up to 2 weeks. These results suggest that weather-related mortality may be a public health problem in rural India today. Furthermore, as changes in local climate occur, adaptation measures should be considered to mitigate the potentially negative impacts on public health in these rural communities. PMID:23195513
NASA Astrophysics Data System (ADS)
Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien
2017-04-01
The Angola Low has been suggested in many previous studies to be an important regional feature governing southern African rainfall variability during austral summer, which is, in particular, expressed through modulations of El Niño Southern Oscillation (ENSO) impacts on rainfall at the interannual timescale. Here, we analyse a variety of state-of-the-art reanalyses (NCEP2, ERA-Interim and MERRA2) and rainfall data (in situ rain-gauges and satellite-derived products) for: i) identifying the recurrent regimes of the Angola Low (position and intensity) at the daily timescale; ii) diagnosing how they modulate the spatio-temporal variability of austral summer rainfall; and iii) examining their relationships with synoptic convective regimes and ENSO, both at the interannual timescale. The recurrent regimes of the Angola Low are identified over the 1980-2015 period by applying a cluster analysis to daily 700-hPa wind vorticity anomalies over the Angola sector from November to March. The exact number and morphological properties of vorticity regimes vary significantly among the reanalyses, in particular when using the lowest spatial resolution reanalysis (i.e., NCEP2) that leads to detect less diversity, smoothest patterns and weakest intensity across the recurrent regimes. Despite such uncertainties, the regimes describing active Angola Low are quite robust among the reanalyses. Three preferential locations (locked over eastern Angola, shifted few degrees eastward or south-westward), which significantly impact on the rainfall spatial distribution over tropical and subtropical southern Africa, are identified. Independently from its location, Angola Low favours moisture advection from the southwest Indian Ocean and reduces moisture export towards the southeast Atlantic, hence contributing to increase moisture convergence over the subcontinent. Lead/lag correlations with synoptic convective regimes suggest that Angola Low may be a local precursor of tropical-temperate troughs, but this relationship is far from being systematic and quite sensitive to the reanalyses. Finally, the influence of ENSO on the seasonal occurrence of active Angola Low appears to be highly dependent on the choice of the reanalyses. For instance, active Angola Low tends to be independent from ENSO in NCEP2, while it is clearly driven by ENSO, through increasing occurrence during La Niña conditions, in ERA-Interim and MERRA2. Our results point thus toward strong uncertainties in state-of-the-art reanalyses for studying regional circulation features, and their connection with large-scale climate dynamics at the interannual timescale.
Temperature and rainfall interact to control carbon cycling in tropical forests.
Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R
2017-06-01
Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.
Use of a large-scale rainfall simulator reveals novel insights into stemflow generation
NASA Astrophysics Data System (ADS)
Levia, D. F., Jr.; Iida, S. I.; Nanko, K.; Sun, X.; Shinohara, Y.; Sakai, N.
2017-12-01
Detailed knowledge of stemflow generation and its effects on both hydrological and biogoechemical cycling is important to achieve a holistic understanding of forest ecosystems. Field studies and a smaller set of experiments performed under laboratory conditions have increased our process-based knowledge of stemflow production. Building upon these earlier works, a large-scale rainfall simulator was employed to deepen our understanding of stemflow generation processes. The use of the large-scale rainfall simulator provides a unique opportunity to examine a range of rainfall intensities under constant conditions that are difficult under natural conditions due to the variable nature of rainfall intensities in the field. Stemflow generation and production was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions at several different rainfall intensities (15, 20, 30, 40, 50, and 100 mm h-1) using a large-scale rainfall simulator in National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan). Stemflow production and rates and funneling ratios were examined in relation to both rainfall intensity and canopy structure. Preliminary results indicate a dynamic and complex response of the funneling ratios of individual trees to different rainfall intensities among the species examined. This is partly the result of different canopy structures, hydrophobicity of vegetative surfaces, and differential wet-up processes across species and rainfall intensities. This presentation delves into these differences and attempts to distill them into generalizable patterns, which can advance our theories of stemflow generation processes and ultimately permit better stewardship of forest resources. ________________ Funding note: This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant Award No.: S16088) and JSPS KAKENHI (Grant Award No.: JP15H05626).
NASA Astrophysics Data System (ADS)
Nayak, Munir A.; Villarini, Gabriele
2018-01-01
Atmospheric rivers (ARs) play a central role in the hydrology and hydroclimatology of the central United States. More than 25% of the annual rainfall is associated with ARs over much of this region, with many large flood events tied to their occurrence. Despite the relevance of these storms for flood hydrology and water budget, the characteristics of rainfall associated with ARs over the central United has not been investigated thus far. This study fills this major scientific gap by describing the rainfall during ARs over the central United States using five remote sensing-based precipitation products over a 12-year study period. The products we consider are: Stage IV, Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH). As part of the study, we evaluate these products against a rain gauge-based dataset using both graphical- and metrics-based diagnostics. Based on our analyses, Stage IV is found to better reproduce the reference data. Hence, we use it for the characterization of rainfall in ARs. Most of the AR-rainfall is located in a narrow region within ∼150 km on both sides of the AR major axis. In this region, rainfall has a pronounced positive relationship with the magnitude of the water vapor transport. Moreover, we have also identified a consistent increase in rainfall intensity with duration (or persistence) of AR conditions. However, there is not a strong indication of diurnal variability in AR rainfall. These results can be directly used in developing flood protection strategies during ARs. Further, weather prediction agencies can benefit from the results of this study to achieve higher skill of resolving precipitation processes in their models.
Determining hydroclimatic extreme events over the south-central Andes
NASA Astrophysics Data System (ADS)
RamezaniZiarani, Maryam; Bookhagen, Bodo; Schmidt, Torsten; Wickert, Jens; de la Torre, Alejandro; Volkholz, Jan
2017-04-01
The south-central Andes in NW Argentina are characterized by a strong rainfall asymmetry. In the east-west direction exists one of the steepest rainfall gradients on Earth, resulting from the large topographic differences in this region. In addition, in the north-south direction the rainfall intensity varies as the climatic regime shifts from the tropical central Andes to the subtropical south-central Andes. In this study, we investigate hydroclimatic extreme events over the south-central Andes using ERA-Interim reanalysis data of the ECMWF (European Centre for Medium-Range Weather Forecasts), the high resolution regional climate model (COSMO-CLM) data and TRMM (Tropical Rainfall Measuring Mission) data. We divide the area in three different study regions based on elevation: The high-elevation Altiplano-Puna plateau, an intermediate area characterized by intramontane basins, and the foreland area. We analyze the correlations between climatic variables, such as specific humidity, zonal wind component, meridional wind component and extreme rainfall events in all three domains. The results show that there is a high positive temporal correlation between extreme rainfall events (90th and 99th percentile rainfall) and extreme specific humidity events (90th and 99th percentile specific humidity). In addition, the temporal variations analysis represents a trend of increasing specific humidity with time during time period (1994-2013) over the Altiplano-Puna plateau which is in agreement with rainfall trend. Regarding zonal winds, our results indicate that 99th percentile rainfall events over the Altiplano-Puna plateau coincide temporally with strong easterly winds from intermountain and foreland regions in the east. In addition, the results regarding the meridional wind component represent strong northerly winds in the foreland region coincide temporally with 99th percentile rainfall over the Altiplano-Puna plateau.
Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention
NASA Astrophysics Data System (ADS)
Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza
2015-04-01
The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow reduction and arrival time and shape of the hydrograph. iii) A mathematical representation of the relation among the rainfall, surface runoff over the watershed and outflow from the bioretention is developed by incorporating kinematic wave equation into the modified Green-Ampt Method. The rainfall intensity in modified Green-Ampt method is represented by the inflow per unit surface area of bioretention which may be obtained from kinematic wave solution using the measured rainfall data. Variable rainfall cases may be taken into account by using the modified Green-Ampt method. Thus, employing the modified Green-Ampt method helps significantly in understanding and explaining the hydrological mechanism of a bioretention cell where the Darcy law or the classical Green-Ampt method is inadequate which works under constant rainfall intensities. Consequently, the rainfall is directly related with the outflow through the bioretention. This study discusses only the water quantity of bioretention.
How much of the interannual variability of East Asian summer rainfall is forced by SST?
NASA Astrophysics Data System (ADS)
He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun
2016-07-01
It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.
Regionalization of monthly rainfall erosivity patternsin Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin
2016-10-01
One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.
Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory
NASA Astrophysics Data System (ADS)
Rahimi, A.; Zhang, L.
2012-12-01
Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;
Skilful Seasonal Predictions of Summer European Rainfall
NASA Astrophysics Data System (ADS)
Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen
2018-04-01
Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.
Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa
2013-01-01
The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, F. R.; Funk, C.
2014-01-01
Hidden Markov models can be used to investigate structure of subseasonal variability. East African short rain variability has connections to large-scale tropical variability. MJO - Intraseasonal variations connected with appearance of "wet" and "dry" states. ENSO/IOZM SST and circulation anomalies are apparent during years of anomalous residence time in the subseasonal "wet" state. Similar results found in previous studies, but we can interpret this with respect to variations of subseasonal wet and dry modes. Reveal underlying connections between MJO/IOZM/ENSO with respect to East African rainfall.
NASA Astrophysics Data System (ADS)
Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.
2014-09-01
Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.
NASA Astrophysics Data System (ADS)
Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.
2010-12-01
With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.
Soil water improvements with the long-term use of a winter rye cover crop
USDA-ARS?s Scientific Manuscript database
The Midwestern United States is projected to experience increasing rainfall variability. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding as well as drought-induced crop water stress. While some ...
Soil water improvements with the long-term use of a winter rye cover crop
USDA-ARS?s Scientific Manuscript database
The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance ...
NASA Astrophysics Data System (ADS)
Garcia-Estringana, P.; Latron, J.; Molina, A. J.; Llorens, P.
2012-04-01
Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory and the soil. The objective of this work is to study the effect of rainfall partitioning on the seasonal and spatial variability of the soil water content in a Mediterranean downy oak forest (Quercus pubescens), located in the Vallcebre research catchments (42° 12'N, 1° 49'E). The monitoring design, started on July 2011, consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. One hundred hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover, in leaf and leafless periods, as well as biometric characteristics of the plot, are also regularly measured. This work presents the first results describing throughfall and soil moisture spatial variability during both the leaf and leafless periods. The main drivers of throughfall variability, as canopy structure and meteorological conditions are also analysed.
