Sample records for increased sediment loading

  1. Predicting improved optical water quality in rivers resulting from soil conservation actions on land.

    PubMed

    Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D

    2017-12-15

    Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent

    PubMed Central

    Atkinson, Scott; Klein, Carissa Joy; Weber, Tony; Possingham, Hugh P.

    2017-01-01

    Land-based activities, including deforestation, agriculture, and urbanisation, cause increased erosion, reduced inland and coastal water quality, and subsequent loss or degradation of downstream coastal marine ecosystems. Quantitative approaches to link sediment loads from catchments to metrics of downstream marine ecosystem state are required to calculate the cost effectiveness of taking conservation actions on land to benefits accrued in the ocean. Here we quantify the relationship between sediment loads derived from landscapes to habitat suitability of seagrass meadows in Moreton Bay, Queensland, Australia. We use the following approach: (1) a catchment hydrological model generates sediment loads; (2) a statistical model links sediment loads to water clarity at monthly time-steps; (3) a species distribution model (SDM) factors in water clarity, bathymetry, wave height, and substrate suitability to predict seagrass habitat suitability at monthly time-steps; and (4) a statistical model quantifies the effect of sediment loads on area of seagrass suitable habitat in a given year. The relationship between sediment loads and seagrass suitable habitat is non-linear: large increases in sediment have a disproportionately large negative impact on availability of seagrass suitable habitat. Varying the temporal scale of analysis (monthly vs. yearly), or varying the threshold value used to delineate predicted seagrass presence vs. absence, both affect the magnitude, but not the overall shape, of the relationship between sediment loads and seagrass suitable habitat area. Quantifying the link between sediment produced from catchments and extent of downstream marine ecosystems allows assessment of the relative costs and benefits of taking conservation actions on land or in the ocean, respectively, to marine ecosystems. PMID:29125843

  3. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  4. Sediment load trends in the Magdalena River basin (1980-2010): Anthropogenic and climate-induced causes

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Escobar, Heber A.

    2018-02-01

    The Colombian Andes and its main river basin, the Magdalena, have witnessed dramatic changes in land cover and further forest loss during the last three decades. For the Magdalena River, human activities appear to have played a more prominent role compared to rainfall (climate change) to mobilize sediment. However, environmental authorities in Colombia argue that climate change is the main trigger of erosion and floods experienced during the last decade. Here we present the first regional exercise addressing the following: (1) what are the observed trends of sediment load in the northern Andes during the last three decades? and (2) are sediment load trends in agreement with tendencies in land use change and climate (e.g., precipitation)? We perform Mann-Kendall tests on sediment load series for 21 main tributary systems during the 1980-2010 period. These gauging stations represent 77% of the whole Magdalena basin area. The last decade has been a period of increased pulses in sediment transport as seen by the statistical significant trends in load. Overall, six subcatchments, representing 55% of the analyzed Magdalena basin area, have witnessed increasing trends in sediment load. Also, some major tributaries have experienced changes in their interannual mean sediment flux during the mid- 1990s and 2005. Further analysis of land cover change (e.g., deforestation) indicates that the basin has undergone considerable change. Forest cover decreased by 40% over the period of study, while the area under agriculture and pasture cover (agricultural lands 1 and 2) increased by 65%. The highest peak of forest loss on record in the Magdalena basin, 5106 km2 or 24% of the combined deforestation in Colombia, occurred during the 2005-2010 period. In contrast, Mann-Kendall tests on rainfall series for 61 stations reveal that precipitation shows no regional signs of increasing trends. Also, increasing trends in sediment load match quite well with the marked increase in forest clearance during the 1990-2000 and 2005-2010 periods. Such signs of increasing sediment fluxes should not be attributed to climate change and rainfall variability alone. As a whole, the Magdalena, one of the top 10 rivers in terms of sediment delivery to the ocean (184 Mt y- 1), and its tributaries have experienced increasing trends in sediment load during the 1980-2010 period; increases in close agreement with trends in land use change and deforestation. During the last decade, the Magdalena River drainage basin has witnessed an increase in erosion rates of 34%, from 550 t km- 2 y- 1 before 2000 to 710 t km- 2 y- 1 for the 2000-2010 period, and the average sediment load for the whole basin increased to 44 Mt y- 1 for the same period. Similar to the global picture of human contribution to sediment generation, the rate of anthropogenic soil erosion in the Magdalena basin probably exceeds the rate of climate-driven erosion by several orders of magnitude.

  5. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    NASA Astrophysics Data System (ADS)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream distances.

  6. The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading.

    PubMed

    Niemistö, Juha P; Horppila, Jukka

    2007-01-01

    The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.

  7. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    PubMed

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  8. Sediments influence accumulation of two macroalgal species through novel but differing interactions with nutrients and herbivory

    NASA Astrophysics Data System (ADS)

    Clausing, Rachel J.; Bittick, Sarah Joy; Fong, Caitlin R.; Fong, Peggy

    2016-12-01

    Despite increasing concern that sediment loads from disturbed watersheds facilitate algal dominance on tropical reefs, little is known of how sediments interact with two primary drivers of algal communities, nutrients and herbivory. We examined the effects of sediment loads on the thalli of two increasingly abundant genera of macroalgae, Galaxaura and Padina, in a bay subject to terrestrial sediment influx in Mo'orea, French Polynesia. Field experiments examining (1) overall effects of ambient sediments and (2) interacting effects of sediments (ambient/removal) and herbivores (caged/uncaged) demonstrated that sediments had strong but opposite effects on both species' biomass accumulation. Sediment removal increased accumulation of Padina boryana Thivy 50% in the initial field experiment but had no effect in the second; rather, in a novel interaction, herbivores overcompensated for increases in tissue nutrient stores that occurred with sediments loads, likely by preferential consumption of nutrient-rich meristematic tissues. Despite negative effects of sediments on biomass, Padina maintained rapid growth across treatments in both experiments. In contrast, positive growth in Galaxaura divaricata Kjellman only occurred with ambient sediment loads. In mesocosm experiments testing interactions of added nutrients and sediments on growth, Galaxaura grew at equivalent rates with sediments (collected from thalli on the reef) as with additions of nitrate and phosphate, suggesting sediments provide a nutrient subsidy. For Padina, however, the only effect was a 50% reduction in growth with sediment. Overall, retention of thallus sediments creates a positive feedback that Galaxaura appears to require to sustain net growth, while Padina merely tolerates sediments. These results indicate that sediments can modify nutrient and herbivore control of algae in ways that differ among species, with the potential for strong and unexpected effects on the abundance and composition of tropical reef macroalgae.

  9. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  10. Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia.

    PubMed

    van Katwijk, M M; van der Welle, M E W; Lucassen, E C H E T; Vonk, J A; Christianen, M J A; Kiswara, W; al Hakim, I Inayat; Arifin, A; Bouma, T J; Roelofs, J G M; Lamers, L P M

    2011-07-01

    In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Composition and temporal stability of turf sediments on inner-shelf coral reefs.

    PubMed

    Gordon, Sophie E; Goatley, Christopher H R; Bellwood, David R

    2016-10-15

    Elevated sediment loads within the epilithic algal matrix (EAM) of coral reefs can increase coral mortality and inhibit herbivory. Yet the composition, distribution and temporal variability of EAM sediment loads are poorly known, especially on inshore reefs. This study quantified EAM sediment loads (including organic particulates) and algal length across the reef profile of two bays at Orpheus Island (inner-shelf Great Barrier Reef) over a six month period. We examined the total sediment mass, organic load, carbonate and silicate content, and the particle sizes of EAM sediments. Throughout the study period, all EAM sediment variables exhibited marked variation among reef zones. However, EAM sediment loads and algal length were consistent between bays and over time, despite major seasonal variation in climate including a severe tropical cyclone. This study provides a comprehensive description of EAM sediments on inshore reefs and highlights the exceptional temporal stability of EAM sediments on coral reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Internal phosphorus loading across a cascade of three eutrophic basins: A synthesis of short- and long-term studies.

    PubMed

    Tammeorg, Olga; Horppila, Jukka; Tammeorg, Priit; Haldna, Marina; Niemistö, Juha

    2016-12-01

    Ascertaining the phosphorus (P) release processes in polymictic lakes is one of the methodologically most complex questions in limnology. In the current study, we combined short- and long-term investigations to elucidate the role of sediments in the P budget in a chain of eutrophic lake basins. We quantified the internal loading of P in three basins of Lake Peipsi (Estonia/Russia) for two periods characterized by different external P loadings using radiometrically dated sediment cores (long-term studies). The relationships between different water quality variables and the internal P loading, and the external P loading were studied. Our short-term studies aimed at elucidating the possible mechanisms behind variations in internal P loading included examination of the surficial sediments, i.e., seasonal measurements of redox potential, sediment pore water P concentrations and diffusive fluxes. Our results provided evidence for a potentially high importance of internal P loading in regulating water quality. The sediment core analyses revealed an increase in the internal P loading during the period of lower external P loading coinciding with the general deterioration in the lake water quality (i.e, higher concentrations of soluble reactive phosphorus, total phosphorus and biomass of cyanobacteria). Increase in wave action between the two studied periods appeared to cause more frequent sediment resuspension, and thus be the most likely reason for the variations in internal P loading. Our short-term measurements indicated that resuspension events can be followed by a considerable increase in the diffusive fluxes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Estimation of historic flows and sediment loads to San Francisco Bay,1849–2011

    USGS Publications Warehouse

    Moftakhari, H.R.; Jay, D.A.; Talke, S.A.; Schoellhamer, David H.

    2015-01-01

    River flow and sediment transport in estuaries influence morphological development over decadal and century time scales, but hydrological and sedimentological records are typically too short to adequately characterize long-term trends. In this study, we recover archival records and apply a rating curve approach to develop the first instrumental estimates of daily delta inflow and sediment loads to San Francisco Bay (1849–1929). The total sediment load is constrained using sedimentation/erosion estimated from bathymetric survey data to produce continuous daily sediment transport estimates from 1849 to 1955, the time period prior to sediment load measurements. We estimate that ∼55% (45–75%) of the ∼1500 ± 400 million tons (Mt) of sediment delivered to the estuary between 1849 and 2011 was the result of anthropogenic alteration in the watershed that increased sediment supply. Also, the seasonal timing of sediment flux events has shifted because significant spring-melt floods have decreased, causing estimated springtime transport (April 1st to June 30th) to decrease from ∼25% to ∼15% of the annual total. By contrast, wintertime sediment loads (December 1st to March 31st) have increased from ∼70% to ∼80%. A ∼35% reduction of annual flow since the 19th century along with decreased sediment supply has resulted in a ∼50% reduction in annual sediment delivery. The methods developed in this study can be applied to other systems for which unanalyzed historic data exist.

  14. Evaluating forest management effects on erosion, sediment, and runoff: Caspar Creek and northwestern California

    Treesearch

    Raymond M. Rice; Robert R. Ziemer; Jack Lewis

    2004-01-01

    The effects of multiple logging disturbances on peak flows and suspended sediment loads from second-growth redwood watersheds were approximately additive. Downstream increases were no greater than would be expected from the proportion of the area disturbed. Annual sediment load increases of from 123 to 269% were measured in tributary watersheds but were not detected at...

  15. "Forest management effects on erosion, sediment, and runoff: Lessons from Caspar Creek and northwestern California"

    Treesearch

    Raymond M. Rice; Robert R. Ziemer; Jack Lewis

    2001-01-01

    Abstract - The effects of multiple logging disturbances on peak flows and suspended sediment loads from second-growth redwood watersheds were approximately additive. Downstream increases were no greater than would be expected from the proportion of the area disturbed. Annual sediment load increases of from 123 to 269% were measured in tributary watersheds but were...

  16. Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    NASA Astrophysics Data System (ADS)

    Chi, Kaige; Gang, Zhao; Pang, Bo; Huang, Ziqian

    2018-06-01

    Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann-Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1) the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2) The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3) According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.

  17. Sediment in a Michigan trout stream, its source movement, and some effects on fish habitat.

    Treesearch

    Edward A. Hansen

    1971-01-01

    A sediment budget was constructed from 3 years of measurements on a pool and riffle stream. Total sediment load increased five times along a 26-mile length of stream; most sediment came from 204 eroding banks. Three-fourths of the total sediment load was sand size. The area of streambed covered with sand decreased downstream, indicating that the transporting...

  18. Effects of urban best management practices on streamflow and phosphorus and suspended-sediment transport on Englesby Brook in Burlington, Vermont, 2000-2010

    USGS Publications Warehouse

    Medalie, Laura

    2012-01-01

    An assessment of the effectiveness of several urban best management practice structures, including a wet extended detention facility and a shallow marsh wetland (together the "wet extended detention ponds"), was made using data collected from 2000 through 2010 at Englesby Brook in Burlington, Vermont. The purpose of the best management practices was to reduce high streamflows and phosphorus and suspended-sediment loads and concentrations and to increase low streamflows. Englesby Brook was monitored for streamflow, phosphorus, and suspended-sediment concentrations at a streamgage downstream of the best management practice structures for 5 years before the wet extended detention ponds were constructed in 2005 and for 4 years (phosphorus and suspended-sediment concentrations) or 5 years (streamflow) after they were constructed. The period after construction of the best management practice structures was wetter and had higher discharges than the period before construction. Despite the wetter conditions, streamflow duration curves provided evidence that the streamflow regime appeared to have shifted so that the percentages of low streamflows have increased and those of high streamflows may have slightly decreased. Two other hydrologic measures showed improvements in the years following construction of the best management practices: the percentage of annual discharge transported during the 3 days with highest discharges and the number of days with zero streamflow have both decreased. Evidence was mixed for the effectiveness of the best management practices in reducing phosphorus and suspended-sediment concentrations and loads. Annual phosphorus and suspended-sediment loads, monthly loads, low-streamflow concentrations, storm-averaged streamflow-adjusted concentrations, and total storm loads either did not change significantly or increased in the period after construction. These results likely were because of the wetter conditions in the period after construction. For example, monthly loads assessed using analysis of covariance, which compensated for the effects of streamflow on loads, suggested no difference in phosphorus or suspended-sediment loads between the two periods, whereas the comparison of monthly loads without factoring in streamflow showed an increase. This result could be viewed as evidence that the ponds may have mitigated the effect of greater discharges in the period after construction by preventing a corresponding increase in loads. In another analysis used to adjust for the difference in discharge between the two comparison periods, annual and monthly load results were grouped into dry and wet years. Large (50 percent) reductions in annual loads were observed when data from dry (or wet) years before construction were compared with data from dry (or wet) years after construction. When paired monthly loads of each constituent were grouped into dry and wet years, approximately the same number of months had increases as did decreases with the magnitudes of the decreases generally larger than the magnitudes of the increases. These differences in magnitude explain the decrease in annual loads for dry and wet years. The close association of phosphorus with suspended-sediment data suggested that most of the phosphorus was in the particulate form and was controlled by suspended-sediment dynamics.

  19. Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s

    NASA Astrophysics Data System (ADS)

    Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang

    2018-03-01

    Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.

  20. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  1. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    NASA Astrophysics Data System (ADS)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  2. A method for improving predictions of bed-load discharges to reservoirs

    USGS Publications Warehouse

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  3. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic Region

    Treesearch

    K. Bruce Jones; Anne C. Neale; Malisha S. Nash; Rick D. van Remortel; James D. Wickham; Kurt H. Riitters; Robert V. O' Neill

    2001-01-01

    There has been an increasing interest in evaluating the relative condition or health of water resources at regional and national scales. Of particular interest is an ability to identify those areas where surface and ground waters have the greatest potential for high levels of nutrient and sediment loadings. High levels of nutrient and sediment loadings can have adverse...

  4. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Escobar, Rogger; Tosic, Marko

    2018-02-01

    Fluxes of continental runoff and sediments as well as downstream deposition of eroded soils have severely altered the structure and function of fluvial and deltaic-estuarine ecosystems. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers important amounts of water and sediments into Cartagena Bay, a major estuarine system in northern Colombia. Until now, trends in fluvial fluxes into the bay, as well as the relationship between these tendencies in fluvial inputs and associated upstream changes in the Magdalena catchment, have not been studied. Here we explore the interannual trends of water discharge and sediment load flowing from the Magdalena River-Canal del Dique system into Cartagena Bay during the last three decades, forecast future scenarios of fluxes into the bay, and discuss possible connections between observed trends in fluvial inputs and trends in human intervention in the Magdalena River basin. Significant upward trends in annual runoff and sediment load during the mid-1980s, 1990s, and post-2000 are observed in the Magdalena and in the Canal del Dique flowing into Cartagena Bay. During the last decade, Magdalena streamflow and sediment load experienced increases of 24% and 33%, respectively, compared to the pre-2000 year period. Meanwhile, the Canal del Dique witnessed increases in water discharge and sediment load of 28% and 48%, respectively. During 26 y of monitoring, the Canal del Dique has discharged 177 Mt of sediment to the coastal zone, of which 52 Mt was discharged into Cartagena Bay. Currently, the Canal drains 6.5% and transports 5.1% of the Magdalena water discharge and sediment load. By 2020, water discharge and sediment flux from the Canal del Dique flowing to the coastal zone will witness increments of 164% and 260%, respectively. Consequently, sediment fluxes into Cartagena Bay will witness increments as high as 8.2 Mt y- 1 or 317%. Further analyses of upstream sediment load series for 21 tributary systems of the main Magdalena during the 2005-2010 period reveal that six tributaries, representing 55% of the analyzed Magdalena basin area, have witnessed increasing trends in sediment load, raising the river's sediment load by 44 Mt y- 1. Overall, trends in sediment load of the Magdalena and the Canal del Dique during the last three decades are in close agreement with the observed trends in human induced upstream erosion. The last decade has witnessed even stronger increments in fluvial fluxes to Cartagena Bay. Our results emphasize the importance of the catchment-coast linkage in order to predict future changes of fluvial fluxes into Caribbean estuarine systems.

  5. Simulating sediment loading into the major reservoirs in Trinity River Basin

    USDA-ARS?s Scientific Manuscript database

    The Upper Trinity Basin supplies water to about one-fourth of Texas' population. The anticipated rapid growth of North Central Texas will certainly increase regional demands for high quality drinking water. This has increased concerns that sediment and nutrient loads received by drinking water reser...

  6. Sediment concentrations and loads in the Loxahatchee River estuary, Florida, 1980-82

    USGS Publications Warehouse

    Sonntag, Wayne H.; McPherson, Benjamin F.

    1984-01-01

    This study was conducted to estimate the magnitude of sediment loads and the general spatial and temporal patterns of sediment transport in the Loxahatchee River estuary, Florida. Mean concentrations of suspended sediment generally were higher in the Jupiter Inlet area than in the remainder of the embayment area. Concentrations of suspended sediment varied with season and weather conditions. Concentrations in selected tributaries following Tropical Storm Dennis in August 1981 immediately increased as much as 16 times over concentrations before the storm. Suspended-sediment loads from the tributaries were also highly seasonal and storm related. During a 61-day period of above-average rainfall that included Tropical Storm Dennis, 5 major tributaries discharged 926 tons (short) of suspended sediment to the estuary, accounting for 74 percent of the input for the 1981 water year and 49 percent of the input for the 20-month study period. Suspended-sediment loads at Jupiter Inlet and at the mouth of the estuary embayment on both incoming and outgoing tides far exceeded tributary loads, but the direction of long-term, net tidal transport was not determined. (USGS)

  7. Temporal downscaling of decadal sediment load estimates to a daily interval for use in hindcast simulations

    USGS Publications Warehouse

    Ganju, N.K.; Knowles, N.; Schoellhamer, D.H.

    2008-01-01

    In this study we used hydrologic proxies to develop a daily sediment load time-series, which agrees with decadal sediment load estimates, when integrated. Hindcast simulations of bathymetric change in estuaries require daily sediment loads from major tributary rivers, to capture the episodic delivery of sediment during multi-day freshwater flow pulses. Two independent decadal sediment load estimates are available for the Sacramento/San Joaquin River Delta, California prior to 1959, but they must be downscaled to a daily interval for use in hindcast models. Daily flow and sediment load data to the Delta are available after 1930 and 1959, respectively, but bathymetric change simulations for San Francisco Bay prior to this require a method to generate daily sediment load estimates into the Delta. We used two historical proxies, monthly rainfall and unimpaired flow magnitudes, to generate monthly unimpaired flows to the Sacramento/San Joaquin Delta for the 1851-1929 period. This step generated the shape of the monthly hydrograph. These historical monthly flows were compared to unimpaired monthly flows from the modern era (1967-1987), and a least-squares metric selected a modern water year analogue for each historical water year. The daily hydrograph for the modern analogue was then assigned to the historical year and scaled to match the flow volume estimated by dendrochronology methods, providing the correct total flow for the year. We applied a sediment rating curve to this time-series of daily flows, to generate daily sediment loads for 1851-1958. The rating curve was calibrated with the two independent decadal sediment load estimates, over two distinct periods. This novel technique retained the timing and magnitude of freshwater flows and sediment loads, without damping variability or net sediment loads to San Francisco Bay. The time-series represents the hydraulic mining period with sustained periods of increased sediment loads, and a dramatic decrease after 1910, corresponding to a reduction in available mining debris. The analogue selection procedure also permits exploration of the morphological hydrograph concept, where a limited set of hydrographs is used to simulate the same bathymetric change as the actual set of hydrographs. The final daily sediment load time-series and morphological hydrograph concept will be applied as landward boundary conditions for hindcasting simulations of bathymetric change in San Francisco Bay.

  8. Suspended sediment load in northwestern South America (Colombia): A new view on variability and fluxes into the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Restrepo López, Juan Camilo; Orejarena R, Andrés F.; Torregroza, Ana Carolina

    2017-12-01

    Monthly averaged suspended sediment load data from seven rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analyzed to quantify magnitudes, estimate long-term trends, and evaluate variability patterns of suspended sediment load. Collectively these rivers deliver an average of around 146.3 × 106 t yr-1 of suspended sediments to the Colombian Caribbean coast. The largest sediment supply is provided by the Magdalena River, with a mean suspended sediment load of 142.6 × 106 t yr-1, or 38% of the total fluvial discharge estimated for the whole Caribbean littoral zone. Between 2000 and 2010, the annual suspended sediment load of these rivers increased by as much as 36%. Wavelet spectral analyses identified periods of intense variability between 1987-1990 and 1994-2002, where major oscillation processes appeared simultaneously. The semi-annual, annual and quasi-decadal bands are the main factors controlling suspended sediment load variability in fluvial systems, whereas the quasi-biennial and interannual bands constitute second-order sources of variability. The climatic and oceanographic drivers of the oscillations identified through wavelet spectral analyses define a signal of medium-long-term variability for the suspended sediment load, while the physiographic and environmental characteristics of the basins determine their ability to magnify, attenuate or modify this signal.

  9. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    USGS Publications Warehouse

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.

  10. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.

  11. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs

    PubMed Central

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E.

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar’s major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs. PMID:23736941

  12. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs.

    PubMed

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar's major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs.

  13. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5 μm; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.

  14. Today's sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif

    NASA Astrophysics Data System (ADS)

    Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan

    2014-01-01

    The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.

  15. Sharing the rivers: Balancing the needs of people and fish against the backdrop of heavy sediment loads downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Czuba, J. A.; Czuba, C. R.; Curran, C. A.

    2012-12-01

    Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management approaches of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches including setback levees. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.

  16. Transport and Sources of Suspended Sediment in the Mill Creek Watershed, Johnson County, Northeast Kansas, 2006-07

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge renovation. The implication of this finding is that sediment yields from larger watersheds may remain elevated after the majority of urban development is complete. Surface soil, channel-bank, suspended-sediment, and streambed-sediment samples were analyzed for grain size, nutrients, trace elements, and radionuclides in the Mill Creek watershed to characterize suspended sediment between surface or channel-bank sources. Although concentrations and activities of cobalt, nitrogen, selenium, total organic carbon, cesium-137, and excess lead-210 had significant differences between surface and channel-bank samples, biases resulting from urban construction, additional sorption of constituents during sediment transport, and inability to accurately represent erosion from rills and gullies precluded accurate characterization of suspended-sediment source.

  17. Characterization of sediment transport upstream and downstream from Lake Emory on the Little Tennessee River near Franklin, North Carolina, 2014–15

    USGS Publications Warehouse

    Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.

    2017-09-06

    Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.

  18. Changes in bottom-surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood; implications for nutrient and sediment loads to Chesapeake Bay

    USGS Publications Warehouse

    Langland, Michael J.; Hainly, Robert A.

    1997-01-01

    The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.

  19. Effects of nutrient loading on the carbon balance of coastal wetland sediments

    USGS Publications Warehouse

    Morris, J.T.; Bradley, P.M.

    1999-01-01

    Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.

  20. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA

    NASA Astrophysics Data System (ADS)

    Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.

    2013-02-01

    High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.

  1. Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading

    NASA Astrophysics Data System (ADS)

    Heathwaite, A. L.

    1994-07-01

    Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year -1 prior to the Second World War to over 10 mm year -1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase in the organic loading from livestock and the inorganic N and P load from fertilizers, may be the source of nutrient enrichment in the lake.

  2. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013)

    PubMed Central

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591

  4. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013).

    PubMed

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  5. Sediment Loading from Crab Creek and Other Sources to Moses Lake, Washington, 2007 and 2008

    USGS Publications Warehouse

    Magirl, Christopher S.; Cox, Stephen E.; Mastin, Mark C.; Huffman, Raegan L.

    2010-01-01

    The average sediment-accumulation rate on the bed of Moses Lake since 1980, based on the identification of Mount St. Helens ash in lakebed cores, was 0.24 inches per year. Summed over the lake surface area, the average sediment-accumulation rate on the lakebed is 190,000 tons per year. Based on USGS stream-gaging station data, the average annual sediment load to Moses Lake from Crab Creek was 32,000 tons per year between 1943 and 2008; the post Mount St. Helens eruption annual load from Crab Creek was calculated to be 13,000 tons per year. The total mass input from Crab Creek and other fluvially derived sediment sources since 1980 has been about 20,000 tons per year. Eolian sediment loading to Moses Lake was about 50,000 tons per year before irrigation and land-use development largely stabilized the Moses Lake dune field. Currently, eolian input to the lake is less than 2,000 tons per year. Considering all sediment sources to the lake, most (from 80 to 90 percent) of post-1980 lakebed-sediment accumulation is from autochthonous, or locally formed, mineral matter, including diatom frustuals and carbonate shells, derived from biogenic production in phytoplankton and zooplankton. Suspended-sediment samples collected from Crab Creek and similar nearby waterways in 2007 and 2008 combined with other USGS data from the region indicated that a proposed Bureau of Reclamation supplemental feed of as much as 650 cubic feet per second through Crab Creek might initially contain a sediment load of as much as 1,500 tons per day. With time, however, this sediment load would decrease to about 10 tons per day in the sediment-supply-limited creek as available sediment in the channel is depleted. Sediment loads in the supplemental feed ultimately would be similar to loads in other bypass canals near Moses Lake. Considering the hydrology and geomorphology of the creek over multiple years, there is little evidence that the proposed supplemental feed would substantially increase the overall sediment load from Crab Creek to Moses Lake relative to natural, background conditions. Because Moses Lake is relatively shallow and subject to significant wind-driven circulation currents, mixing also would redistribute some of the fluvial sediment load deposited from Crab Creek throughout Parker Horn and the rest of Moses Lake, further mitigating the local effect of Crab Creek sedimentation near the City of Moses Lake.

  6. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta.

    PubMed

    Darby, Stephen E; Dunn, Frances E; Nicholls, Robert J; Rahman, Munsur; Riddy, Liam

    2015-09-01

    We employ a climate-driven hydrological water balance and sediment transport model (HydroTrend) to simulate future climate-driven sediment loads flowing into the Ganges-Brahmaputra-Meghna (GBM) mega-delta. The model was parameterised using high-quality topographic data and forced with daily temperature and precipitation data obtained from downscaled Regional Climate Model (RCM) simulations for the period 1971-2100. Three perturbed RCM model runs were selected to quantify the potential range of future climate conditions associated with the SRES A1B scenario. Fluvial sediment delivery rates to the GBM delta associated with these climate data sets are projected to increase under the influence of anthropogenic climate change, albeit with the magnitude of the increase varying across the two catchments. Of the two study basins, the Brahmaputra's fluvial sediment load is predicted to be more sensitive to future climate change. Specifically, by the middle part of the 21(st) century, our model results suggest that sediment loads increase (relative to the 1981-2000 baseline period) over a range of between 16% and 18% (depending on climate model run) for the Ganges, but by between 25% and 28% for the Brahmaputra. The simulated increase in sediment flux emanating from the two catchments further increases towards the end of the 21(st) century, reaching between 34% and 37% for the Ganges and between 52% and 60% for the Brahmaputra by the 2090s. The variability in these changes across the three climate change simulations is small compared to the changes, suggesting they represent a significant increase. The new data obtained in this study offer the first estimate of whether and how anthropogenic climate change may affect the delivery of fluvial sediment to the GBM delta, informing assessments of the future sustainability and resilience of one of the world's most vulnerable mega-deltas. Specifically, such significant increases in future sediment loads could increase the resilience of the delta to sea-level rise by giving greater potential for vertical accretion. However, these increased sediment fluxes may not be realised due to uncertainties in the monsoon related response to climate change or other human-induced changes in the catchment: this is a subject for further research.

  7. Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections

    NASA Astrophysics Data System (ADS)

    LI, E.; Li, D.; Wang, Y.; Fu, X.

    2017-12-01

    The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.

  8. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon.

    PubMed

    Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian

    2017-04-15

    Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sedimentation within the batture lands of the middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, J. W.; Ryherd, J. K.

    2017-12-01

    The suspended sediment load of the Mississippi River has continued to decline after the construction of several hundred large dams within the basin during the mid-20th century. Previous investigators have attributed the post-dam decline in suspended sediment loads to improvements in soil conservation practices and dredging. However, the role batture lands (areas between the river channel and levee) play as potential sinks for suspend sediments has largely been overlooked. In this study, we explored the rates and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio Rivers). We assessed sedimentation rates using three approaches: 1) comparison of historical to modern elevation data in order to estimate long-term (>100-years) sedimentation rates; 2) estimation of medium- to short-term (<50-years) sedimentation rates using dendrogeomorphological methods; and 3) geomorphic change detection software (GCDS) to estimate short-term sedimentation rates (12 years). We also used GCDS to estimate the volume of sedimentation within the batture lands between 1998 and 2011. Comparison of long- to short-term sedimentation rates suggests up to a 400% increase in batture land sedimentation rates (from 6.2 to 25.4 mm y-1) despite a substantial decrease in the suspended sediment load (>70%). The increase in MMR batture land sedimentation rates are attributed to three mechanisms: 1) the above average frequency and duration of low-magnitude floods (≤5-year flood) during the short-term assessment periods, which allowed for more suspended sediment to be transported into and deposited within, the batture lands; 2) the construction of levees which substantially reduced ( 75%) floodplain areas available for storage of overbank deposits; and 3) river engineering which has reduced bank erosion allowing sediment to be stored for longer periods of time in the batture lands. The estimated batture land sediment volumes were 5.0% of the suspended load at St. Louis. This substantial storage of sediment ( 9.0 Mt y-1) along the MMR suggests batture lands are an important sink for suspended sediments. Deposition within these areas is contributing to the decrease in the suspended sediment load along this and likely other segments of the Mississippi River.

  10. Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Paula, C. A.; Ge, S.; Screaton, E. J.

    2001-12-01

    As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.

  11. Response of bed surface patchiness to reductions in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Venditti, Jeremy G.; Dietrich, William E.; Kirchner, James W.; Ikeda, Hiroshi; Iseya, Fujiko; Sklar, Leonard S.

    2009-06-01

    River beds are often arranged into patches of similar grain size and sorting. Patches can be distinguished into "free patches," which are zones of sorted material that move freely, such as bed load sheets; "forced patches," which are areas of sorting forced by topographic controls; and "fixed patches" of bed material rendered immobile through localized coarsening that remain fairly persistent through time. Two sets of flume experiments (one using bimodal, sand-rich sediment and the other using unimodal, sand-free sediment) are used to explore how fixed and free patches respond to stepwise reductions in sediment supply. At high sediment supply, migrating bed load sheets formed even in unimodal, sand-free sediment, yet grain interactions visibly played a central role in their formation. In both sets of experiments, reductions in supply led to the development of fixed coarse patches, which expanded at the expense of finer, more mobile patches, narrowing the zone of active bed load transport and leading to the eventual disappearance of migrating bed load sheets. Reductions in sediment supply decreased the migration rate of bed load sheets and increased the spacing between successive sheets. One-dimensional morphodynamic models of river channel beds generally are not designed to capture the observed variability, but should be capable of capturing the time-averaged character of the channel. When applied to our experiments, a 1-D morphodynamic model (RTe-bookAgDegNormGravMixPW.xls) predicted the bed load flux well, but overpredicted slope changes and was unable to predict the substantial variability in bed load flux (and load grain size) because of the migration of mobile patches. Our results suggest that (1) the distribution of free and fixed patches is primarily a function of sediment supply, (2) the dynamics of bed load sheets are primarily scaled by sediment supply, (3) channels with reduced sediment supply may inherently be unable to transport sediment uniformly across their width, and (4) cross-stream variability in shear stress and grain size can produce potentially large errors in width-averaged sediment flux calculations.

  12. Estimates of long-term suspended-sediment loads in Bay Creek at Nebo, Pike County, Illinois, 1940-80

    USGS Publications Warehouse

    Lazaro, Timothy R.; Fitzgerald, Kathleen K.; Frost, Leonard R.

    1984-01-01

    Five years of daily suspended-sediment discharges (1968, 1969, 1975, 1976, and 1980) for Bay Creek at Nebo, Illinois, computed from once- or twice-weekly samples (more often during storm events), were used to develop transport equations that can be used to estimate long-term suspended-sediment discharges from long-term water-discharge records. Discharge was divided into three groups based on changes in slope on a graph of logarithms of water discharge versus suspended-sediment discharge. Two subgroups were formed within each of the three groups by determining whether the flow was steady or increasing, or was decreasing. Seasonality was accounted for by introducing day of the year in sine and cosine functions. The suspended-sediment load estimated from the equations for the 5 years was 77.3 percent of that computed from daily sediment- and water-discharge records for those years. The mean annual suspended-sediment load for 41 years of estimated loads was 359 ,500 tons, which represents a yield of about 3.5 tons per acre from the Bay Creek drainage basin. (USGS)

  13. Characteristics of sediment transport at selected sites along the Missouri River during the high-flow conditions of 2011

    USGS Publications Warehouse

    Galloway, Joel M.; Rus, Dave L.; Alexander, Jason S.

    2013-01-01

    During 2011, many tributaries in the Missouri River Basin experienced near record peak streamflow and caused flood damage to many communities along much of the Missouri River from Montana to the confluence with the Mississippi River. The large runoff event in 2011 provided an opportunity to examine characteristics of sediment transport in the Missouri River at high-magnitude streamflow and for a long duration. The purpose of this report is to describe sediment characteristics during the 2011 high-flow conditions at six selected sites on the Missouri River, two in the middle region of the basin between Lake Sakakawea and Lake Oahe in North Dakota, and four downstream from Gavins Point Dam along the Nebraska-South Dakota and Nebraska-Iowa borders. A wider range in suspended-sediment concentration was observed in the middle segment of the Missouri River compared to sites in the lower segment. In the middle segment of the Missouri River, suspended-sediment concentrations increased and peaked as flows increased and started to plateau; however, while flows were still high and steady, suspended-sediment concentrations decreased and suspended-sediment grain sizes coarsened, indicating the decrease possibly was related to fine-sediment supply limitations. Measured bedload transport rates in the lower segment of the Missouri River (sites 3 to 6) were consistently higher than those in the middle segment (sites 1 and 2) during the high-flow conditions in 2011. The median bedload transport rate measured at site 1 was 517 tons per day and at site 2 was 1,500 tons per day. Measured bedload transport rates were highest at site 3 then decreased downstream to site 5, then increased at site 6. The median bedload transport rates were 22,100 tons per day at site 3; 5,640 tons per day at site 4; 3,930 tons per day at site 5; and 8,450 tons per day at site 6. At the two sites in the middle segment of the Missouri River, the greatest bedload was measured during the recession of the streamflow hydrograph. A similar pattern was observed at sites 3–5 in the lower segment of the Missouri River, where the greatest bedload was measured later in the event on the recession of the streamflow hydrograph, although the change in bedload was not as dramatic as observed at the sites in the middle segment of the Missouri River. With the exception of site 3, the total-sediment load on the Missouri River was highest at the beginning of the high-flow event and decreased as streamflow decreased. In the middle segment of the Missouri River, measured total-sediment load ranged from 2,320 to 182,000 tons per day at site 1 and from 3,190 to 279,000 tons per day at site 2. In the lower segment of the Missouri River, measured total-sediment load ranged from 50,600 to 223,000 tons per day at site 4; from 23,500 to 403,000 tons per day at site 5; and from 52,700 to 273,000 tons per day at site 6. The total-sediment load was dominated by suspended sediment at all of the sites measured on the Missouri River in 2011. In general, the percentage of total-sediment load that was bedload increased as the streamflow decreased, although this pattern was more prevalent at sites in the middle segment than those in the lower segment. The suspended-sediment load comprised an average of 93 percent of the total load, with the exception of site 3, where the suspended-sediment load comprised only 72 percent of the total-sediment load.

  14. Suspended Sediment Loads and Tributary Inputs in the Mississippi River below St. Louis, MO, 1990-2013 Compared With Earlier Results

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.

    2017-12-01

    Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.

  15. Low sediment loads affect survival of coral recruits: the first weeks are crucial

    NASA Astrophysics Data System (ADS)

    Moeller, Mareen; Nietzer, Samuel; Schils, Tom; Schupp, Peter J.

    2017-03-01

    Increased sedimentation due to anthropogenic activities is a threat to many nearshore coral reefs. The effects on adult corals have been studied extensively and are well known. Studies about the impact of sedimentation on the early life stages of scleractinian corals, however, are rare although recruitment is essential for conserving and restoring coral reefs. Laboratory and in situ experiments with recruits of different age classes focused on the broadcast-spawning species Acropora hyacinthus and the brooding coral Leptastrea purpurea. Recruits were exposed to different sediment loads over three to five weeks. Applied sediment loads were more than one order of magnitude lower than those known to affect survival of adult coral colonies. Growth and survival of newly settled recruits were negatively affected by sediment loads that had no effect on the growth and survival of one-month-old recruits. All experiments indicated that newly settled coral recruits are most sensitive to sedimentation within the first two to four weeks post settlement. The co-occurrence of moderate sedimentation events during and immediately after periods of coral spawning can therefore reduce recruitment success substantially. These findings provide new information to develop comprehensive sediment management plans for the conservation and recovery of coral reefs affected by chronic or acute sedimentation events.

  16. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    PubMed

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.

  17. Characterizing Flow and Suspended Sediment Trends in the Sacramento River Basin, CA Using Hydrologic Simulation Program - FORTRAN (HSPF)

    NASA Astrophysics Data System (ADS)

    Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.

    2014-12-01

    A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and frequency. The complete calibrated HSPF model will use future climate scenarios to make projections of potential hydrologic and sediment trends to the SFBD from 2000-2100.

  18. Recent Trends in Suspended Sediment Load & Water Quality in the Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Freeman, L. A.; Ackleson, S. G.

    2016-02-01

    The Chesapeake Bay spans several major cities on the US east coast and drains a large watershed (164,200 km2) to the Atlantic Ocean. Upstream deforestation and agriculture have led to a major decline in water quality (increased sediment and nutrient load) of the Bay over the past century. Sediment flux into the Chesapeake Bay is a natural process, but has become an environmental concern as land use changes have exacerbated natural suspended sediment loads and saturated the capacity of the estuary to filter and remove sediments. In situ measurements of suspended sediments and surface reflectance from the Potomac, Patapsco, and Severn River were used to develop algorithms that convert surface reflectance from Landsat (1-3, 4-5, 7, 8) imagery to suspended sediment concentration for the entire Chesapeake Bay. A unique time series of suspended sediment load in the Chesapeake Bay was compiled from Landsat imagery dating from 1977-2015. Particular focus is given to the upper Chesapeake Bay near Washington, DC and Baltimore, MD to understand urban effects. In particular, the Potomac, Patapsco, and Severn River are examined from both remote sensing and in situ measurements. Landsat imagery combined with in situ monitoring provides environmental scientists and resource managers with detailed trends in sediment distribution and concentration, a key measure of water quality. Trends of suspended sediment load in several rivers and the upper Chesapeake Bay will be presented, along with a discussion of suspended sediment algorithms for Landsat imagery. Advantages of Landsat 8 (improved signal-to-noise performance and more bands) versus previous sensors will be examined for suspended sediment applications.

  19. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916-2009

    USGS Publications Warehouse

    Jones, C.S.; Schilling, K.E.

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  20. Enhanced sediment loading facilitates point bar growth and accelerates bank erosion along a modelled meander bend on the Sacramento River, USA

    NASA Astrophysics Data System (ADS)

    Ahmed, J.; Constantine, J. A.; Hales, T. C.

    2017-12-01

    Meandering channels provide a conduit through which sediment and water is routed from the uplands to the sea. Alluvial material is periodically stored and transported through the channel network as permitted by the prevailing hydrologic conditions. The lowlands are typically characterised by accumulations of sediment attached to the inner banks of meander bends (point bars). These bedforms have been identified as important for facilitating a link between in-stream sediment supplies and channel dynamism. A 2D curvilinear hydrodynamic model (MIKE 21C) was used to perform a number of experiments in which the sediment load was adjusted to investigate how changes in alluvial material fluxes affect the development of point bars and the resultant patterns of bank erosion. A doubling of the sediment load caused a longitudinal increase in the bar in the upstream direction and caused a coeval doubling of the transverse channel slope at the meander apex. The upstream growth of the point bar was accompanied by an increase in length over which lateral migration took place at the outer bank. The magnitude of outer bank erosion was 9-times greater for the high-sediment simulation. These results suggest that enhanced sediment loads (potentially the result of changes in land use or climate) can trigger greater rates of bank erosion and channel change through the sequestration of alluvial material on point bars, which encourage high-velocity fluid deflection towards the outer bank of the meander. This controls riparian habitat development and exchanges of sediment and nutrients across the channel-floodplain interface.

  1. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  2. Occurrence and transport of selected constituents in streams near the Stibnite mining area, Central Idaho, 2012–14

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2015-12-07

    Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.

  3. Organic matter dynamics and stable isotopes for tracing sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-01-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by impact on health and fitness of free swimming fish and siltation of the riverbed. The later results in a decrease of hydraulic conductivity and therefore smaller oxygen supply to the salmonid embryos. Additionally, oxygen demand within riverbeds will increase as the pool of organic matter increases. We assessed the temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season and used C isotopes as well as the C/N atomic ratio to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the sources of SS in respect of time and space. Organic matter fractions in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and precipitation probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to pasture and arable land. The fraction of SS originating from upper watershed riverbed sediment increased at all sites during high flow. Its mean fraction decreased from up- to downstream. During base flow conditions, the major sources of SS are pasture and arable land. The later increased during rainy and warmer periods probably due to snow melting and erosion processes. These modeling results support the measured increased DOC and NO3 concentrations during high flow.

  4. Large shift in source of fine sediment in the upper Mississippi River

    USGS Publications Warehouse

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  5. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.

  6. The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1992-01-01

    Abstract - During waning flood flows in gravel-bed streams, fine-grained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes availabe to fill pools. The volume of fine sediment in pools...

  7. Evaluation of Soil Erosion and Sediment Yield from Ridge Watersheds Leading to Guánica Bay, Puerto Rico, Using SWAT Model

    EPA Science Inventory

    Increased sediment loading to reservoirs and, ultimately, to Guánica Bay and reef areas is a significant concern in Puerto Rico. Sediment deposition has significantly reduced storage capacity of reservoirs, and sediment-attached contaminants can stress corals and negative...

  8. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale.

    PubMed

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun

    2014-09-15

    Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    USGS Publications Warehouse

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  10. Towards a better understanding on how large wood is controlling longitudinal sediment (dis)connectivity in mountain streams - concepts and first results

    NASA Astrophysics Data System (ADS)

    Schuchardt, Anne; Pöppl, Ronald; Morche, David

    2016-04-01

    Large wood (LW) provides various ecological and morphological functions. Recent research has focused on habitat diversity and abundance, effects on channel planforms, pool formation, flow regimes and increased storage of organic matter as well as storage of fine sediment. While LW studies and sediment transport rates are the focus of numerous research questions, the influence of large channel blocking barriers (e.g. LW) and their impact on sediment trapping and decoupling transportation pathways is less studied. This project tries to diminish the obvious gap and deals with the modifications of the sediment connectivity by LW. To investigate the influence of large wood on sediment transporting processes and sediment connectivity, the spatial distribution and characterization of LW (>1 m in length and >10 cm in diameter) in channels is examined by field mapping and dGPS measurements. Channel hydraulic parameters are determined by field measurements of channel long profiles and cross sections. To quantify the direct effects of LW on discharge and bed load transport the flow velocity and bed load up- and downstream of LW is measured using an Ott-Nautilus and a portable Helley-Smith bed load sampler during different water stages. Sediment storages behind LWD accumulations will be monitored with dGPS. While accumulation of sediment indicates in-channel sediment storage and thus disconnection from downstream bed load transport, erosion of sediment evidences downstream sediment connectivity. First results will be presented from two study areas in mountain ranges in Germany (Wetterstein Mountain Range) and Austria (Bohemian Massif).

  11. Sediment Loss and its Contributors in Puerto Rico Watersheds

    EPA Science Inventory

    A major environmental concern in the Commonwealth of Puerto Rico is increased sediment load to water reservoirs and ultimately to estuaries and reef areas outside the estuaries. Sediment deposition has significantly reduced the storage capacity of reservoirs, and the associated c...

  12. Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications

    NASA Astrophysics Data System (ADS)

    Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.

    2016-12-01

    Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.

  13. Hydrologic and sediment data collected from selected basins at the Fort Leonard Wood Military Reservation, Missouri--2010-11

    USGS Publications Warehouse

    Richards, Joseph M.; Rydlund, Jr., Paul H.; Barr, Miya N.

    2012-01-01

    Commercial and residential development within a basin often increases the amount of impervious area, which changes the natural hydrologic response to storm events by increasing runoff. Land development and disturbance combined with increased runoff from impervious areas potentially can increase sediment transport. At the Fort Leonard Wood Military Reservation in Missouri, there has been an increase in population and construction activities in the recent past, which has initiated an assessment of the hydrology in selected basins. From April 2010 to December 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Maneuver Support Center at the Fort Leonard Wood Military Reservation, collected hydrologic and suspended-sediment concentration data in six basins at Fort Leonard Wood. Storm-sediment concentration, load, and yield varied from basin to basin and from storm to storm. In general, storm-sediment yield, in pounds per square mile per minute, was greatest from Ballard Hollow tributary (06928410) and Dry Creek (06930250), and monthly storm-sediment yield, in tons per square mile, estimates were largest in Ballard Hollow tributary (06928410), East Gate Hollow tributary (06930058), and Dry Creek (06930250). Sediment samples, collected at nine sites, primarily were collected using automatic samplers and augmented with equal-width-increment cross-sectional samples and manually collected samples when necessary. Storm-sediment load and yield were computed from discharge and suspended-sediment concentration data. Monthly storm-sediment yields also were estimated from the total storm discharge and the mean suspended-sediment concentration at each given site.

  14. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention

    USGS Publications Warehouse

    McMillan, Sara K.; Noe, Gregory

    2017-01-01

    Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.

  15. Characterization of dominant hydrologic events: the role of spatial, temporal and climatic forces in generating the greatest sediment loads

    NASA Astrophysics Data System (ADS)

    Squires, A. L.; Boll, J.; Brooks, E. S.

    2013-12-01

    Soil erosion and the ensuing elevated sediment loads in surface water bodies result in impaired water quality and unsuitable habitat for salmonid species and other cold water biota. Increased sediment loads also relate to high nutrient levels in streams at downstream locations. Identification of the most sensitive factors leading to major sediment loads is useful in selection and placement of agricultural best management practices (BMPs), especially those that are management oriented such as nutrient management plans and the timing of tillage. Many BMPs work well for average storms but do not achieve desired results during the large storms, when hydrologically sensitive areas contribute the greatest amount of runoff and erosion. Research has shown that the majority of sediment loads in streams and rivers occur during a small proportion of the year, specifically during a few large storm events. In this research, we look beyond the conclusion that large events contribute the majority of sediment loads by investigating the driving forces behind each event. Long-term monitoring data were used from two monitoring stations in a small, mixed land use watershed in northern Idaho. The upper monitoring station is below mostly agricultural land use, and the lower monitoring station is below mostly urban land use. The watershed in question, Paradise Creek in Idaho, is the subject of a sediment TMDL which has not yet been consistently achieved and is currently up for review by the Idaho Department of Environmental Quality. We statistically analyzed the influence of multiple interacting variables on the magnitude of sediment loads during hydrologic events from 2002 to 2012. Spatial (i.e., above and below monitoring station data), temporal (i.e., seasonality), and climatic effects (i.e., precipitation, snowfall and snow melt) were examined, as well as the presence of frozen soils and the timing of events relative to each other. We hypothesized that (1) the events with the greatest sediment loads are flow-limited but occur after mass-limited events, (2) an event that is of long duration and is slow to peak, especially during frozen soil conditions, will contribute the greatest sediment load in a given year, and (3) urban land use generates greater sediment loads than rural land use. Multivariate analysis determined which factors lead to major sediment loads. Our presentation will focus on synthesizing the interacting variables and conditions that tend to result in dominant hydrologic events and suggestions for watershed management. This research will contribute to a more accurate assessment of the hydrology and water quality in the watershed to aid in improvement of the TMDL.

  16. Temporal variability in the suspended sediment load and streamflow of the Doce River

    NASA Astrophysics Data System (ADS)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  17. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Treesearch

    Mary Ann Madej; Greg Bundros; Randy Klein

    2012-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...

  18. Sediment load from major rivers into Puget Sound and its adjacent waters

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Grossman, Eric E.; Curran, Christopher A.; Gendaszek, Andrew S.; Dinicola, Richard S.

    2011-01-01

    Each year, an estimated load of 6.5 million tons of sediment is transported by rivers to Puget Sound and its adjacent waters—enough to cover a football field to the height of six Space Needles. This estimated load is highly uncertain because sediment studies and available sediment-load data are sparse and historically limited to specific rivers, short time frames, and a narrow range of hydrologic conditions. The largest sediment loads are carried by rivers with glaciated volcanoes in their headwaters. Research suggests 70 percent of the sediment load delivered to Puget Sound is from rivers and 30 percent is from shoreline erosion, but the magnitude of specific contributions is highly uncertain. Most of a river's sediment load occurs during floods.

  19. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-06-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by affecting the health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C), and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase of pasture and arable land downstream of the river. The mean fraction of SS originating from upper watershed riverbed sediment decreased from up to downstream and increased during high flow at all measuring sites along the course of the river. During base flow conditions, the major sources of SS are pasture, forest and arable land. The latter increased during rainy and warmer winter periods, most likely because both triggered snow melt and thus erosion. The measured increase in DOC and nitrate concentrations during high flow support these modeling results. Enhanced soil erosion processes on pasture and arable land are expected with increasing heavy rain events and less snow during winter seasons due to climate change. Consequently, SS and organic matter in the river will increase, which will possibly affect brown trout negatively.

  20. Increasing runoff and sediment load from the Greenland ice sheet at kangerlussuaq (Sonder Stromfjord) in a 30-year perspective, 1979-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen; Hasholt, Bent

    2009-01-01

    This observation and modeling study provides insights into runoff and sediment load exiting the Watson River drainage basin, Kangerlussuaq, West Greenland during a 30 year period (1978/79-2007/08) when the climate experienced increasing temperatures and precipitation. The 30-year simulations quantify the terrestrial freshwater and sediment output from part of the Greenland Ice Sheet (GrIS) and the land between the GrIS and the ocean, in the context of global warming and increasing GrIS surface melt. We used a snow-evolution modeling system (SnowModel) to simulate the winter accumulation and summer ablation processes, including runoff and surface mass balance (SMB), of the Greenland icemore » sheet. Observed sediment concentrations were related to observed runoff, producing a sediment-load time series. To a large extent, the SMB fluctuations could be explained by changes in net precipitation (precipitation minus evaporation and sublimation), with 8 out of 30 years having negative SMB, mainly because of relatively low annual net precipitation. The overall trend in net precipitation and runoff increased significantly, while 5MB increased insignificantly throughout the simulation period, leading to enhanced precipitation of 0.59 km{sup 3} w.eq. (or 60%), runoff of 0.43 km{sup 3} w.eq (or 54%), and SMB of 0.16 km3 w.eq. (or 86%). Runoff rose on average from 0.80 km{sup 3} w.eq. in 1978/79 to 1.23 km{sup 3} w.eq. in 2007/08. The percentage of catchment oudet runoff explained by runoff from the GrIS decreased on average {approx} 10%, indicating that catchment runoff throughout the simulation period was influenced more by precipitation and snowmelt events, and less by runoff from the GrIS. Average variations in the increasing Kangerlussuaq runoff from 1978/79 through 2007/08 seem to follow the overall variations in satellite-derived GrIS surface melt, where 64% of the variations in simulated runoff were explained by regional melt conditions on the GrIS. Throughout the simulation period, the sediment load varied from a minimum of 0.96 x 10{sup 6} t y{sup -1} in 1991/92 to a maximum of 3.52 x 10{sup 6} t y{sup -1} in 2006/07, showing an average increase of sediment load of 9.42 x 10{sup 5} t (or 72%) throughout the period.« less

  1. Distribution and transport of polychlorinated biphenyls in Little Lake Butte des Morts, Fox River, Wisconsin, April 1987-October 1988

    USGS Publications Warehouse

    House, L.B.

    1995-01-01

    The mass of PCB's transported from the lake in streamflow during 1987-88 was calculated to be 110 kilograms annually. The PCB's transport rate decreased 50 percent from 1987 to 1988, for the period April through September. Transport of PCB's was greatest during April and May of each year. The average flux rate of PCB's into the water column from the bottom sediment in the lake was estimated to be 1.2 milligrams per square meter per day. The PCB's load seems to increase at river discharges greater than 212 cubic meters per second. This increase in PCB's load might be caused by resuspension of PCB's-contaminated bottom-sediment deposits. There was little variation in PCB's load at flows less than 170 cubic meters per second. The bottom sediments are a continuing source of PCB's to Little Lake Butte des Morts and the lower Fox River.

  2. Recent Deforestation Causes Rapid Increase in River Sediment Load in the Northern Andes

    NASA Astrophysics Data System (ADS)

    Restrepo, J. D.; Kettner, A.; Syvitski, J. P.

    2016-12-01

    Human induced soil erosion reduces soil productivity; compromises freshwater ecosystem services, and drives geomorphic and ecological change in rivers and their floodplains. The Andes of Colombia have witnessed severe changes in land-cover and forest loss during the last three decades with the period 2000 and 2010 being the highest on record. We address the following: (1) what are the cumulative impacts of tropical forest loss on soil erosion? and (2) what effects has deforestation had on sediment production, availability, and the transport capacity of Andean rivers? Models and observations are combined to estimate the amount of sediment liberated from the landscape by deforestation within a major Andean basin, the Magdalena. We use a scaling model BQART that combines natural and human forces, like basin area, relief, temperature, runoff, lithology, and sediment trapping and soil erosion induced by humans. Model adjustments in terms of land cover change were used to establish the anthropogenic-deforestation factor for each of the sub-basins. Deforestation patterns across 1980-2010 were obtained from satellite imagery. Models were employed to simulate scenarios with and without human impacts. We estimate that, 9% of the sediment load in the Magdalena River basin is due to deforestation; 482 Mt of sediments was produced due to forest clearance over the last three decades. Erosion rates within the Magdalena drainage basin have increased 33% between 1972 and 2010; increasing the river's sediment load by 44 Mt/y. Much of the river catchment (79%) is under severe erosional conditions due in part to the clearance of more than 70% natural forest between 1980 and 2010.

  3. Spatial and temporal variations in landscape evolution: historic and longer-term sediment flux through global catchments

    USGS Publications Warehouse

    Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur

    2013-01-01

    Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (<500 km) exhibit broad similarity ( stream gauge samples; CRN samples). Nearly two-thirds of CRN-derived sediment loads exceed historic loads measured at the same locations (). Excessive longer-term sediment loads likely are a result of longer-term recurrence of large-magnitude sediment-transport events. Nearly 80% of sediment loads measured at approximately the same locations exhibit stream gauge loads that are within an order of magnitude of CRN loads, likely as a result of the buffering capacity of large flood plains. Catchments in which space for deposition exceeds sediment supply have greater buffering capacity. Superior locations in which to evaluate anthropogenic influences on landscape evolution might be buffered catchments, in which temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.

  4. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    USGS Publications Warehouse

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  5. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through the Milltown Reservoir Project Area Before and After the Breaching of Milltown Dam in the Upper Clark Fork Basin, Montana, Water Year 2008

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2009-01-01

    This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112 percent of the long-term mean annual peak flow (15,600 ft3/s). About 81 percent of the annual flow volume was discharged during the post-breach period. Daily loads of suspended sediment were estimated directly by using high-frequency sampling of the daily sediment monitoring. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to either streamflow or suspended-sediment discharge. Regression equations for estimating trace-element discharge in water year 2008 were developed from instantaneous streamflow and concentration data for periodic water-quality samples collected during all or part of water years 2004-08. The equations were applied to records of daily mean streamflow or daily suspended-sediment loads to produce estimated daily trace-element loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. Relatively small to moderately large daily net losses from the project area were common during the pre-breach period when low-flow conditions were prevalent. Outflow loads from the project area sharply increased immediately after the breaching of Milltown Dam and during the rising limb and peak flow of the annual hydrograph. Net losses of suspended sediment and trace elements from the project area decreased as streamflow decreased during the summer, eventually becoming small or reaching an approximate net balance between inflow and outflow. Estimated daily loads of suspended sediment and trace elements for all three stations were summed to determine cumulative inflow and outflow loads for the pre-breach and post-breach periods, as well as for the entire water year 2008. Overall, the mass balance between the combined inflow loads from two upstream source areas (upper Clark Fork and Blackfoot River basins) and the outflow loads at Clark Fork above Missoula indicates net losses

  6. Fine sediment in pools: An index of how sediment is affecting a stream channel

    Treesearch

    Tom Lisle; Sue Hilton

    1991-01-01

    One of the basic issues facing managers of fisheries watersheds is how inputs of sediment affect stream channels. In some cases we can measure and even roughly predict effects of land use on erosion and delivery of sediment from hillslopes to streams. But we are at a loss about how a given increase in sediment load will affect channel morphology, flow conditions, and...

  7. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. < 5% of the total sediment load within the Mekong River. Such estimates are integral to future channel management within this highly threatened river basin.

  8. Contributions of human activities to suspended-sediment yield during storm events from a steep, small, tropical watershed, American Samoa

    NASA Astrophysics Data System (ADS)

    Messina, A. T.; Biggs, T. W.

    2014-12-01

    Anthropogenic watershed disturbance by agriculture, deforestation, roads, and urbanization can alter the timing, composition, and mass of sediment loads to adjacent coral reefs, causing enhanced sediment stress on corals near the outlets of impacted watersheds like Faga'alu, American Samoa. To quantify the increase in sediment loading to the adjacent priority coral reef experiencing sedimentation stress, suspended-sediment yield (SSY) from undisturbed and human-disturbed portions of a small, steep, tropical watershed was measured during baseflow and storm events of varying magnitude. Data on precipitation, discharge, turbidity, and suspended-sediment concentration (SSC) were collected over three field campaigns and continuous monitoring from January 2012 to March 2014, which included 88 storm events. A combination of paired- and nested-watershed study designs using sediment budget, disturbance ratio, and sediment rating curve methodologies was used to quantify the contribution of human-disturbed areas to total SSY. SSC during base- and stormflows was significantly higher downstream of an open-pit aggregate quarry, indicating the quarry is a key sediment source requiring sediment discharge mitigation. Comparison of event-wise SSY from the upper, undisturbed watershed, and the lower, human-disturbed watershed showed the Lower watershed accounted for more than 80% of total SSY on average, and human activities have increased total sediment loading to the coast by approximately 200%. Four storm characteristics were tested as predictors of event SSY using Pearson's and Spearman's correlation coefficients. Similar to mountainous watersheds in semi-arid and temperate watersheds, SSY from both the undisturbed and disturbed watersheds had the highest correlation with event maximum discharge, Qmax (Pearson's R=0.88 and 0.86 respectively), and were best fit by a power law relationship. The resulting model of event-SSY from Faga'alu is being incorporated as part of a larger project investigating relationships and interactions between terrigenous sediment, water circulation over the reef, and the spatial distribution of sediment accumulation under various conditions in a linked watershed and fringing-reef embayment.

  9. Sediment source detection by stable isotope analysis, carbon and nitrogen content and CSSI in a small river of the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    SchindlerWildhaber, Yael; Alewell, Christine; Birkholz, Axel

    2014-05-01

    Suspended sediment (SS) and organic matter in rivers can harm the fauna by affecting health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. We determined compound specific stable carbon isotopes (CSSI) in fatty acids of possible sediment source areas to the stream in addition and compared them to SS from selected high flow and low flow events. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase in sediment delivery from pasture and arable land downstream of the river. While the major sources of SS are pasture and arable land during base flow conditions, SS from forest soils increased during heavy rain events and warmer winter periods most likely due to snow melt which triggered erosion. Preliminary results of CSSI analysis of sediment source areas and comparison to SS of selected events indicate that differences in d13C values of individual fatty acids are too small to differentiate unambiguously between sediment sources.

  10. Estimating Nitrogen Loads, BMPs, and Target Loads Exceedance Risks

    EPA Science Inventory

    The Wabash River (WR) watershed, IN, drains two-thirds of the state’s 92 counties and has primarily agricultural land use. The nutrient and sediment loads of the WR significantly increase loads of the Ohio River ultimately polluting the Gulf of Mexico. The objective of this study...

  11. Magnitudes and Sources of Catchment Sediment: When A + B Doesn't Equal C

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2015-12-01

    The export of land-based sediments to receiving waters can cause degradation of water quality and habitat, loss of reservoir capacity and damage to reef ecosystems. Predictions of sources and magnitudes generally come from simulations using catchment models that focus on overland flow processes at the expense of gully and channel processes. This is not appropriate for many catchments where recent research has shown that the dominant erosion sources have shifted from the uplands and fields following European Settlement, to the alluvial valleys today. Still, catchment models which fail to adequately address channel and bank processes are still the overwhelming choice by resource agencies to help manage sediment export. These models often utilize measured values of sediment load at the river mouth to "calibrate" the magnitude of loads emanating from uplands and fields. The difference between the sediment load at the mouth and the simulated upland loading is then proportioned to channel sources.Bank erosion from the Burnett River (a "Reef Catchment" in eastern Queensland) was quantified by comparisons of bank-top locations and by numerical modeling using BSTEM. Results show that bank-derived sediment contributes between 44 and 73% of the sediment load being exported to the Coral Sea. In comparison reported results from a catchment model showed bank contributions of 8%. In absolute terms, this is an increase in the reported average, annual rate of bank erosion from 0.175 Mt/y to 2.0 Mt/y.In the Hoteo River, New Zealand, a rural North Island catchment characterized by resistant cohesive sediments, bank erosion was found to contribute at least 48% of the total specific yield of sediment. Combining the bank-derived, fine-grained loads from some of the major tributaries gives a total, average annual loading rate for fine material of about 10,900 t/y for the studied reaches in the Hoteo River System. If the study was extended to include the lower reaches of the main stem channel and other tributary reaches, this percentage would be higher. Similar studies in the United States using combinations of empirical and numerical modeling techniques have also disclosed that bank-derived sediment can be the major source of sediment in many catchments. An approach to improve the accuracy of predictions is proposed.

  12. Nitrogen removal through N cycling from sediments in a constructed coastal marsh as assessed by 15N-isotope dilution.

    PubMed

    Ro, Hee-Myong; Kim, Pan-Gun; Park, Ji-Suk; Yun, Seok-In; Han, Junho

    2018-04-01

    Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added- 15 NH 4 + using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and 15 N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day -1 (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  14. Effect of DEM mesh size on AnnAGNPS simulation and slope correction.

    PubMed

    Wang, Xiaoyan; Lin, Q

    2011-08-01

    The objective of this paper is to study the impact of the mesh size of the digital elevation model (DEM) on terrain attributes within an Annualized AGricultural NonPoint Source pollution (AnnAGNPS) Model simulation at watershed scale and provide a correction of slope gradient for low resolution DEMs. The effect of different grid sizes of DEMs on terrain attributes was examined by comparing eight DEMs (30, 40, 50, 60, 70, 80, 90, and 100 m). The accuracy of the AnnAGNPS stimulation on runoff, sediments, and nutrient loads is evaluated. The results are as follows: (1) Rnoff does not vary much with decrease of DEM resolution whereas soil erosion and total nitrogen (TN) load change prominently. There is little effect on runoff simulation of AnnAGNPS modeling by the amended slope using an adjusted 50 m DEM. (2) A decrease of sediment yield and TN load is observed with an increase of DEM mesh size from 30 to 60 m; a slight decrease of sediment and TN load with the DEM mesh size bigger than 60 m. There is similar trend for total phosphorus (TP) variation, but with less range of variation, the simulation of sediment, TN, and TP increase, in which sediment increase up to 1.75 times compared to the model using unadjusted 50 m DEM. In all, the amended simulation still has a large difference relative to the results using 30 m DEM. AnnAGNPS is less reliable for sediment loading prediction in a small hilly watershed. (3) Resolution of DEM has significant impact on slope gradient. The average, minimum, maximum of slope from the various DEMs reduced obviously with the decrease of DEM precision. For the grade of 0∼15°, the slopes at lower resolution DEM are generally bigger than those at higher resolution DEM. But for the grade bigger than 15°, the slopes at lower resolution DEM are generally smaller than those at higher resolution DEM. So it is necessary to adjust the slope with a fitting equation. A cubic model is used for correction of slope gradient from lower resolution to that from higher resolution. Results for Dage watershed showed that fine meshes are desired to avoid large underestimates of sediment and total nitrogen loads and moderate underestimates of total phosphorus loads even with the slopes for the 50 m DEM adjusted to be more similar to the slopes from the 30 m DEM. Decreasing the mesh size beyond this threshold does not substantially affect the computed runoff flux but generated prediction errors for nitrogen and sediment yields. So the appropriate DEM will control error and make simulation at acceptable level.

  15. Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia)

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2013-04-01

    The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in-channel sediment supplies due to sorting method applied in the model. More generally, the modelling may increase our knowledge about the sediment transport patterns of the reach downstream the mining area. This part of the river may be considered as a temporal sink of heavy metals which may accumulate and store sediments. The deposition in such sinks can considerably support attenuation of contaminated sediment loads. On the other hand, sediments that are accumulated in sinks can increase the concentration of contaminated sediment loads during peak flow events. Information about the rates of eroded and accumulated contaminated material in such sinks is important for future water protection planning, especially under changing climate conditions. This work may also provide scientific input to discussions on both adverse environmental consequences of placer mining, and suitable designs of sediment control measures in the Zaamar Goldfield and other continental river systems.

  16. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    PubMed

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  17. Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors

    PubMed Central

    Strain, Elisabeth M. A.; van Belzen, Jim; van Dalen, Jeroen; Bouma, Tjeerd J.; Airoldi, Laura

    2015-01-01

    Coastal systems are increasingly threatened by multiple local anthropogenic and global climatic stressors. With the difficulties in remediating global stressors, management requires alternative approaches that focus on local scales. We used manipulative experiments to test whether reducing local stressors (sediment load and nutrient concentrations) can improve the resilience of foundation species (canopy algae along temperate rocky coastlines) to future projected global climate stressors (high wave exposure, increasing sea surface temperature), which are less amenable to management actions. We focused on Fucoids (Cystoseira barbata) along the north-western Adriatic coast in the Mediterranean Sea because of their ecological relevance, sensitivity to a variety of human impacts, and declared conservation priority. At current levels of sediment and nutrients, C. barbata showed negative responses to the simulated future scenarios of high wave exposure and increased sea surface temperature. However, reducing the sediment load increased the survival of C. barbata recruits by 90.24% at high wave exposure while reducing nutrient concentrations resulted in a 20.14% increase in the survival and enhanced the growth of recruited juveniles at high temperature. We conclude that improving water quality by reducing nutrient concentrations, and particularly the sediment load, would significantly increase the resilience of C. barbata populations to projected increases in climate stressors. Developing and applying appropriate targets for specific local anthropogenic stressors could be an effective management action to halt the severe and ongoing loss of key marine habitats. PMID:25807516

  18. A Baltic Sea estuary as a phosphorus source and sink after drastic load reduction: seasonal and long-term mass balances for the Stockholm inner archipelago for 1968-2015

    NASA Astrophysics Data System (ADS)

    Walve, Jakob; Sandberg, Maria; Larsson, Ulf; Lännergren, Christer

    2018-05-01

    Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophication. In the early 1970s, the external P load to the inner archipelago of Stockholm, Sweden (Baltic Sea), was drastically reduced by improved sewage treatment, but the internal P loading and its controlling factors have been poorly quantified. We use two slightly different four-layer box models to calculate the area's seasonal and annual P balance (input-export) and the internal P exchange with sediments in 1968-2015. For 10-20 years after the main P load reduction, there was a negative P balance, small in comparison to the external load, and probably due to release from legacy sediment P storage. Later, the stabilized, near-neutral P balance indicates no remaining internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer-autumn appears to be derived from the settled spring bloom and is exported to outer areas during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited iron control of P release. However, enhanced P release in years of deep-water hypoxia suggests some contribution from redox-sensitive P pools. Increasing deep-water temperatures that stimulate oxygen consumption rates in early summer have counteracted the effect of lowered organic matter sedimentation on oxygen concentrations. Since the P turnover time is short and legacy P small, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate recent P inputs, imported from the Baltic Sea and from Lake Mälaren.

  19. Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities.

    PubMed

    Yang, Xiaonan; Sun, Wenyi; Li, Pengfei; Mu, Xingmin; Gao, Peng; Zhao, Guangju

    2018-06-14

    The sediment load on the Chinese Loess Plateau has sharply decreased in recent years. However, the contribution of terrace construction and vegetation restoration projects to sediment discharge reduction remains uncertain. In this paper, eight catchments located in the Loess Plateau were chosen to explore the effects of different driving factors on sediment discharge changes during the period from the 1960s to 2012. Attribution approaches were applied to evaluate the effects of climate, terrace, and vegetation coverage changes on sediment discharge. The results showed that the annual sediment discharge decreased significantly in all catchments ranging from -0.007 to -0.039 Gt·yr -1 . Sediment discharge in most tributaries has shown abrupt changes since 1996, and the total sediment discharge was reduced by 60.1% during 1997-2012. We determined that increasing vegetation coverage was the primary factor driving the reductions in sediment loads since 1996 and accounted for 47.7% of the total reduction. Climate variability and terrace construction accounted for 9.1% and 18.6% of sediment discharge reductions, respectively. Copyright © 2018. Published by Elsevier B.V.

  20. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    NASA Astrophysics Data System (ADS)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three major river outlets, despite overall decline of sediment load in recent decades, and pronounced declines for South Pass and Pass a Loutre. Future research will focus on relationships among changing sediment loads, dispersal patterns, and sediment transport by mudflows, which are an important process for dispersal after initial deposition.