Signature of present and projected climate change at an urban scale: The case of Addis Ababa
NASA Astrophysics Data System (ADS)
Arsiso, Bisrat Kifle; Mengistu Tsidu, Gizaw; Stoffberg, Gerrit Hendrik
2018-06-01
Understanding climate change and variability at an urban scale is essential for water resource management, land use planning, development of adaption plans, mitigation of air and water pollution. However, there are serious challenges to meet these goals due to unavailability of observed and/or simulated high resolution spatial and temporal climate data. The statistical downscaling of general circulation climate model, for instance, is usually driven by sparse observational data hindering the use of downscaled data to investigate urban scale climate variability and change in the past. Recently, these challenges are partly resolved by concerted international effort to produce global and high spatial resolution climate data. In this study, the 1 km2 high resolution NIMR-HadGEM2-AO simulations for future projections under Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios and gridded observations provided by Worldclim data center are used to assess changes in rainfall, minimum and maximum temperature expected under the two scenarios over Addis Ababa city. The gridded 1 km2 observational data set for the base period (1950-2000) is compared to observation from a meteorological station in the city in order to assess its quality for use as a reference (baseline) data. The comparison revealed that the data set has a very good quality. The rainfall anomalies under RCPs scenarios are wet in the 2030s (2020-2039), 2050s (2040-2069) and 2080s (2070-2099). Both minimum and maximum temperature anomalies under RCPs are successively getting warmer during these periods. Thus, the projected changes under RCPs scenarios show a general increase in rainfall and temperatures with strong variabilities in rainfall during rainy season implying level of difficulty in water resource use and management as well as land use planning and management.
Munyuli, Mb Théodore; Kavuvu, J-M Mbaka; Mulinganya, Guy; Bwinja, G Mulinganya
2013-01-01
Cholera epidemics have a recorded history in eastern Congo dating to 1971. A study was conducted to find out the linkage between climate variability/change and cholera outbreak and to assess the related economic cost in the management of cholera in Congo. This study integrates historical data (20 years) on temperature and rainfall with the burden of disease from cholera in South-Kivu province, eastern Congo. Analyses of precipitation and temperatures characteristics in South-Kivu provinces showed that cholera epidemics are closely associated with climatic factors variability. Peaks in Cholera new cases were in synchrony with peaks in rainfalls. Cholera infection cases declined significantly (P<0.05) with the rise in the average temperature. The monthly number of new Cholera cases oscillated between 5 and 450. For every rise of the average temperature by 0.35 °C to 0.75 °C degree Celsius, and for every change in the rainfall variability by 10-19%, it is likely cholera infection risks will increase by 17 to 25%. The medical cost of treatment of Cholera case infection was found to be of US$50 to 250 per capita. The total costs of Cholera attributable to climate change were found to fall in the range of 4 to 8% of the per capita in annual income in Bukavu town. It is likely that high rainfall favor multiplication of the bacteria and contamination of water sources by the bacteria (Vibrio cholerae). The consumption of polluted water, promiscuity, population density and lack of hygiene are determinants favoring spread and infection of the bacteria among human beings living in over-crowded environments.
Effects of Raindrop Shape Parameter on the Simulation of Plum Rains
NASA Astrophysics Data System (ADS)
Mei, H.; Zhou, L.; Li, X.; Huang, X.; Guo, W.
2017-12-01
The raindrop shape parameter of particle distribution is generally set as constant in a Double-moment Bulk Microphysics Scheme (DBMS) using Gama distribution function though which suggest huge differences in time and space according to observations. Based on Milbrandt 2-mon(MY) DBMS, four cases during Plum Rains season are simulated coupled with four empirical relationships between shape parameter (μr) and slope parameter of raindrop which have been concluded from observations of raindrop distributions. The analysis of model results suggest that μr have some influences on rainfall. Introducing the diagnostic formulas of μr may have some improvement on systematic biases of 24h accumulated rainfall and show some correction ability on local characteristics of rainfall distribution. Besides,the tendency to improve strong rainfall could be sensitive to μr. With the improvement of the diagnosis of μr using the empirically diagnostic formulas, μr increases generally in the middle- and lower-troposphere and decreases with the stronger rainfall. Its conclued that, the decline in raindrop water content and the increased raindrop mass-weighted average terminal velocity directly related to μr are the direct reasons of variations in the precipitation.On the other side, the environmental conditions including relative humidity and dynamical parameters are the key indirectly causes which has close relationships with the changes in cloud particles and rainfall distributions.Furthermore,the differences in the scale of improvement between the weak and heavy rainfall mainly come from the distinctions of response features about their variable fields respectively. The extent of variation in the features of cloud particles in warm clouds of heavy rainfall differs greatly from that of weak rainfall, though they share the same trend of variation. On the conditions of weak rainfall, the response of physical characteristics to μr performed consistent trends and some linear features. However, environmental conditions of relative humidity and dynamical parameters perform strong and vertically deep adjustments in the heavy precipitation with vigorous cloud systems. In this case, the microphysical processes and environmental conditions experience complex interactions with each other and no significant laws could be concluded.
NASA Astrophysics Data System (ADS)
Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides
2002-11-01
Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well as SSTs. This could partially explain why: (a) the above-mentioned signals weaken or disappear, with the exception of the relative dryness that is observed at the peak of an El Niño event and during the dry season when northern Atlantic SSTs are warmer than usual; (b) rainfall anomalies tend to resemble those of southeastern South America, noticeably at the beginning and the end of El Niño and La Niña events; (c) some strong excesses of rain are not associated with any SST anomalies and merit further investigation.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
NASA Astrophysics Data System (ADS)
Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal
2018-04-01
In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set perspectives for a deeper analysis of the favourable atmospheric conditions that yield high impact weather.
Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie
2015-01-01
Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (~18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.
Vegetation Controls on Weathering Intensity during the Last Deglacial Transition in Southeast Africa
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie
2014-01-01
Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation. PMID:25406090
Ivory, Sarah J; McGlue, Michael M; Ellis, Geoffrey S; Lézine, Anne-Marie; Cohen, Andrew S; Vincens, Annie
2014-01-01
Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.
Rainfall spatiotemporal variability relation to wetlands hydroperiods
NASA Astrophysics Data System (ADS)
Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria
2017-04-01
Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the hydroperiods of wetlands present in Doñana natural space. Key issues: spatiotemporal variability, geostatistics, hydroperiod, wetlands. References: Cifuentes, V., García, M.A., Checa, M.J. & Escudero, R. (2015). Estimación por teledetección de la superficie de la lámina de agua y los niveles de profundidad de las lagunas en los humedales de la Campiña Andaluza Central incluidos en la demarcación hidrográfica del Guadalquivir. Teledetección: Humedales y Espacios Protegidos. Presented in XVI Congreso de la Asociación Española de Teledetección. pp. 322-325. Sevilla 21-23 octubre 2015. http://ocs.ebd.csic.es/index.php/AET/2015/schedConf/presentations Díaz-Delgado, R., Carro, F., Herruzo, F. Q., Osuna, A., & Baena, M. (2016). Contribución del seguimiento ecológico a largo plazo a la investigación y la gestión en la plataforma LTSER-Doñana. Revista Ecosistemas, 25(1), 9-18. Pebesma, E. (2012). spacetime: Spatio-temporal data in r. Journal of Statistical Software, 51(7), 1-30.
NASA Astrophysics Data System (ADS)
Pricope, N. G.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.
2014-12-01
Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. We identify regions where significant rainfall decrease from 1979-2011 over the entire continent of Africa couples with significant human population density increase. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that widespread degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using two underutilized MODIS products, we observe significant changes in vegetation patterns and productivity over the last decade all across the East African Horn. We observe significant vegetation browning trends in areas experiencing drying precipitation trends in addition to increasing population pressures. We also found that the drying precipitation trends only partially statistically explain the vegetation browning trends, further indicating that other factors such as population pressures and land use changes are responsible for the observed declining vegetation health. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, indicating potential long-term degradation of rangelands on which approximately 10 million people depend. These findings have serious implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends.
The role of storm scale, position and movement in controlling urban flood response
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James
2018-01-01
The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.
NASA Astrophysics Data System (ADS)
Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei
2018-04-01
Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.
NASA Astrophysics Data System (ADS)
Loague, Keith; Kyriakidis, Phaedon C.
1997-12-01
This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.
Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu
2015-01-01
An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.
NASA Astrophysics Data System (ADS)
Taylor, R. G.; Owor, M.; Kaponda, A.
2013-12-01
Global greenhouse-gas emissions serve to warm Africa more rapidly than the rest of the world. The intensification of precipitation that is associated with this warming, strongly influences terrestrial water budgets. This shift toward fewer but heavier rainfall events is expected to lead to more frequent and intense floods as well as more variable and lower soil moisture. However, its impact on groundwater recharge is unclear and in dispute. We review evidence from long (1 to 5 decades) time series of groundwater levels recorded in deeply weathered crystalline rock aquifers systems underlying land surfaces of low relief in Uganda and Tanzania. Borehole hydrographs consistently demonstrate a non-linear relationship between rainfall and recharge wherein heavy rainfalls exceeding a threshold contribute disproportionately to the recharge flux. Rapid responses observed in groundwater levels to rainfall events attest further to the importance of preferential pathways in enabling rain-fed recharge via soil macro-pores. Our results suggest that, in these environments, increased use of groundwater to offset periods of low surface flow and to supplement soil moisture through irrigation may prove a logical strategy to enhance regional water and food security.
Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall
NASA Astrophysics Data System (ADS)
Li, Ziguang; Cai, Wenju; Lin, Xiaopei
2016-08-01
A positive Indian Ocean Dipole (IOD) and a warm phase of the El Niño-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Niño’s influence has been decreasing, accompanied by a strengthening in the IOD’s influence on southern Australia but a reversal in the IOD’s influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD’s influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Niño. Likewise, the post-1980 weak ENSO-IOD coherence means that El Niño’s pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.
Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall.
Li, Ziguang; Cai, Wenju; Lin, Xiaopei
2016-08-22
A positive Indian Ocean Dipole (IOD) and a warm phase of the El Niño-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Niño's influence has been decreasing, accompanied by a strengthening in the IOD's influence on southern Australia but a reversal in the IOD's influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD's influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Niño. Likewise, the post-1980 weak ENSO-IOD coherence means that El Niño's pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.
NASA Astrophysics Data System (ADS)
Palladino, M. R.; Viero, A.; Turconi, L.; Brunetti, M. T.; Peruccacci, S.; Melillo, M.; Luino, F.; Deganutti, A. M.; Guzzetti, F.
2018-02-01
The aim of the present work is to investigate the role exerted by selected environmental factors in the activation of rainfall-triggered shallow landslides and to identify site-specific rainfall thresholds. The study concerns the Italian Alps. The region is exposed to widespread slope instability phenomena due to its geological, morphological and climatic features. Furthermore, the high level of anthropization that characterizes wide portions of the territory increases the associated risk. Hence, the analysis of potential predisposing factors influencing landslides triggering is worthwhile to improve the current prediction skills and to enhance the preparedness and the response to these natural hazards. During the last years, the Italian National Research Council's Research Institute for Hydro-geological Protection (CNR-IRPI) has contributed to the analysis of triggering conditions for rainfall-induced landslides in the framework of a national project. The project, funded by the National Department for Civil Protection (DPC), focuses on the identification of the empirical rainfall thresholds for the activation of shallow landslides in Italy. The first outcomes of the project reveal a certain variability of the pluviometric conditions responsible for the mass movements activation, when different environmental settings are compared. This variability is probably related to the action of local environmental factors, such as lithology, climatic regime or soil characteristics. Based on this hypothesis, the present study aims to identify separated domains within the Italian Alps, where different triggering conditions exist and different countermeasures are needed for risk prevention. For this purpose, we collected information concerning 511 landslides activated in the period 2000-2012 and reconstructed 453 rainfall events supposed to be responsible for the activations. Then, we selected a set of thematic maps to represent the hypothesised landslide conditioning factors and to identify the supposed homogeneous domains within the study area. We employed an existing statistical method for the definition of the cumulated event rainfall vs. rainfall duration (ED) thresholds, for both the entire catalogue of rainfall events and for the events falling in the separated domains. The obtained results contribute to a better understanding of the role exerted by geological, pedological and climatic factors in landslides activation and help identifying separated domains where different risk managing strategies should be adopted. The proposed methodology can be a valid support for risk reduction strategies planning at regional scale.
Social-ecological predictors of global invasions and extinctions
Lotz, Aaron; Allen, Craig R.
2013-01-01
Most assessments of resilience have been focused on local conditions. Studies focused on the relationship between humanity and environmental degradation are rare, and are rarely comprehensive. We investigated multiple social-ecological factors for 100 countries around the globe in relation to the percentage of invasions and extinctions within each country. These 100 countries contain approximately 87% of the world’s population, produce 43% of the world’s per capita gross domestic product (GDP), and take up 74% of the earth’s total land area. We used an information theoretic approach to determine which models were most supported by our data, utilizing an a priori set of plausible models that included a combination of 15 social-ecological variables, each social-ecological factor by itself, and selected social-ecological factors grouped into three broad classes. These variables were per capita GDP, export-import ratio, tourism, undernourishment, energy efficiency, agricultural intensity, rainfall, water stress, wilderness protection, total biodiversity, life expectancy, adult literacy, pesticide regulation, political stability, and female participation in government. Our results indicate that as total biodiversity and total land area increase, the percentage of endangered birds also increases. As the independent variables (agricultural intensity, rainfall, water stress, and total biodiversity) in the ecological class model increase, the percentage of endangered mammals in a country increases. The percentage of invasive birds and mammals in a country increases as per capita GDP increases. As life expectancy increases, the percentage of invasive and endangered birds and mammals increases. Although our analysis does not determine mechanisms, the patterns observed in this study provide insight into the dynamics of a complex, global, social-ecological system.
Climate change and occurrence of diarrheal diseases: evolving facts from Nepal.
Bhandari, G P; Gurung, S; Dhimal, M; Bhusal, C L
2012-09-01
Climate change is becoming huge threat to health especially for those from developing countries. Diarrhea as one of the major diseases linked with changing climate. This study has been carried out to assess the relationship between climatic variables, and malaria and to find out the range of non-climatic factors that can confound the relationship of climate change and human health. It is a Retrospective study where data of past ten years relating to climate and disease (diarrhea) variable were analyzed. The study conducted trend analysis based on correlation. The climate related data were obtained from Department of Hydrology and Meteorology. Time Series analysis was also being conducted. The trend of number of yearly cases of diarrhea has been increasing from 1998 to 2001 after which the cases remain constant till 2006.The climate types in Jhapa vary from humid to per-humid based on the moisture index and Mega-thermal based on thermal efficiency. The mean annual temperature is increasing at an average of 0.04 °C/year with maximum temperature increasing faster than the minimum temperature. The annual total rainfall of Jhapa is decreasing at an average rate of -7.1 mm/year. Statistically significant correlation between diarrheal cases occurrence and temperature and rainfall has been observed. However, climate variables were not the significant predictors of diarrheal occurrence. The association among climate variables and diarrheal disease occurrence cannot be neglected which has been showed by this study. Further prospective longitudinal study adjusting influence of non-climatic factors is recommended.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.
1997-01-01
Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.
Rainfall variability in southern Spain on decadal to centennial time scales
NASA Astrophysics Data System (ADS)
Rodrigo, F. S.; Esteban-Parra, M. J.; Pozo-Vázquez, D.; Castro-Díez, Y.
2000-06-01
In this work a long rainfall series in Andalusia (southern Spain) is analysed. Methods of historical climatology were used to reconstruct a 500-year series from historical sources. Different statistical tools were used to detect and characterize significant changes in this series. Results indicate rainfall fluctuations, without abrupt changes, in the following alternating dry and wet phases: 1501-1589 dry, 1590-1649 wet, 1650-1775 dry, 1776-1937 wet and 1938-1997 dry. Possible causal mechanisms are discussed, emphasizing the important contribution of the North Atlantic Oscillation (NAO) to rainfall variability in the region. Solar activity is discussed in relation to the Maunder Minimum period, and finally the past and present are compared. Results indicate that the magnitude of fluctuations is similar in the past and present.
Rainfall thresholds for possible landslide occurrence in Italy
NASA Astrophysics Data System (ADS)
Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto
2017-08-01
The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we observed that a 20% exceedance probability national threshold was capable of predicting all the rainfall-induced landslides with casualties between 1996 and 2014, and we suggest that this threshold can be used to forecast fatal rainfall-induced landslides in Italy. We expect the method proposed in this work to define and compare the thresholds to have an impact on the definition of new rainfall thresholds for possible landslide occurrence in Italy, and elsewhere.
Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America.
Vörösmarty, Charles J; Bravo de Guenni, Lelys; Wollheim, Wilfred M; Pellerin, Brian; Bjerklie, David; Cardoso, Manoel; D'Almeida, Cassiano; Green, Pamela; Colon, Lilybeth
2013-11-13
Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960-2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.
Impact of La Niña and La Niña Modoki on Indonesia rainfall variability
NASA Astrophysics Data System (ADS)
Hidayat, R.; Juniarti, MD; Ma’rufah, U.
2018-05-01
La Niña events are indicated by cooling SST in central and eastern equatorial Pacific. While La Niña Modoki occurrences are indicated by cooling SST in central Pacific and warming SST in western and eastern equatorial Pacific. These two events are influencing rainfall variability in several regions including Indonesia. The objective of this study is to analyse the impact of La Niña and La Niña Modoki on Indonesian rainfall variability. We found the Nino 3.4 index is highly correlated (r = -0.95) with Indonesian rainfall. Positive rainfall anomalies up to 200 mm/month occurred mostly in Indonesian region during La Niña events, but in DJF several areas of Sumatera, Kalimantan and eastern Indonesia tend to have negative rainfall. During La Niña Modoki events, positive rainfall anomaly (up to 50 mm/month) occurred in Sumatera Island, Kalimantan, Java and eastern Indonesia in DJF and up to 175 mm/month occurred only in Java Island in MAM season. La Niña events have strong cooling SST in central and eastern equatorial Pacific (-1.5°C) in DJF. While La Niña Modoki events warming SST occurred in western and eastern equatorial Pacific (0.75°C) and cooling SST in central Pacific (- 0.75°C) in DJF and MAM. Walker circulation in La Niña Modoki events (on DJF and MAM) showed strong convergence in eastern Pacific, and weak convergence in western Pacific (Indonesia).
NASA Astrophysics Data System (ADS)
Gunkel, Anne; Lange, Jens
2010-05-01
The Middle East is characterized by a high temporal and spatial variability of rainfall. As a result, water resources are not reliable and severe drought events are frequent, worsening the natural water scarcity. Single high magnitude events may dominate the water balance of entire seasons - a fact that is poorly represented in the assessments of available water resources that are normally based on long term averages. Therefore, a distributed hydrological model with a high temporal and spatial resolution is applied to the Lower Jordan River basin (LJRB). The focus is hereby to capture the variability of rainfall and to investigate how this signal is amplified in the hydrological cycle in this arid and semi arid environment. Rainfall variability is addressed through a volume scanning rainfall radar providing precipitation data with a resolution of 5 minutes for entire seasons that serves as input to a conceptual hydrological model. The raw radar data recorded by a C-Band system was pre-corrected by a multiple regression approach prior to regionalization to the LJRB, ground truthing with rainfall station data and conditional merging. Despite certain uncertainties, the data documents the accentuated rainfall variability in the entire LJRB. In order to include the full range of present rainfall variability, one average and two extreme seasons (wet and dry) are studied. Hydrological modelling is undertaken with a new modelling tool created by coupling two hydrological models, TRAIN and ZIN, complementing each other in respect to the addressed processes and water fluxes. The resulting modelling tool enables conceptual modelling of the processes relevant for semi-arid / arid environments with a high temporal and spatial resolution. The model is applied to the large scale LJRB (16,000 km²) in order to simulate all components of the water balance for three rainy seasons representing the present climate variability. Under given conditions of low data availability, the results give a basin wide view on the availability of surface water resources without human intervention with a high resolution in time (5 min) and space (up to 250 x 250 m²). The scarcity of water resources in many areas within the region is illustrated and detailed maps of the water balance components reveal spatial pattern of water availability characterizing the different potentials of regions or sub basins for water management options. Moreover, comparing different climate conditions provides valuable information for water management, including insights into the relation between green and blue water. For instance, runoff generation and percolation react stronger to changes in precipitation than evapotranspiration and the changes in runoff and percolation are considerably higher than the differences in rainfall between the three years. This amplification of rainfall variability by the hydrological cycle is significant for water management. Based on the results for current conditions, the impact of different scenarios and management options is analyzed, e.g. the effect of land use changes or the suitability of different regions for rainwater harvesting, one of the urgently needed new water sources.