  1. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    NASA Astrophysics Data System (ADS)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.

  2. Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.

    2009-01-01

    Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.

  3. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes.

    PubMed

    Yin, Hongbin; Kong, Ming; Han, Meixiang; Fan, Chengxin

    2016-12-01

    Modified clay-based solid-phase phosphorous (P) sorbents are increasingly used as lake geoengineering materials for lake eutrophication control. However, some still dispute the feasibility of using these materials to control internal P loading from shallow eutrophic lakes. The lack of information about P behavior while undergoing frequent sediment resuspension greatly inhibits the modified minerals' use. In this study, a sediment resuspension generating system was used to simulate the effect of both moderate winds (5.1 m/s) and strong winds (8.7 m/s) on the stability of sediment treated by two geoengineering materials, Phoslock ® (a lanthanum modified bentonite) and thermally-treated calcium-rich attapulgite. This study also presents an analysis of the P dynamics across the sediment-water interface of two shallow eutrophic lakes. In addition, the effect of wind velocity on P forms and P supply from the treated sediment were studied using chemical extraction and diffusive gradients in thin films (DGT) technique, respectively. Results showed that adding geoengineering materials can enhance the stability of surface sediment and reduce the erosion depth caused by wind accordingly. All treatments can effectively reduce soluble reactive phosphorus (SRP) concentration in overlying water when sediment is capped with thermally-treated calcium-rich attapulgite, which performs better than sediment mixed with modified attapulgite but not as well as sediment treated with Phoslock ® . However, their efficiency decreased with the increase in occurrences of sediment resuspension. The addition of the selected geoengineering materials effectively reduced the P fluxes across sediment-water interface and lowered P supply ability from the treated sediment during sediment resuspension. The reduction of mobile P and enhancement of calcium bound P and residual P fraction in the treated sediment was beneficial to the long-term lake internal P loading management. All of the results indicated that the studied geoengineering materials are suitable for application in shallow eutrophic lakes with frequent sediment resuspension activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin.

    PubMed

    Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan

    2015-01-01

    Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

  5. N-SINK - reduction of waste water nitrogen load

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  6. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.

    2006-08-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  7. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  8. Weak and Habitat-Dependent Effects of Nutrient Pollution on Macrofaunal Communities of Southeast Australian Estuaries

    PubMed Central

    Nicastro, Andrea; Bishop, Melanie J.

    2013-01-01

    Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed. PMID:23799037

  9. Participatory community-based gully rehabilitation on the Ethiopian Highlands: the case of Birr watershed

    USDA-ARS?s Scientific Manuscript database

    In the last fifty years, sediment concentrations in the Ethiopian highlands have increased two- to three-fold. The current severity of gully erosion is a major cause of increased sediment loads, but gully rehabilitation has proven to be challenging as success rates have been small. This paper descri...

  10. Biophysical and economic assessment of a community-based rehabilitated gully in the Ethiopian highlands

    USDA-ARS?s Scientific Manuscript database

    In the last fifty years, sediment concentrations in the Ethiopian highlands have increased two- to three-fold. The current severity of gully erosion is a major cause of increased sediment loads, but gully rehabilitation has proven to be challenging, with limited success. This paper describes gully r...

  11. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    PubMed

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  12. Transport and sources of sediment in the Missouri River between Garrison Dam and the headwaters of Lake Oahe, North Dakota, May 1988 through April 1991

    USGS Publications Warehouse

    Berkas, Wayne R.

    1995-01-01

    Sediment data were collected on and along the Missouri River downstream from Garrison Dam during May 1988, May 1989, and April 1991 to characterize sediment transport in the river. Specific study objectives were to (1) identify erosional and depositional reaches during two steady-state low-flow periods and one steady-state high-flow period; (2) determine if the reaches are consistently eroding or depositing, regardless of streamflow; and (3) determine the sources of suspended sediment in the river. Erosional and depositional reaches differed between the two low-flow periods, indicating that slight changes in the channel configuration between the two periods caused changes in erosional and depositional patterns. Erosional and depositional reaches also differed between the low-flow periods and the high-flow period, indicating that channel changes and increased streamflow velocities affect erosional and depositional reaches. The significant sources of suspended sediment in the Missouri River are the riverbed and riverbanks. The riverbed contributes to the silt and sand load in the river, and the riverbanks contribute to the clay, silt, and sand load. The contribution from tributaries to the suspendedsediment load in the Missouri River usually is small. Occasionally, during low-flow periods on the Missouri River, the Knife River can contribute significantly to the suspended-sediment load in the Missouri River.

  13. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    Rationale and Experimental Approach Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables. Results and Discussion Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis. Summary Lack of consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material. PMID:26809153

  14. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko

    1997-03-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from normal. Original vegetation such as sedges and Alnus japonica were disappearing from the adjacent areas of the river channel and were being replaced by willow trees ( Salix spp.).

  15. Quantifying modern erosion rates and river-sediment contamination in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Vezzoli, Giovanni; Ghielmi, Giacomo; Mondaca, Gonzalo; Resentini, Alberto; Villarroel, Elena Katia; Padoan, Marta; Gentile, Paolo

    2013-08-01

    We use petrographic, mineralogical and geochemical data on modern river sediments of the Tupiza basin in the Bolivian Andes to investigate the relationships among human activity, heavy-metal contamination of sediments and modern erosion rates in mountain fluvial systems. Forward mixing model was used to quantify the relative contributions from each main tributary to total sediment load of the Tupiza River. The absolute sediment load was estimated by using the Pacific Southwest Inter Agency Committee model (PSIAC, 1968) after two years of geological field surveys (2009; 2010), together with data obtained from the Instituto Nacional del Agua public authority (INA, 2007), and suspended-load data from Aalto et al. (2006). Our results indicate that the sediment yield in the drainage basin is 910 ± 752 ton/km2year and the mean erosion rate is 0.40 ± 0.33 mm/year. These values compare well with erosion rates measured by Insel et al. (2010) using 10Be cosmogenic radionuclide concentrations in Bolivian river sediments. More than 40% of the Tupiza river load is produced in the upper part of the catchment, where highly tectonized and weathered rocks are exposed and coupled with sporadic land cover and intense human activity (mines). In the Rio Chilco basin strong erosion of upland valleys produce an increase of erosion (˜10 mm/year) and the influx of large amounts of sediment by mass wasting processes. The main floodplain of the Tupiza catchment represents a significant storage site for the heavy metals (˜657 ton/year). Fluvial sediments contain zinc, lead, vanadium, chromium, arsenic and nickel. Since the residence time of these contaminants in the alluvial plain may be more than 100 years, they may represent a potential source of pollution for human health.

  16. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield

    NASA Astrophysics Data System (ADS)

    Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G. R.; Lenzi, M. A.

    2017-08-01

    This paper investigates nearly 30 years of monitoring of sediment fluxes in an instrumented Alpine basin (Rio Cordon, Italy). The collected bedload and suspended sediment transport data allows sediment dynamics to be analyzed at different time scales, ranging from short- (single event) to long-term (three decades). The Rio Cordon monitoring station has been operating since 1986, continuously recording water discharge, bedload and suspended load. At the flood event scale, a good relationship was found between peak discharges (Qpeak) and sediment load (bedload and suspended load). The inter-annual sediment yields were analyzed, also assessing the contribution of the single floods to the total sediment budget. The annual suspended load ranges from 10 to 2524 t yr- 1, while the bedload varies from 0 to 1543 t yr- 1. The higher annual yields were recorded in the years when large floods occurred, highlighting that the sediment budget in the Rio Cordon is strongly controlled by the occurrence of high magnitude events. Investigation of the seasonal suspended load contribution demonstrated that from 1986 to 1993 most fine sediments were transported during the snowmelt/summer seasons, while autumn and snowmelt were the dominant seasons contributing to sediment yield in the periods 1994-2002 and 2003-2014, respectively. The mean annual sediment yield from 1986 to 2014 is equal to 103 t km- 2 yr- 1, and overall, bedload accounts for 21% of the total sediment yield. The ratio between the sediment transport and the effective runoff of the events allowed the temporal trends of transport efficiency to be inferred, highlighting the existence of periods characterized by different sediment availability. In particular, despite no significant changes in the hydrological variables (i.e. rainfall), nearly a decade (1994-2002) with high transport efficiency appears to have occurred after an exceptional event (recurrence interval > 100 years). This event affected the sediment availability at the basin and channel bed scales, and provided a legacy influencing the sediment dynamics in the basin over the long-term by increasing the transport efficiency for approximately a decade. This work benefits from the long-lasting monitoring program undertaken in the Rio Cordon and is the product of long-term data series. The quasi-unique dataset has provided detailed evidence of sediment dynamics over about three decades in a small Alpine basin, also enabling the effects triggered by an exceptional event to be analyzed.

  17. Temporal and spatial patterns of sedimentation within the batture lands of the middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, Jonathan W. F.; Ryherd, Julia; Ruffner, Charles M.; Therrell, Matthew D.

    2018-05-01

    Sediment deposition and storage are important functions of batture lands (the land between the channel's low-water elevation and the flood mitigation levee). However, sedimentation processes within these areas are not fully understood. In this paper, we explore the spatiotemporal patterns, rates, and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio rivers) using three approaches: (1) comparison of historical to modern elevation data in order to estimate long-term (>100 yr) sedimentation rates; (2) estimation of medium- to short-term (<50 yr) sedimentation rates using dendrogeomorphological methods; and (3) geomorphic change detection (GCD) software to estimate short-term sedimentation rates ( 12 yr), spatial patterns of deposition, and volumes of geomorphic change within the batture lands. Comparison of long- to short-term sedimentation rates suggests up to a 300% increase in batture land sedimentation rates (from 6.2 to 25.4 mm yr-1) despite a substantial decrease in the MMR's suspended-sediment load (>70%) attributed largely to sediment trapping by dams during the second half of the twentieth century. The increase in MMR batture land sedimentation rates are attributed to at least two potential mechanisms: (1) the above average frequency and duration of low-magnitude floods (>2-yr and ≤5-yr flood) during the short-term assessment periods which allowed for more suspended sediment to be deposited within the batture lands; and (2) the construction of levees that substantially reduced the floodplain area ( 75%) available for storage of overbank deposits increasing the vertical accumulation and consequently the detectability of a given volume of sediment. The GCD estimated batture land sediment volumes were 9.0% of the suspended load at St. Louis. This substantial storage of sediment ( 8.5 Mt yr-1) along the MMR suggests batture lands are an important sink for suspended sediments.

  18. Phosphorus retention and internal loading in the Bay of Quinte, Lake Ontario, using diagenetic modelling.

    PubMed

    Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria

    2018-04-24

    Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2  d -1 in the upper bay compared to 1.5 mg P m -2  d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya

    PubMed Central

    2018-01-01

    The Mara River Basin in East Africa is a trans-boundary basin of international significance experiencing excessive levels of sediment loads. Sediment levels in this river are extremely high (turbidities as high as 6,000 NTU) and appear to be increasing over time. Large wildlife populations, unregulated livestock grazing, and agricultural land conversion are all potential factors increasing sediment loads in the semi-arid portion of the basin. The basin is well-known for its annual wildebeest (Connochaetes taurinus) migration of approximately 1.3 million individuals, but it also has a growing population of hippopotami (Hippopotamus amphibius), which reside within the river and may contribute to the flux of suspended sediments. We used in situ pressure transducers and turbidity sensors to quantify the sediment flux at two sites for the Mara River and investigate the origin of riverine suspended sediment. We found that the combined Middle Mara—Talek catchment, a relatively flat but semi-arid region with large populations of wildlife and domestic cattle, is responsible for 2/3 of the sediment flux. The sediment yield from the combined Middle Mara–Talek catchment is approximately the same as the headwaters, despite receiving less rainfall. There was high monthly variability in suspended sediment fluxes. Although hippopotamus pools are not a major source of suspended sediments under baseflow, they do contribute to short-term variability in suspended sediments. This research identified sources of suspended sediments in the Mara River and important regions of the catchment to target for conservation, and suggests hippopotami may influence riverine sediment dynamics. PMID:29420624

  20. Evaluation of the effects of Middleton's stormwater-management activities on streamflow and water-quality characteristics of Pheasant Branch, Dane County, Wisconsin 1975-2008

    USGS Publications Warehouse

    Gebert, Warren A.; Rose, William J.; Garn, Herbert S.

    2012-01-01

    Few long-term data sets are available for evaluating the effects of urban stormwater-management practices. Over 30 years of data are available for evaluating the effectiveness of such practices by the city of Middleton, Wis. Analysis of streamflow and water-quality data collected on Pheasant Branch, demonstrates the relation between the changes in the watershed to the structural and nonstructural best management practices put in place during 1975-2008. A comparison of the data from Pheasant Branch with streamflow and water-quality data (suspended sediment and total phosphorus) collected at other nearby streams was made to assist in the determination of the possible causes of the changes in Pheasant Branch. Based on 34 years of streamflow data collected at the Pheasant Branch at Middleton streamflow-gaging station, flood peak discharges increased 37 percent for the 2-year flood and 83 percent for the 100-year flood. A comparison of data for the same period from an adjacent rural stream, Black Earth at Black Earth had a 43 percent increase in the 2-year flood peak discharge and a 140-percent increase in the 100-year flood peak discharge. Because the flood peak discharges on Pheasant Branch have not increased as much as Black Earth Creek it appears that the stormwater management practices have been successful in mitigating the effects of urbanization. Generally urbanization results in increased flood peak discharges. The overall increase in flood peak discharges seen in both streams probably is the result of the substantial increase in precipitation during the study period. Average annual runoff in Pheasant Branch has also been increasing due to increasing average annual precipitation and urbanization. The stormwater-management practices in Middleton have been successful in decreasing the suspended-sediment and total phosphorus loads to Lake Mendota from the Pheasant Branch watershed. These loads decreased in spite of increased annual runoff and flood peaks, which are often expected to produce higher sediment and phosphorus loads. The biggest decreases in sediment and phosphorus loads occurred after 2001 when a large detention pond, the Confluence Pond, began operation. Since 2001, the annual suspended-sediment load has decreased from 2,650 tons per year to 1,450 tons per year for a 45-percent decrease. The annual total phosphorus load has decreased from 12,200 pounds per year to 6,300 pounds per year for a 48-percent decrease. A comparison of Pheasant Branch at Middleton with two other streams, Spring Harbor Storm Sewer and Yahara River at Windsor, that drain into Lake Mendota shows that suspended-sediment and total phosphorus load decreases were greatest at Pheasant Branch at Middleton. Prior to the construction of the Confluence Pond, annual suspended-sediment yield and total phosphorus yield from Pheasant Branch watershed was the largest of the three watersheds. After 2001, suspended-sediment yield was greatest at Spring Harbor Storm Sewer, and lowest at Yahara at Windsor; annual total phosphorus yield was greater at Yahara River at Windsor than that of Pheasant Branch. The stormwater-quality plan for Middleton shows that the city has met the present State of Wisconsin Administrative Code chap. NR216/NR151 requirements of reducing total suspended solids by 20 percent for the developed area in Middleton. In addition, the city already has met the 40-percent reduction in total suspended solids required by 2013. Snow and ice melt runoff from road surfaces and parking lots following winter storms can effect water quality because the runoff contains varying amounts of road salt. To evaluate the effect of road deicing on stream water quality in Pheasant Branch, specific conductance and chloride were monitored during two winter seasons. The maximum estimated concentration of chloride during the monitoring period was 931 milligrams per liter, which exceeded the U.S. Environmental Protection Agency acute criterion of 860 milligrams per liter. Chloride concentrations exceeded the U.S. Environmental Protection Agency chronic criterion of 230 milligrams per liter for at least 10 days during February and March 2007 and for 45 days during the 2007-8 winter seasons. The total sodium chloride load for the monitoring period was 1,720 tons and the largest sodium chloride load occurred in March and April of each year.

  1. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P < 0.001) in daily SSC (18 stations; one increasing and 17 decreasing), FD (19 stations; seven increasing and 12 decreasing), and P63 (15 stations; five increasing and 10 decreasing) as well. Further, 46% of the stations exhibited significant trends in all three variables. The wash load significantly contributed (79.085 ± 11.343%) to sediment load recorded at the gage stations. Results of the study can be used for developing best watershed management practices which may call for local or regional planning based on natural (i.e., precipitation amount, type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  2. Riparian vegetation controls on the hydraulic geometry of streams

    NASA Astrophysics Data System (ADS)

    McBride, M.

    2010-12-01

    A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.

  3. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu

    2017-09-01

    Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.

  4. Statistical modelling of suspended sediment load in small basin located at Colombian Andes

    NASA Astrophysics Data System (ADS)

    Javier, Montoya Luis

    2016-04-01

    In this study a statistical modelling for the estimate the sediment yield based on available observations of water discharge and suspended sediment concentration were done. A multivariate model was applicate to analyze the 33 years of daily suspended sediments load available at a La Garrucha gauging station. A regional analysis were conducted to find a non-dimensional sediment load duration curve. These curves were used to estimate flow and sediments regimen at other inner point at the basin where there are located the Calderas reservoir. The record of sedimentation in the reservoir were used to validate the estimate mean sediments load. A periodical flushing in the reservoir is necessary to maintain the reservoir at the best operating capacity. The non-dimensional sediment load duration curve obtaining was used to find a sediment concentration during high flow regimen (10% of time these values were met or exceeded).These sediment concentration of high flow regimen has been assumed as a concentration that allow an 'environmental flushing', because it try to reproduce the natural regimen of sediments at the river and it sends a sediment concentration that environment can withstand. The sediment transport capacity for these sediment load were verified with a 1D model in order to respect the environmental constraints downstream of the dam. Field data were collected to understand the physical phenomena involved in flushing dynamics in the reservoir and downstream of the dam. These model allow to define an operations rules for the flushing to minimize the environmental effects.

  5. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.

    2017-11-01

    Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.

  6. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.

    PubMed

    Sunderland, Elsie M; Dalziel, John; Heyes, Andrew; Branfireun, Brian A; Krabbenhoft, David P; Gobas, Frank A P C

    2010-03-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost 40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast, MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs.

  7. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000

    USGS Publications Warehouse

    Sunderl, E.M.; Dalziel, J.; Heyes, A.; Branfireun, B.A.; Krabbenhoft, D.P.; Gobas, F.A.P.C.

    2010-01-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs. ?? 2010 American Chemical Society.

  8. Total and settling velocity-fractionated pollution potential of sewer sediments in Jiaxing, China.

    PubMed

    Zhou, Yongchao; Zhang, Ping; Zhang, Yiping; Li, Jin; Zhang, Tuqiao; Yu, Tingchao

    2017-10-01

    Sewer sediments and their associated contaminant released along with wet-weather discharges pose potential pollution risks to environment. This paper presents total characteristics of sediments collected from Jiaxing, China. Size distribution and concentrations of volatile solids (VS) and four metals (Pb, Cu, Zn, Cr) of sediment samples from seven land use categories were analyzed. Then, the sediment samples were graded five fractions according to its settling velocity through the custom-built settling velocity-grading device. Sediment mass and pollution load distribution based on settling velocity were also assessed. The results show that there are relatively high level of heavy metal load in the sediment of separated storm drainage systems in Jiaxing, especially for the catchment of residential area (RA), road of developed area (RDA), and industrial area (IA). Although grain size follows a trend of increasing along with settling velocity, the methods of settling velocity grading are meaningful for stormwater treatment facilities with precipitation. For all land use categories, the pollution concentrations of the three lower settling velocity-fractionated sediment are relatively consistent and higher than others. Combined with mass distribution, the pollution percentage of fraction with different velocities for seven land use categories were also evaluated. Based on it, the statistical conclusion of design target settling velocity to different pollution load removal rates are drawn, which is helpful to guide design of on-site precipitation separation facilities.

  9. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.

  10. Geomorphic Response to Significant Sediment Loading Along Tahoma Creek on Mount Rainier, WA

    NASA Astrophysics Data System (ADS)

    Anderson, S.; Kennard, P.; Pitlick, J.

    2012-12-01

    Increased sediment loading in streams draining the flanks of Mt. Rainier has caused significant damage to National Park Service infrastructure and has prompted concern in downstream communities. The processes driving sedimentation and the controls on downstream response are explored in the 37 km2 Tahoma Creek basin, using repeat LiDAR surveys supplemented with additional topographic datasets. DEM differencing between 2003 and 2008 LiDAR datasets shows that over 2.2 million cubic meters of material was evacuated from the upper reaches of the basin, predominately in the form of debris flows. These debris flows were sourced in recently exposed lateral moraines, bulking through the broad collapse of unstable hillslopes. 40% of this material was deposited in the historic debris fan 4-6 km downstream of the terminus, while 55% completely exited the system at the downstream point of the surveys. Distinct zones of aggradation and incision of up to one meter are present along the lower channel and appear to be controlled by valley constrictions and inflections. However, the lower channel has shown remarkable long-term stability in the face of significant sediment loads. Alder ages suggest fluvial high stands in the late 70's and early 90's, immediately following periods of significant debris flow activity, yet the river quickly returned to pre-disturbance elevations. On longer time scales, the presence of old-growth forest on adjacent floodplain/terrace surfaces indicates broad stability on both vertical and horizontal planes. More than a passive indicator, these forested surfaces play a significant role in maintaining channel stability through increased overbank roughness and the formation of bank-armoring log jams. Sediment transport mechanics along this lower reach are explored using the TomSED sediment transport model, driven by data from an extensive sediment sampling and stream gaging effort. In its current state, the model is able to replicate the stability of the channel but significantly under predicts total loads when compared to the LiDAR differencing.

  11. Feedbacks Between Surface Processes and Tectonics at Rifted Margins: a Numerical Approach

    NASA Astrophysics Data System (ADS)

    Andres-Martinez, M.; Perez-Gussinye, M.; Morgan, J. P.; Armitage, J. J.

    2014-12-01

    Mantle dynamics drives the rifting of the continents and consequent crustal processes shape the topography of the rifted margins. Surface processes modify the topography by eroding positive reliefs and sedimenting on the basins. This lateral displacement of masses implies a change in the loads during rifting, affecting the architecture of the resulting margins. Furthermore, thermal insulation due to sediments could potentially have an impact on the rheologies, which are proved to be one of the most influential parameters that control the deformation style at the continental margins. In order to understand the feedback between these processes we have developed a numerical geodynamic model based on MILAMIN. Our model consists of a 2D Lagrangian triangular mesh for which velocities, displacements, pressures and temperatures are calculated each time step. The model is visco-elastic and includes a free-surface stabilization algorithm, strain weakening and an erosion/sedimentation algorithm. Sediment loads and temperatures on the sediments are taken into account when solving velocities and temperatures for the whole model. Although surface processes are strongly three-dimensional, we have chosen to study a 2D section parallel to the extension as a first approach. Results show that where sedimentation occurs strain further localizes. This is due to the extra load of the sediments exerting a gravitational force over the topography. We also observed angular unconformities on the sediments due to the rotation of crustal blocks associated with normal faults. In order to illustrate the feedbacks between surface and inner processes we will show a series of models calculated with different rheologies and extension velocities, with and without erosion/sedimentation. We will then discuss to which extent thermal insulation due to sedimentation and increased stresses due to sediment loading affect the geometry and distribution of faulting, the rheology of the lower crust and consequently margin architecture.

  12. Sediment regime constraints on river restoration - An example from the lower Missouri river

    USGS Publications Warehouse

    Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.

    2009-01-01

    Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river, provides a quantitative basis for defining management constraints and identifying opportunities.

  13. Investigations of Sediment Transportation, Middle Loup River at Dunning, Nebraska: With Application of Data from Turbulence Flume

    USGS Publications Warehouse

    Hubbell, David Wellington; Matejka, Donald Quintin

    1959-01-01

    An investigation of fluvial sediments of the Middle Loup River at Dunning, Nebr., was begun in 1946 and expanded in 1949 to provide information on sediment transportation. Construction of an artificial turbulence flume at which the total sediment discharge of the Middle Loup River at Dunning, Nebr., could be measured with suspended-sediment sampling equipment was completed in 1949. Since that time. measurements have been made at the turbulence flume and at several selected sections in a reach upstream and downstream from the flume. The Middle Loup River upstream from Dunning traverses the sandhills region of north-central Nebraska and has a drainage area of approximately 1,760 square miles. The sandhills are underlain by the Ogallala formation of Tertiary age and are mantled by loess and dune sand. The topography is characterized by northwest-trending sand dunes, which are stabilized by grass cover. The valley floor upstream from Dunning is generally about half a mile wide, is about 80 feet lower than the uplands, and is composed of sand that was mostly stream deposited. The channel is defined by low banks. Bank erosion is prevalent and is the source of most of the sediment load. The flow originates mostly from ground-water accretion and varies between about 200 and 600 cfs (cubic feet per second). Measured suspended-sediment loads vary from about 200 to 2,000 tons per day, of which about 20 percent is finer than 0.062 millimeter and 100 percent is finer than 0.50 millimeter. Total sediment discharges vary from about 500 to 3,500 tons per day, of which about 10 percent is finer than 0.062 millimeter, about 90 percent is finer than 0.50 millimeter, and about 98 percent is finer than 2.0 millimeters. The measured suspended-sediment discharge in the reach near Dunning averages about one-half of the total sediment discharge as measured at the turbulence flume. This report contains information collected during the period October 1, 1948, to September 30, 1952. The information includes sediment discharges; particle-size analyses of total load, of measured suspended sediment, and of bed material; water discharges and other hydraulic data for the turbulence flume and the selected sections. Sediment discharges have been computed with several different formulas, and insofar as possible, each computed load has been compared with data from the turbulence flume. Sediment discharges computed with the Einstein procedure did not agree well, in general, with comparable measured loads. However, a satisfactory representative cross section for the reach could not be determined with the cross sections that were selected for this investigation. If the computed cross section was narrower and deeper than a representative cross section for the reach, computed loads were high; and if the computed cross section was wider and shallower than a representative cross section for the reach, computed loads were low. Total sediment discharges computed with the modified Einstein procedure compared very well with the loads of individual size ranges and the measured total loads at the turbulence flume. Sediment discharges computed with the Straub equation averaged about twice the measured total sediment discharge at the turbulence flume. Bed-load discharges computed with the Kalinske equation were of about the right magnitude; however, high computed loads were associated with low total loads, low unmeasured loads, and low concentrations of measured suspended sediment coarser than 0.125 millimeter. Bed-load discharges computed with the Schoklitsch equation seemed somewhat high; about one-third of the computed loads were slightly higher than comparable unmeasured loads. Although, in general, high computed discharges with the Schoklitsch equation were associated with high measured total loads, high unmeasured loads, and high concentrations of measured suspended sediment coarser than 0.125 millimeter, the trend was not consistent. Bed-load discharges computed

  14. Tracing suspended sediment sources in the Upper Sangamon River Basin using conservative and non-conservative tracers

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2015-12-01

    As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored. This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois, USA. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook from five potential sources: farmland, forests, floodplains, river banks, and grasslands. Event-based and accumulated suspended sediment samples were collected by ISCO automatic pump samplers and in situ suspended sediment samplers and from the stream at watershed outlet. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an un-mixing model, was employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and radionuclides from soil samples were used as potential tracers. Our preliminary results indicate that the majority of suspended sediment is derived from floodplains in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland areas and banks. These results suggest that floodplain erosion during high flow events contributes to the suspended sediment.

  15. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.

  16. Nutrient and suspended-sediment trends, loads, and yields and development of an indicator of streamwater quality at nontidal sites in the Chesapeake Bay watershed, 1985-2010

    USGS Publications Warehouse

    Langland, Michael; Blomquist, Joel; Moyer, Douglas; Hyer, Kenneth

    2012-01-01

    The U.S. Geological Survey (USGS) updates information on loads of, and trends in, nutrients and sediment annually to help the Chesapeake Bay Program (CBP) investigators assess progress toward improving water-quality conditions in the Chesapeake Bay and its watershed. CBP scientists and managers have worked since 1983 to improve water quality in the bay. In 2010, the U.S. Environmental Protection Agency (USEPA) established a Total Maximum Daily Load (TMDL) for the Chesapeake Bay. The TMDL specifies nutrient and sediment load allocations that need to be achieved in the watershed to improve dissolved oxygen, water-clarity, and chlorophyll conditions in the bay. The USEPA, USGS, and state and local jurisdictions in the watershed operate a CBP nontidal water-quality monitoring network and associated database that are used to update load and trend information to help assess progress toward reducing nutrient and sediment inputs to the bay. Data collected from the CBP nontidal network were used to estimate loads and trends for two time periods: a long-term period (1985-2010) at 31 "primary" sites (with storm sampling) and a 10-year period (2001-10) at 33 primary sites and 16 "secondary" sites (without storm sampling). In addition, loads at 64 primary sites were estimated for the period 2006 to 2010. Results indicate improving flow-adjusted trends for nitrogen and phosphorus for 1985 to 2010 at most of the sites in the network. For nitrogen, 21 of the 31 sites showed downward (improving) trends, whereas 2 sites showed upward (degrading) trends, and 8 sites showed no trends. The results for phosphorus were similar: 22 sites showed improving trends, 4 sites showed degrading trends, and 5 sites indicated no trends. For sediment, no trend was found at 40 percent of the sites, with 10 sites showing improving trends and 8 sites showing degrading trends. The USGS, working with CBP partners, developed a new water-quality indicator that combines the results of the 10-year trend analysis with results from a greater number of sites (64 primary sites) where loads and yields of total nitrogen and phosphorus and sediment could be calculated. The new indicator shows fewer significant trends for the 10-year time period than for the long-term time period (1985-2010). For 2001-10, total nitrogen trends were downward (improving) at 14 sites and upward (degrading) at 2 sites; no trend was found at 17 sites. For total phosphorus, 12 sites showed improving trends, 4 sites showed degrading trends, and 17 sites showed no trend. For total sediment, most sites (21) did not exhibit a significant trend; 3 sites showed improving trends, and 10 sites showed degrading trends. Few significant trends were seen at the 16 secondary sites: improving trends for total nitrogen at 4 sites, improving trends for total phosphorus at 2 sites, and a degrading trend for sediment at 1 site. Total streamflow to the Chesapeake Bay was 20 percent higher in 2010 than in 2009 and is considered to be within the normal range of flow, whereas annual streamflow at 28 sites was greater in 2010 than in 2009. No trends in daily streamflow were detected at the 31 long-term sites. Combined loads for the farthest downstream nontidal monitoring sites (called "River Input Monitoring sites") increased 33 percent for total nitrogen, 120 percent for total phosphorus, and 330 percent for total sediment from 2009 to 2010. The large increase in phosphorus and sediment loads in 2010 was caused in large part by two large storm events that occurred during the spring in the Potomac River Basin. Yields (load per watershed area) of total nitrogen in the Chesapeake Bay watershed decreased from north to south (New York to Virginia). No spatial patterns were discernible for total phosphorus or sediment.

  17. Using sediment 'fingerprints' to assess sediment-budget errors, north Halawa Valley, Oahu, Hawaii, 1991-92

    USGS Publications Warehouse

    Hill, B.R.; DeCarlo, E.H.; Fuller, C.C.; Wong, M.F.

    1998-01-01

    Reliable estimates of sediment-budget errors are important for interpreting sediment-budget results. Sediment-budget errors are commonly considered equal to sediment-budget imbalances, which may underestimate actual sediment-budget errors if they include compensating positive and negative errors. We modified the sediment 'fingerprinting' approach to qualitatively evaluate compensating errors in an annual (1991) fine (<63 ??m) sediment budget for the North Halawa Valley, a mountainous, forested drainage basin on the island of Oahu, Hawaii, during construction of a major highway. We measured concentrations of aeolian quartz and 137Cs in sediment sources and fluvial sediments, and combined concentrations of these aerosols with the sediment budget to construct aerosol budgets. Aerosol concentrations were independent of the sediment budget, hence aerosol budgets were less likely than sediment budgets to include compensating errors. Differences between sediment-budget and aerosol-budget imbalances therefore provide a measure of compensating errors in the sediment budget. The sediment-budget imbalance equalled 25% of the fluvial fine-sediment load. Aerosol-budget imbalances were equal to 19% of the fluvial 137Cs load and 34% of the fluval quartz load. The reasonably close agreement between sediment- and aerosol-budget imbalances indicates that compensating errors in the sediment budget were not large and that the sediment-budget imbalance as a reliable measure of sediment-budget error. We attribute at least one-third of the 1991 fluvial fine-sediment load to highway construction. Continued monitoring indicated that highway construction produced 90% of the fluvial fine-sediment load during 1992. Erosion of channel margins and attrition of coarse particles provided most of the fine sediment produced by natural processes. Hillslope processes contributed relatively minor amounts of sediment.

  18. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    NASA Astrophysics Data System (ADS)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.

  19. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.

  20. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    NASA Astrophysics Data System (ADS)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the contrary the importance of snow melt for sediment transport was indicated during the ablation season 2013. In total 3582 t of sediment were exported out of the Riffler Bach catchment in 2012, which is almost twice the solid sediment load of the ablation season 2013 (1953 t). Total solid load of the Riffler Bach River was 3511 t in 2014 Suspended sediment load was dominant in all ablation seasons. The result of additional DEM analysis reveals that 37 % of the catchment do not contribute or only contribute to a lesser amount to the fluvial sediment export out of the catchment. The findings of the grain size analysis imply glacigenic origin of the transported particles. Thus, the results indicate that solid sediment transport is not only a function of discharge. Also availability of sediment and the systems state of (dis-)connectivity, e.g. coupling of sediment sources to the river, need to be considered.

  1. Utilization of LANDSAT data for water quality surveys in the Choptank River

    NASA Technical Reports Server (NTRS)

    Johnson, J. M.; Cressy, P.; Dallam, W. C.

    1975-01-01

    Computer processing of LANDSAT-1 multispectral digital data demonstrated the applicability of remotely sensed data to water quality survey in the Choptank River. Water classes derived by automated analysis correlate to river nuisance levels of chlorophyll a and sediment loading as defined by the Maryland Department of Water Resources and the U.S. Corps of Engineers. Results indicate that an increase in chlorophyll a concentration corresponds, relative to MSS 5, to decreases in 4 and increases in 6 relative to the trends with increasing sediment load. It appears that for the purpose of water quality analysis, under favorable atmospheric conditions, only MSS 4, 5 and 6 are necessary.

  2. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.

    PubMed

    Schwartz, Daniel; Sample, David J; Grizzard, Thomas J

    2017-06-01

    This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.

  3. Contribution of Sediment Compaction/Loading to the Ganges-Bangladesh Delta Subsidence

    NASA Astrophysics Data System (ADS)

    Karpytchev, Mikhail; Krien, Yann; Ballu, Valerie; Becker, Melanie; Calmant, Stephane; Spada, Giorgio; Guo, Junyi; Khan, Zahirul; Shum, Ck

    2016-04-01

    A pronounced spatial variability characterizes the subsidence/uplift rates in the Ganges-Bangladesh delta estimated from both sediment cores and modern geodetic techniques. The large variability of the subsidence rates suggests an interplay of different natural and anthropogenic processes including tectonics, sediment loading and sediment compaction, groundwater extaction among many others drivers of the delta vertical land movements.In this study, we focus on estimating the subsidence rates due to the sediments transported by the Ganges-Brahmaputra since the last 18 000 years. The delta subsidence induced by the sediment loading and the resulting sea level changes are modelled by the TABOO and SELEN software (Spada, 2003; Stocchi and Spada, 2007) in the framework of a gravitationally self-consistent Earth model. The loading history was obtained from available sediment cores and from the isopach map of Goodbread and Kuehl (2000). The results demonstrate that the delta loading enhanced by the Holocene sedimention can be responsable for a regular subsidence across the Ganges-Brahmaputra delta with an amplitude of 1-5 mm/yr along the Bengal coast. These estimates demonstrate that the contribution of the Holocene as well as modern sediment loading should be taken into account in climate change mitigation politicy for Bangladesh.

  4. Sediment and Hydraulic Measurements with Computed Bed Load on the Missouri River, Sioux City to Hermann, 2014

    DTIC Science & Technology

    2017-05-01

    large sand bed river, with seven sites representing increasingly larger flows along the river length. The data set will be very useful for additional...quantity, quality , and types of data that can be obtained for the study of natural phenomenon. The study of riverine sedimentation is no exception...detail than in previous years. Additionally, new methodologies have been developed that allow the computation of bed-load transport in large sand bed

  5. Estimating sediment discharge: Appendix D

    USGS Publications Warehouse

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with different types of bed-load samplers may not be comparable (Gray et al. 1991; Childers 1999; Edwards and Glysson 1999). The total suspended solids (TSS) analytical method tends to produce concentration data from open-channel flows that are biased low with respect to their paired suspended-sediment concentration values, particularly when sand-size material composes more than about a quarter of the material in suspension. Instantaneous sediment-discharge values based on TSS data may differ from the more reliable product of suspended- sediment concentration values and the same water-discharge data by an order of magnitude (Gray et al. 2000; Bent et al. 2001; Glysson et al. 2000; 2001). An assessment of data comparability and reliability is an important first step in the estimation of sediment discharges. There are two approaches to obtaining values describing sediment loads in streams. One is based on direct measurement of the quantities of interest, and the other on relations developed between hydraulic parameters and sediment- transport potential. In the next sections, the most common techniques for both approaches are briefly addressed.

  6. QUANTIFYING SEDIMENT CONTRIBUTIONS TO THE GUÁNICA BAY PUERTO RICO

    EPA Science Inventory

    The island of Puerto Rico faces considerable challenges regarding sustainable land use and effects of land use on adjacent freshwater and marine ecosystem services. In watersheds feeding Guánica Bay (southwestern Puerto Rico), increased soil erosion and sediment loading to strea...

  7. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    PubMed

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  8. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin

    NASA Astrophysics Data System (ADS)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  9. River bed Elevation Changes and Increasing Flood Hazards in the Nisqually River at Mount Rainier National Park, Washington

    NASA Astrophysics Data System (ADS)

    Halmon, S.; Kennard, P.; Beason, S.; Beaulieu, E.; Mitchell, L.

    2006-12-01

    Mount Rainier, located in Southwestern Washington, is the most heavily glaciated volcano of the Cascade Mountain Range. Due to the large quantities of glaciers, Mount Rainier also has a large number of braided rivers, which are formed by a heavy sediment load being released from the glaciers. As sediment builds in the river, its bed increases, or aggrades,its floodplain changes. Some contributions to a river's increased sediment load are debris flows, erosion, and runoff, which tend to carry trees, boulders, and sediment downstream. Over a period of time, the increased sediment load will result in the river's rise in elevation. The purpose of this study is to monitor aggradation rates, which is an increase in height of the river bed, in one of Mount Rainier's major rivers, the Nisqually. The studied location is near employee offices and visitor attractions in Longmire. The results of this study will also provide support to decision makers regarding geological hazard reduction in the area. The Nisqually glacier is located on the southern side of the volcano, which receives a lot of sunlight, thus releasing large amounts of snowmelt and sediment in the summer. Historical data indicate that several current features which may contribute to future flooding, such as the unnatural uphill slope to the river, which is due to a major depositional event in the late 1700s where 15 ft of material was deposited in this area. Other current features are the glaciers surrounding the Nisqually glacier, such as the Van Trump and Kaultz glaciers that produced large outbursts, affecting the Nisqually River and the Longmire area in 2001, 2003, and 2005. In an effort to further explore these areas, the research team used a surveying device, total station, in the Nisqually River to measure elevation change and angles of various positions within ten cross sections along the Longmire area. This data was then put into GIS for analyzation of its current sediment level and for comparison to previous cross sections, which were in 1993 and 2005. Results of the data analysis revealed changes in altitude of the sediment, as well as new areas of built up sediment. For example, a 7 foot increase in elevation, which was not revealed in the 2005 data, indicated there was an increased amount of debris that traveled from upstream. Further data will be obtained once all the cross sections are completed and data is closer analyzed.

  10. Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio Cordon-northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni

    2018-05-01

    Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.

  11. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    USGS Publications Warehouse

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload-surrogate instruments indicated detectable bedload starting just after full removal of the downstream dam. Using comparative studies from other sediment-laden rivers, the total ungauged fraction of < 2-mm bedload was estimated to be on the order of 1.5 Mt.

  12. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    PubMed

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with a high water level in the reservoir and is likely to result in acceptable water quality in the fjord. However, during periods of low drawdown, sediment pollution may again become a problem.

  13. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  14. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  15. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    DOT National Transportation Integrated Search

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  16. Assessing sedimentation rates at Usumacinta and Grijalva river basin (Southern Mexico) using OSL and suspended sediment load analysis: A study from the Maya Classic Period

    NASA Astrophysics Data System (ADS)

    Munoz-Salinas, E.; Castillo, M.; Sanderson, D.; Kinnaird, T.; Cruz-Zaragoza, E.

    2013-12-01

    Studying sedimentation rates on floodplains is key to understanding environmental changes occurred through time in river basins. The Usumacinta and Grijalva rivers flow most of their travel through the southern part of Mexico, forming a large river basin, crossing the states of Chiapas and Tabasco. The Usumacinta-Grijalva River Basin is within the 10 major rivers of North America, having a basin area of ~112 550 km2. We use the OSL technique for dating two sediment profiles and for obtaining luminescence signals in several sediment profiles located in the streambanks of the main trunk of the Usumacinta and Grijalva rivers. We also use mean annual values of suspended sediment load spanning ~50 years to calculate the sedimentation rates. Our OSL dating results start from the 4th Century, when the Maya Civilization was at its peak during the Classic Period. Sedimentation rates show a notable increase at the end of the 19th Century. The increase of the sedimentation rates seems to be related to changes in land uses in the Sierra Madre de Chiapas and Altos de Chiapas, based on deforestation and land clearing for developing new agrarian and pastoral activities. We conclude that the major environmental change in the basin of the Usumacinta and Grijalva Rivers since the Maya Classic Period was generated since the last Century as a result of an intense anthropogenic disturbance of mountain rain forest in Chiapas.

  17. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3) utilizing a crop rotation of wheat and forage crops (Abdelwahab et al., 2014). Further evaluations include scenarios with additional improvements in the input data, in particular better reflecting the management operations within model input parameters used to represent the current conditions applied in the watershed, and the study of the efficiency of the model in predicting runoff and sediment loads at a monthly and annual scale using un-calibrated parameters. The effect of riparian buffers as a natural trap that reduce runoff and increase the in-situ sediment deposition are also investigated. Acknowledgements This work is carried out in the framework of the Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, "National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area" National Coordinator prof. Mario Lenzi (University of Padova). References Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G. (2010) Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (southern Italy). Catena 80, 1-8, doi:10.1016/j.catena.2009.08.004. Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, wileyonlinelibrary.com, doi: 10.1002/ldr.2213. Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. (2014) Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering, vol. XLV:430, 125-136, doi: 10.4081/jae.2014.430.

  18. Determining Relative Contributions of Eroded Landscape Sediment and Bank Sediment to the Suspended Load of Streams and Wetlands Using 7Be and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.

    2005-12-01

    The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.

  19. Sediment Budgets and Sources Inform a Novel Valley Bottom Restoration Practice Impacted by Legacy Sediment: The Big Spring Run, PA, Restoration Experiment

    NASA Astrophysics Data System (ADS)

    Walter, R. C.; Merritts, D.; Rahnis, M. A.; Gellis, A.; Hartranft, J.; Mayer, P. M.; Langland, M.; Forshay, K.; Weitzman, J. N.; Schwarz, E.; Bai, Y.; Blair, A.; Carter, A.; Daniels, S. S.; Lewis, E.; Ohlson, E.; Peck, E. K.; Schulte, K.; Smith, D.; Stein, Z.; Verna, D.; Wilson, E.

    2017-12-01

    Big Spring Run (BSR), a small agricultural watershed in southeastern Pennsylvania, is located in the Piedmont Physiographic Province, which has the highest nutrient and sediment yields in the Chesapeake Bay watershed. To effectively reduce nutrient and sediment loading it is important to monitor the effect of management practices on pollutant reduction. Here we present results of an ongoing study, begun in 2008, to understand the impact of a new valley bottom restoration strategy for reducing surface water sediment and nutrient loads. We test the hypotheses that removing legacy sediments will reduce sediment and phosphorus loads, and that restoring eco-hydrological functions of a buried Holocene wetland (Walter & Merritts 2008) will improve surface and groundwater quality by creating accommodation space to trap sediment and process nutrients. Comparisons of pre- and post-restoration gage data show that restoration lowered the annual sediment load by at least 118 t yr-1, or >75%, from the 1000 m-long restoration reach, with the entire reduction accounted for by legacy sediment removal. Repeat RTK-GPS surveys of pre-restoration stream banks verified that >90 t yr-1 of suspended sediment was from bank erosion within the restoration reach. Mass balance calculations of 137Cs data indicate 85-100% of both the pre-restoration and post-restoration suspended sediment storm load was from stream bank sources. This is consistent with trace element data which show that 80-90 % of the pre-restoration outgoing suspended sediment load at BSR was from bank erosion. Meanwhile, an inventory of fallout 137Cs activity from two hill slope transects adjacent to BSR yields average modern upland erosion rates of 2.7 t ha-1 yr-1 and 5.1 t ha-1 yr-1, showing modest erosion on slopes and deposition at toe of slopes. We conclude that upland farm slopes contribute little soil to the suspended sediment supply within this study area, and removal of historic valley bottom sediment effectively reduced bank erosion and sediment and phosphorus loads. Enhanced deposition further contributed to load reductions; prior to restoration, there was no deposition on tile pads on the 1.5 m-high legacy sediment "floodplain" terrace, whereas after restoration deposition on the low, restored floodplain showed net accumulation of 0.009 ± 0.012 m yr-1.

  20. Cultural Resources and Geomorphological Reconnaissance of the McClellan-Kerr, Arkansas River Navigation System. Pools 1 through 9

    DTIC Science & Technology

    1989-01-01

    either the Petit Jean or Maumelle reaches as it flows out of the Ouachita Mountains into the unconsolidated sediments of the Mississippi River valley...small breaks, each depositing its load of coarser sediments in its own way. This results in sharply contrasting lenses of very small dimensions and...reflected in the channel size which decreases with increasing amounts of sediment deposited in the channel. Additionally, the amount of sediment deposited

  1. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    USGS Publications Warehouse

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data from the pre-construction and initial post-construction phases are presented in this report. ?? 2007 ASCE.

  2. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    USGS Publications Warehouse

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.

  3. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010

    USGS Publications Warehouse

    Warrick, J.A.; Madej, Mary Ann; Goñi, M. A.; Wheatcroft, R.A.

    2013-01-01

    Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.

  4. Nutrients, Select Pesticides, and Suspended Sediment in the Karst Terrane of the Sinking Creek Basin, Kentucky, 2004-06

    USGS Publications Warehouse

    Crain, Angela S.

    2010-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Kentucky Department of Agriculture, on nutrients, select pesticides, and suspended sediment in the karst terrane of the Sinking Creek Basin. Streamflow, nutrient, select pesticide, and suspended-sediment data were collected at seven sampling stations from 2004 through 2006. Concentrations of nitrite plus nitrate ranged from 0.21 to 4.9 milligrams per liter (mg/L) at the seven stations. The median concentration of nitrite plus nitrate for all stations sampled was 1.6 mg/L. Total phosphorus concentrations were greater than 0.1 mg/L, the U.S. Environmental Protection Agency's recommended maximum concentration, in 45 percent of the samples. Concentrations of orthophosphates ranged from less than 0.006 to 0.46 mg/L. Concentrations of nutrients generally were larger during spring and summer months, corresponding to periods of increased fertilizer application on agricultural lands. Concentrations of suspended sediment ranged from 1.0 to 1,490 mg/L at the seven stations. Of the 47 pesticides analyzed, 14 were detected above the adjusted method reporting level of 0.01 micrograms per liter (mug/L). Although these pesticides were detected in water-quality samples, they generally were found at less than part-per-billion concentrations. Atrazine was the only pesticide detected at concentrations greater than U.S. Environmental Protection Agency drinking water standard of 3 mug/L, and the maximum detected concentration was 24.6 mug/L. Loads and yields of nutrients, selected pesticides, and suspended sediment were estimated at two mainstream stations on Sinking Creek, a headwater station (Sinking Creek at Rosetta) and a station at the basin outlet (Sinking Creek near Lodiburg). Mean daily streamflow data were available for the estimation of loads and yields from a stream gage at the basin outlet station; however, only periodic instantaneous flow measurements were available for the headwaters station; mean daily flows at the headwater station were, therefore, estimated using a mathematical record-extension technique known as the Maintenance of Variance-Extension, type 1 (MOVE.1). The estimation of mean daily streamflows introduced a large amount of uncertainty into the loads and yields estimates at the headwater station. Total estimated loads of select (five most commonly detected) pesticides from the Sinking Creek Basin were about 0.01 to 1.2 percent of the estimated application, indicating pesticides possibly are retained within the watershed. Mean annual loads [(in/lb)/yr] for nutrients and suspended sediment were estimated at the two Sinking Creek mainstem sampling stations. The relation between estimated and measured instantaneous loads of nitrite plus nitrate at the Sinking Creek near Lodiburg station indicate a reasonably tight distribution over the range of loads. The model for loads of nitrite plus nitrate at the Sinking Creek at Rosetta station indicates small loads were overestimated and underestimated. Relations between estimated and measured loads of total phosphorus and orthophosphate at both Sinking Creek mainstem stations showed similar patterns to the loads of nitrite plus nitrate at each respective station. The estimated mean annual load of suspended sediment is about 14 times larger at the Sinking Creek near Lodiburg station than at the Sinking Creek near Rosetta station. Estimated yields of nutrients and suspended sediment increased from the headwater to downstream monitoring stations on Sinking Creek. This finding suggests that sources of nutrients and suspended sediment are not evenly distributed throughout the karst terrane of the Sinking Creek Basin. Yields of select pesticides generally were similar from the headwater to downstream monitoring stations. However, the estimated yield of atrazine was about five times higher at the downstream station on Sinking Creek than at the headwater station on Sinking Creek.

  5. Quantifying stream channel sediment contributions for the Paradise Creek Watershed in northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Squires, A.; Boll, J.; Brooks, E. S.

    2012-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies around the world, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. Little is known about in-stream contributions, a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to identify where and when sediment is delivered to the stream and the spatial and temporal stream channel contributions to the overall watershed scale sediment load. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was made up predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 50% of the total annual sediment load for the basin, with a 19 year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term data in the watershed will be presented to indicate if the main source of the sediment is from either rural and urban non-point sources or the channel system.

  6. Mechanical and hydraulic properties of Nankai accretionary prism sediments: Effect of stress path

    NASA Astrophysics Data System (ADS)

    Kitajima, Hiroko; Chester, Frederick M.; Biscontin, Giovanna

    2012-10-01

    We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones.

  7. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    NASA Astrophysics Data System (ADS)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  8. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  9. Control factors and scale analysis of annual river water, sediments and carbon transport in China.

    PubMed

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-11

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  10. Discharge, suspended sediment, bedload, and water quality in Clear Creek, western Nevada, water years 2010-12

    USGS Publications Warehouse

    Huntington, Jena M.; Savard, Charles S.

    2015-09-30

    During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.

  11. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  12. Landscape change and sediment yield of rivers in the northeastern US during 19th century

    NASA Astrophysics Data System (ADS)

    Urbanova, T.; Wreschnig, A. J.; Ruffing, C. M.; McCormack, S. M.; Bain, D. J.; Hermans, C. M.

    2009-12-01

    During the 19th century, population growth, dam construction, and large scale forest clearing, particularly for agriculture, was followed by a massive migration to urban and industrialized centers. This led to the high degree of rural land abandonment in many parts of northeastern US. Such significant changes in land use and demography impacted sediment loading and delivery to receiving waters. The objective of this study is to assess the historical changes in sediment loading to waters as a result of land use change and related change in soil erosion, dam dynamics and sediment trapping. Various methods for assessing soil erosion, sediment yield and dam influence will be used and compared (RUSLE, BQART model, dam trapping efficiency). We expect to see 1) an accelerated erosion rates and sediment yield following forest clearing and intensification of agriculture and 2) decreased sediment delivery to estuaries with an increasing number of dams. While sediment management often focuses on fluvial corridors, our understanding of historic upland dynamics remains rudimentary. This study aims to highlight and explain the interconnectedness of the landscape-hydro system; with a particular emphasis on anthropogenic forcing and influences.

  13. Sediment characteristics of the Yellowstone River in the vicinity of a proposed bypass chute near Glendive, Montana, 2011

    USGS Publications Warehouse

    Hanson, Brent R.

    2012-01-01

    In 2011, sediment data were collected by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers on the Yellowstone River at the location of a proposed bypass chute. The sediment data were collected to provide an understanding of the sediment dynamics of the given reach of the Yellowstone River. Suspended-sediment concentrations collected at the three sites generally decreased with decreasing streamflow. In general, the highest suspendedsediment concentrations were found near the channel bed and towards the center of the channel with lower suspendedsediment concentrations near the channel banks and water surface. Suspended sediment was the primary component of the total sediment load for all three sampling locations on the Yellowstone River and contributed at least 98 percent of the total sediment load at each of the three sites. The amount of bedload measured at the three sites was a smaller load in comparison with the suspended-sediment load.

  14. Sources and sinks of filtered total mercury and concentrations of total mercury of solids and of filtered methylmercury, Sinclair Inlet, Kitsap County, Washington, 2007-10

    USGS Publications Warehouse

    Paulson, Anthony J.; Dinicola, Richard S.; Noble, Marlene A.; Wagner, Richard J.; Huffman, Raegan L.; Moran, Patrick W.; DeWild, John F.

    2012-01-01

    The majority of filtered total mercury in the marine water of Sinclair Inlet originates from salt water flowing from Puget Sound. About 420 grams of filtered total mercury are added to Sinclair Inlet each year from atmospheric, terrestrial, and sedimentary sources, which has increased filtered total mercury concentrations in Sinclair Inlet (0.33 nanograms per liter) to concentrations greater than those of the Puget Sound (0.2 nanograms per liter). The category with the largest loading of filtered total mercury to Sinclair Inlet included diffusion of porewaters from marine sediment to the water column of Sinclair Inlet and discharge through the largest stormwater drain on the Bremerton naval complex, Bremerton, Washington. However, few data are available to estimate porewater and stormwater releases with any certainty. The release from the stormwater drain does not originate from overland flow of stormwater. Rather total mercury on soils is extracted by the chloride ions in seawater as the stormwater is drained and adjacent soils are flushed with seawater by tidal pumping. Filtered total mercury released by an unknown freshwater mechanism also was observed in the stormwater flowing through this drain. Direct atmospheric deposition on the Sinclair Inlet, freshwater discharge from creek and stormwater basins draining into Sinclair Inlet, and saline discharges from the dry dock sumps of the naval complex are included in the next largest loading category of sources of filtered total mercury. Individual discharges from a municipal wastewater treatment plant and from the industrial steam plant of the naval complex constituted the loading category with the third largest loadings. Stormwater discharge from the shipyard portion of the naval complex and groundwater discharge from the base are included in the loading category with the smallest loading of filtered total mercury. Presently, the origins of the solids depositing to the sediment of Sinclair Inlet are uncertain, and consequently, concentrations of sediments can be qualitatively compared only to total mercury concentrations of solids suspended in the water column. Concentrations of total mercury of suspended solids from creeks, stormwater, and even wastewater effluent discharging into greater Sinclair Inlet were comparable to concentrations of solids suspended in the water column of Sinclair Inlet. Concentrations of total mercury of suspended solids were significantly lower than those of marine bed sediment of Sinclair Inlet; these suspended solids have been shown to settle in Sinclair Inlet. The settling of suspended solids in the greater Sinclair Inlet and in Operable Unit B Marine of the naval complex likely will result in lower concentrations of total mercury in sediments. Such a decrease in total mercury concentrations was observed in the sediment of Operable Unit B Marine in 2010. However, total mercury concentrations of solids discharged from several sources from the Bremerton naval complex were higher than concentrations in sediment collected from Operable Unit B Marine. The combined loading of solids from these sources is small compared to the amount of solids depositing in OU B Marine. However, total mercury concentration in sediment collected at a monitoring station just offshore one of these sources, the largest stormwater drain on the Bremerton naval complex, increased considerably in 2010. Low methylmercury concentrations were detected in groundwater, stormwater, and effluents discharged from the Bremerton naval complex. The highest methylmercury concentrations were measured in the porewaters of highly reducing marine sediment in greater Sinclair Inlet. The marine sediment collected off the largest stormwater drain contained low concentrations of methylmercury in porewater because these sediments were not highly reducing.

  15. Historical trend of nitrogen and phosphorus loads from the upper Yangtze River basin and their responses to the Three Gorges Dam.

    PubMed

    Sun, Chengchun; Shen, Zhenyao; Liu, Ruimin; Xiong, Ming; Ma, Fangbing; Zhang, Ouyang; Li, Yangyang; Chen, Lei

    2013-12-01

    Excessive inputs of nitrogen and phosphorus (N and P) degrade surface water quality worldwide. Impoundment of reservoirs alters the N and P balance of a basin. In this study, riverine nutrient loads from the upper Yangtze River basin (YRB) at the Yichang station were estimated using Load Estimator (LOADEST). Long-term load trends and monthly variabilities during three sub-periods based on the construction phases of the Three Gorges Dam (TGD) were analyzed statistically. The dissolved inorganic nitrogen (DIN) loads from the upper YRB for the period from 1990 to 2009 ranged from 30.47 × 10(4) to 78.14 × 10(4) t, while the total phosphorus (TP) loads ranged from 2.54 × 10(4) to 7.85 × 10(4) t. DIN increased rapidly from 1995 to 2002 mainly as a result of increased fertilizer use. Statistics of fertilizer use in the upper YRB agreed on this point. However, the trend of the TP loads reflected the combined effect of removal by sedimentation in reservoirs and increased anthropogenic inputs. After the TGD impoundment in 2003, decreasing trends in both DIN and TP loads were found. The reduction in DIN was mainly caused by ammonium consumption and transference. From an analysis of monthly loads, it was found that DIN had a high correlation to discharges. For TP loads, an average decrease of 4.91 % in October was found when the TGD impoundment occurred, but an increase of 4.23 % also occurred in July, corresponding to the washout from sediment deposited in the reservoir before July. Results of this study revealed the TGD had affected nutrient loads in the basin, and it had played a role in nutrient reduction after its operation.

  16. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andó, Sergio; France-Lanord, Christian; Censi, Paolo; Vignola, Pietro; Galy, Valier; Lupker, Maarten

    2011-02-01

    Sediments carried in suspension represent a fundamental part of fluvial transport. Nonetheless, largely because of technical problems, they have been hitherto widely neglected in provenance studies. In order to determine with maximum possible precision the mineralogy of suspended load collected in vertical profiles from water surface to channel bottom of Rivers Ganga and Brahmaputra, we combined Raman spectroscopy with traditional heavy-mineral and X-ray diffraction analyses, carried out separately on low-density and dense fractions of all significant size classes in each sample (multiple-window approach). Suspended load resulted to be a ternary mixture of dominant silt enriched in phyllosilicates, subordinate clay largely derived from weathered floodplains, and sand mainly produced by physical erosion and mechanical grinding during transport in Himalayan streams. Sediment concentration and grain size increase steadily with water depth. Whereas absolute concentration of clay associated with Fe-oxyhydroxides and organic matter is almost depth-invariant, regular mineralogical and consequently chemical changes from shallow to deep load result from marked increase of faster-settling, coarser, denser, or more spherical grains toward the bed. Such steady intersample compositional variability can be modeled as a mixture of clay, silt and sand modes with distinct mineralogical and chemical composition. With classical formulas describing sediment transport by turbulent diffusion, absolute and relative concentrations can be predicted at any depth for each textural mode and each detrital component. Based on assumptions on average chemistry of detrital minerals and empirical formulas to calculate their settling velocities, the suspension-sorting model successfully reproduces mineralogy and chemistry of suspended load at different depths. Principal outputs include assessment of contributions by each detrital mineral to the chemical budget, and calibration of dense minerals too rare to be precisely estimated by optical or Raman analysis but crucial in both detrital-geochronology and settling-equivalence studies. Hydrodynamic conditions during monsoonal discharge could also be evaluated. Understanding compositional variability of suspended load is a fundamental pre-requisite to correctly interpret mineralogical and geochemical data in provenance analysis of modern and ancient sedimentary deposits, to accurately assess weathering processes, sediment fluxes and erosion patterns, and to unambiguously evaluate the effects of anthropogenic modifications on the natural environment.

  17. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  18. Characterization of Suspended-Sediment Loading to and from John Redmond Reservoir, East-Central Kansas, 2007-2008

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.

    2008-01-01

    Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource managers to calibrate sediment models and estimate the ability of John Redmond Reservoir to support designated uses into the future.

  19. EVALUATION OF SAMPLING FREQUENCIES REQUIRED TO ESTIMATE NUTRIENT AND SUSPENDED SEDIMENT LOADS IN LARGE RIVERS

    EPA Science Inventory

    Nutrients and suspended sediments in streams and large rivers are two major issues facing state and federal agencies. Accurate estimates of nutrient and sediment loads are needed to assess a variety of important water-quality issues including total maximum daily loads, aquatic ec...

  20. Turbidity-controlled sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  1. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  2. Distribution of the concentration of heavy metals associated with the sediment particles accumulated on road surfaces.

    PubMed

    Zafra, C A; Temprano, J; Tejero, I

    2011-07-01

    The heavy metal pollution caused by road run-off water constitutes a problem in urban areas. The metallic load associated with road sediment must be determined in order to study its impact in drainage systems and receiving waters, and to perfect the design of prevention systems. This paper presents data regarding the sediment collected on road surfaces in the city of Torrelavega (northern Spain) during a period of 65 days (132 samples). Two sample types were collected: vacuum-dried samples and those swept up following vacuuming. The sediment loading (g m(-2)), particle size distribution (63-2800 microm) and heavy metal concentrations were determined. The data showed that the concentration of heavy metals tends to increase with the reduction in the particle diameter (exponential tendency). The concentrations ofPb, Zn, Cu, Cr, Ni, Cd, Fe, Mn and Co in the size fraction <63 microm were 350, 630, 124, 57, 56, 38, 3231, 374 and 51 mg kg(-1), respectively (average traffic density: 3800 vehicles day(-1)). By increasing the residence time of the sediment, the concentration increases, whereas the ratio of the concentration between the different size fractions decreases. The concentration across the road diminishes when the distance between the roadway and the sampling siteincreases; when the distance increases, the ratio between size fractions for heavy metal concentrations increases. Finally, the main sources of heavy metals are the particles detached by braking (brake pads) and tyre wear (rubber), and are associated with particle sizes <125 microm.

  3. Assessing response of sediment load variation to climate change and human activities with six different approaches.

    PubMed

    Zhao, Guangju; Mu, Xingmin; Jiao, Juying; Gao, Peng; Sun, Wenyi; Li, Erhui; Wei, Yanhong; Huang, Jiacong

    2018-05-23

    Understanding the relative contributions of climate change and human activities to variations in sediment load is of great importance for regional soil, and river basin management. Considerable studies have investigated spatial-temporal variation of sediment load within the Loess Plateau; however, contradictory findings exist among methods used. This study systematically reviewed six quantitative methods: simple linear regression, double mass curve, sediment identity factor analysis, dam-sedimentation based method, the Sediment Delivery Distributed (SEDD) model, and the Soil Water Assessment Tool (SWAT) model. The calculation procedures and merits for each method were systematically explained. A case study in the Huangfuchuan watershed on the northern Loess Plateau has been undertaken. The results showed that sediment load had been reduced by 70.5% during the changing period from 1990 to 2012 compared to that of the baseline period from 1955 to 1989. Human activities accounted for an average of 93.6 ± 4.1% of the total decline in sediment load, whereas climate change contributed 6.4 ± 4.1%. Five methods produced similar estimates, but the linear regression yielded relatively different results. The results of this study provide a good reference for assessing the effects of climate change and human activities on sediment load variation by using different methods. Copyright © 2018. Published by Elsevier B.V.

  4. The measurement of total sediment load in alluvial streams

    USGS Publications Warehouse

    Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.

    1953-01-01

    The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.

  5. Reduced phosphorus retention by anoxic bottom sediments after the remediation of an industrial acidified lake area: Indications from P, Al, and Fe sediment fractions.

    PubMed

    Nürnberg, Gertrud K; Fischer, Rachele; Paterson, Andrew M

    2018-06-01

    Formerly acidified lakes and watersheds can become more productive when recovering from acidity, especially when exposed to anthropogenic disturbance and increased nutrient loading. Occasional toxic cyanobacterial blooms and other signs of eutrophication have been observed for a decade in lakes located in the Sudbury, Ontario, mining area that was severely affected by acid deposition before the start of smelter emission reductions in the 1970s. Oligotrophic Long Lake and its upstream lakes have been exposed to waste water input and development impacts from the City of Greater Sudbury and likely have a legacy of nutrient enrichment in their sediment. Based on observations from other published studies, we hypothesized that P, which was previously adsorbed by metals liberated during acidification caused by the mining activities, is now being released from the sediment as internal P loading contributing to increased cyanobacteria biomass. Support for this hypothesis includes (1) lake observations of oxygen depletion and hypolimnetic anoxia and slightly elevated hypolimnetic total P concentration and (2) P, Al, and Fe fractionation of two sediment layers (0-5, 5-10 cm), showing elevated concentrations of TP and iron releasable P (BD-fraction), decreased concentrations in fractions associated with Al, and fraction ratios indicating decreased sediment adsorption capacity. The comparison with two moderately enriched lakes within 200 km distance, but never directly affected by mining operations, supports the increasing similarity of Long Lake surficial sediment adsorption capacity with that of unaffected lakes. There is cause for concern that increased eutrophication including the proliferation of cyanobacteria of formerly acidic lakes is wide-spread and occurs wherever recovery coincides with anthropogenic disturbances and physical changes related to climate change. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Suspended sediment delivery to Puget Sound from the lower Nisqually River, western Washington, July 2010–November 2011

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.

    2016-05-26

    On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.

  7. Analysis of sediment production from two small semiarid basins in Wyoming

    USGS Publications Warehouse

    Rankl, J.G.

    1987-01-01

    Data were collected at two small, semiarid basins in Wyoming to determine the relation between rainfall, runoff, and sediment production. The basins were Dugout Creek tributary and Saint Marys Ditch tributary. Sufficient rainfall and runoff data were collected at Dugout Creek tributary to determine the source of sediment and the dominant sediment production processes. Because runoff from only one storm occurred in Saint Marys Ditch tributary, emphasis of the study was placed on the analysis of data collected at Dugout Creek tributary. At Dugout Creek tributary, detailed measurements were made to establish the source of sediment. To determine the quantity of material removed from headcuts during the study, two headcuts were surveyed. Aerial photographs were used to define movement of all headcuts. The total quantity of sediment removed from all headcuts between September 26, 1982, and September 26, 1983, was estimated to be 1,220 tons, or 15%-25% of the estimated total sediment load passing the streamflow-gaging station. A soil plot was used to sample upland erosion. A rainfall and runoff modeling system was used to evaluate the interaction between the physical processes which control sediment production. The greatest change in computed sediment load was caused by changing the parameter values for equations used to compute the detachment of sediment particles by rainfall and overland flow resulted in very small changes in computed sediment load. The upland areas were the primary source of sediment. A relationship was developed between the peak of storm runoff and the total sediment load for that storm runoff. The sediment concentration used to compute the total sediment load for the storm runoff was determined from sediment samples collected by two automatic pumping samplers. The coefficient of variation of the relationship is 34% with a 0.99 correlation coefficient. (Author 's abstract)

  8. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  9. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to target various sediment grain sizes. Laser diffraction and turbidity also were tested as surrogate technologies. Models between SSC and surrogate variables were developed using ordinary least-squares regression. Acoustic backscatter using the high frequency ADVM at each site was the best predictor of sediment, explaining 93 and 92 percent of the variability in SSC and matching sediment sample data within +8.6 and +10 percent, on average, at the Clearwater River and Snake River study sites, respectively. Additional surrogate models were developed to estimate sand and fines fractions of suspended sediment based on acoustic backscatter. Acoustic backscatter generally appears to be a better estimator of suspended sediment concentration and load over short (storm event and monthly) and long (annual) time scales than transport curves derived solely from the regression of conventional sediment measurements and streamflow. Changing grain sizes, the presence of organic matter, and aggregation of sediments in the river likely introduce some variability in the model between acoustic backscatter and SSC.

  10. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  11. Modeling the transport of PCDD/F compounds in a contaminated river and the possible influence of restoration dredging on calculated fluxes.

    PubMed

    Malve, Olli; Salo, Simo; Verta, Matti; Forsius, John

    2003-08-01

    River Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as by chemical industry. Loading has been reduced considerably, although remains of past emissions still exist in river sediments. The sediments are highly contaminated with polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated diphenyl ethers (PCDEs), and mercury originating from production of the chlorophenolic wood preservative (Ky-5) and other sources. The objective of this study was to simulate the transport of these PCDD/F compounds with a one-dimensional flow and transport model and to assess the impact of restoration dredging. Using the estimated trend in PCDD/F loading, downstream concentrations were calculated until 2020. If contaminated sediments are removed by dredging, the temporary increase of PCDD/F concentrations in downstream water and surface sediments will be within acceptable limits. Long-term predictions indicated only a minor decrease in surface sediment concentrations but a major decrease if the most contaminated sediments close to the emission source were removed. A more detailed assessment of the effects is suggested.

  12. Contribution of sediment fluxes and transformations to the summer nitrogen budget of an Upper Mississippi River backwater system

    USGS Publications Warehouse

    James, W.F.; Richardson, W.B.; Soballe, D.M.

    2008-01-01

    Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.

  13. Global scale modeling of riverine sediment loads: tropical rivers in a global context

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Syvitski, James; Kettner, Albert

    2015-04-01

    A global scale riverine sediment flux model (termed WBMsed) is introduced. The model predicts spatially and temporally explicit water, suspended sediment and nutrients flux in relatively high resolutions (6 arc-min and daily). Modeled riverine suspended sediment flux through global catchments is used in conjunction with observational data for 35 tropical basins to highlight key basin scaling relationships. A 50 year, daily model simulation illuminates how precipitation, relief, lithology and drainage basin area affect sediment load, yield and concentration. Tropical river systems, wherein much of a drainage basin experiences tropical climate are strongly influenced by the annual and inter-annual variations of the Inter-tropical Convergence Zone (ITCZ) and its derivative monsoonal winds, have comparatively low inter-annual variation in sediment yield. Rivers draining rainforests and those subjected to tropical monsoons typically demonstrate high runoff, but with notable exceptions. High rainfall intensities from burst weather events are common in the tropics. The release of rain-forming aerosols also appears to uniquely increase regional rainfall, but its geomorphic manifestation is hard to detect. Compared to other more temperate river systems, climate-driven tropical rivers do not appear to transport a disproportionate amount of particulate load to the world's oceans, and their warmer, less viscous waters are less competent. Multiple-year hydrographs reveal that seasonality is a dominant feature of most tropical rivers, but the rivers of Papua New Guinea are somewhat unique being less seasonally modulated. Local sediment yield within the Amazon is highest near the Andes, but decreases towards the ocean as the river's discharge is diluted by water influxes from sediment-deprived rainforest tributaries

  14. Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4,000 years.