BN-FLEMOps pluvial - A probabilistic multi-variable loss estimation model for pluvial floods
NASA Astrophysics Data System (ADS)
Roezer, V.; Kreibich, H.; Schroeter, K.; Doss-Gollin, J.; Lall, U.; Merz, B.
2017-12-01
Pluvial flood events, such as in Copenhagen (Denmark) in 2011, Beijing (China) in 2012 or Houston (USA) in 2016, have caused severe losses to urban dwellings in recent years. These floods are caused by storm events with high rainfall rates well above the design levels of urban drainage systems, which lead to inundation of streets and buildings. A projected increase in frequency and intensity of heavy rainfall events in many areas and an ongoing urbanization may increase pluvial flood losses in the future. For an efficient risk assessment and adaptation to pluvial floods, a quantification of the flood risk is needed. Few loss models have been developed particularly for pluvial floods. These models usually use simple waterlevel- or rainfall-loss functions and come with very high uncertainties. To account for these uncertainties and improve the loss estimation, we present a probabilistic multi-variable loss estimation model for pluvial floods based on empirical data. The model was developed in a two-step process using a machine learning approach and a comprehensive database comprising 783 records of direct building and content damage of private households. The data was gathered through surveys after four different pluvial flood events in Germany between 2005 and 2014. In a first step, linear and non-linear machine learning algorithms, such as tree-based and penalized regression models were used to identify the most important loss influencing factors among a set of 55 candidate variables. These variables comprise hydrological and hydraulic aspects, early warning, precaution, building characteristics and the socio-economic status of the household. In a second step, the most important loss influencing variables were used to derive a probabilistic multi-variable pluvial flood loss estimation model based on Bayesian Networks. Two different networks were tested: a score-based network learned from the data and a network based on expert knowledge. Loss predictions are made through Bayesian inference using Markov chain Monte Carlo (MCMC) sampling. With the ability to cope with incomplete information and use expert knowledge, as well as inherently providing quantitative uncertainty information, it is shown that loss models based on BNs are superior to deterministic approaches for pluvial flood risk assessment.
NASA Astrophysics Data System (ADS)
Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish
2018-03-01
The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional storage facilities are sensitive to rainfall patterns that are loaded in the latter part of the storm duration, while extremely intense short-duration storms will cause flooding at all locations. This study shows that changes in temporal patterns will have a significant impact on urban/suburban flooding and need to be carefully considered and adjusted to account for climate change when used for the design and planning of future storm water systems.
Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.
Tuset, J; Vericat, D; Batalla, R J
2016-01-01
The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Berg, Wesley; Avery, Susan K.
1994-01-01
Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the Special Sensor Microwave/Imager (SSM/I) for the preiod from July 1987 through December 1991. The monthly estimates were calibrated using measurements from a network of Pacific atoll rain gauges and compared to other satellite-based rainfall estimation techniques. Based on these monthly estimates, an analysis of the variability of large-scale features over intraseasonal to interannual timescales has been performed. While the major precipitation features as well as the seasonal variability distributions show good agreement with expected values, the presence of a moderately intense El Nino during 1986-87 and an intense La Nina during 1988-89 highlights this time period.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2015-04-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
Water isotope variability across single rainfall events in the tropical Pacific
NASA Astrophysics Data System (ADS)
Cobb, K. M.; Moerman, J. W.; Ellis, S. A.; Bennett, L.; Bosma, C.; Hitt, N. T.
2017-12-01
Water isotopologues provide a powerful diagnostic tool for probing the dynamical processes involved in the initiation and evolution of tropical convective events, yet water isotope observations rarely meet the temporal resolution required to resolve such processes. Here we present timeseries of rainfall oxygen and hydrogen isotopologues across over 30 individual convective events sampled at 1- to 5-minute intervals at both terrestrial (Gunung Mulu National Park, 4N, 115W) and maritime (Kiritimati Island, 2N, 157W) sites located in the equatorial Pacific. The sites are the loci of significant paleoclimate research that employ water isotopologues to reconstruct a variety of climatic parameters of interest over the last century, in the case of coral d18O, to hundreds of thousands of years before present, in the case of stalagmite d18O. As such, there is significant scientific value in refining our understanding of water isotope controls at these particular sites. Our results illustrate large, short-term excursions in water isotope values that far exceed the signals recovered in daily timeseries of rainfall isotopologues from the sites, illustrating the fundamental contribution of mesoscale processes in driving rainfall isotope variability. That said, the cross-event profiles exhibit a broad range of trajectories, even for events collected at the same time of day on adjoining days. Profiles collected at different phases of the 2015-2017 strong El Nino-Southern Oscillation cycle also exhibit appreciable variability. We compare our observations to hypothetical profiles from a 1-dimensional model of each rainfall event, as well as to output from 4-dimensional isotope-equipped, ocean-atmosphere coupled models of rainfall isotope variability in the tropical Pacific. We discuss the implications of our findings for the interpretation of water isotope-based reconstructions of hydroclimate in the tropics.
Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds
NASA Astrophysics Data System (ADS)
Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea
2013-04-01
Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.
A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins
NASA Astrophysics Data System (ADS)
Gronewold, A.; Alameddine, I.; Anderson, R. M.
2009-12-01
Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United States Environmental Protection Agency (USEPA) total maximum daily load (TMDL) program, as well as those addressing coastal population dynamics and sea level rise. Our approach has several advantages, including the propagation of parameter uncertainty through a nonparametric probability distribution which avoids common pitfalls of fitting parameters and model error structure to a predetermined parametric distribution function. In addition, by explicitly acknowledging correlation between model parameters (and reflecting those correlations in our predictive model) our model yields relatively efficient prediction intervals (unlike those in the current literature which are often unnecessarily large, and may lead to overly-conservative management actions). Finally, our model helps improve understanding of the rainfall-runoff process by identifying model parameters (and associated catchment attributes) which are most sensitive to current and future land use change patterns. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
NASA Astrophysics Data System (ADS)
Ranasinghage, P. N.; Nanayakkara, N. U.; Kodithuwakku, S.; Siriwardana, S.; Luo, C.; Fenghua, Z.
2016-12-01
Indian monsoon plays a vital role in determining climate events happening in the Asian region. There is no sufficient work in Sri Lanka to fully understand how the summer monsoonal variability affected Sri Lanka during the quaternary. Sri Lanka is situated at an ideal location with a unique geography to isolate Indian summer monsoon record from iris counterpart, Indian winter monsoon. Therefore, this study was carried out to investigate its variability and understand the forcing factors. For this purpose a 1.82 m long gravity core, extracted from western continental shelf off Colombo, Sri Lanka by Shiyan 1 research vessel, was used. Particle size, chemical composition and colour reflectance were measured using laser particle size analyzer at 2 cm resolution, X-Ray Fluorescence spectrometer (XRF) at 2 cm resolution, and color spectrophotometer at 1 cm resolution respectively. Radio carbon dating of foraminifera tests by gas bench technique yielded the sediment age. Finally, principal component analysis (PCA) of XRF and color reflectance (DSR) data was performed to identify groups of correlating elements and mineralogical composition of sediments. Particle size results indicate that Increasing temperature and strengthening monsoonal rainfall after around 18000 yrs BP, at the end of last glacial period, enhanced chemical weathering over physical weathering. Proxies for terrestrial influx (XRF PC1, DSR PC1) and upwelling and nutrient supply driven marine productivity (XRF PC3 and DSR PC2) indicate that strengthening of summer monsoon started around 15000 yrs BP and maximized around 8000-10000 yrs BP after a short period of weakening during Younger Dryas (around 11000 yrs BP). The 8.2 cold event was recorded as a period of low terrestrial influx indicating weakening of rainfall. After that terrestrial input was low till around 2000 yrs BP indicating decrease in rainfall. However, marine productivity remained increasing throughout the Holocene indicating an increase in monsoonal driven upwelling. Authors recorded similar increase in monsoonal wind strength during the late Holocene, with no increase in rainfall in another sediment core extracted from the western continental shelf of Sri Lanka.
The influence of ENSO, PDO and PNA on secular rainfall variations in Hawai`i
NASA Astrophysics Data System (ADS)
Frazier, Abby G.; Elison Timm, Oliver; Giambelluca, Thomas W.; Diaz, Henry F.
2017-11-01
Over the last century, significant declines in rainfall across the state of Hawai`i have been observed, and it is unknown whether these declines are due to natural variations in climate, or manifestations of human-induced climate change. Here, a statistical analysis of the observed rainfall variability was applied as first step towards better understanding causes for these long-term trends. Gridded seasonal rainfall from 1920 to 2012 is used to perform an empirical orthogonal function (EOF) analysis. The leading EOF components are correlated with three indices of natural climate variations (El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Pacific North American (PNA)), and multiple linear regression (MLR) is used to model the leading components with climate indices. PNA is the dominant mode of wet season (November-April) variability, while ENSO is most significant in the dry season (May-October). To assess whether there is an anthropogenic influence on rainfall, two methods are used: a linear trend term is included in the MLR, and pattern correlation coefficients (PCC) are calculated between recent rainfall trends and future changes in rainfall projected by downscaling methods. PCC results indicate that recent observed rainfall trends in the wet season are positively correlated with future expected changes in rainfall, while dry season PCC results do not show a clear pattern. The MLR results, however, show that the trend term adds significantly to model skill only in the dry season. Overall, MLR and PCC results give weak and inconclusive evidence for detection of anthropogenic signals in the observed rainfall trends.