    PubMed

    Xing, Fei; Kettner, Albert J; Ashton, Andrew; Giosan, Liviu; Ibáñez, Carles; Kaplan, Jed O

    2014-03-01

    Fluvial sediment discharge can vary in response to climate changes and human activities, which in return influences human settlements and ecosystems through coastline progradation and retreat. To understand the mechanisms controlling the variations of fluvial water and sediment discharge for the Ebro drainage basin, Spain, we apply a hydrological model HydroTrend. Comparison of model results with a 47-year observational record (AD 1953-1999) suggests that the model adequately captures annual average water discharge (simulated 408 m(3)s(-1) versus observed 425 m(3)s(-1)) and sediment load (simulated 0.3 Mt yr(-1) versus observed 0.28 ± 0.04 Mt yr(-1)) for the Ebro basin. A long-term (4000-year) simulation, driven by paleoclimate and anthropogenic land cover change scenarios, indicates that water discharge is controlled by the changes in precipitation, which has a high annual variability but no long-term trend. Modeled suspended sediment load, however, has an increasing trend over time, which is closely related to anthropogenic land cover variations with no significant correlation to climatic changes. The simulation suggests that 4,000 years ago the annual sediment load to the ocean was 30.5 Mt yr(-1), which increased over time to 47.2 Mt yr(-1) (AD 1860-1960). In the second half of the 20th century, the emplacement of large dams resulted in a dramatic decrease in suspended sediment discharge, eventually reducing the flux to the ocean by more than 99% (mean value changes from 38.1 Mt yr(-1) to 0.3 Mt yr(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    NASA Astrophysics Data System (ADS)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment mobilised within the river during a given event travels slower than the water. The highly dynamic behaviour of the river is further demonstrated by the rapid changes in river cross-section at Garissa and meander migration rates of several m y-1. In order to estimate a time frame for which changes in sediment inputs will be reflected in the sediment concentration at Garissa a single box model was developed. Results indicate that the effects of sediment blockage by the dams will only be visible after several hundreds to perhaps thousands of years. This clearly shows that autogenic processes are dominant in the lower Tana River and that, therefore, changes in sediment delivery cannot be detected in the sediment discharge record. More generally, understanding and interpreting the dynamics of such river systems requires that autogenic processes are correctly accounted for.

  16. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin

    USDA-ARS?s Scientific Manuscript database

    Projected climate change can impact various aspects of agricultural systems, including the nutrient and sediment loads exported from agricultural fields. This study evaluated the potential changes in runoff, sediment, nitrogen, and phosphorus loads using projected climate estimates from 2041 – 2070 ...

  17. The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment.

    PubMed

    Strauch, Michael; Lima, Jorge E F W; Volk, Martin; Lorz, Carsten; Makeschin, Franz

    2013-09-01

    The intense use of water for both public supply and agricultural production causes societal conflicts and environmental problems in the Brazilian Federal District. A serious consequence of this is nonpoint source pollution which leads to increasing water treatment costs. Hence, this study investigates in how far agricultural Best Management Practices (BMPs) might contribute to sustainable water resources management and soil protection in the region. The Soil and Water Assessment Tool (SWAT) was used to study the impact of those practices on streamflow and sediment load in the intensively cropped catchment of the Pipiripau River. The model was calibrated and validated against measured streamflow and turbidity-derived sediment loads. By means of scenario simulations, it was found that structural BMPs such as parallel terraces and small sediment basins ('Barraginhas') can lead to sediment load reductions of up to 40%. The implementation of these measures did not adversely affect the water yield. In contrast, multi-diverse crop rotations including irrigated dry season crops were found to be disadvantageous in terms of water availability by significantly reducing streamflow during low flow periods. The study considers rainfall uncertainty by using a precipitation data ensemble, but nevertheless highlights the importance of well established monitoring systems due to related shortcomings in model calibration. Despite the existing uncertainties, the model results are useful for water resource managers to develop water and soil protection strategies for the Pipiripau River Basin and for watersheds with similar characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    NASA Astrophysics Data System (ADS)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  19. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    PubMed

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    USGS Publications Warehouse

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  1. Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa

    USGS Publications Warehouse

    Hubbard, L.; Kolpin, D.W.; Kalkhoff, S.J.; Robertson, Dale M.

    2011-01-01

    A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.

  2. Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa.

    PubMed

    Hubbard, L; Kolpin, D W; Kalkhoff, S J; Robertson, D M

    2011-01-01

    A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.

  3. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  4. Mud, models, and managers: Reaching consensus on a watershed strategy for sediment load reduction

    NASA Astrophysics Data System (ADS)

    Wilcock, P. R.; Cho, S. J.; Gran, K.; Belmont, P.; Hobbs, B. F.; Heitkamp, B.; Marr, J. D.

    2017-12-01

    Agricultural nonpoint source sediment pollution is a leading cause of impairment of U.S. waters. Sediment sources are often on private land, such that solutions require not only considerable investment, but broad acceptance among landowners. We present the story of a participatory modeling exercise whose goal was to develop a consensus strategy for reducing sediment loading from the Greater Blue Earth River Basin, a large (9,200 km2) watershed in southern Minnesota dominated by row crop agriculture. The Collaborative for Sediment Source Reduction was a stakeholder group of farmers, industry representatives, conservation groups, and regulatory agencies. We used a participatory modeling approach to promote understanding of the problem, to define the scope of solutions acceptable to farmers, to develop confidence in a watershed model, and to reach consensus on a watershed strategy. We found that no existing watershed model could provide a reliable estimate of sediment response to management actions and developed a purpose-built model that could provide reliable, transparent, and fast answers. Because increased stream flow was identified as an important driver of sediment loading, the model and solutions included both hydrologic and sediment transport components. The model was based on an annual sediment budget with management actions serving to proportionally reduce both sediment sources and sediment delivery. Importantly, the model was developed in collaboration with stakeholders, such that a shared understanding emerged regarding of the modeling challenges and the reliability of information used to strongly constrain model output. The simplicity of the modeling approach supported stakeholder engagement and understanding, thereby lowering the social barrier between expert modeler and concerned stakeholder. The consensus strategy focused on water storage higher in the watershed in order to reduce river discharge and the large supply of sediment from near-channel sources. Because water storage must occur largely on private farmland, this strategy was initially opposed by some stakeholders, such that model simplicity and transparency was essential in reaching a consensus strategy.

  5. An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland

    NASA Astrophysics Data System (ADS)

    Harrington, Seán T.; Harrington, Joseph R.

    2013-03-01

    This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.

  6. Suspended sediment and bedload in the First Broad River Basin in Cleveland County, North Carolina, 2008-2009

    USGS Publications Warehouse

    Hazell, William F.; Huffman, Brad A.

    2011-01-01

    A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two monitoring stations. Historically, the estimated mean annual suspended-sediment yield at the long-term streamflow station during the period 1970-1979 was 250 tons per square mile, with an estimated mean annual suspended-sediment load of 15,000 tons. Drought conditions throughout most of the study period were a potential factor in the smaller yields at the monitoring stations compared to the yields estimated at the long-term streamflow station in the 1970s. During an extreme runoff event on January 7, 2009, bedload was 0.4 percent, 0.8 percent, and 0.1 percent of the total load at the three study sites, which indicates that during extreme runoff conditions the percentage of the total load that is bedload is not significant. The percentages of the total load that is bedload during low-flow conditions ranged from 0.1 to 90.8, which indicate that the bedload is variable both spatially and temporally.

  7. Sediment load and distribution in the lower Skagit River, Skagit County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Mastin, Mark C.; Huffman, Raegan L.

    2016-08-17

    The Skagit River delivers about 40 percent of all fluvial sediment that enters Puget Sound, influencing flood hazards in the Skagit lowlands, critically important estuarine habitat in the delta, and some of the most diverse and productive agriculture in western Washington. A total of 175 measurements of suspended-sediment load, made routinely from 1974 to 1993, and sporadically from 2006 to 2009, were used to develop and evaluate regression models of sediment transport (also known as “sediment-rating curves”) for estimating suspended-sediment load as a function of river discharge. Using a flow-range model and 75 years of daily discharge record (acquired from 1941 to 2015), the mean annual suspended-sediment load for the Skagit River near Mount Vernon, Washington, was estimated to be 2.5 teragrams (Tg, where 1 Tg = 1 million metric tons). The seasonal model indicates that 74 percent of the total annual suspended‑sediment load is delivered to Puget Sound during the winter storm season (from October through March), but also indicates that discharge is a poor surrogate for suspended‑sediment concentration (SSC) during the summer low-flow season. Sediment-rating curves developed for different time periods revealed that the regression model slope of the SSC-discharge relation increased 66 percent between the periods of 1974–76 and 2006–09 when suspended-sediment samples were collected, implying that changes in sediment supply, channel hydraulics, and (or) basin hydrology occurred between the two time intervals. In the relatively wet water year 2007 (October 1, 2006, through September 30, 2007), an automated sampler was used to collect daily samples of suspended sediment from which an annual load of 4.5 Tg was calculated, dominated by a single large flood event that contributed 1.8 Tg, or 40 percent of the total. In comparison, the annual load calculated for water year 2007 using the preferred flow-range model was 4.8 Tg (+6.7 percent), in close agreement with the measured value.Particle size affects sediment transport, fate and distribution across watersheds, and therefore is important for predicting how coastal environments, particularly deltas and beaches, will respond to changes in climate and sea-level. Particle-size analysis of winter storm samples indicated that about one-half of the suspended-sediment load consisted of fines (that is, silt- and clay-sized particles smaller than 0.0625 mm in diameter), and the remainder consisted of mostly fine- to medium-sized sand (0.0625–0.5 mm), whereas bedload during winter storm flows (about 1–3 percent of total sediment load) was predominantly composed of medium to coarse sand (0.25–1 mm). A continuous turbidity record from the Anacortes Water Treatment Plant (water years 1999–2013), used as a surrogate for the concentration of fines (R2 = 0.93, p = 4.2E-10, n = 17), confirms that about one-half of the mean annual suspended-sediment load is composed of fines.The distribution of flow through the delta distributaries (that is, the channels into which the main stem splits as it approaches the delta) is dynamic, with twice as much flow through the North Fork of the Skagit River relative to the South Fork during low-flow conditions, and close to equal flows in the two channels during high-flow conditions. Turbidity, monitored at several locations in the lower river in spring 2009, was essentially uniform among sites, indicating that fines are well mixed in the lower Skagit River system (defined as the Skagit River and all its distributaries downstream of the Mount Vernon streamgage). A strong relation (R2 = 0.95, p = 3.2E-14, n = 21; linear regression) between the concentration of fines and turbidity measured at various locations in summer 2009 indicates that turbidity is an effective surrogate for the concentration of fines, independent of location in the river, under naturally well-mixed fluvial conditions. This relation is especially useful for monitoring suspended sediment in western Washington rivers that are seasonally dominated by glacier meltwater because glacial melting typically produces suspended-sediment concentrations that are not well correlated with discharge. These results provide a comprehensive set of tools to estimate sediment delivery and delta responses of interest to scientists and resource managers including decision-makers examining options for flood hazard mitigation, estuary restoration, and climate change adaptation.

  8. Quantifying and identifying the sources of fine sediment input in a typical Mongolian river basin, the Kharaa River case study

    NASA Astrophysics Data System (ADS)

    Theuring, Phillip

    2013-04-01

    Mongolia is facing a tremendous change of land-use intensification due to expansions in the agricultural sector, an increase of cattle and livestock and a growth of urban settlements by migration of the rural population to the cities. With most of its area located in a semiarid to arid environment, Mongolia is vulnerable to climatic changes that are expected to lead to higher temperatures and increased evapotranspiration. It is expected that this may lead to unfavorable changes in surface water quality caused by increased nutrients and sediment bound pollutants emissions. Increased fine sediment load is associated with nutrient, heavy metal and pollutant input and therefore affects water quality. Previous studies using radionuclide fallout isotope sediment source fingerprinting investigations identified riverbank erosion as the main source of suspended sediment in the Kharaa River. Erosion susceptibility calculations in combination with suspended sediment observations showed strong seasonal and annual variabilities of sediment input and in-stream transport, and a strong connection of erosional behaviour with land-use.The objective of this study is to quantify the current water quality threats by fine sediment inputs in the 15,000 km2 Kharaa River basin in Northern Mongolia by delineating the sources of the fine sediments and estimating the sediment budget.To identify the spatial distribution of sediment sources within the catchment, more than 1000 samples from the river confluences at the outlet of each sub basin into the main tributary were collected during 5 intensive grab sediment sampling campaigns in 2009-11. The fine sediment fraction (<10μm) has been analysed using geochemical tracer techniques for spatial source identification, based on major elements (e.g. Si, Al, Mg, Fe, Na, K, P) and trace elements (e.g. Ba, Pb, Sr, Zn). The contribution of suspended sediment of each sub basin in the main tributary has been evaluated with help of a mixing model. To asses sediment sources the RUSLE based sediment budget model (SedNet) was employed to estimate surface erosion and sediment budget. The spatial origin of the fine sediment in the catchment could be identified by geochemical fingerprinting techniques. This shows that only some subcatchments contribute considerably to the fine sediment load, especially areas with high grazing intensity and degraded riparian vegetation. The estimated average soil loss in the catchment is 0.2 t×ha-1•a-1. The model results reveal a strong influence of the landuse in the catchment on surface erosion and fine sediment input, which will increase with the intensification of agriculture in the catchment.

  9. Transport and deposition of asbestos-rich sediment in the Sumas River, Whatcom County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Anderson, Scott W.; Barbash, Jack E.; Magirl, Christopher S.; Cox, Stephen E.; Norton, Katherine K.; Gendaszek, Andrew S.; Spanjer, Andrew R.; Foreman, James R.

    2016-02-08

    Heavy sediment loads in the Sumas River of Whatcom County, Washington, increase seasonal turbidity and cause locally acute sedimentation. Most sediment in the Sumas River is derived from a deep-seated landslide of serpentinite that is located on Sumas Mountain and drained by Swift Creek, a tributary to the Sumas River. This mafic sediment contains high amounts of naturally occurring asbestiform chrysotile. A known human-health hazard, asbestiform chrysotile comprises 0.25–37 percent, by mass, of the total suspended sediment sampled from the Sumas River as part of this study, which included part of water year 2011 and all of water years 2012 and 2013. The suspended-sediment load in the Sumas River at South Pass Road, 0.6 kilometers (km) downstream of the confluence with Swift Creek, was 22,000 tonnes (t) in water year 2012 and 49,000 t in water year 2013. The suspended‑sediment load at Telegraph Road, 18.8 km downstream of the Swift Creek confluence, was 22,000 t in water year 2012 and 27,000 t in water year 2013. Although hydrologic conditions during the study were wetter than normal overall, the 2-year flood peak was only modestly exceeded in water years 2011 and 2013; runoff‑driven geomorphic disturbance to the watershed, which might have involved mass wasting from the landslide, seemed unexceptional. In water year 2012, flood peaks were modest, and the annual streamflow was normal. The fact that suspended-sediment loads in water year 2012 were equivalent at sites 0.6 and 18.8 km downstream of the sediment source indicates that the conservation of suspended‑sediment load can occur under normal hydrologic conditions. The substantial decrease in suspended-sediment load in the downstream direction in water year 2013 was attributed to either sedimentation in the intervening river reach, transfer to bedload as an alternate mode of sediment transport, or both.The sediment in the Sumas River is distinct from sediment in most other river systems because of the large percentage of asbestiform chrysotile in suspension. The suspended sediment carried by the Sumas River consists of three major components: (1) a relatively dense, largely non-flocculated material that settles rapidly out of suspension; (2) a lighter component containing relatively high proportions of flocculated material, much of it composed of asbestiform chrysotile; and (3) individual chrysotile fibers that are too small to flocculate or settle out, and remain in suspension as wash load (these fibers are on the order of microns in length and tenths of microns in diameter). Whereas the bulk density of the first (heaviest) component of suspended sediment was between 1.5 and 1.6 grams per cubic centimeter (g/cm3), the bulk density of the flocculated material was an order of magnitude lower (0.16 g/cm3), even after 24 hours of settling. Soon after immersion in water, the fresh chrysotile fibers derived from the Swift Creek landslide seem to flocculate readily into large bundles, or floccules, that exhibit settling velocities characteristic of coarse silts and fine sands (30 and 250 micrometers). In quiescent water within this river system, the floccules settle out quickly, but still leave between 2.4 and 19.5 million chrysotile fibers per liter in the clear overlying water. Consistent with the results from previous laboratory research, the amounts of asbestiform chrysotile in the water column in Swift Creek, as well as in the Sumas River close to and downstream of its confluence with Swift Creek, were determined to be directly correlated with pH. This observation offers a possible alternative to either turbidity or suspended‑sediment concentration as a surrogate for the concentration of fresh asbestiform chrysotile in suspension.Continued movement and associated erosion of the landslide through mass wasting and runoff will maintain large sediment loads in Swift Creek and in the Sumas River for the foreseeable future. Given the present channel morphology of the river system, aggradation (that is, sediment accumulation) in Swift Creek and the Sumas River are also likely to continue.

  10. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  11. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Treesearch

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  12. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    USGS Publications Warehouse

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  13. Surface sediment quality relative to port activities: A contaminant-spectrum assessment.

    PubMed

    Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin

    2017-10-15

    Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.

    2005-01-01

    The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported

  15. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    USGS Publications Warehouse

    Madej, Mary Ann; Bundros, Greg; Klein, Randy

    2011-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal California. We compute land use statistics, analyze suspended sediment discharge rating curves, and compare sediment yields in Panther Creek to a control (unlogged) stream, Little Lost Man Creek. From 1978 to 2008, 8.2 km2 (over half the watershed) was clearcut and other timber management activities (thinning, selection cuts, and so forth) affected an additional 5.9 km2. Since 1984, 40.7 km of streams in harvest units received riparian buffer strip protection. Between 2000 and 2009, 22 km of roads were upgraded and 9.7 km were decommissioned, reducing potential sediment production by an estimated 40,000 m3. Road density is currently 3.1 km/km2. Sediment rating curves from 2005 to 2010 indicate a decrease in suspended sediment concentrations when compared to the pre-1996 period, although Panther Creek still has a higher sediment yield on a per unit area basis than the control stream.

  16. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to predict the sediment scour load for daily mean streamflows greater than 300,000 cubic feet per second for the Lower Susquehanna River reservoirs. A compilation of data from various sources produced a range in total sediment transported through the reservoir system and allowed for apportioning to source (watershed or scour) for various streamflows. In 2011, Conowingo Reservoir was estimated to be about 92 percent of sediment storage capacity. Since construction of Conowingo Dam in 1929 through 2012, approximately 470 million tons of sediment was transported down the Susquehanna River into the reservoir system, approximately 290 million tons were trapped, and approximately 180 million tons were transported to Chesapeake Bay. Spatial and estimated total sand deposition in Conowingo Reservoir based on historical sediment cores indicated continued migration of sand downgradient toward the dam and the winnowing of silts and clays near the dam due to scour.

  17. Sediment loads in the Red River of the North and selected tributaries near Fargo, North Dakota, 2010--2011

    USGS Publications Warehouse

    Galloway, Joel M.; Nustad, Rochelle A.

    2012-01-01

    Natural-resource agencies are concerned about possible geomorphic effects of a proposed diversion project to reduce the flood risk in the Fargo-Moorhead metropolitan area. The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected data in the spring of 2010 and 2011, and from June to November 2011, during rainfall-runoff events and base-flow conditions to provide information on sediment transport. The data were used to examine sediment concentrations, loads, and particle-size distributions at nine selected sites in the Red River and its tributaries near the Fargo-Moorhead metropolitan area. Suspended-sediment concentration varied among sites in 2010 and 2011. The least suspended-sediment concentrations were measured at the Red River (site 1) and the Buffalo River (site 9), and the greatest concentrations were measured at the two Sheyenne River sites (sites 3 and 4). Estimated daily suspended-sediment loads were highly variable in 2010 and 2011 in the Red River and its tributaries, with the greatest loads occurring in the spring and the smallest loads occurring in the winter. For the Red River, daily suspended-sediment loads ranged from 26 to 3,500 tons per day at site 1 and from 30 to 9,010 tons per day at site 2. For the Sheyenne River, daily loads ranged from less than 10 to 10,200 tons per day at site 3 and from less than 10 to 4,530 tons per day at site 4. The mean daily load was 191 tons per day in 2010 and 377 tons per day in 2011 for the Maple River, and 610 tons per day in 2011 for the Wild Rice River (annual loads were not computed for 2010). For the three sites that were only sampled in 2011 (sites 7, 8 and 9), the mean daily suspended-sediment loads ranged from 40 tons per day at the Lower Branch Rush River (site 8) to 118 tons per day at the Buffalo River (site 9). For sites that had estimated loads in 2010 and 2011 (sites 1–5), estimated annual (March–November) suspended-sediment loads were greater in 2011 compared to 2010. In 2010, annual loads ranged from 68,650 tons per year at the Maple River (site 5) to 249,040 tons per year at the Sheyenne River (site 3). In 2011, when all nine sites were sampled, annual loads ranged from 8,716 tons per year at the Lower Branch Rush River (site 8) to 552,832 tons per year at the Sheyenne River (site 3). With the exception of the Sheyenne River (site 4), the greatest monthly loads occurred in March for 2010, with as little as 27 percent (site 1) and as much as 42 percent (site 3) of the annual load occurring in March. For 2011, the greatest monthly loads occurred in April, ranging from 33 percent (site 1) to 63 percent (site 7) of the 2011 annual load. A relatively small amount of sediment was transported past the nine sites as bedload in 2010 and 2011. For most of the samples collected at the nine sites, the bedload composed less than 1 percent of the calculated daily total sediment load.

  18. Dynamic linear models to explore time-varying suspended sediment-discharge rating curves

    NASA Astrophysics Data System (ADS)

    Ahn, Kuk-Hyun; Yellen, Brian; Steinschneider, Scott

    2017-06-01

    This study presents a new method to examine long-term dynamics in sediment yield using time-varying sediment-discharge rating curves. Dynamic linear models (DLMs) are introduced as a time series filter that can assess how the relationship between streamflow and sediment concentration or load changes over time in response to a wide variety of natural and anthropogenic watershed disturbances or long-term changes. The filter operates by updating parameter values using a recursive Bayesian design that responds to 1 day-ahead forecast errors while also accounting for observational noise. The estimated time series of rating curve parameters can then be used to diagnose multiscale (daily-decadal) variability in sediment yield after accounting for fluctuations in streamflow. The technique is applied in a case study examining changes in turbidity load, a proxy for sediment load, in the Esopus Creek watershed, part of the New York City drinking water supply system. The results show that turbidity load exhibits a complex array of variability across time scales. The DLM highlights flood event-driven positive hysteresis, where turbidity load remained elevated for months after large flood events, as a major component of dynamic behavior in the rating curve relationship. The DLM also produces more accurate 1 day-ahead loading forecasts compared to other static and time-varying rating curve methods. The results suggest that DLMs provide a useful tool for diagnosing changes in sediment-discharge relationships over time and may help identify variability in sediment concentrations and loads that can be used to inform dynamic water quality management.

  19. Water-quality characteristics, trends, and nutrient and sediment loads of streams in the Treyburn development area, North Carolina, 1988–2009

    USGS Publications Warehouse

    Fine, Jason M.; Harned, Douglas A.; Oblinger, Carolyn J.

    2013-01-01

    Streamflow and water-quality data, including concentrations of nutrients, metals, and pesticides, were collected from October 1988 through September 2009 at six sites in the Treyburn development study area. A review of water-quality data for streams in and near a 5,400-acre planned, mixed-use development in the Falls Lake watershed in the upper Neuse River Basin of North Carolina indicated only small-scale changes in water quality since the previous assessment of data collected from 1988 to 1998. Loads and yields were estimated for sediment and nutrients, and temporal trends were assessed for specific conductance, pH, and concentrations of dissolved oxygen, suspended sediment, and nutrients. Water-quality conditions for the Little River tributary and Mountain Creek may reflect development within these basins. The nitrogen and phosphorus concentrations at the Treyburn sites are low compared to sites nationally. The herbicides atrazine, metolachlor, prometon, and simazine were detected frequently at Mountain Creek and Little River tributary but concentrations are low compared to sites nationally. Little River tributary had the lowest median suspended-sediment yield over the 1988–2009 study period, whereas Flat River tributary had the largest median yield. The yields estimated for suspended sediment and nutrients were low compared to yields estimated for other basins in the Southeastern United States. Recent increasing trends were detected in total nitrogen concentration and suspended-sediment concentrations for Mountain Creek, and an increasing trend was detected in specific conductance for Little River tributary. Decreasing trends were detected in dissolved nitrite plus nitrate nitrogen, total ammonia plus organic nitrogen, sediment, and specific conductance for Flat River tributary. Water chemical concentrations, loads, yields, and trends for the Treyburn study sites reflect some effects of upstream development. These measures of water quality are generally low, however, compared to regional and national averages.

  20. Modeling sediment supply of the Congo watershed since the last 23 ka.

    NASA Astrophysics Data System (ADS)

    Molliex, Stéphane; Kettner, Albert J.; Laurent, Dimitri; Droz, Laurence; Marsset, Tania; Laraque, Alain; Rabineau, Marina

    2017-04-01

    The Congo River is the world's second river in term of drainage area (3.7 millions of km2) and water discharge (42,000 m3.s-1). Located in equatorial Africa, the basin extends over the two hemispheres, leading to an annual homogeneous repartition of climatic parameters and modest variation in intra-annual discharge. Monitored for decades, a large dataset is available for both the hydrology and sediment load for the Congo system. Moreover, the Quaternary Congo turbidite system geometry has been widely studied and an abundance of paleo-environmental parameters have been inferred from chemical proxies analyzed from offshore cores. These numerous data, both onshore and offshore, allow for accurate calibration of numeric modeling and for efficient comparison between observed and simulated data. This study aims (i) to quantify the evolution of sediment supply leaving the Congo watershed during the last 23 ka; (ii) to decipher the forcing parameters controlling the sediment supply over glacial/interglacial stages. HydroTrend is a model that simulates water discharge and sediment load leaving a hydrologic system. It is based on morphologic, climatic, hydrologic, lithologic, land cover and anthropogenic factors. After calibrating the present-day discharge and sediment load, we simulated discharge and sediment supply over 23 ka, integrating the changes in environmental conditions during this period. Results show that present-day simulations fit the observed data well if a significant part of sediments is being trapped by the catchment, in the floodplain. The long-term simulations show that the changes in climatic conditions (temperature and precipitations) between glacial and interglacial stages only account for a maximum variation of about 20 % of the sediment supply. The resulting land cover changes are most likely a more significant factor controlling the sediment supply; the loss of forest during colder and dryer stages can be responsible for up to 50 % of sediment supply increase.

  1. Sediment sources in an urbanizing, mixed land-use watershed

    NASA Astrophysics Data System (ADS)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  2. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  3. Computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.

    2010-01-01

    Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.

  4. Influence of Cattle Trails on Runoff Quantity and Quality.

    PubMed

    Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D

    2017-03-01

    Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. A comparison of selection at list time and time-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1993-01-01

    Time-stratified sampling of sediment for estimating suspended load is introduced and compared to selection at list time (SALT) sampling. Both methods provide unbiased estimates of load and variance. The magnitude of the variance of the two methods is compared using five storm populations of suspended sediment flux derived from turbidity data. Under like conditions,...

  6. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  7. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    USGS Publications Warehouse

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-01-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  8. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    NASA Astrophysics Data System (ADS)

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-06-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  9. Streambanks: A net source of sediment and phosphorus to streams and rivers

    USDA-ARS?s Scientific Manuscript database

    Sediment and phosphorus (P) are two primary pollutants of surface waters. Many studies have investigated loadings from upland sources or even streambed sediment, but in many cases, limited to no data exist to determine sediment and P loading from streambanks on a watershed scale. The objectives of t...

  10. Phosphate-Induced Immobilization of Uranium in Hanford Sediments.

    PubMed

    Pan, Zezhen; Giammar, Daniel E; Mehta, Vrajesh; Troyer, Lyndsay D; Catalano, Jeffrey G; Wang, Zheming

    2016-12-20

    Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25 μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.

  11. Phosphate-Induced Immobilization of Uranium in Hanford Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zezhen; Giammar, Daniel E.; Mehta, Vrajesh

    2016-12-20

    Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred onlymore » at high initial U(VI) (>25 μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.« less

  12. Phosphate-Induced Immobilization of Uranium in Hanford Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zezhen; Giammar, Daniel E.; Mehta, Vrajesh

    2016-12-20

    Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred onlymore » at high initial U(VI) (>25μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.« less

  13. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China.

    PubMed

    Zuo, Depeng; Xu, Zongxue; Yao, Wenyi; Jin, Shuangyan; Xiao, Peiqing; Ran, Dachuan

    2016-02-15

    The changes in runoff and sediment load in the Loess Plateau of China have received considerable attention owing to their dramatic decline during recent decades. In this paper, the impacts of land-use and climate changes on water and sediment yields in the Huangfuchuan River basin (HFCRB) of the Loess Plateau are investigated by combined usage of statistical tests, hydrological modeling, and land-use maps. The temporal trends and abrupt changes in runoff and sediment loads during 1954-2012 are detected by using non-parametric Mann-Kendall and Pettitt tests. The land-use changes between 1980 and 2005 are determined by using transition matrix analysis, and the effects of land-use and climate changes on water and sediment yields are assessed by using the Soil and Water Assessment Tool (SWAT) hydrological model and four scenarios, respectively. The results show significant decreasing trends in both annual runoff and sediment loads, whereas slightly decreasing and significantly increasing trends are detected for annual precipitation and air temperature, respectively. 1984 is identified as the dividing year of the study period. The land-use changes between 1980 and 2005 show significant effects of the Grain for Green Project in China. Both land-use change and climate change have greater impact on the reduction of sediment yield than that of water. Water and sediment yields in the upstream region show more significant decreases than those in the downstream region under different effects. The results obtained in this study can provide useful information for water resource planning and management as well as soil and water conservation in the Loess Plateau region. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.

    2015-12-01

    The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.

  15. Evaluation of internal loading and water level changes: implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2013-01-01

    Hydrologic manipulations have the potential to exacerbate or remediate eutrophication in productive reservoirs. Dam operations at Kabetogama Lake, Minnesota, were modified in 2000 to restore a more natural water regime and improve water quality. The US Geological Survey and National Park Service evaluated nutrient, algae, and nuisance bloom data in relation to changes in Kabetogama Lake water levels. Comparison of the results of this study to previous studies indicates that chlorophyll a concentrations have decreased, whereas total phosphorus (TP) concentrations have not changed significantly since 2000. Water and sediment quality data were collected at Voyageurs National Park during 2008–2009 to assess internal phosphorus loading and determine whether loading is a factor affecting TP concentrations and algal productivity. Kabetogama Lake often was mixed vertically, except for occasional stratification measured in certain areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, higher bottom water and sediment nutrient concentrations than in other parts of the lake, and phosphorus release rates estimated from sediment core incubations indicated that Lost Bay is one of several areas that may be contributing to internal loading. Internal loading of TP is a concern because increased TP may cause excessive algal growth including potentially toxic cyanobacteria.

  16. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces

    NASA Astrophysics Data System (ADS)

    Muthusamy, Manoranjan; Tait, Simon; Schellart, Alma; Beg, Md Nazmul Azim; Carvalho, Rita F.; de Lima, João L. M. P.

    2018-02-01

    Among the urban aquatic pollutants, the most common is sediment which also acts as a transport medium for many contaminants. Hence there is an increasing interest in being able to better predict the sediment wash-off from urban surfaces. The exponential wash-off model is the most widely used method to predict the sediment wash-off. Although a number of studies proposed various modifications to the original exponential wash-off equation, these studies mostly looked into one parameter in isolation thereby ignoring the interactions between the parameters corresponding to rainfall, catchment and sediment characteristics. Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface slope and initial load on wash-off load in an integrated and systematic way and (b) to subsequently improve the exponential wash-off equation focusing on the effect of the aforementioned three parameters. A series of laboratory experiments were carried out in a full-scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 50 to 200 g/m2 were selected based on values obtained from the literature. Fine sediment with a size range of 300-600 μm was used for all of the tests. Each test was carried out for one hour with at least 9 wash-off samples per test collected. Mass balance checks were carried out for all the tests as a quality control measure to make sure that there is no significant loss of sand during the tests. Results show that the washed off sediment load at any given time is proportional to initial load for a given combination of rainfall intensity and surface slope. This indicates the importance of dedicated modelling of build-up so as to subsequently predict wash-off load. It was also observed that the maximum fraction that is washed off from the surface increases with both rainfall intensity and the surface slope. This observation leads to the second part of the study where the existing wash-off model is modified by introducing a capacity factor which defines this maximum fraction. This capacity factor is derived as a function of wash-off coefficient, making use of the correlation between the maximum fraction and the wash-off rate. Values of the modified wash-off coefficient are presented for all combinations of rainfall intensities and surface slopes, which can be transferred to other urban catchments with similar conditions.

  17. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.

  18. Sediment transport and evaluation of sediment surrogate ratings in the Kootenai River near Bonners Ferry, Idaho, Water Years 2011–14

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Etheridge, Alexandra B.

    2015-12-14

    Acoustic surrogate ratings were developed between backscatter data collected using acoustic Doppler velocity meters (ADVMs) and results of suspended-sediment samples. Ratings were successfully fit to various sediment size classes (total, fines, and sands) using ADVMs of different frequencies (1.5 and 3 megahertz). Surrogate ratings also were developed using variations of streamflow and seasonal explanatory variables. The streamflow surrogate ratings produced average annual sediment load estimates that were 8–32 percent higher, depending on site and sediment type, than estimates produced using the acoustic surrogate ratings. The streamflow surrogate ratings tended to overestimate suspended-sediment concentrations and loads during periods of elevated releases from Libby Dam as well as on the falling limb of the streamflow hydrograph. Estimates from the acoustic surrogate ratings more closely matched suspended-sediment sample results than did estimates from the streamflow surrogate ratings during these periods as well as for rating validation samples collected in water year 2014. Acoustic surrogate technologies are an effective means to obtain continuous, accurate estimates of suspended-sediment concentrations and loads for general monitoring and sediment-transport modeling. In the Kootenai River, continued operation of the acoustic surrogate sites and use of the acoustic surrogate ratings to calculate continuous suspended-sediment concentrations and loads will allow for tracking changes in sediment transport over time.

  19. Temporal variability and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael

    2015-11-01

    Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.

  20. Sources, dispersal, and fate of fine sediment supplied to coastal California

    USGS Publications Warehouse

    Farnsworth, Katherine L.; Warrick, Jonathan A.