Rainfall prediction with backpropagation method
NASA Astrophysics Data System (ADS)
Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.
2018-03-01
Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.
The Role of Rainfall Patterns in Seasonal Malaria Transmission
NASA Astrophysics Data System (ADS)
Bomblies, A.
2010-12-01
Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.
Monsoon climate response in Indian teak (Tectona grandis L.f.) along a transect from coast to inland
NASA Astrophysics Data System (ADS)
Sengupta, Saikat; Borgaonkar, Hemant; Joy, Reji Mariya; Ram, Somaru
2017-11-01
Indian monsoon (June-September) and post monsoon (October-November) rainfall show a distinct trend from coast to inland primarily due to moisture availability. However, the response of this synoptic-scale variation of rainfall amount to annual ring growth of Indian teak has not been studied systematically yet. The study is important as (1) ring width of Indian teak is considered as a reliable proxy for studying monsoon climate variability in multi-centennial time scale and (2) observed meteorological data show systematic changes in rainfall variation from coast to inland since last three decades. Towards this, we present here tree-ring width data from two locations—Thatibanda (1747-1979) and Nagzira (1728-2000) and use similar published data from two other locations—Allapalli (1866-1897) and Edugurapalli (1827-2000). The locations fall along a southeast northwest transect from south east Indian coast to inland. Monthly mean data from nearest observatories show an increasing trend in monsoon rainfall and a pronounced decreasing trend in post monsoon rainfall towards inland. Ring width data show moderately positive response to monsoon rainfall and negative response to summer (March-May) temperature for all stations suggesting moisture deficit in hot summer and intense precipitation in monsoon affect ring growth pattern in different ways. Ring width indices also exhibit significantly positive response with post monsoon rainfall at coastal location. The response gradually reduces towards inland. This preliminary study, thus, suggests that Indian teak has a potential to capture signals of the synoptic variation of post monsoon rainfall from coast to inland.
Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel
2017-03-29
Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.
Do we really use rainfall observations consistent with reality in hydrological modelling?
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves
2017-04-01
Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.
Kinner, David A.; Moody, John A.
2008-01-01
Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.
Radar-rain-gauge rainfall estimation for hydrological applications in small catchments
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio
2017-07-01
The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.
Decision tree analysis of factors influencing rainfall-related building damage
NASA Astrophysics Data System (ADS)
Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.
2014-04-01
Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.
NASA Astrophysics Data System (ADS)
Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.
2017-12-01
The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.
The role of climate variability in extreme floods in Europe
NASA Astrophysics Data System (ADS)
Guimarães Nobre, Gabriela; Aerts, Jeroen C. J. H.; Jongman, Brenden; Ward, Philip J.
2017-04-01
Between 1980 and 2015, Europe experienced 18% of worldwide weather-related loss events, which accounted for over US500 billion in damage. Consequently, it is urgent to further develop adaptation strategies to mitigate the consequences of weather-related disasters, such as floods. Europe's capability to prepare for such disasters is challenged by a large range of uncertainties and a limited understanding of the driving forces of hydrometeorological hazards. One of the major sources of uncertainty is the relationship between climate variability and weather-related losses. Previous studies show that climate variability drives temporal changes in hydrometereological variables in Europe. However, their influence on flood risk has received little attention. We investigated the influence of the positive and negative phases of El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), on the seasonal frequency and intensity of extreme rainfall, and anomalies in flood occurrence and damage compared to the neutral phases of the indices of climate variability. Using statistical methods to analyze relationships between the indices of climate variability and four indicators of flooding, we found that positive and negative phases of NAO and AO are associated with more (or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The relationship between ENSO and both the occurrence of extreme rainfall and intensity of extreme rainfall in Europe is much smaller than the relationship with NAO or AO, but still significant in some regions. We observe that flood damage and flood occurrence have strong links with climate variability, especially in southern and eastern Europe. Therefore, when investigating flooding across Europe, all three indices of climate variability should be considered. Seasonal forecasting of flooding could be enhanced by the inclusion of climate variability indicators .
NASA Astrophysics Data System (ADS)
Bruto, Leonardo; Araujo, Moacyr; Noriega, Carlos; Veleda, Dóris; Lefèvre, Nathalie
2017-06-01
Hourly data of CO2 fugacity (fCO2) at 8°N-38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August-December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.
Radon-222 related influence on ambient gamma dose.
Melintescu, A; Chambers, S D; Crawford, J; Williams, A G; Zorila, B; Galeriu, D
2018-04-03
Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h -1 ), with minimum values in February (75-80 nSv h -1 ), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h -1 for every 5 Bq m -3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h -1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h -1 . To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Unland, N. P.; Cartwright, I.; Andersen, M. S.; Rau, G. C.; Reed, J.; Gilfedder, B. S.; Atkinson, A. P.; Hofmann, H.
2013-03-01
The interaction between groundwater and surface water along the Tambo and Nicholson Rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiling. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater-surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day-1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day-1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day-1). While groundwater sampling from the bank of the Tambo River was intended to account for the variability in groundwater chemistry associated with river-bank interaction, the spatial variability under which these interactions occurs remained unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson Rivers was the highest under high flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
Non-equilbrium dynamics of ecosystem processes in a changing world
NASA Astrophysics Data System (ADS)
Reid, Joseph Pignatello
The relatively mild and stable climate of the last 10,000 years betrays a history of environmental variability and rapid changes. Humans have recently accelerated global environmental change, ushering in the Anthropocene. Meeting accelerating demands for food, energy, and goods and services has accelerated species extinctions, shows of reactive nitrogen and phosphorus, and warming of the atmosphere. I address the over- arching question of how ecosystems will respond to changing and variable environments through several focused studies. Each study examines an ecosystem response to ex- pected environmental changes in the future. To address how the changing environment affects the sizes and turnover rates of slowly and quickly cycling soil carbon pools, I analyzed the responses of grassland soils to simulated species diversity loss, increased deposition of nitrogen and increased atmospheric CO2. I used a soil respiration experiment to fit models of soil carbon pool turnover to respired carbon dioxide. Species diversity, nitrogen deposition and atmospheric CO2 had no effect on the total soil carbon after 8 years of treatments. Although total soil carbon did not change, the rates of cycling in the fast and slow pools changed in response to elevated CO2 and diversity loss treatments. Nitrogen treatments increased the size of the slowly cycling carbon pool. Precipitation variability has increased around most of the world since the industrial revolution. I used plant mesocosms in a greenhouse experiment to manipulate rainfall variability and mycorrhizal associations. I hypothesized that 1) rewetting events re- sult in higher nitrogen uxes from dry soils than moist soils, 2) a repeated pattern of events caused by low-frequency simulated rainfall results in higher nitrogen uxes and 3) the better ability of ectomycorrhizal fungi relative to arbuscular mycorrhizal fungi to decompose and assimilate organic nitrogen reduces leaching losses of nitrogen caused by both rewetting events and patterns of repeated events. In response to individual rewetting events, drier soils released more nitrate and total nitrogen than wetter soils. Ectomycorrhizal treatments slightly reduced the effect of antecedent soil moisture on total nitrogen and nitrate losses from rewetting events. This supports my hypotheses iii that drier soils release more nitrogen after rainfall events and that ectomycorrhizal asso- ciations can reduce nitrogen losses associated with soil rewetting events. However, only ammonium increased in proportion to the variance in rainfall quantity and mycorrhizal treatments had no effect, largely refuting my hypothesis that soils would release more nitrogen when exposed to higher variability patterns of rainfall. The current pressures that humans place on the environment are only expected to increase as populations and incomes continue to climb. The more than 9 billion peo- ple expected on the planet by 2050 require food, energy, shelter and other goods and services. Historically, producing those benefits has resulted in environmental damage, especially nitrogen pollution through agricultural fertilizers, atmospheric nitrogen de- position and human waste. I developed a model to test the effectiveness of various technologies and strategies to reduce the environmental harms associated with meeting the needs of human well-being. I tested the effects of increased crop yields through genetic gains, increased nutrient efficiency in agricultural systems, reduced meat con- sumption, reduced food waste and improved wastewater treatment on nitrogen yield. The tested levers were mildly effective at reducing nitrogen yield from the baseline busi- ness as usual (BAU) scenario, but still resulted in at least 15% greater nitrogen yield than the present. Applied in combination, in the 'Super Ag' scenario, the levers out performed the sum of their contributions when applied singly. Some levers were more effective in some places than others. Taken together, these results suggest that there is no one solution, and that solutions will be most effective when developed for local conditions and applied in combination.
NASA Astrophysics Data System (ADS)
Chowdhury, S.; Sharma, A.
2005-12-01
Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise present. SIMEX is based on theory that the trend in alternate parameters can be extrapolated back to the notional error free zone. We illustrate the utility of SIMEX in a synthetic rainfall-runoff modelling scenario and an application to study the dependence of uncertain distributed sea surface temperature anomalies with an indicator of the El Nino Southern Oscillation, the Southern Oscillation Index (SOI). The errors in rainfall data and its affect is explored using Sacramento rainfall runoff model. The rainfall uncertainty is assumed to be multiplicative and temporally invariant. The model used to relate the sea surface temperature anomalies (SSTA) to the SOI is assumed to be of a linear form. The nature of uncertainty in the SSTA is additive and varies with time. The SIMEX framework allows assessment of the relationship between the error free inputs and response. Cook, J.R., Stefanski, L. A., Simulation-Extrapolation Estimation in Parametric Measurement Error Models, Journal of the American Statistical Association, 89 (428), 1314-1328, 1994.
A quadratic regression modelling on paddy production in the area of Perlis
NASA Astrophysics Data System (ADS)
Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.
2017-08-01
Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.
Modeling the impact of climate variability on diarrhea-associated diseases in Taiwan (1996-2007).
Chou, Wei-Chun; Wu, Jiunn-Lin; Wang, Yu-Chun; Huang, Hsin; Sung, Fung-Chang; Chuang, Chun-Yu
2010-12-01
Diarrhea is an important public health problem in Taiwan. Climatic changes and an increase in extreme weather events (extreme heat, drought or rainfalls) have been strongly linked to the incidence of diarrhea-associated disease. This study investigated and quantified the relationship between climate variations and diarrhea-associated morbidity in subtropical Taiwan. Specifically, this study analyzed the local climatic variables and the number of diarrhea-associated infection cases from 1996 to 2007. This study applied a climate variation-guided Poisson regression model to predict the dynamics of diarrhea-associated morbidity. The proposed model allows for climate factors (relative humidity, maximum temperature and the numbers of extreme rainfall), autoregression, long-term trends and seasonality, and a lag-time effect. Results indicated that the maximum temperature and extreme rainfall days were strongly related to diarrhea-associated morbidity. The impact of maximum temperature on diarrhea-associated morbidity appeared primarily among children (0-14years) and older adults (40-64years), and had less of an effect on adults (15-39years). Otherwise, relative humidity and extreme rainfall days significantly contributed to the diarrhea-associated morbidity in adult. This suggested that children and older adults were the most susceptible to diarrhea-associated morbidity caused by climatic variation. Because climatic variation contributed to diarrhea morbidity in Taiwan, it is necessary to develop an early warning system based on the climatic variation information for disease control management. Copyright © 2010 Elsevier B.V. All rights reserved.
Nowcasting of rainfall and of combined sewage flow in urban drainage systems.
Achleitner, Stefan; Fach, Stefan; Einfalt, Thomas; Rauch, Wolfgang
2009-01-01
Nowcasting of rainfall may be used additionally to online rain measurements to optimize the operation of urban drainage systems. Uncertainties quoted for the rain volume are in the range of 5% to 10% mean square error (MSE), where for rain intensities 45% to 75% MSE are noted. For larger forecast periods up to 3 hours, the uncertainties will increase up to some hundred percents. Combined with the growing number of real time control concepts in sewer systems, rainfall forecast is used more and more in urban drainage systems. Therefore it is of interest how the uncertainties influence the final evaluation of a defined objective function. Uncertainty levels associated with the forecast itself are not necessarily transferable to resulting uncertainties in the catchment's flow dynamics. The aim of this paper is to analyse forecasts of rainfall and specific sewer output variables. For this study the combined sewer system of the city of Linz in the northern part of Austria located on the Danube has been selected. The city itself represents a total area of 96 km2 with 39 municipalities connected. It was found that the available weather radar data leads to large deviations in the forecast for precipitation at forecast horizons larger than 90 minutes. The same is true for sewer variables such a CSO overflow for small sub-catchments. Although the results improve for larger spatial scales, acceptable levels at forecast horizons larger than 90 minutes are not reached.
Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine
2016-08-01
This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.
NASA Astrophysics Data System (ADS)
Beria, H.; Nanda, T., Sr.; Bisht, D. S.; Chatterjee, C.
2016-12-01
Increasing hydrologic extremes in a changing climate with lack of quality rainfall forcings have inspired the development of a number of satellite and reanalysis based precipitation products in the past decade. Tropical Rainfall Measuring Mission (TRMM) has emerged as the front runner in this race, providing high quality precipitation forcings in the tropical part of the world. However, TRMM is known to suffer from its poor sensitivity to low rainfall intensities due to limited resolving power of its sensors, and is also not known to accurately resolve topography in its rainfall estimates. The Global Precipitation Mission (GPM), a follow-up mission of TRMM, promises enhanced spatio-temporal resolution along with upgrades in sensors and rainfall estimation techniques. In this study, the rainfall estimates of Integrated Multi-satellitE Retrievals for GPM (IMERG), was compared with those of TRMM for the major basins in India for the year 2014. IMERG depicted higher skill (in terms of correlation) for the majority of basins at all rainfall intensities, with a drastic improvement in low rainfall estimates (smaller biases in 75 out of 86 basins). IMERG was found to improve the topographic resolution, with lower error in high elevation basins. IMERG could better resolve the sharp topographic gradient in the Western Ghat region of India. However, IMERG suffered from poor skill in the semi-arid basins of Rajasthan, at all rainfall intensities. Rainfall-runoff exercise over Mahanadi River basin (a flood prone basin on the Eastern coast of India) using Variable Infiltration Capacity Model (VIC) showed better simulations with TRMM, mainly due to the overestimation of low rainfall events by IMERG. Also, the calibration scheme could be put to fault as the period of availability of IMERG is rather small, and more in-depth hydrologic analysis could only be carried out with sufficiently longer time series. Overall, the fine spatial and temporal resolution along with improved accuracy, promises new horizons in hydrologic forecasting under data scarcity.
Climate variability, rice production and groundwater depletion in India
NASA Astrophysics Data System (ADS)
Bhargava, Alok
2018-03-01
This paper modeled the proximate determinants of rice outputs and groundwater depths in 27 Indian states during 1980-2010. Dynamic random effects models were estimated by maximum likelihood at state and well levels. The main findings from models for rice outputs were that temperatures and rainfall levels were significant predictors, and the relationships were quadratic with respect to rainfall. Moreover, nonlinearities with respect to population changes indicated greater rice production with population increases. Second, groundwater depths were positively associated with temperatures and negatively with rainfall levels and there were nonlinear effects of population changes. Third, dynamic models for in situ groundwater depths in 11 795 wells in mainly unconfined aquifers, accounting for latitudes, longitudes and altitudes, showed steady depletion. Overall, the results indicated that population pressures on food production and environment need to be tackled via long-term healthcare, agricultural, and groundwater recharge policies in India.
NASA Technical Reports Server (NTRS)
McDermid, Sonali P.; Dileepkumar, Guntuku; Murthy, K. M. Dakshina; Nedumaran, S.; Singh, Piara; Srinivasa, Chukka; Gangwar, B.; Subash, N.; Ahmad, Ashfaq; Zubair, Lareef;
2015-01-01
South Asia encompasses a wide and highly varied geographic region, and includes climate zones ranging from the mountainous Himalayan territory to the tropical lowland and coastal zones along alluvial floodplains. The region's climate is dominated by a monsoonal circulation that heralds the arrival of seasonal rainfall, upon which much of the regional agriculture relies. The spatial and temporal distribution of this rainfall is, however, not uniform over the region. Northern South Asia, central India, and the west coast receive much of their rainfall during the southwest monsoon season, between June and September. These rains partly result from the moisture transport accompanying the monsoonal winds, which move in the southwesterly direction from the equatorial Indian Ocean. Regions further south, such as south/southeast India and Sri Lanka, may receive rains from both the southwest monsoon, and also during the northeast monsoon season between October and December (with northeasterly monsoon wind flow and moisture flux), which results in a bi- or multi-modal rainfall distribution. In addition, rainfall across South Asia displays a large amount of intraseasonal and interannual variability. Interannual variability is influenced by many drivers, both natural (e.g., El Ni-Southern Oscillation; ENSO) and man-made (e.g., rising temperatures due to increasing greenhouse gas concentrations), and it is challenging to obtaining accurate time-series of annual rainfall, even amongst various observed data products, which display inconsistencies amongst themselves. These climatic and rainfall variations can further complicate South Asia's agricultural and water management. Agriculture employs at least 65 of the workforce in most South Asian countries, and nearly 80 of South Asia's poor inhabit rural areas. Understanding the response of current agricultural production to climate variability and future climate change is of utmost importance in securing food and livelihoods for South Asia's growing population. In order to assess the future of food and livelihood security across South Asia, the Agricultural Model Intercomparison and Improvement Project (AgMIP) has undertaken integrated climate-crop-economic assessments of the impact of climate change on food security and poverty in South Asia, encompassing Bangladesh, India, Nepal, Pakistan, and Sri Lanka. AgMIP has funded, on a competitive basis, four South Asian regional research teams (RRTs) and one South Asian coordination team (CT) to undertake climate-crop-economic integrated assessments of food security for many districts in each of these countries, with the goal of characterizing the state of food security and poverty across the region, and projecting how these are subject to change under future climate change conditions.
NASA Astrophysics Data System (ADS)
Niedermeyer, E. M.; Mohtadi, M.; Sessions, A. L.; Feakins, S. J.
2012-12-01
We used the stable hydrogen and stable carbon isotopic composition (dD and d13C, respectively) of terrestrial plant leaf waxes as a proxy for past rainfall variations over northwestern Indonesia. Our study site lies within the western boundary of the Indo-Pacific Warm Pool (IPWP), a key evaporative site for the global hydrologic cycle. At present, rainfall intensity in tropical Indonesia is influenced by the Pacific Ocean El Nino Southern Oscillation (ENSO) (see Kirono et al., 1999), the Indian Ocean Dipole (IOD) mode (Saji et al., 1999), and to some extend by the position of the Intertropical Convergence Zone (ITCZ) (e.g. Koutavas and Lynch-Stieglitz, 2005). Paleoclimate studies show that these systems have varied in the past, however, the impact of these changes on regional paelo-hydrology of Indonesia is yet unknown. We worked on marine sediment core SO189-144KL (1°09,300 N; 98°03,960 E) retrieved at 480 m water depth off Northwest Sumatra from the eastern Indian Ocean. Sediments consist of material from marine and terrestrial sources, and radiocarbon dating indicates an age of ~300 years at the core top and of ~24,000 years at the base. We used d13C and dD values of the n-C30 alkanoic acid as proxies for changes in vegetation composition (C3 vs. C4 plants) and rainfall variability on land, respectively. Values of d13C show only little variation and suggest persistent dominance of tropical trees throughout the past 24,000 years. Values of dD display distinct variability throughout the record, however, mean rainfall intensities during the late Last Glacial compare to those during the Holocene. This is in agreement with rather consistent vegetation at the study site but in sharp contrast with reconstructions of contemporaneous rainfall patterns at the nearby islands Borneo (Partin et al., 2007) and Flores (Griffiths et al., 2009), indicating multiple controls on regional hydrology of Indonesia. In combination with previous studies of late Pleistocene to Holocene ENSO and IOD variability, we further address the complex controls on Indonesian climate with emphasis of Holocene rainfall variability. References Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Zhao, J.x., Ayliffe, L.K., Hellstrom, J.C., Hantoro, W.S., Frisia, S., Feng, Y.x., Cartwright, I., Pierre, E.S., Fischer, M.J., Suwargadi, B.W., 2009. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience 2, 636-639. Kirono, D.G.C., Tapper, N.J., McBride, J.L., 1999. Documenting Indonesian rainfall in the 1997/1998 El Nino event. Physical Geography 20, 422-435. Koutavas, A., Lynch-Stieglitz, J., 2005. Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: Regional perspective and global context. In: Bradley, R.S., Diaz, H.F. (Eds.), The Hadley Circulation: Present Past and Future. Springer, pp. 347-369. Partin, J.W., Cobb, K.M., Adkins, J.F., Clark, B., Fernandez, D.P., 2007. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, 452-455. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360-363.