    2007-01-01

    We have investigated the sources, dispersal, and fate of fine sediment supplied to California coastal waters in a partnership between the U.S. Geological Survey (USGS) and the California Sediment Management Workgroup (CSMW). The purpose of this study was to document the rates and characteristics of these processes so that the State can better manage its coastal resources, including sediment. In this study, we made the following observations: - Rivers dominate the supply of fine sediment to the California coastal waters, with an average annual flux of 34 megatonnes (Mt). - Cliff and bluff erosion in central and southern California is a source of fine sediment, with a delivery rate of approximately 10 percent of river loads. In the southern most part of the State, however, where river-sediment loads are low, cliff and bluff erosion represent approximately 40 percent of the total fine-sediment flux. - Temporal variation in the sources of fine sediment is high. River floods and bluff erosion are episodic and dominated by winter storms, which supply most sediment flux to the coast. The magnitude of winter storms is generally related to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate cycles. - The three rivers that dominate fine-sediment flux to the California coast are the Eel, Salinas, and Santa Clara Rivers. Because the sediment delivery from these and all other California coastal watersheds is episodic, individual rivers discharge most of their annual loads over the course of only a few days per year. - Spatial variation in river-sediment discharge is high and generally related to such watershed characteristics as geology, precipitation, and drainage area. For example, the Transverse Range of southern California represents only 9 percent of the watershed-drainage area but 18 percent of the fine-sediment flux, a function of the young sedimentary bedrock and active tectonics of this region. The urban rivers of southern California were observed to discharge sediment at rates consistent with those of the surrounding Transverse Range rivers, which share the same geologic setting. - Direct observations of fine-sediment dispersal have been limited to the river-mouth settings of the Eel and Santa Clara Rivers, where sediment has been observed to settle quickly from buoyant plumes and be transported along the seabed during periods of storm waves. - After heavy loading of fine sediment onto the continental shelf during river floods, there is increasing evidence that fluid-mud gravity flows occur within a layer 10 to 50 cm above the seabed and efficiently transport fine sediment offshore. - All along the California coast, the timing of river discharge and coastal winds and waves from storm events are strongly coherent; however, of large wave events with the potential for resuspending and transporting fine sediment occur during periods without significant rainfall and therefore no significant river discharge. - Although fine sediment dominates the midshelf mud belts offshore of California river mouths, these mud belts are not the dominant sink of fine sediment, much of which is deposited across the entire continental shelf, including the inner shelf, and offshelf into deeper water depths. - Accumulation rates of fine sediment, which can exceed several millimeters per year, are generally highest near river sources of sediment and along the inner shelf and midshelf. - Sediment-accumulation rates, as summarized from both long-term and recent investigations of continental-shelf geochronology, are generally consistent across California except in southern California, where recently the sediment-accumulation rate has been tenfold greater than the long-term rate, possibly as a result of increased river discharge, wastewater outfall inputs, or other anthropogenic sources. Thus, fine sediment is a natural and dynamic element of the California coastal system because of large, natural sediment sources and dynamic transport processes.

  1. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    USGS Publications Warehouse

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water-quality sampling results, bottom-sediment samples analyzed for contaminants of emerging concern indicated that adjacent land uses can affect in-stream conditions. Contaminants of emerging concern were detected in four categories: urban compounds, industrial compounds, fecal steroids, and personal care products. Compounds in one or more of the four contaminant categories were detected at higher concentrations in upstream sites than in downstream sites in the tributaries and in the lower Boise River. High concentrations of compounds in upstream locations indicated that adjacent land use might be an important factor in contributing contaminants of emerging concern to the lower Boise River watershed. Expanded monitoring at Mason Creek near the mouth included a streamgage, a continuous water-quality monitor, and monthly water-quality sample collection. Data collected during expanded monitoring efforts at Mason Creek near the mouth provided information to develop and compare water-quality models. Regression models were developed using turbidity, discharge, and seasonality as surrogates to estimate concentrations of water-quality constituents. Daily streamflow also was used in a load model to estimate daily loads of water-quality constituents. Surrogate regression models may be useful for long-term monitoring and generally performed better than other models to estimate concentrations and loads of total phosphorus, total nitrogen, and suspended sediment in Mason Creek. Biological sampling results from Mason Creek showed low periphyton biomass and chlorophyll-a concentrations compared to those historically measured in the Boise River near Parma, Idaho, during October and November. The most abundant invertebrate found in Mason Creek was the highly tolerant and invasive New Zealand mudsnail (Potamopyrgus antipodarum). The presence of small rainbow trout (90 millimeters) may indicate salmonid spawning in Mason Creek. The rangeland-fish-index score of 58 for Mason Creek is comparable to rangeland-fish-index scores calculated for the Boise River near Middleton, indicating intermediate biotic condition.

  2. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)

    NASA Astrophysics Data System (ADS)

    Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.

    2016-10-01

    This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.

  3. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15

    USGS Publications Warehouse

    Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.

    2017-08-03

    Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.

  4. The Impact of Urbanization on Temporal Changes in Sediment Transport in a Gravel Bed Channel in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Plumb, B. D.; Annable, W. K.; Thompson, P. J.; Hassan, M. A.

    2017-10-01

    A field investigation has been undertaken to characterize the event-based bed load transport dynamics of a highly urbanized gravel bed stream. A combination of direct bed load and tracer particle measurements were taken over a 3 year period during which time approximately 30 sediment mobilizing events occurred. Sediment transport measurements were used to calibrate a fractional bed load transport model and combined with hydrometric data which represent four different land use conditions (ranging from rural to highly urbanized) to analyze the differences in discharge magnitude and frequency and its impact on sediment transport. Fractional transport analysis of the bed load measurements indicates that frequent intermediate discharge events can mobilize sand and fine gravel to an approximate equally mobile condition, however, the transport rates at these discharges exhibit greater variability than at discharges above the bankfull discharge. Path lengths of the coarse fraction, measured using tracer clasts, are insensitive to peak discharge, and instead transport at distances less than those reported in other gravel bed channels, which is attributed to the shorter duration discharge events common to urban streams. The magnitude-frequency analysis reveals that the frequency, time, and volume of competent sediment mobilizing events are increasing with urbanization. Variability in effective discharges suggests that a range of discharges, spanning between frequent, low magnitude events to less frequent, high magnitude events are geomorphically significant. However, trends in the different land use scenarios suggest that urbanization is shifting the geomorphic significance toward more frequent, lower magnitude events.

  5. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg/L), and the Middle Fork Clearwater River at Kooskia, Idaho (15 mg/L). The largest measured concentrations of suspended sediment (3,300 and 1,400 mg/L) during a rain-on-snow event in January 2011 were from samples collected at the Potlatch River near Spalding, Idaho, and the Palouse River at Hooper, Washington, respectively. Generally, samples collected from agricultural watersheds had a high percentage of silt and clay-sized suspended sediment, whereas samples collected from forested watersheds had a high percentage of sand. During water years 2009–11, Lower Granite Reservoir received about 10 million tons of suspended sediment from the combined loads of the Snake and Clearwater Rivers. The Snake River accounted for about 2.97 million tons per year (about 89 percent) of the total suspended sediment, 1.48 million tons per year (about 90 percent) of the suspended sand, and about 1.52 million tons per year (87 percent) of the suspended silt and clay. Of the suspended sediment transported to Lower Granite Reservoir, the Salmon River accounted for about 51 percent of the total suspended sediment, about 56 percent of the suspended sand, and about 44 percent of the suspended silt and clay. About 6.2 million tons (62 percent) of the sediment contributed to Lower Granite Reservoir during 2009–11 entered during water year 2011, which was characterized by an above average winter snowpack and sustained spring runoff. A comparison of historical data collected from the Snake River near Anatone with data collected during this study indicates that concentrations of total suspended sediment and suspended sand in the Snake River were significantly smaller during water years 1972–79 than during 2008–11. Most of the increased sediment content in the Snake River is attributable to an increase of sand-size material. During 1972–79, sand accounted for an average of 28 percent of the suspended-sediment load; during 2008–11, sand accounted for an average of 48 percent. Historical data from the Clearwater River at Spalding indicates that the concentrations of total suspended sediment collected during 1972–79 were not significantly different from the concentrations measured during this study. However, the suspended-sand concentrations in the Clearwater River were significantly smaller during 1972–79 than during 2008–11. The increase in suspended-sand concentrations in the Snake and Clearwater Rivers are probably attributable to numerous severe forest fires that burned large areas of central Idaho from 1980–2010. Acoustic backscatter from an acoustic Doppler velocity meter proved to be an effective method of estimating suspended-sediment concentration and load for most streamflow conditions in the Snake and Clearwater Rivers. Models based on acoustic backscatter were able to simulate most of the variability in suspended-sediment concentrations in the Clearwater River at Spalding (coefficient of determination [R2]=0.93) and the Snake River near Anatone (R2=0.92). Acoustic backscatter seems to be especially effective for estimating suspended-sediment concentration and load over short (monthly and single storm event) and long (annual) time scales when sediment load is highly variable. However, during high streamflow events acoustic surrogate tools may be unable to capture the contribution of suspended sand moving near the bottom of the water column and thus, underestimate the total load of suspended sediment. At the stations where bedload was collected, the particle-size distribution at low streamflows typically was unimodal with sand comprising the dominant particle size. At higher streamflows and during peak bedload discharge, the particle size typically was bimodal and was comprised primarily of sand and coarse gravel. About 55,000 tons of bedload was discharged from the Snake River to Lower Granite Reservoir during water years 2009–11, about 0.62 percent of the total sediment load delivered by the Snake River. About 9,500 tons of bedload was discharged from the Clearwater River to Lower Granite Reservoir during 2009–11, about 0.83 percent of the total sediment load discharged by the Clearwater River during 2009–11.

  6. Nutrient and sediment concentrations and loads in the Steele Bayou Basin, northwestern Mississippi, 2010–14

    USGS Publications Warehouse

    Hicks, Matthew B.; Murphy, Jennifer C.; Stocks, Shane J.

    2017-06-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers-Vicksburg District, monitored streamflow, water quality, and sediment at two stations on the Steele Bayou in northwestern Mississippi from October 2010 through September 2014 to characterize nutrient and sediment concentrations and loads in areas where substantial implementation of conservation efforts have been implemented. The motivation for this effort was to quantify improvements, or lack thereof, in water quality in the Steele Bayou watershed as a result of implementing large- and small-scale best-management practices aimed at reducing nutrient and sediment concentrations and loads. The results of this study document the hydrologic, water-quality, and sedimentation status of these basins following over two decades of ongoing implementation of conservation practices.Results from this study indicate the two Steele Bayou stations have comparable loads and yields of total nitrogen, phosphorus, and suspended sediment when compared to other agricultural basins in the southeastern and central United States. However, nitrate plus nitrite yields from basins in the Mississippi River alluvial plain, including the Steele Bayou Basin, are generally lower than other agricultural basins in the southeastern and central United States.Seasonal variation in nutrient and sediment loads was observed at both stations and for most constituents. About 50 percent of the total annual nutrient and sediment load was observed during the spring (February through May) and between 25 and 50 percent was observed during late fall and winter (October through January). These seasonal patterns probably reflect a combination of seasonal patterns in precipitation, runoff, streamflow, and in the timing of fertilizer application.Median concentrations of total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and suspended sediment were slightly higher at the upstream station, Steele Bayou near Glen Allan, than at the downstream station, Steele Bayou at Grace Road at Hopedale, MS, although the differences typically were not statistically significant. Mean annual loads of nitrate plus nitrite and suspended sediment were also larger at the upstream station, although the annual loads at both stations were generally within the 95-percent confidence intervals of each other.

  7. Sediment Transport from Urban, Urbanizing, and Rural Areas in Johnson County, Kansas, 2006-08

    USGS Publications Warehouse

    Lee, Casey J.

    2013-01-01

    1. Studies have commonly illustrated that erosion and sediment transport from construction sites is extensive, typically 10-100X that of background levels. 2. However, to our knowledge, the affects of construction and urbanization have rarely been assessed (1) since erosion and sediment controls have been required at construction sites, and (2) at watershed (5-65 mi2) scales. This is primarily because of difficulty characterizing sediment loads in small basins. Studies (such as that illustrated from Timble, 1999) illustrated how large changes in surface erosion may not result in substantive changes in downstream sediment loads (b/c of sediment deposition on land-surfaces, floodplains, and in stream channels). 3. Improved technology (in-situ turbidity) sensors provide a good application b/c they provide an independent surrogate of sediment concentration that is more accurate at estimating sediment concentrations and loads that instantaneous streamflow.

  8. Improvement in precipitation-runoff model simulations by recalibration with basin-specific data, and subsequent model applications, Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.

    2011-01-01

    Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.

  9. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    USGS Publications Warehouse

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).

  10. Concentrations and Loads of Nutrients and Suspended Sediments in Englesby Brook and Little Otter Creek, Lake Champlain Basin, Vermont, 2000-2005

    USGS Publications Warehouse

    Medalie, Laura

    2007-01-01

    The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.

  11. Effects of drill cuttings on larvae of the cold-water coral Lophelia pertusa

    NASA Astrophysics Data System (ADS)

    Järnegren, Johanna; Brooke, Sandra; Jensen, Henrik

    2017-03-01

    Fossil fuel consumption is predicted to dominate energy needs until at least 2040. To make up for reduced production from maturing fields, oil and gas exploration activities on the Norwegian continental shelf have greatly increased over the past several years. Strict emission controls have resulted in a substantial reduction in the release of hazardous chemicals. However, because of the increased exploration the discharges of water-based drill cuttings and muds have increased substantially, temporarily increasing water column sediment loads. The stony coral Lophelia pertusa is the most widely distributed and well-studied of the structure forming cold water corals (CWC) and it thrives in Norwegian waters where many reefs are located in the vicinity of oil platforms or exploration areas. This species provides habitat for a diverse and abundant assemblage of invertebrates and fishes, including commercially valuable species. High sediment loads are known to negatively affect adult corals, but impacts on the early life history stages are unknown. We investigated the effects of a range of drill cutting concentrations (0.5-640 ppm) on larvae of L. pertusa at ages five days and 15-20 days. One set of experiments was conducted in static experimental chambers that exposed larvae to decreasing concentrations over time, and the other maintained continuous drill cutting concentrations for the duration of the experiment (24 h). Increased sediment load for a duration of 24 h caused significant larval mortality, but there was an age-dependent difference in sensitivity of larvae. Younger larvae were significantly more susceptible to lower concentrations of drill cuttings than older larvae, while the older larvae were significantly more affected at higher concentrations. Five day old larvae were affected at treatment concentration 40 ppm. The larval cilia became clogged, preventing the larvae from swimming actively and ultimately causing mortality. Larvae of many species use cilia for swimming and feeding, so negative impacts of increased sediment may not be limited to corals.

  12. Spatial and temporal sensitivity of hydrogeomorphic responceand recovery to deforestation, Agriculture, and floods

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Knox, J.C.

    2000-01-01

    Clear-cut logging followed by agricultural activity caused hydrologic and geomorphic changes in North Fish Creek, a Wisconsin tributary to Lake Superior. Hydro-geomorphic responses to changes in land use were sensitive to the location of reaches along the main stem and to the relative timing of large floods. Hydrologic and sediment-load modeling indicates that flood peaks were three times larger and sediment loads were five times larger during maximum agricultural activity in the 1920s and 1930s than prior to about 1890, when forest cover was dominant. Following logging, overbank sedimentation rates in the lower main stem increased four to six times above pre-settlement rates. Accelerated streambank and channel erosion in the upper main stem have been and continue to be primary sources of sediment to downstream reaches. Extreme floods in 1941 and 1946, followed by frequent moderate floods through 1954, caused extensive geomorphic changes along the entire main stem. Sedimentation rates in the lower main stem may have decreased in the last several decades as agricultural activity declined. However, geomorphic recovery is slow, as incised channels in the upper main stem function as efficient conveyors of watershed surface runoff and thereby continue to promote flooding and sedimentation problems downstream. [Key words: fluvial geomorphology, floods, erosion, sedimentation, deforestation, agriculture.].

  13. Nutrient, suspended sediment, and trace element loads in the Blackstone River Basin in Massachusetts and Rhode Island, 2007 to 2009

    USGS Publications Warehouse

    Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.

    2015-01-01

    Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.

  14. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    USGS Publications Warehouse

    Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  15. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    During 2010, additional suspended-sediment data were collected during selected runoff events to provide new data for model testing and to help better understand the sources of suspended-sediment loads. The model was updated and used to estimate and compare sediment yields from each of 64 subwatersheds comprising the lower Nueces River watershed study area for three selected runoff events: November 20-21, 2009, September 7-8, 2010, and September 20-21, 2010. These three runoff events were characterized by heavy rainfall centered near the study area and during which minimal streamflow and suspended-sediment load entered the lower Nueces River upstream from Wesley E. Seale Dam. During all three runoff events, model simulations showed that the greatest sediment yields originated from the subwatersheds, which were largely cropland. In particular, the Bayou Creek subwatersheds were major contributors of suspended-sediment load to the lower Nueces River during the selected runoff events. During the November 2009 runoff event, high suspended-sediment concentrations in the Nueces River water withdrawn for the City of Corpus Christi public-water supply caused problems during the water-treatment process, resulting in failure to meet State water-treatment standards for turbidity in drinking water. Model simulations of the November 2009 runoff event showed that the Bayou Creek subwatersheds were the primary source of suspended-sediment loads during that runoff event.

  16. An Analytic Equation Partitioning Climate Variation and Human Impacts on River Sediment Load

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gao, G.; Fu, B.

    2017-12-01

    Spatial or temporal patterns and process-based equations could co-exist in hydrologic model. Yet, existing approaches quantifying the impacts of those variables on river sediment load (RSL) changes are found to be severely limited, and new ways to evaluate the contribution of these variables are thus needed. Actually, the Newtonian modeling is hardly achievable for this process due to the limitation of both observations and knowledge of mechanisms, whereas laws based on the Darwinian approach could provide one component of a developed hydrologic model. Since that streamflow is the carrier of suspended sediment, sediment load changes are documented in changes of streamflow and suspended sediment concentration (SSC) - water discharge relationships. Consequently, an analytic equation for river sediment load changes are proposed to explicitly quantify the relative contributions of climate variation and direct human impacts on river sediment load changes. Initially, the sediment rating curve, which is of great significance in RSL changes analysis, was decomposed as probability distribution of streamflow and the corresponding SSC - water discharge relationships at equally spaced discharge classes. Furthermore, a proposed segmentation algorithm based on the fractal theory was used to decompose RSL changes attributed to these two portions. Additionally, the water balance framework was utilized and the corresponding elastic parameters were calculated. Finally, changes in climate variables (i.e. precipitation and potential evapotranspiration) and direct human impacts on river sediment load could be figured out. By data simulation, the efficiency of the segmentation algorithm was verified. The analytic equation provides a superior Darwinian approach partitioning climate and human impacts on RSL changes, as only data series of precipitation, potential evapotranspiration and SSC - water discharge are demanded.

  17. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872

  18. Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.

    PubMed

    Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H

    2012-11-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Progress report on the effects of highway construction on suspended-sediment discharge in the Coal River and Trace Fork, West Virginia, 1975-81

    USGS Publications Warehouse

    Downs, S.C.; Appel, David H.

    1986-01-01

    Construction of the four-lane Appalachian Corridon G highway disturbed about 2 sq mi in the Coal River and 0.35 sq mi of the 4.75 sq mi Trace Fork basin in southern West Virginia. Construction had a negligible effect on runoff and suspended-sediment load in the Coal River and its major tributaries, the Little Coal and Big Coal Rivers. Drainage areas of the mainstem sites in the Coal River basin ranged from 269 to 862 sq mi, and average annual suspended-sediment yields ranged from 535 to 614 tons/sq mi for the 1975-81 water years. Suspended-sediment load in the smaller Trace Fork basin (4.72 sq mi) was significantly affected by the highway construction. Based on data from undisturbed areas upstream from construction, the normal background load at Trace Fork downstream from construction during the period July 1980 to September 1981 was estimated to be 830 tons; the measured load was 2,385 tons. Runoff from the 0.35 sq mi area disturbed by highway construction transported approximately 1,550 tons of sediment. Suspended-sediment loads from the construction zone were also higher than normal background loads during storms. (USGS)

  20. Effects of a Cattail Wetland on Water Quality of Irondequoit Creek near Rochester, New York

    USGS Publications Warehouse

    Coon, William F.; Bernard, John M.; Seischab, Franz K.

    2000-01-01

    A 6-year (1990-96) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) marsh in Monroe County, N.Y., was conducted to document the effect that this wetland has on the water quality of Irondequoit Creek, which flows through it. Irondequoit Creek drains 151 square miles of mostly urban and suburban land and is the main tributary to Irondequoit Bay on Lake Ontario. The wetland was a sink for total phosphorus and total suspended solids (28 and 47 percent removal efficiencies, respectively, over the 6-year study period). Sedimentation and vegetative filtration appear to be the primary mechanisms for the decrease in loads of these constituents. Total nitrogen loads were decreased slightly by the wetland; removal efficiencies for ammonia-plus-organic nitrogen and nitrate-plus-nitrite were 6 and 3 percent, respectively. The proportions of total phosphorus and total nitrogen constituents were altered by the wetland. Orthophosphate and ammonia nitrogen were generated within the wetland and represented 12 percent of the total phosphorus output load and 1.8 percent of total nitrogen output load, respectively. Conservative chemicals, such as chloride and sulfate, were littleaffected by the wetland. Concentrations of zinc, lead, and cadmium showed statistically significant decreases, which are attributed to sedimentation and filtration of sediment and organic matter to which these elements adsorb.Sediment samples from open-water depositional areas in the wetland contained high concentrations of (1) trace metals, including barium, manganese, strontium, zinc (each of which exceeded 200 parts per million), as well as chromium, copper, lead, and vanadium, and (2) some polycyclic aromatic hydrocarbons. Persistent organochlorine pesticides, such as chlordane, dieldrin, DDT and its degradation products (DDD and DDE), and polychlorinated biphenyls (PCB's), also were detected, but concentrations of these compounds were within the ranges often found in depositional environments in highly urbanized areas.Cattail shoots attained a maximum height of 350 centimeters, a density of more than 30 shoots per square meter, and total biomass of more than 5,600 grams per square meter (46 percent of which was in above-ground tissues during the growing season). Nitrogen and potassium were three times more abundant in above-ground tissues (2.4 and 1.5 percent by dry weight, respectively) than in below-ground tissues (0.8 and 0.5 percent, respectively). Concentrations of phosphorus, molybdenum, and manganese in above-ground tissues were similar to those in below-ground tissues, but the concentrations of all other constituents were considerably higher in below-ground tissues. Concentrations of several elements exceeded those typically found in natural wetlands; these included manganese (417 ppm, parts per million) and sodium (3,600 ppm) in above-ground tissues, and aluminum (1,540 ppm), iron (15,400 ppm), manganese (433 ppm), and sodium (10,000 ppm) in below-ground tissues.Large quantities of nutrients are assimilated by wetland vegetation during the growing season, but neither tissue production nor microbial metabolic processes appeared to play a significant role in the observed patterns of surface-water chemical input-to-output relations on a seasonal basis. Presumably, internal cycling of nutrients sequestered in the sediments and detritus, combined with a summer increase in microbially mediated chemical transformations, obscured the effects of vegetative assimilation during the summer on surface-water chemical loads. Additionally, the natural confinement of most flows within the banks of Irondequoit Creek, which resulted in passage of stormwater through the wetland with little dispersion or detention in the cattail and backwater areas, diminished the capability of the wetland to improve water quality. Additional factors that probably affected the chemical-removal efficiency of the wetland included chemical inflow loading rates, storage and release mechanisms of the sediments (sedimentation, adsorption, filtration, precipitaton, dissolution, and resuspension), and accretion and burial of organic matter.Measurements of chlorophyll_a concentrations, and calculations of potential phosphorus concentrations, since the 1970’s indicate an improvement in the trophic state of Irondequoit Bay. Estimated average annual loads (1990-96) of selected constituents entering Irondequoit Bay indicate that, since 1980, the loads of all major forms of nitrogen have decreased, chloride loads have increased, and sulfate loads have changed little. Inputs of total phosphorus and suspended solids to the wetland have increased since 1980, possibly as a result of increased erosion by stormflows from an increasingly developed watershed. The wetland decreases the loads of these constituents, but the trends of these loads entering Irondequoit Bay cannot be reliably defined because the removal efficiencies during the two earlier study periods (1980–81 and 1984–88) are known.

  1. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    USGS Publications Warehouse

    Madej, Mary Ann; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  2. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins.

    PubMed

    Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R

    2014-01-15

    The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments. © 2013. Published by Elsevier B.V. All rights reserved.

  3. Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.

    2008-01-01

    Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.

  4. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  5. New insights on the subsidence of the Ganges-Brahmaputra Delta Plain by using 2D multichannel seismic data, gravity and flexural modeling, BanglaPIRE Project

    NASA Astrophysics Data System (ADS)

    Grall, C.; Pickering, J.; Steckler, M. S.; Spiess, V.; Seeber, L.; Paola, C.; Goodbred, S. L., Jr.; Palamenghi, L.; Schwenk, T.

    2015-12-01

    Deltas can subside very fast, yet many deltas remain emergent over geologic time. A large sediment input is often enough to compensate for subsidence and rising sea level to keep many deltas at sea level. This implies a balance between subsidence and sedimentation, both of which may, however, be controlled by independent factors such as sediment supply, tectonic loads and sea-level change. We here examine the subsidence of the Ganges-Brahmaputra Delta (GBD). Located in the NE boundary of the Indian-Eurasian collision zone, the GBD is surrounded by active uplifts (Indo-Burma Fold Belt and the Shillong Massif). The pattern of subsidence from these tectonic loads can strongly vary depending on both loads and lithospheric flexural rigidity, both of which can vary in space and time. Sediment cover changes both the lithostatic pressure and the thermal properties and thus the rigidity of the lithosphere. While sediments are deposited cold, they also insulate the lithosphere, acting as a thermal blanket to increase lower crustal temperatures. These effects are a function of sedimentation rates and may be more important where the lithosphere is thin. At the massive GBD the impact of sedimentation should be considered for properly constraining flexural subsidence. The flexural rigidity of the lithosphere is here modeled by using a yield-stress envelope based on a thermomechanic model that includes geothermal changes associated with sedimentation. Models are constrained by using two different data sets, multichannel seismic data correlated to borehole stratigraphy, and gravity data. This approach allows us to determine the Holocene regional distribution of subsidence from the Hinge Zone to the Bengal Fan and the mass-anomalies associated with the flexural loading. Different end-member scenarios are explored for reproducing the observed land tilting and gravity anomalies. For all scenarios considered, data can be reproduced only if we consider an extremely weak lithosphere and we will quantify the extent that this weakness is influenced by the extreme sediment thickness of the delta. While the distribution of the present-day subsidence suggests that sediment compaction plays a major role on the current subsidence over the delta, its role over a geological time frame is probably minor.

  6. Topographic filtering simulation model for sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Cho, Se Jong; Wilcock, Peter; Hobbs, Benjamin

    2018-05-01

    We propose a Topographic Filtering simulation model (Topofilter) that can be used to identify those locations that are likely to contribute most of the sediment load delivered from a watershed. The reduced complexity model links spatially distributed estimates of annual soil erosion, high-resolution topography, and observed sediment loading to determine the distribution of sediment delivery ratio across a watershed. The model uses two simple two-parameter topographic transfer functions based on the distance and change in elevation from upland sources to the nearest stream channel and then down the stream network. The approach does not attempt to find a single best-calibrated solution of sediment delivery, but uses a model conditioning approach to develop a large number of possible solutions. For each model run, locations that contribute to 90% of the sediment loading are identified and those locations that appear in this set in most of the 10,000 model runs are identified as the sources that are most likely to contribute to most of the sediment delivered to the watershed outlet. Because the underlying model is quite simple and strongly anchored by reliable information on soil erosion, topography, and sediment load, we believe that the ensemble of simulation outputs provides a useful basis for identifying the dominant sediment sources in the watershed.

  7. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  8. Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds

    NASA Astrophysics Data System (ADS)

    Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.

    2012-12-01

    Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.

  9. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years, species composition was more evenly distributed. At the longer time scale, El Niño events with accompanying increase in nutrient loads were followed by years in which productivity declined below levels predicted solely by nutrient ratios. This was due to subtle shifts in organic matter decomposition where productive years are followed by increases in refractory material which sequesters nutrients and reduces internal loading.

  10. Storms, channel changes, and a sediment budget for an urban-suburban stream, Difficult Run, Virginia, USA

    USGS Publications Warehouse

    Gellis, Allen C.; Myers, Michael; Noe, Gregory; Hupp, Cliff R.; Shenk, Edward; Myers, Luke

    2017-01-01

    Determining erosion and deposition rates in urban-suburban settings and how these processes are affected by large storms is important to understanding geomorphic processes in these landscapes. Sediment yields in the suburban and urban Upper Difficult Run are among the highest ever recorded in the Chesapeake Bay watershed, ranging from 161 to 376 Mg/km2/y. Erosion and deposition of streambanks, channel bed, and bars and deposition of floodplains were monitored between 1 March 2010 and 18 January 2013 in Upper Difficult Run, Virginia, USA. We documented the effects of two large storms, Tropical Storm Lee (September 2011), a 100-year event, and Super Storm Sandy (October 2012) a 5-year event, on channel erosion and deposition. Variability in erosion and deposition rates for all geomorphic features, temporally and spatially, are important conclusions of this study. Tropical Storm Lee was an erosive event, where erosion occurred on 82% of all streambanks and where 88% of streambanks that were aggrading before Tropical Storm Lee became erosional. Statistical analysis indicated that drainage area explains linear changes (cm/y) in eroding streambanks and that channel top width explains cross-sectional area changes (cm2/y) in eroding streambanks and floodplain deposition (mm/y). A quasi-sediment budget constructed for the study period using the streambanks, channel bed, channel bars, and floodplain measurements underestimated the measured suspended-sediment load by 61% (2130 Mg/y). Underestimation of the sediment load may be caused by measurement errors and to contributions from upland sediment sources, which were not measured but estimated at 36% of the gross input of sediment. Eroding streambanks contributed 42% of the gross input of sediment and accounted for 70% of the measured suspended-sediment load. Similar to other urban watersheds, the large percentage of impervious area in Difficult Run and direct runoff of precipitation leads to increased streamflow and streambank erosion. This study emphasizes the importance of streambanks in urban-suburban sediment budgets but also suggests that other sediment sources, such as upland sources, which were not measured in this study, can be an important source of sediment.

  11. Suspended Sediment Load and Sediment Yield During Floods and Snowmelt Runoff In The Rio Cordon (northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Lenzi, M. A.

    Suspended sediment transport in high mountain streams display a grater time-space variability and a shorter duration (normally concentrated during the snowmelt period and the duration time of single floods) than in larger lowland rivers. Suspended sedi- ment load and sediment yield were analysed in a small, high-gradient stream of East- ern Italian Alps which was instrumented to measure in continuous water discharge and sediment transport. The research was conducted in the Rio Cordon, a 5 Km2 small catchment of the Dolomites. The ratio of suspended to total sediment yield and the re- lations between sediment concentration and water discharge were analysed for eleven floods which occurred from 1991 to 2001. Different patterns of hysteresis in the re- lation between suspended sediment and discharge were related to types and locations of active sediment sources. The within-storm variation of particle size of suspended sediment during a mayor flood (September 1994, 30 years

  12. The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; IJpelaar, Thijs

    2017-09-01

    Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the interpretation of GNSS and GRACE observations there.

  13. Predicting lake responses to phosphorus loading with measurement-based characterization of P recycling in sediments

    NASA Astrophysics Data System (ADS)

    Katsev, S.; Li, J.

    2017-12-01

    Predicting the time scales on which lake ecosystems respond to changes in anthropogenic phosphorus loadings is critical for devising efficient management strategies and setting regulatory limits on loading. Internal loading of phosphorus from sediments, however, can significantly contribute to the lake P budget and may delay recovery from eutrophication. The efficiency of mineralization and recycling of settled P in bottom sediments, which is ultimately responsible for this loading, is often poorly known and is surprisingly poorly characterized in the societally important systems such as the Great Lakes. We show that a simple mass-balance model that uses only a minimum number of parameters, all of which are measurable, can successfully predict the time scales over which the total phosphorus (TP) content of lakes responds to changes in external loadings, in a range of situations. The model also predicts the eventual TP levels attained under stable loading conditions. We characterize the efficiency of P recycling in Lake Superior based on a detailed characterization of sediments at 13 locations that includes chemical extractions for P and Fe fractions and characterization of sediment-water exchange fluxes of P. Despite the low efficiency of P remobilization in these deeply oxygenated sediments (only 12% of deposited P is recycled), effluxes of dissolved phosphorus (2.5-7.0 μmol m-2 d-1) still contribute 37% to total P inputs into the water column. In this oligotrophic large lake, phosphate effluxes are regulated by organic sedimentation rather than sediment redox conditions. By adjusting the recycling efficiency to conditions in other Laurentian Great Lakes, we show that the model reproduces the historical data for total phosphorus levels. Analysis further suggests that, in the Lower Lakes, the rate of P sequestration from water column into sediments has undergone a significant change in recent decades, possibly in response to their invasion by quagga mussels. Importantly, even for lakes where P budgets are dominated by internal loading, mass balance arguments show that, over multi-year time scales, lakes should respond to changes in external P inputs faster than their hydrological residence times.

  14. Sediment loads in canals 18, 23, and 24 in southeastern Florida

    USGS Publications Warehouse

    Pitt, William A. J.

    1971-01-01

    Suspended-sediment concentrations and suspended-sediment discharges were determined in selected canals in St. Lucie, Martin, and Palm Beach Counties, in southeastern Florida. Sediment rating curves were developed to relate water discharge to sediment concentration at the three sites sampled. An evaluation of the concentration and sediment loads shows that larger amounts of suspended sediment were being carried into the St. Lucie River estuary than were being carried into the Loxahatchee River estuary. Peat and muck soils in areas drained for agricultural planting and citrus cultivation are readily carried by runoff water into major canals that traverse the region.

  15. Sedimentary regimes at Potter Cove, King George Island, maritime Antarctica - from source to sink

    NASA Astrophysics Data System (ADS)

    Monien, Donata; Monien, Patrick; Brünjes, Robert M.; Widmer, Tatjana; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2013-04-01

    Increased particle run-off due to recently retreated ice masses along the Antarctic margins may play an important role in fertilizing the high-nutrient-low-chlorophyll regions of the Southern Ocean. At Potter Cove, King George Island, maritime Antarctica, small melt water streams at the south-eastern shoreline (Potter Peninsula) discharge up to 1,500 mg L-1 (av. 110 mg L-1) of suspended particle matter (SPM) per day into the coastal water body during the summer seasons. Apart from potential light limitation of plankton growth by the suspension load, the particle run-off affects benthic feeders, possibly changes the depositional regime and the preservation of chemical proxies in the outlet zones, and exports trace elements offshore. In Potter Cove's water column, the average particle size is low, and extreme turbidity events are restricted to the upper five to seven meters. High particle loads are often associated with low salinities, most probably induced by increased onshore precipitation. Sediment traps installed in the inner and outer cove at 5 and 20 m water depth suggest mass accumulation rates of 0.83 and 0.58 g cm-2 yr-1, and 0.13 and 0.11 g cm-2 yr-1 (considering 183 days of sedimentation), respectively. 210Pb measurements of short sediment cores reveal recent sediment accumulation rates of approximately 0.1 to 0.6 g cm-2 yr-1. The SPM sampled in the melt water streams and plumes is chemically different to surface sediments deposited in Potter Cove. Chemical characteristics suggest a significant impact of particle sorting: SPM and outer cove sediments are more clayey, whereas inner cove sediments contain more heavy minerals. Generally, sediment deposits in Potter Cove exhibit coarser grain sizes and are mainly derived from Barton Peninsula (northern shoreline), whereas the SPM consists of more fine-grained material originating from Potter Peninsula eluviations. Sequential leaching of the SPM by ascorbic acid showed that approximately 0.5 to 2% of the total iron (5.9 wt.% Fe) is easily dissolvable, which in turn can be translated into an additional load of approximately 5 to 21 mmol L-1 dissolved Fe2+. In consequence, the results of our three-summer study highlight that the major part of the particle load from the melt water streams are exported to the Southern Ocean rather than being deposited near shore in Potter Cove. These exported particles are rich in easily leachable Fe acting as a natural fertilization to the Fe-limited Southern Ocean.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viklander, M.

    Sediments that had accumulated during the winter season, and which were left at the surface when the snow had melted, were studied with regard to physical and chemical characteristics. The investigation was carried out in the city of Luleaa, which is located in northern Sweden. Sediment samples were collected in the city center and in a housing area at streets with different traffic loads. The results showed that the amount of the sediments at a street surface was evidently affected by the presence of a sidewalk. The street with a sidewalk accumulated much more sediment than the street without amore » sidewalk. Both of these streets had approximately the same traffic load. The sidewalk also affected the particle size distribution. The content of heavy metals in the sediments varied with the traffic load and the area type. The highest concentration of cadmium, lead, and zinc was found in the street with the highest traffic load.« less

  17. Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.

    2015-01-01

    Available brook-trout habitat is dependent on the locations of groundwater upwellings, the sizes of flood peaks, and sediment loads. Management practices that focus on reducing or slowing runoff from upland areas and increasing channel roughness have potential to reduce flood peaks, erosion, and sedimentation and improve brook-trout habitat in all Bayfield Peninsula streams.

  18. Wildfire impacts on stream sedimentation: re-visiting the Boulder Creek Burn in Little Granite Creek, Wyoming, USA

    Treesearch

    Sandra Ryan; Kathleen Dwire

    2012-01-01

    In this study of a burned watershed in northwestern Wyoming, USA, sedimentation impacts following a moderately-sized fire (Boulder Creek burn, 2000) were evaluated against sediment loads estimated for the period prior to burning. Early observations of suspended sediment yield showed substantially elevated loads (5x) the first year post-fire (2001), followed by less...

  19. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  20. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Gadi, Subhadra Devi; Bardhan, Pratirupa

    2016-05-15

    This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  2. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  3. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  4. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India

    NASA Astrophysics Data System (ADS)

    Bastia, Fakira; Equeenuddin, Sk. Md.

    2016-09-01

    The transport of sediments by rivers to the oceans represents an important link between the terrestrial and marine ecosystem. Therefore, this work aims to study spatio-temporal variation of the sediment discharge and erosion rate in the Mahanadi river, one of the biggest rivers in India, over past three decades vis-à-vis their controlling factors. To understand the sediment load variation, the trend analysis in the time series data of rainfall, water and sediment discharge of the Mahanadi river were also attempted. The non-parametric Mann-Kendall and Sen's methods were used to determine whether there was a positive or negative trend in the time series data with their statistical significance. The occurrence of abrupt changes was detected using Pettitt test. The trend test result represents that sediment load delivered from the Mahanadi river to the global ocean has decreased sharply at the rate of 0.515 × 106 tons/year between 1980 and 2010. Water discharge and rainfall in the basin showed no significant decreasing trend except at only one tributary. The decline in sediment discharge from the basin to the Bay of Bengal is mainly due to the increase in the number of dams, which has recorded the increase from 70 to 253 during the period of 1980 to 2010. Over the past 30 years the Mahanadi river has discharged about 49.0 ± 20.5 km3 of water and 17.4 ± 12.7 × 106 tons of sediment annually to the Bay of Bengal whereas the mean erosional rate is 265 ± 125 tons/km2/year over the period of 30 years in the basin. Based on the current data (2000-2001 to 2009-2010), sediment flux and water discharge to the ocean are 12 ± 5 × 106 tons/year and 49 ± 16 km3/year respectively; and ranking Mahanadi river second in terms of water discharge and sediment flux to the ocean among the peninsular rivers in India.

  5. Modeling Paragenesis: Erosion Opposite to Gravity in Cave Channels

    NASA Astrophysics Data System (ADS)

    Cooper, M. P.; Covington, M. D.

    2017-12-01

    Sediment plays an important role in bedrock channels, providing both tools and cover that influence patterns of bed erosion. It has also been shown that sediment load influences bedrock channel width, with increased sediment leading to wider channels. A variety of models have been developed to explore these effects. In caves, it is hypothesized that sediments covering the floors of fully flooded channels that are forming beneath the water table (phreatic zone) can force dissolution upwards towards the water table, leading to upward erosion balanced by gradual deposition of sediment within the channel bottom. This strange process is termed paragenesis, and while there are conceptual and experimental models of the process, no prior mathematical models of cave passage evolution has captured these effects. Consequently, there is little quantitative understanding of the processes that drive paragenesis and how they link to the morphology of the cave channels that develop. We adapt a previously developed algorithm for estimating boundary shear stress within channels with free-surface flows to enable calculation of boundary shear stress in pipe-full conditions. This model successfully duplicates scaling relationships in surface channels, and geometries of caves formed in the phreatic zone such as phreatic tubes. Once sediment flux is incorporated the model successfully duplicates the hypothesized processes of paragenetic gallery formation: the cover effect prevents dissolution in the direction of gravity; passages are enlarged upwards reducing the sediment transport capacity; sediment is deposited and the process drives a continuing feedback loop. Simulations reveal that equilibrium paragenetic channel widths scale with both sediment flux and discharge. Unlike in open channel settings, increased sediment load actually narrows paragenetic channels. The cross section evolution model also reveals that the existence of equilibrium widths in such galleries requires erosion to scale with shear stress, suggesting a role of either mechanical erosion or transport limited dissolution. These types of erosion contrast with current numerical models of speleogenesis, where chemically limited dissolution, a process independent of shear stress, is predicted to occur in most turbulent flow settings.

  6. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  7. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  8. Algal Turf Sediments and Sediment Production by Parrotfishes across the Continental Shelf of the Northern Great Barrier Reef

    PubMed Central

    Goatley, Christopher H. R.; Bellwood, David R.

    2017-01-01

    Sediments are found in the epilithic algal matrix (EAM) of all coral reefs and play important roles in ecological processes. Although we have some understanding of patterns of EAM sediments across individual reefs, our knowledge of patterns across broader spatial scales is limited. We used an underwater vacuum sampler to quantify patterns in two of the most ecologically relevant factors of EAM sediments across the Great Barrier Reef: total load and grain size distribution. We compare these patterns with rates of sediment production and reworking by parrotfishes to gain insights into the potential contribution of parrotfishes to EAM sediments. Inner-shelf reef EAMs had the highest sediment loads with a mean of 864.1 g m-2, compared to 126.8 g m-2 and 287.4 g m-2 on mid- and outer-shelf reefs, respectively. High sediment loads were expected on inner-shelf reefs due to their proximity to the mainland, however, terrigenous siliceous sediments only accounted for 13–24% of total mass. On inner-shelf reef crests parrotfishes would take three months to produce the equivalent mass of sediment found in the EAM. On the outer-shelf it would take just three days, suggesting that inner-shelf EAMs are characterised by low rates of sediment turnover. By contrast, on-reef sediment production by parrotfishes is high on outer-shelf crests. However, exposure to oceanic swells means that much of this production is likely to be lost. Hydrodynamic activity also appears to structure sediment patterns at within-reef scales, with coarser sediments (> 250 μm) typifying exposed reef crest EAMs, and finer sediments (< 250 μm) typifying sheltered back-reef EAMs. As both the load and grain size of EAM sediments mediate a number of important ecological processes on coral reefs, the observed sediment gradients are likely to play a key role in the structure and function of the associated coral reef communities. PMID:28122042

  9. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    USGS Publications Warehouse

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near Lily, Colorado. Bedload transport equations at the five sites had coefficients of determination that ranged from 0.40 (Yampa River at Deerlodge Park, Colorado) to 0.80 (Yampa River above Little Snake River near Maybell, Colorado). Transport equations for silt and clay-size material had coefficients of determination that ranged from 0.46 to 0.82. Where particle-size data were available (Yampa River at Deerlodge Park, Colorado, and Green River near Jensen, Utah), transport equations for the smaller particle sizes (fine sand) tended to have higher coefficients of determination than the equations for coarser sizes (medium and coarse sand, and very coarse sand and gravel). Because the data had to be subdivided into at least two subsets (rising-limb, falling-limb and, occasionally, base-flow periods), the seasonal transport equations generally were based on relatively few samples. All transport equations probably could be improved by additional data collected at strategically timed periods.

  10. [Research on pollution load of sediments in storm sewer in Beijing district].

    PubMed

    Li, Hai-Yan; Xu, Bo-Ping; Xu, Shang-Ling; Cui, Shuang

    2013-03-01

    Based on the investigation of sewer sediments in Xi Cheng district in Beijing, scour-release pollution load in one rainfall from sewer sediments was studied by monitoring the pollutants in the run-off of manhole's section. It was shown that the contribution of scour-release pollutants from sewer sediments to sewer outflow was obvious. The contribution rate of the sediments pollution load to runoff outflow in the 84 m pipeline in one rainfall (9 Jul., 2010) was as follows: TN 8.5%, TP 8.2%, COD 18.3%, SS 7.7%, respectively. And the pollutant contribution rate in the 295 m pipeline in another rainfall (4 Aug., 2010) was TN 23.12%, TP 60.01%, COD 33.78%, SS 31.89%. Therefore, it is important to control the pollution from sewer sediments for the improvement of water environment.

  11. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream

    NASA Astrophysics Data System (ADS)

    Roth, Danica L.; Finnegan, Noah J.; Brodsky, Emily E.; Rickenmann, Dieter; Turowski, Jens M.; Badoux, Alexandre; Gimbert, Florent