Decadal features of heavy rainfall events in eastern China
NASA Astrophysics Data System (ADS)
Chen, Huopo; Sun, Jianqi; Fan, Ke
2012-06-01
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1990s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s-1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris
2014-01-01
Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.
Lantana camara L. (Verbenaceae) invasion along streams in a heterogeneous landscape.
Ramaswami, Geetha; Sukumar, Raman
2014-09-01
Streams are periodically disturbed due to flooding, act as edges between habitats and also facilitate the dispersal of propagules, thus being potentially more vulnerable to invasions than adjoining regions. We used a landscape-wide transect-based sampling strategy and a mixed effects modelling approach to understand the effects of distance from stream, a rainfall gradient, light availability and fire history on the distribution of the invasive shrub Lantana camara L.(lantana) in the tropical dry forests of Mudumalai in southern India. The area occupied by lantana thickets and lantana stem abundance were both found to be highest closest to streams across this landscape with a rainfall gradient. There was no advantage in terms of increased abundance or area occupied by lantana when it grew closer to streams in drier areas as compared to moister areas. On an average, the area covered by lantana increased with increasing annual rainfall. Areas that experienced greater number of fires during 1989-2010 had lower lantana stem abundance irrespective of distance from streams. In this landscape, total light availability did not affect lantana abundance. Understanding the spatially variable environmental factors in a heterogeneous landscape influencing the distribution of lantana would aid in making informed management decisions at this scale.
NASA Astrophysics Data System (ADS)
Madhavan, M.; Palliyil, L. R.; Ramesh, R.
2017-12-01
Pacific Sea Surface Temperature (SST) plays an important role in the inter-annual to inter-decadal variability of boreal monsoons. We identified a common mode of inter annual variability in the Indian and African boreal summer monsoon (June to September) rainfalls, which is linked to Pacific SSTs, using Empirical Orthogonal Function (EOF) analysis. Temporal coefficients (Principle component: PC1) of the leading mode of variability (EOF-1) is well correlated with the Indian summer monsoon rainfall and Sahel rainfall. About forty year long monthly observations of δ18O (and δD) at Addis Ababa, Ethiopia show a strong association with PC1 (r=0.69 for δ18O and r=0.75 for δD). Analysis of SST, sea level pressure and lower tropospheric winds suggest that 18O depletion in Ethiopian rainfall (and wet phases of PC1) is associated with cooler eastern tropical Pacific and warmer western Pacific and strengthening of Pacific subtropical high in both the hemispheres. Associated changes in the trade winds cause enhanced westerly moisture transport into the Indian subcontinent and northern Africa and cause enhanced rainfall. The intrusion of Atlantic westerly component of moisture transport at Addis Ababa during wet phases of PC1 is clearly recorded in δ18O of rain. We also observe the same common mode of variability (EOF1) of Indo-African boreal summer monsoon rain on decadal time scales. A 100 year long δ18O record of actively growing speleothem from the Mechara cave, Ethiopia, matches very well with the PC1 on the decadal time scale. This highlights the potential of speleothem δ18O and leaf wax δD from Ethiopia to investigate the natural variability and teleconnections of Indo-African boreal monsoon.
Classification and Space-Time Analysis of Precipitation Events in Manizales, Caldas, Colombia.
NASA Astrophysics Data System (ADS)
Suarez Hincapie, J. N.; Vélez, J.; Romo Melo, L.; Chang, P.
2015-12-01
Manizales is a mid-mountain Andean city located near the Nevado del Ruiz volcano in west-central Colombia, this location exposes it to earthquakes, floods, landslides and volcanic eruptions. It is located in the intertropical convergence zone (ITCZ) and presents a climate with a bimodal rainfall regime (Cortés, 2010). Its mean annual rainfall is 2000 mm, one may observe precipitation 70% of the days over a year. This rain which favors the formation of large masses of clouds and the presence of macroclimatic phenomenon as "El Niño South Oscillation", has historically caused great impacts in the region (Vélez et al, 2012). For example the geographical location coupled with rain events results in a high risk of landslides in the city. Manizales has a hydrometeorological network of 40 stations that measure and transmit data of up to eight climate variables. Some of these stations keep 10 years of historical data. However, until now this information has not been used for space-time classification of precipitation events, nor has the meteorological variables that influence them been thoroughly researched. The purpose of this study was to classify historical events of rain in an urban area of Manizales and investigate patterns of atmospheric behavior that influence or trigger such events. Classification of events was performed by calculating the "n" index of the heavy rainfall, describing the behavior of precipitation as a function of time throughout the event (Monjo, 2009). The analysis of meteorological variables was performed using statistical quantification over variable time periods before each event. The proposed classification allowed for an analysis of the evolution of rainfall events. Specially, it helped to look for the influence of different meteorological variables triggering rainfall events in hazardous areas as the city of Manizales.
Can we improve streamflow simulation by using higher resolution rainfall information?
NASA Astrophysics Data System (ADS)
Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles
2013-04-01
The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.
Soil erodibility variability in laboratory and field rainfall simulations
NASA Astrophysics Data System (ADS)
Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán
2017-04-01
Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?
NASA Astrophysics Data System (ADS)
Pham, M. T.; Vanhaute, W. J.; Vandenberghe, S.; De Baets, B.; Verhoest, N. E. C.
2013-12-01
Of all natural disasters, the economic and environmental consequences of droughts are among the highest because of their longevity and widespread spatial extent. Because of their extreme behaviour, studying droughts generally requires long time series of historical climate data. Rainfall is a very important variable for calculating drought statistics, for quantifying historical droughts or for assessing the impact on other hydrological (e.g. water stage in rivers) or agricultural (e.g. irrigation requirements) variables. Unfortunately, time series of historical observations are often too short for such assessments. To circumvent this, one may rely on the synthetic rainfall time series from stochastic point process rainfall models, such as Bartlett-Lewis models. The present study investigates whether drought statistics are preserved when simulating rainfall with Bartlett-Lewis models. Therefore, a 105 yr 10 min rainfall time series obtained at Uccle, Belgium is used as a test case. First, drought events were identified on the basis of the Effective Drought Index (EDI), and each event was characterized by two variables, i.e. drought duration (D) and drought severity (S). As both parameters are interdependent, a multivariate distribution function, which makes use of a copula, was fitted. Based on the copula, four types of drought return periods are calculated for observed as well as simulated droughts and are used to evaluate the ability of the rainfall models to simulate drought events with the appropriate characteristics. Overall, all Bartlett-Lewis model types studied fail to preserve extreme drought statistics, which is attributed to the model structure and to the model stationarity caused by maintaining the same parameter set during the whole simulation period.
NASA Astrophysics Data System (ADS)
Pham, M. T.; Vanhaute, W. J.; Vandenberghe, S.; De Baets, B.; Verhoest, N. E. C.
2013-06-01
Of all natural disasters, the economic and environmental consequences of droughts are among the highest because of their longevity and widespread spatial extent. Because of their extreme behaviour, studying droughts generally requires long time series of historical climate data. Rainfall is a very important variable for calculating drought statistics, for quantifying historical droughts or for assessing the impact on other hydrological (e.g. water stage in rivers) or agricultural (e.g. irrigation requirements) variables. Unfortunately, time series of historical observations are often too short for such assessments. To circumvent this, one may rely on the synthetic rainfall time series from stochastic point process rainfall models, such as Bartlett-Lewis models. The present study investigates whether drought statistics are preserved when simulating rainfall with Bartlett-Lewis models. Therefore, a 105 yr 10 min rainfall time series obtained at Uccle, Belgium is used as test case. First, drought events were identified on the basis of the Effective Drought Index (EDI), and each event was characterized by two variables, i.e. drought duration (D) and drought severity (S). As both parameters are interdependent, a multivariate distribution function, which makes use of a copula, was fitted. Based on the copula, four types of drought return periods are calculated for observed as well as simulated droughts and are used to evaluate the ability of the rainfall models to simulate drought events with the appropriate characteristics. Overall, all Bartlett-Lewis type of models studied fail in preserving extreme drought statistics, which is attributed to the model structure and to the model stationarity caused by maintaining the same parameter set during the whole simulation period.
NASA Astrophysics Data System (ADS)
Wable, Pawan S.; Jha, Madan K.
2018-02-01
The effects of rainfall and the El Niño Southern Oscillation (ENSO) on groundwater in a semi-arid basin of India were analyzed using Archimedean copulas considering 17 years of data for monsoon rainfall, post-monsoon groundwater level (PMGL) and ENSO Index. The evaluated dependence among these hydro-climatic variables revealed that PMGL-Rainfall and PMGL-ENSO Index pairs have significant dependence. Hence, these pairs were used for modeling dependence by employing four types of Archimedean copulas: Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard, and Frank. For the copula modeling, the results of probability distributions fitting to these hydro-climatic variables indicated that the PMGL and rainfall time series are best represented by Weibull and lognormal distributions, respectively, while the non-parametric kernel-based normal distribution is the most suitable for the ENSO Index. Further, the PMGL-Rainfall pair is best modeled by the Clayton copula, and the PMGL-ENSO Index pair is best modeled by the Frank copula. The Clayton copula-based conditional probability of PMGL being less than or equal to its average value at a given mean rainfall is above 70% for 33% of the study area. In contrast, the spatial variation of the Frank copula-based probability of PMGL being less than or equal to its average value is 35-40% in 23% of the study area during El Niño phase, while it is below 15% in 35% of the area during the La Niña phase. This copula-based methodology can be applied under data-scarce conditions for exploring the impacts of rainfall and ENSO on groundwater at basin scales.
NASA Astrophysics Data System (ADS)
Woodborne, Stephan; Hall, Grant; Zhang, Qiong
2016-04-01
Palaeoclimate reconstruction using isotopic analysis of tree growth increments has yielded a 1000-year record of rainfall variability in southern Africa. Isotope dendro-climatology reconstructions from baobab trees (Adansonia digitata) provide evidence for rainfall variability from the arid Namib Desert and the Limpopo River Valley. Isotopic analysis of a museum specimen of a yellowwood tree (Podocarps falcatus) yields another record from the southwestern part of the subcontinent. Combined with the limited classic denro-climatologies available in the region these records yield palaeo-rainfall variability in the summer and winter rainfall zones as well as the hyper-arid zone over the last 1000 years. Coherent shifts in all of the records indicate synoptic changes in the westerlies, the inter-tropical convergence zone, and the Congo air boundary. The most substantial rainfall shift takes place at about 1600 CE at the onset of the Little Ice Age. Another distinctive feature of the record is a widespread phenomenon that occurs shortly after 1810 CE that in southern Africa corresponds with a widespread social upheaval known as the Difequane or Mfekane. Large scale forcing of the system includes sea-surface temperatures in the Agulhas Current, the El Nino Southern Oscillation and the Southern Annular Mode. The Little Ice Age and Mfekane climate shifts result from different forcing mechanisms, and the rainfall response in the different regions at these times do not have a fixed phase relationship. This complexity provides a good scenario to test climate models. A first order (wetter versus drier) comparison between each of the tree records and a 1000-year palaeoclimate model simulation for the Little Ice Age and Mfekane transitions demonstrates a generally good correspondence.
Quasi-continuous stochastic simulation framework for flood modelling
NASA Astrophysics Data System (ADS)
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
The Response of Environmental Capacity for Malaria Transmission in West Africa to Climate Change
NASA Astrophysics Data System (ADS)
Yamana, T. K.; Eltahir, E. A.
2011-12-01
The climate of West Africa is characterized by north-south gradients in temperature and rainfall. Environmental capacity for malaria transmission (e.g. as measured by vectorial capacity) is strongly tied to these two variables; temperature affects the development rate of the malaria parasite, as well as the lifespan of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. A change in climate is therefore expected to lead to changes in the distribution of malaria transmission. Current general circulation models agree that the temperature in West Africa is expected to increase by several degrees in the next century. However they predict a wide range of possible rainfall scenarios in the future, from intense drying to significant increases in rainfall (Christensen et al., 2007). The effects these changes will have on environmental capacity for malaria transmission depend on the magnitude and direction of the changes, and on current conditions. For example, malaria transmission will be more sensitive to positive changes in rainfall in dry areas where mosquito populations are currently limited by water availability than in relatively wet areas. Here, we analyze combinations of changes in rainfall and temperature within the ranges predicted by GCMs, and assess the impact these combinations will have on the environmental capacity for malaria transmission. In particular, we identify climate change scenarios that are likely to have the greatest impact on environmental capacity for malaria transmission, as well as geographic "hot spots" where the greatest changes are to be expected. Christensen, J. H., Busuioc, A., & et al. (2007). Regional climate projections. In S. Solomon (Ed.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2016-04-01
The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the Mediterranean area. This spatio-temporal analysis of rainfall erosivity at European scale is very important for policy makers and farmers for soil conservation, optimization of agricultural land use and natural hazards prediction. REDES is also used in combination with future rainfall data from WorldClim to run climate change scenarios. The projection of REDES combined with climate change scenarios (HADGEM2, RCP4.5) and using a robust geo-statistical model resulted in a 10-20% increase of the R-factor in Europe till 2050.
Climatic, high tide and vector variables and the transmission of Ross River virus.
Tong, S; Hu, W; Nicholls, N; Dale, P; MacKenzie, J S; Patz, J; McMichael, A J
2005-11-01
This report assesses the impact of the variability in environmental and vector factors on the transmission of Ross River virus (RRV) in Brisbane, Australia. Poisson time series regression analyses were conducted using monthly data on the counts of RRV cases, climate variables (Southern Oscillation Index and rainfall), high tides and mosquito density for the period of 1998-2001. The results indicate that increases in the high tide (relative risk (RR): 1.65; 95% confidence interval (CI): 1.20-2.26), rainfall (RR: 1.45; 95% CI: 1.21-1.73), mosquito density (RR: 1.17; 95% CI: 1.09-1.27), the density of Culex annulirostris (RR: 1.25; 95% CI: 1.13-1.37) and the density of Ochlerotatus vigilax (RR: 2.39; 95% CI: 2.30-2.48), each at a lag of 1 month, were statistically significantly associated with the rise of monthly RRV incidence. The results of the present study might facilitate the development of early warning systems for reducing the incidence of this wide-spread disease in Australia and other Pacific island nations.
Trend Analysis of Annual and Seasonal Rainfall in Kansas
NASA Astrophysics Data System (ADS)
Rahmani, V.; Hutchinson, S. L.; Hutchinson, J.; Anandhi, A.
2012-12-01
Precipitation has direct impacts on agricultural production, water resources management, and recreational activities, all of which have significant economic impacts. Thus developing a solid understanding of rainfall patterns and trends is important, and is particularly vital for regions with high climate variability like Kansas. In this study, the annual and seasonal rainfall trends were analyzed using daily precipitation data for four consecutive periods (1891-1920, 1921-1950, 1951-1980, and 1981-2010) and an overall data range of 1890 through 2011 from 23 stations in Kansas. The overall analysis showed that on average Kansas receives 714 mm of rain annually with a strong gradient from west (425 mm, Tribune) to east (1069 mm, Columbus). Due to this gradient, western and central Kansas require more irrigation water than eastern Kansas during the summer growing season to reach the plant water requirements and optimize yield. In addition, a gradual increase in total annual rainfall was found for 21 of 23 stations with a greater increase for recent years (1956 through 2011) and eastern part. The average trend slope for the state is 0.7 mm/yr with a minimum value of -0.8 mm/yr for Saint Francis in Northwest and a maximum value of 2 mm/yr for Independence in Southeast. Seasonal analysis showed that all stations received the most rain during the summer season (June, July, Aug) followed by Spring, Fall and Winter respectively. Investigating the number of dry days (days with rain less than or equal to 2.5 mm) showed that 17 of 23 had a decreasing trend from west to east and across time with the greatest decrease of -0.07 days/yr for Winfield in South and the greatest increase of 0.05 days/yr for Elkhart in Southwest. When assessing the number of dry days between rainfall events, it was found that the majority of the stations had a decreasing trend for most of the months from west to east and across time. These results indicate that Kansas is experiencing fewer dry days and more rainy days with an increasing trend of total rainfall, so the irrigation amount should be updated for each region, and crop and plant types can be modified. The increasing rainfall will also affect hydraulic structures like dams, culverts and channels that may result in more property loss and threat to human life. New rainfall patterns should be considered when designing stormwater management system to avoid poor (over or under sized) design.
Recent climate variability and its impacts on soybean yields in Southern Brazil
NASA Astrophysics Data System (ADS)
Ferreira, Danielle Barros; Rao, V. Brahmananda
2011-08-01
Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.
NASA Astrophysics Data System (ADS)
Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa
2018-01-01
We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.
Holocene climate variability and oceanographic changes off western South Africa
NASA Astrophysics Data System (ADS)
Zhao, Xueqin; Dupont, Lydie; E Meadows, Michael; Schefuß, Enno; Bouimetarhan, Ilham; Wefer, Gerold
2017-04-01
South Africa is located at a critical transition zone between subtropical and warm-temperate climate zones influenced by the Indian and Atlantic oceans. Presently, the seasonal changes of atmospheric and oceanic systems induce a pronounced rainfall seasonality comprised of two different rainfall zones over South Africa. How did this seasonality develop during the Holocene? To obtain a better understanding of how South African climates have evolved during the Holocene, we conduct a comprehensive spatial-temporal approach including pollen and dinoflagellate cyst records from marine sediment samples retrieved from the Namaqualand mudbelt, a Holocene terrigenous mud deposit on the shelf of western South Africa. The representation of different vegetation communities in western South Africa is assessed through pollen analysis of surface sediments. This approach allows for climate reconstructions of the summer rainfall zone (SRZ) using Group 1 (Poaceae, Cyperaceae, Phragmites-type and Typha) and winter rainfall zone (WRZ) using Group 2 (Restionaceae, Ericaceae, Anthospermum, Stoebe/Elytropappus-type, Cliffortia, Passerina, Artemisia-type and Pentzia-type) from a single marine archive. The fossil pollen data from gravity core GeoB8331-4 indicate contrasting climate patterns in the SRZ and WRZ especially during the early and middle Holocene. The rainfall amount in the SRZ is dominated by insolation forcing, while in the WRZ it is mainly attributed to the latitudinal position of the southern westerlies. Dinoflagellate cyst data show significantly different oceanographic conditions associated with climate changes on land. High percentages of autotrophic taxa like Operculodinium centrocarpum and Spiniferites spp. indicate warm and stratified conditions during the early Holocene, suggesting reduced upwelling. In contrast, the middle Holocene is characterized by a strong increase in heterotrophic taxa in particular Lejeunecysta paratenella and Echinidinium spp., indicating cool and nutrient-rich waters with active upwelling. Thus, sea surface temperatures are dominated by upwelling dynamics influenced by the latitudinal position of the southern westerlies rather than warm waters via the Agulhas leakage. The paleo-productivity changes during the late Holocene are controlled by the freshwater influx of the Orange River indicated by abundant fluvial-related taxa such as Brigantedinium spp., Protoperidinium americanum and Lejeunecysta oliva. This corroborates the increase of Poaceae/Asteraceae ratio suggesting increased summer rainfall in the SRZ. Therefore, the terrestrial (pollen) and marine (dinoflagellate cyst) records generated from the same sediment sequence enable a clear understanding of the mechanisms driving variability in the Holocene of South Africa and provide significant insight into the land-ocean linkages.