    2017-05-01

    Hysteresis in the relationship between bed load transport and river stage is a well-documented phenomenon with multiple known causes. Consequently, numerous studies have interpreted hysteresis in the relationship between seismic ground motion near rivers and some measure of flow strength (i.e., discharge or stage) as the signature of bed load transport. Here we test this hypothesis in the Erlenbach stream (Swiss Prealps) using a metric to quantitatively compare hysteresis in seismic data with hysteresis recorded by geophones attached beneath steel plates within the streambed, a well-calibrated proxy for direct sediment transport measurements. We find that while both the geophones and seismometers demonstrate hysteresis, the magnitude and direction of hysteresis are not significantly correlated between these data, indicating that the seismic signal at this site is primarily reflecting hysteresis in processes other than sediment transport. Seismic hysteresis also does not correlate significantly with the magnitude of sediment transport recorded by the geophones, contrary to previous studies' assumptions. We suggest that hydrologic sources and changes in water turbulence, for instance due to evolving boundary conditions at the bed, rather than changes in sediment transport rates, may sometimes contribute to or even dominate the hysteresis observed in seismic amplitudes near steep mountain rivers.Plain Language SummaryAn increasing number of studies have recently observed changes in the amount of seismic shaking (hysteresis) recorded near a river at a given discharge during floods. Most studies have assumed that this hysteresis was caused by changes in the amount of sediment being transported in the river and have therefore used the hysteresis to assess sediment transport rates and patterns. We examine concurrent seismic and sediment transport data from a steep mountain stream in the Swiss Prealps and find that changes in seismic shaking are unrelated and even opposed (increasing versus decreasing) to changes in sediment transport rates for four out of five transport events. Water turbulence, rather than sediment transport, appears to be the strongest source of seismic shaking, and changes in seismic shaking are most likely caused by changes in turbulence or how turbulence transmits energy through the river bed. These effects may be due to rearrangement of sediment around large boulders on the bed or slight shifting of the boulders themselves. Our results have significant implications for the growing field of fluvial seismology and the evaluation of seismic data near rivers, as previous interpretations of seismic hysteresis as evidence for sediment transport may not always be accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5014/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5014/"><span>Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.</p> <p>2008-01-01</p> <p>Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics. Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended-sediment concentration was nearly always largest at the Mill Creek site. The Mill Creek watershed is undergoing rapid development that likely contributed to larger sustained sediment concentrations. During most of the time, the smallest sediment concentrations occurred at the Indian Creek site, the most urban of the monitored sites, likely because most of the streamflow originates from wastewater-treatment facilities located just upstream from the monitoring site. However, estimated annual suspended-sediment load and yield were largest annually at the Indian Creek site because of substantial contributions during storm runoff. At least 90 percent of the total annual sediment load in 2005?06 at all five monitoring sites occurred in less than 2 percent of the time, generally associated with large storm runoff. About 50 percent of the 2005 sediment load at the Blue River site occurred during a single 3-day storm, the equivalent of less than 1 percent of the time. Suspended-sediment concentration is statistically related to other water-quality constituents, and these relations have potential implications for implementation of best management practices because, if sediment concentrations are decreased, concentrations of sediment-associated constituents such as suspended solids, some nutrients, and bacteria will also likely decrease. Chloride concentrations were largest at the Indian and Mill Creek sites, the two most urban stream sites which also are most affected by road-salt runoff and wastewater-treatment-facility discharges. Two chloride runoff occurrences in January?February 2005 accounted for 19 percent of the total chloride load in Indian Creek in 2005. Escherichia coli density at the Indian Creek site was nearly always largest of the five sites with a median density more than double that of any other site and 15 times the density at the Blue River site which is primarily nonurban. More than 97 percent of the fecal coliform bacteria load at the Indian Creek site and near the B</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/unnumbered/70188907/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/unnumbered/70188907/report.pdf"><span>An inventory of suspended sediment stations and type of data analysis for Pennsylvania streams, 1947-1970</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ott, Arthur N.; Commings, Allen B.</p> <p>1972-01-01</p> <p>Data concerning suspended sediment concentrations and loads, frequency of occurrence of suspended sediment concentrations, and long-term trends of annual suspended sediment loads are important tools for today's environmental manager. These data are required background for those concerned with establishing and enforcing erosion and sedimentation control regulations and sediment concentration or turbidity standards for water-quality criteria, or those concerned with designing for adequate long-term water storage in reservoirs (sediment load), for efficient municipal and industrial plant operation (sediment concentration frequency), etc.This is a compilation of the location, period of record, sampling frequency and type of data synthesis for suspended sediment carried by Pennsylvania streams. Figures 1 and 2 show the approximate locations of sediment sampling stations in Pennsylvania. All of the sediment data listed were collected by the U. S. Geological Survey mainly in cooperation with the following Federal, State, and local agencies.Pennsylvania Department of Environmental Resources     Bureau of Engineering and Construction     Soil and Water Conservation CommissionPennsylvania Department of TransportationCity of PhiladelphiaBrandywine Valley AssociationDelaware Geological SurveyConestoga Valley AssociationLehigh County Soil and Water Conservation DistrictCorps of Engineers, U. S. Army</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1986/4344/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1986/4344/report.pdf"><span>Sediment data sources and estimated annual suspended-sediment loads of rivers and streams in Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elliott, J.G.; DeFeyter, K.L.</p> <p>1986-01-01</p> <p>Sources of sediment data collected by several government agencies through water year 1984 are summarized for Colorado. The U.S. Geological Survey has collected suspended-sediment data at 243 sites; these data are stored in the U.S. Geological Survey 's water data storage and retrieval system. The U.S. Forest Service has collected suspended-sediment and bedload data at an additional 225 sites, and most of these data are stored in the U.S. Environmental Protection Agency 's water-quality-control information system. Additional unpublished sediment data are in the possession of the collecting entities. Annual suspended-sediment loads were computed for 133 U.S. Geological Survey sediment-data-collection sites using the daily mean water-discharge/sediment-transport-curve method. Sediment-transport curves were derived for each site by one of three techniques: (1) Least-squares linear regression of all pairs of suspended-sediment and corresponding water-discharge data, (2) least-squares linear regression of data sets subdivided on the basis of hydrograph season; and (3) graphical fit to a logarithm-logarithm plot of data. The curve-fitting technique used for each site depended on site-specific characteristics. Sediment-data sources and estimates of annual loads of suspended, bed, and total sediment from several other reports also are summarized. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17492316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17492316"><span>Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lovelock, Catherine E; Feller, Ilka C; Ellis, Joanne; Schwarz, Ann Maree; Hancock, Nicole; Nichols, Pip; Sorrell, Brian</p> <p>2007-09-01</p> <p>Mangrove forest coverage is increasing in the estuaries of the North Island of New Zealand, causing changes in estuarine ecosystem structure and function. Sedimentation and associated nutrient enrichment have been proposed to be factors leading to increases in mangrove cover, but the relative importance of each of these factors is unknown. We conducted a fertilization study in estuaries with different sedimentation histories in order to determine the role of nutrient enrichment in stimulating mangrove growth and forest development. We expected that if mangroves were nutrient-limited, nutrient enrichment would lead to increases in mangrove growth and forest structure and that nutrient enrichment of trees in our site with low sedimentation would give rise to trees and sediments that converged in terms of functional characteristics on control sites in our high sedimentation site. The effects of fertilizing with nitrogen (N) varied among sites and across the intertidal zone, with enhancements in growth, photosynthetic carbon gain, N resorption prior to leaf senescence and the leaf area index of canopies being significantly greater at the high sedimentation sites than at the low sedimentation sites, and in landward dwarf trees compared to seaward fringing trees. Sediment respiration (CO(2) efflux) was higher at the high sedimentation site than at the low one sedimentation site, but it was not significantly affected by fertilization, suggesting that the high sedimentation site supported greater bacterial mineralization of sediment carbon. Nutrient enrichment of the coastal zone has a role in facilitating the expansion of mangroves in estuaries of the North Island of New Zealand, but this effect is secondary to that of sedimentation, which increases habitat area and stimulates growth. In estuaries with high sediment loads, enrichment with N will cause greater mangrove growth and further changes in ecosystem function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5080/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5080/"><span>Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through Milltown Reservoir in the Upper Clark Fork Basin, Montana, Water Years 2004-07</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lambing, John H.; Sando, Steven K.</p> <p>2008-01-01</p> <p>The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the start of Stage 1 of the permanent drawdown on June 1, 2006, losses of suspended sediment and trace elements from the reservoir persisted for all streamflow conditions during the entire interval of the Stage 1 drawdown (June 1, 2006-September 30, 2007) within the study period. Estimated daily loads of suspended sediment and trace elements were summed for each year to produce estimated annual loads used to determine the annual net gains (deposition) or losses (erosion) of each constituent within Milltown Reservoir during water years 2004-07. During water year 2004, there was an annual net gain of suspended sediment in the reservoir. The annual net gains and losses of trace elements were inconsistent in water year 2004, with gains occurring for arsenic ad iron, but losses occurring for cadmium, copper, lead, manganese, and zinc. In water year 2005, there were annual net gains of suspended sediment and all the trace elements within the reservoir. In water year 2006, there were annual net losses of all constituents from the reservoir, likely as the result of sediment erosion from the reservoir during both a temporary drawdown in October-December 2005 and Stage 1 of the permanent drawdown that continued after June 1, 2006. In water year 2007, when the Stage 1 drawdown was in effect for the entire year, there were large annual net losses of suspended sediment and trace elements from the reservoir. The annual net losses of constituents from Milltown Reservoir in water year 2007 were the largest of any year during the 2004-07 study period. In water year 2007, the annual net loss of suspended sediment from the reservoir was 130,000 tons, which was more than double (about 222 percent) the combined inflow to the reservoir. The largest annual net losses of trace elements in water year 2007, in percent of the combined inflow to the reservoir, occurred for cadmium, copper, lead, and zinc-about 190 percent for cadmium, 170 percent for copper, 150 percent for lead, and 238 p</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21345482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21345482"><span>Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paerl, Hans W; Hall, Nathan S; Calandrino, Elizabeth S</p> <p>2011-04-15</p> <p>Harmful (toxic, food web altering, hypoxia generating) cyanobacterial algal blooms (CyanoHABs) are proliferating world-wide due to anthropogenic nutrient enrichment, and they represent a serious threat to the use and sustainability of our freshwater resources. Traditionally, phosphorus (P) input reductions have been prescribed to control CyanoHABs, because P limitation is widespread and some CyanoHABs can fix atmospheric nitrogen (N(2)) to satisfy their nitrogen (N) requirements. However, eutrophying systems are increasingly plagued with non N(2) fixing CyanoHABs that are N and P co-limited or even N limited. In many of these systems N loads are increasing faster than P loads. Therefore N and P input constraints are likely needed for long-term CyanoHAB control in such systems. Climatic changes, specifically warming, increased vertical stratification, salinization, and intensification of storms and droughts play additional, interactive roles in modulating CyanoHAB frequency, intensity, geographic distribution and duration. In addition to having to consider reductions in N and P inputs, water quality managers are in dire need of effective tools to break the synergy between nutrient loading and hydrologic regimes made more favorable for CyanoHABs by climate change. The more promising of these tools make affected waters less hospitable for CyanoHABs by 1) altering the hydrology to enhance vertical mixing and/or flushing and 2) decreasing nutrient fluxes from organic rich sediments by physically removing the sediments or capping sediments with clay. Effective future CyanoHAB management approaches must incorporate both N and P loading dynamics within the context of altered thermal and hydrologic regimes associated with climate change. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15476834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15476834"><span>Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northern Central Gulf of Mexico shelf sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Overton, E B; Ashton, B M; Miles, M S</p> <p>2004-10-01</p> <p>The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g(-1)) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034026/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034026/"><span>Concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River basin, Washington, 1999-2000 [electronic resource] : with an analysis of trends in concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.</p> <p>2003-01-01</p> <p>Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the shallow ground-water system. The average concentration of total nitrogen in drains and streams discharging to the Yakima River from RM 103.7 to RM 72 in August 1999 was 2.63 mg/L, and in July 1988 was 3.16 mg/L; average concentrations of total phosphorus were 0.20 and 0.26 mg/L. After irrigation season, streamflow in agricultural drains decreases because irrigation water is no longer diverted from the Yakima and Naches Rivers. As a result, concentrations of total nitrogen in drains increase because nitrate, which constitutes much of total nitrogen, continues to enter the drains from subsurface drains and shallow ground water. Concentrations of total phosphorus and suspended sediment often decrease, because they are transported to the drains in runoff of irrigation water from fields. In Granger Drain, concentrations of total nitrogen ranged from 2-4 mg/L during irrigation season and increased to about 6 mg/L after irrigation season, and concentrations of total phosphorus, as high as 1 mg/L, decreased to about 0.2 mg/L. In calendar year 1999, Moxee Drain transported an average of 28,000 lb/d (pounds per day) of suspended sediment, 380 lb/d of total nitrogen, and 46 lb/d of total phosphorus to the Yakima River. These loads were about half the average loads transported by Granger Drain during the same period. Average streamflows were similar for the two drains, so the difference in loads was due to differences in constituent concentrations: those in Moxee Drain were about 40-60 percent less than those in Granger Drain. Loads of suspended sediment and total phosphorus in Moxee and Granger Drains were nearly four times higher during irrigation season than during the non-irrigation season because with increased flow during irrigation season, concentrations of suspended sediment and total phosphorus are usually higher. Loads of nitrate in the drains were about the same in both seasons because nitrate concentrations are higher during the non-irrigation season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3232S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3232S"><span>Effect of large wood retention at check dams on sediment continuity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmocker, Lukas; Schalko, Isabella; Weitbrecht, Volker</p> <p>2017-04-01</p> <p>Large wood transport during flood events may seriously increase the damage potential due to accumulations at river infrastructures. The large wood is therefore mostly retained upstream of populated areas using retention structures that often combine a check dam with a debris rack. One disadvantages of this structures is, that the bed-load gets retained along with the wood. Especially if large wood blocks the rack early during a flood event, sediment continuity is completely interrupted. This may lead to severe bed erosion downstream of the check dam. So far, no common design to retain large wood but maintain sediment continuity is available. One attempt to separate the large wood from the bed-load was made with the large wood retention structure at River Sihl in Zürich, Switzerland. The retention of the large wood occurs in a bypass channel located along the main river. The bypass is located at an outer river bend, where a separation of bed-load and large wood results due to the secondary currents induced by the river curvature. Large wood floats towards the outer bend due to inertia and the secondary currents whereas bed-load remains at the inner bend. The bypass is separated by a side weir from the main river to ensure that the bed-load remains in the river during bed forming discharges and flood events. New model test are currently carried out at the Laboratory of Hydraulics, Hydrology, and Glaciology (VAW) of ETH Zurich, where sediment continuity should be achieved using an inclined rack. The rack is inclined in flow direction with a degree of 45° to 20°. First results show that the large wood deposits at the upper part of the rack whereas the lower part of the rack remains free for bed-load transport. Furthermore, the backwater rise for the inclined rack due to the accumulated wood is considerably reduced compared to a vertical rack, as a large part of the rack remains clear for the flow to pass. The findings of this studies help to understand the complex interaction between sediment and large wood at a check dam retention structure. Furthermore, new retention structures and rack designs are available, where sediment continuity can partially be maintained to reduce downstream bed erosion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5228/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5228/"><span>Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, Eastern Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Juracek, Kyle E.</p> <p>2004-01-01</p> <p>Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased toward the top of the sediment core) was indicated in one reservoir for total nitrogen and in two reservoirs for total phosphorus. Also, a possible positive trend for total nitrogen was indicated in two other reservoirs. These trends in nutrient concentrations may be related to a statewide increase in fertilizer use. Alternatively, the trends may be indicative of diagenesis (that is, postdepositional changes in the sediment caused by various processes including decomposition). Nutrient loads and yields also varied substantially among the five reservoirs for which loads and yields were estimated. Estimated mean annual net loads of total nitrogen deposited in the bottom sediment ranged from 4,080 to 49,100 pounds. Estimated mean annual net loads of total phosphorus deposited in the bottom sediment ranged from 1,120 to 20,800 pounds. Estimated mean annual net yields of total nitrogen from the basins ranged from 2,210 to 6,800 pounds per square mile. Estimated mean annual net yields of total phosphorus from the basins ranged from 598 to 2,420 pounds per square mile. Compared to nonenforceable sediment-quality guidelines adopted by the U.S. Environmental Protection Agency, bottom-sediment concentrations of arsenic, chromium, copper, and nickel in samples from all 10 reservoirs typically exceeded the threshold-effects levels (TELs) but were less than the probable-effects levels (PELs). TELs represent the concentrations above which toxic biological effects occasionally occur in aquatic organisms, whereas PELs represent the concentrations above which toxic biological effects usually or frequently occur. Concentrations of cadmium, lead, and zinc exceeded the TELs but were less than the PELs in sediment samples from about one-half of the reservoirs and were less than the TELs in samples from the remaining reservoirs. Mercury concentrations were less than the TEL (information only available for four reservoirs). Silver was not detected in the bottom sediment fro</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.279..165E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.279..165E"><span>Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon</p> <p>2017-02-01</p> <p>Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2018/5050/sir20185050.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2018/5050/sir20185050.pdf"><span>Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.</p> <p>2018-05-01</p> <p>Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and therefore lower total sediment load in Clear Creek was primarily due to significantly lower discharge and cannot be directly attributed to sediment mitigation work in the basin.Water chemistry in Clear Creek shows that the general water type of the creek under base-flow conditions in autumn is a dilute calcium bicarbonate. During winter and spring, the chemistry shifts toward a slightly more sodium and chloride character. Though the chemical characteristics show seasonal change, the water chemistries examined as part of this investigation remain within ecological criteria as adopted by the Nevada Division of Environmental Protection. There was no evidence of aqueous polynuclear aromatic hydrocarbons (PAHs) present in Clear Creek water during this study. Concentrations of PAHs, as determined in one bed-sediment sample and multiple semi-permeable membrane device extracts, were either less than quantifiable limits of analysis or were found at similar concentrations as blank samples.In July 2014, a 250–300-acre fire burned in the Clear Creek drainage basin. One day after the fire was extinguished, a thunderstorm washed sediment into the creek. A water chemistry sample collected as part of the post-fire storm event showed that the stormwater entering the creek had increased the concentrations of ammonium and organic nitrogen, phosphorus, manganese, and potassium; a similar finding of many other studies evaluating the effects of fires in small drainage basins. Subsequent chemical analyses of Clear Creek water in August 2014 (one month later) showed that these constituents had returned to pre-fire concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21D1871L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21D1871L"><span>Tropical Cyclones as a Driver of Global Sediment Flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leyland, J.; Darby, S. E.; Cohen, S.</p> <p>2017-12-01</p> <p>The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5722376','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5722376"><span>Increased sediment load during a large-scale dam removal changes nearshore subtidal communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan A.; McHenry, Michael L.; Stevens, Andrew W.; Eidam, Emily F.; Ogston, Andrea S.; Gelfenbaum, Guy; Pedersen, Rob</p> <p>2017-01-01</p> <p>The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities. PMID:29220368</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29220368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29220368"><span>Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rubin, Stephen P; Miller, Ian M; Foley, Melissa M; Berry, Helen D; Duda, Jeffrey J; Hudson, Benjamin; Elder, Nancy E; Beirne, Matthew M; Warrick, Jonathan A; McHenry, Michael L; Stevens, Andrew W; Eidam, Emily F; Ogston, Andrea S; Gelfenbaum, Guy; Pedersen, Rob</p> <p>2017-01-01</p> <p>The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194659','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194659"><span>Increased sediment load during a large-scale dam removal changes nearshore subtidal communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob</p> <p>2017-01-01</p> <p>The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=264533&keyword=ASTM&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=264533&keyword=ASTM&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7806','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7806"><span>Turbidity-controlled suspended sediment sampling for runoff-event load estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jack Lewis</p> <p>1996-01-01</p> <p>Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41235','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41235"><span>Sediment loads and erosion in forest headwater streams of the Sierra Nevada, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Carolyn T. Hunsaker; Daniel G. Neary</p> <p>2012-01-01</p> <p>Defining best management practices for forests requires quantification of the variability of stream sediment loads for managed and unmanaged forest conditions and their associated sediment sources. Although "best management practices" are used, the public has concerns about effects from forest restoration activities and commercial timber harvests. It is...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24681379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24681379"><span>Nitrification in lake sediment with addition of drinking water treatment residuals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Changhui; Liu, Juanfeng; Wang, Zhixin; Pei, Yuansheng</p> <p>2014-06-01</p> <p>Drinking water treatment residuals (WTRs), non-hazardous by-products generated during potable water production, can effectively reduce the lake internal phosphorus (P) loading and improve water quality in lakes. It stands to reason that special attention regarding the beneficial reuse of WTRs should be given not only to the effectiveness of P pollution control, but also to the effects on the migration and transformation of other nutrients (e.g., nitrogen (N)). In this work, based on laboratory enrichment tests, the effects of WTRs addition on nitrification in lake sediment were investigated using batch tests, fluorescence in situ hybridization, quantitative polymerase chain reaction and phylogenetic analysis techniques. The results indicated that WTRs addition had minor effects on the morphologies of AOB and NOB; however, the addition slightly enhanced the sediment nitrification potential from 12.8 to 13.2 μg-N g(-1)-dry sample h(-1) and also increased the ammonia oxidation bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundances, particularly the AOB abundances (P < 0.05), which increased from 1.11 × 10(8) to 1.31 × 10(8) copies g(-1)-dry sample. Moreover, WTRs addition was beneficial to the enrichment of Nitrosomonas and Nitrosospira multiformis and promoted the emergence of a new Nitrospira cluster, causing the increase in AOB and NOB diversities. Further analysis showed that the variations of nitrification in lake sediment after WTRs addition were primarily due to the decrease of bioavailable P, the introduction of new nitrifiers and the increase of favorable carriers for microorganism attachment in sediments. Overall, these results suggested that WTRs reuse for the control of lake internal P loading would also lead to conditions that are beneficial to nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.277..251H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.277..251H"><span>Toward a unifying constitutive relation for sediment transport across environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Houssais, Morgane; Jerolmack, Douglas J.</p> <p>2017-01-01</p> <p>Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047824','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047824"><span>Organochlorine pesticide residues in bed sediments of the San Joaquin River, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gilliom, Robert J.; Clifton, Daphne G.</p> <p>1990-01-01</p> <p>Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5269/sir12-5269.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5269/sir12-5269.pdf"><span>Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.</p> <p>2012-01-01</p> <p>The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times those at Atchison County or Banner Creek Lakes. These data indicate larger yields of sediment from watersheds with row crops and those with fewer small ponds, and smaller yields in watersheds which are primarily grassland, or agricultural with substantial tile drainage and riparian buffers along streams. These results also indicated that a cultivated watershed can produce yields similar to those observed under the assumed reference (or natural) condition. Selected small ponds were studied in the Atchison County Lake watershed to characterize the role of small ponds in sediment trapping. Studied ponds trapped about 8 percent of the sediment upstream from the sediment-sampling site. When these results were extrapolated to the other ponds in the watershed, differences in the extent of these ponds was not the primary factor affecting differences in yields among the three watersheds. However, the selected small ponds were both 45 years old at the time of this study, and have reduced capacity because of being filled in with sediments. Additionally, trapping efficiency of these small ponds decreased over five observed storms, indicating that processes that suspended or resuspended sediments in these shallow ponds, such as wind and waves, affected their trapping efficiencies. While small ponds trapped sediments in small storms, they could be a source of sediment in larger or more closely spaced storm events. Channel slope was similar at all three watersheds, 0.40, 0.46, and 0.31 percent at Atchison County, Banner Creek, and Centralia Lake watersheds, respectively. Other factors, such as increased bank and stream erosion, differences in tile drainage, extent of grassland, or riparian buffers, could be the predominant factors affecting sediment yields from these basins. These results show that reference-like sediment yields may be observed in heavily agricultural watersheds through a combination of field-scale management activities and stream channel protection. When computing loads using published erosion rates obtained by single-point survey methodology, streambank contributions from the main stem of Banner Creek are three times more than the sediment load observed by this study at the sediment sampling site at Banner Creek, 2.6 times more than the sediment load observed by this study at the sediment sampling site at Clear Creek (upstream from Atchison County Lake), and are 22 percent of the load observed by this study at the sediment sampling site at Black Vermillion River above Centralia Lake. Comparisons of study sites to similarly sized urban and urbanizing watersheds in Johnson County, Kansas indicated that sediment yields from the Centralia Lake watershed were similar to those in construction-affected watersheds, while much smaller sediment yields in the Atchison County and Banner Creek watersheds were comparable to stable, heavily urbanized watersheds. Comparisons of study sites to larger watersheds upstream from Tuttle Creek Lake indicate the Black Vermillion River watershed continues to have high sediment yields despite 98 percent of sediment from the Centralia watershed (a headwater of the Black Vermillion River) being trapped in Centralia Lake. Estimated trapping efficiencies for the larger watershed lakes indicated that Banner Creek and Centralia Lakes trapped 98 percent of incoming sediment, whereas Atchison County Lake trapped 72 percent of incoming sediment during the 3-year study period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=297732&Lab=NHEERL&keyword=coal&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=297732&Lab=NHEERL&keyword=coal&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Lake Michigan sediment lead storage and history of loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Dated sediment box cores collected in 1994-1996 from 52 locations in Lake Michigan were analyzed for to access storage, trends, and loading history of lead. The results of this study provide information of historic lead loads to the lake for a time period for which no other info...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JHyd..468..268L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JHyd..468..268L"><span>Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leisenring, Marc; Moradkhani, Hamid</p> <p>2012-10-01</p> <p>SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA434538','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA434538"><span>Sedimentation: Potential Biological Effects of Dredging Operations in Estuarine and Marine Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2005-05-01</p> <p>seagrass habitat dominated by Thalassia testudinum in Florida has also been linked to poor water quality, including increased turbidity and nutrient loading...1973) found that construction of a canal that temporarily covered turtle grass, Thalassia testudinum, with up to 10 cm of sediment, killed the leaves...shoot demographic characteristics and population dynamics in Thalassia testudinum," Marine Ecology Progress Series 110, 59-66. Ellison, J. C. (1999</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28404774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28404774"><span>Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily</p> <p>2017-04-12</p> <p>Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H31H1327R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H31H1327R"><span>Evaluating water quality ecosystem services of wetlands under historic and future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Records, R.; Arabi, M.; Fassnacht, S. R.; Duffy, W.; Ahmadi, M.; Hegewisch, K.</p> <p>2013-12-01</p> <p>Potential hydrologic effects of climate change have been assessed extensively; however, possible impacts of changing climate on in-stream water quality at the watershed scale have received little study. We assessed potential impacts of climate change on water quantity and quality in the mountainous Sprague River watershed, Oregon, USA, where high total phosphorus (TP) and sediment loads are associated with lake eutrophication and mortality of endangered fish species. Additionally, we analyzed water quality impacts of wetland and riparian zone loss and gain under present-day climate and future climate scenarios. We utilized the hydrologic model Soil and Water Assessment Tool (SWAT) forced with six distinct climate scenarios derived from Coupled Model Intercomparison Project 5 (CMIP5) General Circulation Models to assess magnitude and direction of trends in streamflow, sediment and TP fluxes in the mid-21st century (2030-2059). Model results showed little significant trend in average annual streamflow under most climate scenarios, but trends in annual and monthly streamflow, sediment, and TP fluxes were more pronounced and were generally increasing. Results also suggest that future loss of present-day wetlands and riparian zones under land use or climatic change could result in substantial increases in sediment and TP loads at the Sprague River outlet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14..755T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14..755T"><span>Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.</p> <p>2017-02-01</p> <p>The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034194','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034194"><span>Sources of sediment to the coastal waters of the Southern California Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warrick, J.A.; Farnsworth, K.L.</p> <p>2009-01-01</p> <p>The sources of sediment to the Southern California Bight were investigated with new calculations and published records of sediment fluxes, both natural and anthropogenic. We find that rivers are by far the largest source of sediment, producing over 10 ?? 106 t/yr on average, or over 80% of the sediment input to the Bight. This river flux is variable, however, over both space and time. The rivers draining the Transverse Ranges produce sediment at rates approximately an order of magnitude greater than the Peninsular Ranges (600-1500 t/km2/yr versus <90 t/km2/yr, respectively). Although the Transverse Range rivers represent only 23% of the total Southern California watershed drainage area, they are responsible for over 75% of the total sediment flux. River sediment flux is ephemeral and highly pulsed due to the semiarid climate and the influence of infrequent large storms. For more than 90% of the time, negligible amounts of sediment are discharged from the region's rivers, and over half of the post-1900 sediment load has been discharged during events with recurrence intervals greater than 10 yr. These rare, yet important, events are related to the El Ni??o-Southern Oscillation (ENSO), and the majority of sediment flux occurs during ENSO periods. Temporal trends in sediment discharge due to land-use changes and river damming are also observed. We estimate that there has been a 45% reduction in suspended-sediment flux due to the construction of dams. However, pre-dam sediment loads were likely artificially high due to the massive land-use changes of coastal California to rangeland during the nineteenth century. This increase in sediment production is observed in estuarine deposits throughout coastal California, which reveal that sedimentation rates were two to ten times higher during the nineteenth and twentieth centuries than during pre-European colonization. ?? 2009 The Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1376...45C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1376...45C"><span>Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Z. X.; Pender, G.; Hu, P.</p> <p>2011-09-01</p> <p>Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5005/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5005/"><span>Sediment Loads and Yield, and Selected Water-Quality Parameters in Clear Creek, Carson City and Douglas County, Nevada, Water Years 2004-07</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Seiler, Ralph L.; Wood, James L.</p> <p>2009-01-01</p> <p>Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B14A0277W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B14A0277W"><span>Under-recognized pathways of N2O production in coastal sediments: Increased fungal and chemo-denitrification in response to elevated N loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wankel, S. D.; Ziebis, W.; Buchwald, C.; Charoenpong, C.; de Beer, D.</p> <p>2016-02-01</p> <p>Increasing atmospheric levels of nitrous oxide (N2O), a greenhouse gas with a 100-year global warming potential more than 300 times that of carbon dioxide, have been strongly linked to human activities - especially the dramatic increase in nitrogen loading to aquatic and marine ecosystems worldwide. While many studies have demonstrated that N2O is formed through a number of microbially mediated pathways, the factors regulating the emission of N2O to the atmosphere remain difficult to predict and the global N2O budget remains poorly constrained. In particular, coastal ecosystems, which bear much of the brunt of anthropogenically-derived nitrogen from watershed inputs and rapidly growing coastal human populations, represent large gaps in our understanding of sources and sinks of atmospheric N2O. In large part, these challenges stem from the fact that a diverse number of N2O production pathways are operative under the dynamic redox conditions encountered in coastal and estuarine sediments, complicating our ability to understand their relative roles in N2O fluxes. Here, we use whole-core sediment incubations together with a suite of conventional and novel stable isotopic tools to identify both factors influencing N2O flux as well as those underlying biogeochemical processes responding to those factors. We find that under elevated N loading to coastal sediments, an observed increase in N2O flux to the overlying water is not mediated by direct bacterial activity, but instead is catalyzed by fungal denitrification and/or abiotic interactions with reduced iron (e.g., chemodenitrification). These findings shed new light on the complexity of nitrogen cycling in coastal sedimentary environments and highlight the need for an improved understanding of eukaryotic and abiotic processes in regulating fluxes of climatically important gases such as N2O.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21B1839S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21B1839S"><span>Facies-dependent variations in sediment physical properties on the Mississippi River Delta Front, USA: evidence for depositional and post-depositional processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, J. E., IV; Bentley, S. J.; Courtois, A. J.; Obelcz, J.; Chaytor, J. D.; Maloney, J. M.; Georgiou, I. Y.; Xu, K.; Miner, M. D.</p> <p>2017-12-01</p> <p>Recent studies on Mississippi River Delta have documented sub-aerial land loss, driven in part by declining sediment load over the past century. Impacts of changing sediment load on the subaqueous delta are less well known. The subaqueous Mississippi River Delta Front is known to be shaped by extensive submarine mudflows operating at a range of temporal and spatial scales, however impacts of changing sediment delivery on mudflow deposits have not been investigated. To better understand seabed morphology and stratigraphy as impacted by plume sedimentation and mudflows, an integrated geological/geophysical study was undertaken in delta front regions offshore the three main passes of the Mississippi River Delta. This study focuses on stratigraphy and physical properties of 30 piston cores (5-9 m length) collected in June 2017. Coring locations were selected in gully, lobe and prodelta settings based on multibeam bathymetry and seismic profiles collected in mid-May 2017. Cores were analyzed for density, magnetic susceptibility, P-wave speed, and resistivity using a Geotek multi sensor core logger; here, we focus on density data. Core density profiles generally vary systematically across facies. Density profiles of gully cores are nearly invariant with some downward stepwise increases delineating units meters thick, and abundant gaps likely caused by gas expansion. Lobe cores generally have subtle downward increases in density, some stepwise density increases, and fewer gaps. Prodelta cores show more pronounced downward density increases, decimeter-scale peaks and valleys in density profiles, but stepwise increases are less evident. We hypothesize that density profiles in gully and lobe settings (uniform profiles except for stepwise increases) reflect remolding by mudflows, whereas density variations in prodelta settings instead reflect grain size variations (decimeter-scale) and more advanced consolidation (overall downward density increase) consistent with slower sediment deposition. These hypotheses will be evaluated by a more detailed study of seismic stratigraphy and core properties, including geochronology, grain size distribution and X-radiographic imaging, to further relate important sedimentary processes with resulting deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1899c/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1899c/report.pdf"><span>Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boucher, P.R.</p> <p>1970-01-01</p> <p>The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils, and to rapid runoff during winter storms. Sediment yield from the eastern part of the basin ranged from 460 to more than 1,000 tons per square mile. During high flow, silt particles make up the largest part of the suspended-sediment load, whereas during low flow, clay particles represent the greatest part. On the average, the suspended sediment transported by the Palouse River past Hooper contained 3 percent sand, 68 percent silt, and 29 percent clay. Unmeasured sediment discharge was estimated to have been 5 percent of the total sediment discharge. Data collected during the 4-year period of study show that sediment loads were higher than those recorded by V. G. Kaiser during the longer period 1939-65. Whereas Kaiser's study showed an average annual soil loss of 9.6 million tons, the average annual loss during the recent study was 14.2 million tons. The factor that has had the greatest effect on the increase of sediment yields is land use. Lands once covered and protected by natural vegetation have been extensively, cultivated, and much of the soil has become susceptible to erosion, particularly in areas mantled by loessal soils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5136/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5136/"><span>Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilson, Timothy P.; Bonin, Jennifer L.</p> <p>2008-01-01</p> <p>Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892g0002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892g0002S"><span>Assessment of total bed material equations on selected Malaysia rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saleh, A.; Abustan, I.; Mohd Remy Rozainy, M. A. Z.; Sabtu, N.</p> <p>2017-10-01</p> <p>Assessment of total sediment load equations on selected Malaysia rivers was done based on 35 sediment loads and hydraulic data. Four rivers were selected to make this assessment which are Sungai Perak, Sungai Kemaman, Sungai Pergau and Sungai Kurau. These rivers can be divided into three categories based on the river width, with Sungai Perak (300-350m) and Sungai Kemaman (150-200m) can categorised as big rivers, meanwhile, Sungai Pergau (30-45m) and Sungai Kurau (10-11m) can categorised as medium and small river respectively. The total sediment load equations used in this assessment are Ackers-White, Brownlie, Engelund-Hansen, Graf, Molinas-Wu, Karim-Kennedy and Yang. This paper also tested the local total sediment load equations by Ariffin and Sinnakaudan et al. to evaluate capabilities of the equations on different rivers in Malaysia. The graphs of the calculated equations versus measured sediment transport rates were plotted to shows the accuracy of the tested equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23233961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23233961"><span>[Influence of dredging on sediment resuspension and phosphorus transfer in lake: a simulation study].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Ju-Hua; Zhong, Ji-Cheng; Zhang, Yin-Long; Fan, Cheng-Xin; He, Wei; Zhang, Lei; Tang, Zhen-Wu</p> <p>2012-10-01</p> <p>A simulated experiment was conducted to investigate the impacts of sediment dredging on sediment resuspension and phosphorus transfer in the summer and winter seasons under the common wind-wave disturbance, and the contaminated sediment used in this study was from Meiliang Bay, Taihu lake. The result showed that 20 cm dredging could effectively inhibit the sediment resuspension in study area, dredging in winter has a better effect than that in summer, and the higher values of the total suspended solid (TSS) in undredged and dredged water column during the process of wind wave disturbance were 7.0 and 2.2, 24.3 and 6.4 times higher than the initial value in summer and winter simulation respectively. The paired-samples t-test result demonstrated that total phosphorus (TP) and phosphate (PO4(3-)-P) loading positively correlated to TSS content in dredged (P<0.01) and undredged water column (P<0.05), which proved that internal phosphorus fulminating release induced by wind-wave disturbance would significantly increase the TP and PO4(3-)-P loading in the water column. The effect of dredging conducted in summer on the TP and PO4(3)-P loading in the water column was negative, but not for winter dredging (P<0.01). The pore water dissolved reactive phosphorus (DRP) profile at water-sediment interface in summer simulation was also investigated by diffusive gradients in thin films (DGT) technique. Diffusion layer of the DRP profile in undredged sediment was wider than that in dredged sediment. However, the DRP diffusion potential in dredged sediment was greater than that in undredged sediment, showing that dredging can effectively reduce the risk of the DRP potential release in dredged pore water, but also would induce the DRP fulminating release in the short time under hydrodynamic action. Generally, dredging was usually deployed during the summer and the autumn. Considering Taihu Lake is a large, shallow, eutrophic lake and the contaminant distribution is spatially heterogeneous, it is vital to determine the optimal time, depth and scope of dredging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1048/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1048/report.pdf"><span>Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, S.K.; Benedict, Paul Charles</p> <p>1948-01-01</p> <p>The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than those measured during the spring runoff in 1940. At those stations where the flow was not affected, or only slightly affected, by upstream diversions or by placer-mining operations, the largest sadiment loads per unit of drainage area were measured in Grouse Creek during both 1939 and 1940, amounting to 3,460 and 2,490 tons per square mile, respectively, and the smallest loads per unit of drainage area were measured in Bannock Creek during 1939 and in the Boise River near Twin Springs during 1940, amounting to 14 and 83 tons per square mile, respectively. Size anaylses of a large number of samples of suspended and deposited sediments give an indication of the origin of sediments carried past some of the stations. The analyses show that most of the sediment measured at the five stations in the Moore Creek drainages basin above Idaho City consisted largely of coarse material. They show, also, that the sediment measured at the station on Moore Creek above Thorn Creek consisted almost entirely of fine material during practically the entire period of the investigation. Most of the coarse material passing the stations above Idaho City probably was retained behind the dikes or in the pools usually formed by tailings from dredging operations in the placer-mining area below Idaho City, and much of the fine material measured at the station on Moore Creek above Thorn Creek probably was contributed by placer-mining activity. During the years when the spring runoff is greater than that measured during 1939 and 1940, it is probable that the dikes and pools will be less effective in retaining coarse sediments within the placered area. Records of sediment loads measured in the New York Canal indicate that a negligible amount of sediment was deposited there during 1939, but that in 1940 from 10 to 15 percent of the total load at the gaging station consisted of coarse sediment which was later deposited on the canal bottom. Most of the fine material was doubtless carried through the canal and eventually deposited in diversion ditches and on farm land. Because the sediment carried past the station on Moore Creek above Thorn Creek consisted almost entirely of fine material, it is probable, that a considerable part of the coarse sediment carried in the New York Canal during the 1940 spring runoff period was scoured from the large bed of deposited material in the Boise River above Diversion- Dam, and that the remainder came from Grimes Creek. Arrow Rock Reservoir was not sluiced during the investigation, and it is therefore unlikely that any of the coarse sediment in the New York Canal came from the Boise River above Moore Creek during 1939 and 1940. The average dry weight of 71 samples of deposited sediments collected from several parts of the Boise River drainage basin is about 90 pounds per cubic foot. The average specific gravity of 77 samples of deposited sediments is 2.57.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27429360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27429360"><span>Streambanks: A net source of sediment and phosphorus to streams and rivers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, Garey A; Purvis, Rebecca A; Penn, Chad J</p> <p>2016-10-01</p> <p>Sediment and phosphorus (P) are two primary pollutants of surface waters. Many studies have investigated loadings from upland sources or even streambed sediment, but in many cases, limited to no data exist to determine sediment and P loading from streambanks on a watershed scale. The objectives of this paper are to review the current knowledge base on streambank erosion and failure mechanisms, streambank P concentrations, and streambanks as P loading sources and then also to identify future research needs on this topic. In many watersheds, long-term loading of soil and associated P to stream systems has created a source of eroded soil and P that may interact with streambank sediment and be deposited in floodplains downstream. In many cases streambanks were formed from previously eroded and deposited alluvial material and so the resulting soils possess unique physical and chemical properties from adjacent upland soils. Streambank sediment and P loading rates depend explicitly on the rate of streambank migration and the concentration of P stored within bank materials. From the survey of literature, previous studies report streambank total P concentrations that consistently exceeded 250 mg kg(-1) soil. Only a few studies also reported water soluble or extractable P concentrations. More research should be devoted to understanding the dynamic processes between different P pools (total P versus bioavailable P), and sorption or desorption processes under varying hydraulic and stream chemistry conditions. Furthermore, the literature reported that streambank erosion and failure and gully erosion were reported to account for 7-92% of the suspended sediment load within a channel and 6-93% of total P. However, significant uncertainty can occur in such estimates due to reach-scale variability in streambank migration rates and future estimates should consider the use of uncertainty analysis approaches. Research is also needed on the transport rates of dissolved and sediment-bound P through the entire stream system of a watershed to identify critical upland and/or near-stream conservation practices. Extensive monitoring of the impact of restoration/rehabilitation efforts on reducing sediment and P loading are limited. From an application standpoint, streambank P contributions to streams should be more explicitly accounted for in developing total maximum daily loads in watersheds. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21076999','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21076999"><span>Total mercury loadings in sediment from gold mining and conservation areas in Guyana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Howard, Joniqua; Trotz, Maya A; Thomas, Ken; Omisca, Erlande; Chiu, Hong Ting; Halfhide, Trina; Akiwumi, Fenda; Michael, Ryan; Stuart, Amy L</p> <p>2011-08-01</p> <p>The Low Carbon Development Strategy proposed in June 2009 by the government of Guyana in response to the Reducing Emissions from Deforestation and Forest Degradation in Developing Countries program has triggered evaluation of forest-related activities, thereby acting as a catalyst for improvements in Guyana's small- to medium-scale gold mining industry. This has also shed light on areas committed to conservation, something that has also been handled by Non Governmental Organizations. This paper compares water quality and mercury concentrations in sediment from four main areas in Guyana, two that are heavily mined for gold using mercury amalgamation methods (Arakaka and Mahdia) and two that are considered conservation areas (Iwokrama and Konashen). Fifty-three sediment and soil mercury loadings ranged from 29 to 1,200 ng/g and averaged 215 ± 187 ng/g for all sites with similar averages in conservation and mining areas. Sediment loadings are within the range seen in French Guiana and Suriname, but conservation area samples had higher loadings than the corresponding uncontaminated baselines. Type of ore and location in the mining process seemed to influence mercury loadings. Mercury sediment loadings were slightly positively correlated with pH (correlation coefficient = 0.2; p value < 0.001) whereas no significant correlations were found with dissolved oxygen or turbidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMNB22G..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMNB22G..01R"><span>The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowland, J. C.; Dietrich, W. E.; Day, G.</p> <p>2005-05-01</p> <p>Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17 times in tie channel progradation rates. In a few instances Fly River tie channels have become filled with sediment following the increase in sediment loading. The precise role of tie channels in the ecology of lowland river systems has yet to be quantified, but given their critical role in connecting rivers with floodplain habitats it is likely they provide an important source of refuge, breeding habitat, and biomass production for many aquatic organisms. As restoration efforts increasingly focus on the improving or reestablishing connectivity between lowland rivers and their floodplains, consideration should be given as to whether tie channels are an important missing component of such systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...164...27N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...164...27N"><span>Evidence of anthropogenic tipping points in fluvial dynamics in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert</p> <p>2018-05-01</p> <p>In this study the occurrence of thresholds in fluvial style changes during the Holocene are discussed for three different catchments: the Dijle and Amblève catchments (Belgium) and the Valdaine Region (France). We consider tipping points to be a specific type of threshold, defined as relatively rapid and irreversible changes in the system. Field data demonstrate that fluvial style has varied in all three catchments over time, and that different tipping points can be identified. An increase in sediment load as a result of human induced soil erosion lead to a permanent change in the Dijle floodplains from a forested peaty marsh towards open landscape with clastic deposition and a well-defined river channel. In the Valdaine catchment, an increase in coarse sediment load, caused by increased erosion in the mountainous upper catchment, altered the floodplains from a meandering pattern to a braided pattern. Other changes in fluvial style appeared to be reversible. Rivers in the Valdaine were prone to different aggradation and incision phases due to changes in peak water discharge and sediment delivery, but the impact was too low for these changes to be irreversible. Likewise the Dijle River has recently be prone to an incision phase due to a clear water effect, and also this change is expected to be reversible. Finally, the Amblève River did not undergo major changes in style during the last 2000 to 5000 years, even though floodplain sedimentation rates increased tenfold during the last 600 years. Overall, these examples demonstrate how changes in fluvial style depend on the crossing of thresholds in sediment supply and water discharge. Although changes in these controlling parameters are caused by anthropogenic land use changes, the link between those land use changes and changes in fluvial style is not linear. This is due to the temporal variability in landscape connectivity and sediment transport and the non-linear relationship between land use intensity and soil erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70094488','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70094488"><span>Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McKee, L.J.; Lewicki, M.; Schoellhamer, D.H.; Ganju, N.K.</p> <p>2013-01-01</p> <p>Quantifying suspended sediment loads is important for managing the world's estuaries in the context of navigation, pollutant transport, wetland restoration, and coastal erosion. To address these needs, a comprehensive analysis was completed on sediment supply to San Francisco Bay from fluvial sources. Suspended sediment, optical backscatter, velocity data near the head of the estuary, and discharge data obtained from the output of a water balance model were used to generate continuous suspended sediment concentration records and compute loads to the Bay from the large Central Valley watershed. Sediment loads from small tributary watersheds around the Bay were determined using 235 station-years of suspended sediment data from 38 watershed locations, regression analysis, and simple modeling. Over 16 years, net annual suspended sediment load to the head of the estuary from its 154,000 km2 Central Valley watershed varied from 0.13 to 2.58 (mean = 0.89) million metric t of suspended sediment, or an average yield of 11 metric t/km2/yr. Small tributaries, totaling 8145 km2, in the nine-county Bay Area discharged between 0.081 and 4.27 (mean = 1.39) million metric t with a mean yield of 212 metric t/km2/yr. The results indicate that the hundreds of urbanized and tectonically active tributaries adjacent to the Bay, which together account for just 5% of the total watershed area draining to the Bay and provide just 7% of the annual average fluvial flow, supply 61% of the suspended sediment. The small tributary loads are more variable (53-fold between years compared to 21-fold for the inland Central Valley rivers) and dominated fluvial sediment supply to the Bay during 10 out of 16 yr. If San Francisco Bay is typical of other estuaries in active tectonic or climatically variable coastal regimes, managers responsible for water quality, dredging and reusing sediment accumulating in shipping channels, or restoring wetlands in the world's estuaries may need to more carefully account for proximal small urbanized watersheds that may dominate sediment supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5048/pdf/sir2014-5048.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5048/pdf/sir2014-5048.pdf"><span>Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.</p> <p>2014-01-01</p> <p>San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=304691&Lab=NHEERL&keyword=TOC&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=304691&Lab=NHEERL&keyword=TOC&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64093&Lab=NERL&keyword=R+AND+programming&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64093&Lab=NERL&keyword=R+AND+programming&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>TMDL RUSLE MODEL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We developed a simplified spreadsheet modeling approach for characterizing and prioritizing sources of sediment loadings from watersheds in the United States. A simplified modeling approach was developed to evaluate sediment loadings from watersheds and selected land segments. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22624216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22624216"><span>Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik</p> <p>2012-03-01</p> <p>Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CRGeo.348..479P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CRGeo.348..479P"><span>Comparison of estuarine sediment record with modelled rates of sediment supply from a western European catchment since 1500</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poirier, Clément; Poitevin, Cyril; Chaumillon, Éric</p> <p>2016-09-01</p> <p>Marine and estuarine sediment records reporting impacts of historical land use changes exist worldwide, but they are rarely supported by direct quantified evidence of changes in denudation rates on the related catchments. Here we implement a spatially-resolved RUSLE soil erosion model on the 10 000 km2 Charente catchment (France), supplied with realistic scenarios of land-cover and climate changes since 1500, and compare the results to a 14C-dated estuarine sediment record. Despite approximations, the model correctly predicts present-day Charente river sediment load. Back-cast modelling suggests that the Charente catchment is an interesting case where the sediment supply did not change despite increase in soil erosion resulting from 18th-century deforestation because it was mitigated by drier climate during the same period. Silt-sand alternations evidenced in the sediment record were correlated with sub-decadal rainfall variability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5235/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5235/"><span>Phosphorus and suspended sediment load estimates for the Lower Boise River, Idaho, 1994-2002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Donato, Mary M.; MacCoy, Dorene E.</p> <p>2004-01-01</p> <p>The U.S. Geological Survey used LOADEST, newly developed load estimation software, to develop regression equations and estimate loads of total phosphorus (TP), dissolved orthophosphorus (OP), and suspended sediment (SS) from January 1994 through September 2002 at four sites on the lower Boise River: Boise River below Diversion Dam near Boise, Boise River at Glenwood Bridge at Boise, Boise River near Middleton, and Boise River near Parma. The objective was to help the Idaho Department of Environmental Quality develop and implement total maximum daily loads (TMDLs) by providing spatial and temporal resolution for phosphorus and sediment loads and enabling load estimates made by mass balance calculations to be refined and validated. Regression models for TP and OP generally were well fit on the basis of regression coefficients of determination (R2), but results varied in quality from site to site. The TP and OP results for Glenwood probably were affected by the upstream wastewater-treatment plant outlet, which provides a variable phosphorus input that is unrelated to river discharge. Regression models for SS generally were statistically well fit. Regression models for Middleton for all constituents, although statistically acceptable, were of limited usefulness because sparse and intermittent discharge data at that site caused many gaps in the resulting estimates. Although the models successfully simulated measured loads under predominant flow conditions, errors in TP and SS estimates at Middleton and in TP estimates at Parma were larger during high- and low-flow conditions. This shortcoming might be improved if additional concentration data for a wider range of flow conditions were available for calibrating the model. The average estimated daily TP load ranged from less than 250 pounds per day (lb/d) at Diversion to nearly 2,200 lb/d at Parma. Estimated TP loads at all four sites displayed cyclical variations coinciding with seasonal fluctuations in discharge. Estimated annual loads of TP ranged from less than 8 tons at Diversion to 570 tons at Parma. Annual loads of dissolved OP peaked in 1997 at all sites and were consistently higher at Parma than at the other sites. The ratio of OP to TP varied considerably throughout the year at all sites. Peaks in the OP:TP ratio occurred primarily when flows were at their lowest annual stages; estimated seasonal OP:TP ratios were highest in autumn at all sites. Conversely, when flows were high, the ratio was low, reflecting increased TP associated with particulate matter during high flows. Parma exhibited the highest OP:TP ratio during all seasons, at least 0.60 in spring and nearly 0.90 in autumn. Similar OP:TP ratios were estimated at Glenwood. Whereas the OP:TP ratio for Parma and Glenwood peaked in November or December, decreased from January through May, and increased again after June, estimates for Diversion showed nearly the opposite pattern ? ratios were highest in July and lowest in January and February. This difference might reflect complex biological and geochemical processes involving nutrient cycling in Lucky Peak Lake, but further data are needed to substantiate this hypothesis. Estimated monthly average SS loads were highest at Diversion, about 400 tons per day (ton/d). Average annual loads from 1994 through 2002 were 144,000 tons at Diversion, 33,000 tons at Glenwood, and 88,000 tons at Parma. Estimated SS loads peaked in the spring at all sites, coinciding with high flows. Increases in TP in the reach from Diversion to Glenwood ranged from 200 to 350 lb/d. Decreases in TP were small in this reach only during high flows in January and February 1997. Decreases in SS, were large during high-flow conditions indicating sediment deposition in the reach. Intermittent data at Middleton indicated that increases and decreases in TP in the reach from Glenwood to Middleton were during low- and high-flow conditions, respectively. All constituents increased in the r</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sedhyd.org/2015/openconf/modules/request.php?module=oc_program&action=summary.php&id=223','USGSPUBS'); return false;" href="http://www.sedhyd.org/2015/openconf/modules/request.php?module=oc_program&action=summary.php&id=223"><span>Inaccuracies in sediment budgets arising from estimations of tributary sediment inputs: an example from a monitoring network on the southern Colorado plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Griffiths, Ronald; Topping, David</p> <p>2015-01-01</p> <p>Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain-size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a channel reach is in a state of sediment accumulation, deficit or stasis. Many studies have estimated sediment loads from ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of sediment loads in semi-arid climates, where rainfall events, contributing geology, and vegetation have large spatial variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5213/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5213/"><span>Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.</p> <p>2009-01-01</p> <p>Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP33E..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP33E..08H"><span>Prediction of Suspended Sediment in Rivers Using Artificial Neural Networks: Implications for Development of Sediment Budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamshaw, S. D.; Underwood, K.; Rizzo, D.; Wemple, B. C.; Dewoolkar, M.</p> <p>2013-12-01</p> <p>Over 1,000 river miles in Vermont are either impaired or stressed by excessive sedimentation. The higher streamflows and incised river channels have resulted in increased bed and bank erosion. As the climate in Vermont is expected to feature greater and more frequent precipitation events and winter rainfall, the potential for increased sediment loading from erosion processes in the watershed and along the channel are high and a major concern for water resource managers. Typical sediment monitoring comprises periodic sampling during storm events and is often limited to gauged streams with flow data. Continuous turbidity monitoring enhances our understanding of river dynamics by offering high-resolution, temporal measurements to better quantify the total sediment loading occurring during and between storm events. Artificial neural networks, that mimic learning patterns of the human brain, have been effective at predicting flow in small, ungauged rivers using local climate data. This study advances this technology by using an ANN algorithm known as a counter-propagation neural network (CPNN) to predict discharge and suspended sediment in small streams. The first distributed network of continuous turbidity sensors (DTS-12) was deployed in Vermont in the Mad River Watershed, located in Central Vermont. The Mad River and five tributaries were selected as a test bed because seven years of periodic turbidity sampling data are available, it represents a range of watershed characteristics, and because the watershed is also being used for hydrologic model development using the Distributed-Hydrology-Soils-Vegetation Model (DHSVM). Comparison with the DHSVM simulations will allow estimation of the most-likely sources of sediment from the entire watershed and individual subwatersheds. In addition, recent field studies have commenced the quantification of erosion occurring from unpaved roads and streambanks in the same watershed. Periodic water quality sampling during storm events enabled turbidity versus TSS relationships to be established. Sub-watersheds with monitored turbidity and stage also have 15-minute precipitation, soil moisture and air and water temperature data being collected. Stage sensors and theoretical rating curves developed using HEC-RAS and calibrated with discharge measurements are used to validate the flow predictions from the CPNN. The real-time turbidity data are used to train and test the suspended sediment predictions from the CPNN network at each site. The turbidity data are also used to train the CPNN on a subset of tributaries and test on the remaining subwatersheds. Reasonable estimates of suspended sediment discharged from the tributaries and the main stem of the Mad River are calculated and compared enabling a more accurate foundation for building a sediment budget. Results of this study will assist managers in prioritizing mitigation projects to reduce impacts of sediment loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EaFut...4..428H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EaFut...4..428H"><span>Suspended sediment projections in Apalachicola Bay in response to altered river flow and sediment loads under climate change and sea level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Wenrui; Hagen, Scott C.; Wang, Dingbao; Hovenga, Paige A.; Teng, Fei; Weishampel, John F.</p> <p>2016-10-01</p> <p>Suspended sediments, or total suspended solids (TSS), are an important factor for oyster habitat. While high concentrations of suspended sediments can cause a reduction of oyster density, some level of suspended sediment is required to supply oysters with necessary nutrients. In this study, characteristics of TSS variations in response to sea level rise (SLR) at two oyster reefs in Apalachicola Bay are investigated by coupled estuarine hydrodynamic and sediment transport modeling. A storm event in 1993 and a year-long period in 2010 under recent sea level conditions are selected as the baseline conditions. Scenarios of river flow and sediment loads under SLR and climate change are obtained by downscaled global climate modeling. Compared to the baseline conditions, simulations of TSS indicate that predicted SLR yields a substantial decrease in TSS near the two oyster reefs. However, TSS levels differed at the two study locations. TSS changes by SLR revealed minimal impact on oyster habitat at the Dry Bar site (to the west of the mouth of the Apalachicola River) but are projected to have a significant impact at the Cat Point site (to the east of the Apalachicola River). At Cat Point, because SLR causes the increase of salt water intrusion from the Gulf through a large tidal inlet (East Pass), maximum sediment concentration is near zero for 0.2-m SLR and equal to zero for 0.5- and 1.2-m SLR. Therefore, SLR may result in a substantial loss of nutrients from suspended sediment in the oyster reef at Cat Point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601684','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601684"><span>Estuarine Sediment Budgets for Chesapeake Bay Tributaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-01</p> <p>developed and used in this study are transferable to other systems. Sediment loads and sediment budgets from other rivers in the Bay would help clarify the...related in a mass balance equation. Load is mass per unit of time. This study used metric tons per year (Mt/yr), where a metric ton is 1,000 kg...Figure 1 displays the conceptual model of the sediment budget for Chesapeake Bay estuaries. Study Areas. The York and Patuxent Rivers were chosen to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1005066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1005066"><span>Insecticide residues on stream sediments in Ontario, Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miles, J R</p> <p>1976-12-01</p> <p>Insecticide residues on suspended and bottom sediments of streams of Ontario, Canada, have been studied in a tobacco-growing and a vegetable muck area. The proportion of TDE to DDT was less than 1 in water and greater than 1 in bottom sediments. The ratio of TDE to DDT in bottom material increased linearly from the contamination point at stream source to the mouth of Big Creek in Norfolk County, Ontario. Bed load samples contained three to six times greater concentrations of insecticides than bottom material. Adsorption of insecticides on suspended sediment decreased in order DDT greater than TDE greater than dieldrin greater than diazinon, which is consistent with the water solubility of these compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5102/SIR12-5102.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5102/SIR12-5102.pdf"><span>Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.</p> <p>2013-01-01</p> <p>In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to determine fluxes of suspended sediment for the median particle size and for the measured range of particle sizes in the channel. Three different techniques were investigated for making the suspended-sediment predictions; these techniques have varying degrees of reliance on measured data and also have greatly differing degrees of complexity. Based on these data, the calibrated Rouse method provided the best balance between accuracy and both computational and data collection costs; the presence of substantial washload was the primary factor in eliminating the simpler and the more complex techniques. Based on this work, using the selected technique at additional sites in the watershed to determine relative loads and source areas appears plausible. However, to ensure that the methodology presented in this report yields reasonable results at other selected sites in the basin, it is necessary to collect additional verification data sets at those locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1985/4068/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1985/4068/report.pdf"><span>Effects of urbanization on streamflow, sediment loads, and channel morphology in Pheasant Branch Basin near Middleton, Wisconsin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Krug, W.R.; Goddard, G.L.</p> <p>1986-01-01</p> <p>Increases in flood flow would tend to enlarge the channel. An increase in the mean annual flood by a factor of 2. 0 to 2.4 will cause a 40 to 50 percent increase in channel width and a 30 to 40 percent increase in channel depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29190035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29190035"><span>Impact assessment of projected climate change on diffuse phosphorous loss in Xin'anjiang catchment, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhai, Xiaoyan; Zhang, Yongyong</p> <p>2018-02-01</p> <p>Diffuse nutrient loss is a serious threat to water security and has severely deteriorated water quality throughout the world. Xin'anjiang catchment, as a main drinking water source for Hangzhou City, has been a national concern for water environment protection with payment for watershed services construction. Detection of diffuse phosphorous (DP) pollution dynamics under climate change is significant for sustainable water quality management. In this study, the impact of projected climate change on DP load was analyzed using SWAT to simulate the future changes of diffuse components (carriers: water discharge and sediment; nutrient: DP) at both station and sub-catchment scales under three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5). Results showed that wetting and warming years were expected with increasing tendencies of both precipitation and temperature in the two future periods (2020s: 2021~2030, 2030s: 2031~2040) except in the 2020s in the RCP2.6 scenario, and the annual average increasing ratios of precipitation and temperature reached - 1.79~3.79% and 0.48~1.27 °C, respectively, comparing with those in the baseline (2000s: 2001~2010). Climate change evidently altered annual and monthly average water discharge and sediment load, while it has a remarkable impact on the timing and monthly value of DP load at station scale. DP load tended to increase in the non-flood season at Yuliang due to strengthened nutrient flushing from rice land into rivers with increasing precipitation and enhanced phosphorous cycle in soil layers with increasing temperature, while it tended to decrease in the flood season at Yuliang and in most months at Tunxi due to restricted phosphorous reaction with reduced dissolved oxygen content and enhanced dilution effect. Spatial variability existed in the changes of sediment load and DP load at sub-catchment scale due to climate change. DP load tended to decrease in most sub-catchments and was the most remarkable in the RCP8.5 scenario (2020s, - 9.00~2.63%; 2030s, - 11.16~7.89%), followed by RCP2.6 (2020s, - 10.00~2.90%; 2030s, - 9.00~6.63%) and RCP4.5 (2020s, - 6.81~5.49%, 2030s, - 10.00~9.09%) scenarios. Decreasing of DP load mainly aggregated in the western and eastern mountainous regions, while it tended to increase in the northern and middle regions. This study was expected to provide insights into diffuse nutrient loss control and management in Xin'anjiang catchment, and scientific references for the implementation of water environmental protection in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025841','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025841"><span>A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mahler, B.J.; Van Metre, P.C.</p> <p>2003-01-01</p> <p>Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510328G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510328G"><span>Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gran, Karen; Belmont, Patrick; Finnegan, Noah</p> <p>2013-04-01</p> <p>Management and restoration of sediment-impaired streams requires quantification of sediment sources and pathways of transport. Addressing the role of humans in altering the magnitude and sources of sediment supplied to a catchment is notoriously challenging. Here, we explore how humans have amplified erosion in geomorphically-sensitive portions of the predominantly-agricultural Minnesota River basin in north-central USA. In the Minnesota River basin, the primary sources of sediment are classified generally as upland agricultural field vs. near-channel sources, with near-channel sources including stream banks, bluffs, and ravines. Using aerial lidar data, repeat terrestrial lidar scans of bluffs, ravine monitoring, historic air photo analyses, and sediment fingerprinting, we have developed a sediment budget to determine the relative importance of each source in a tributary to the Minnesota River, the Le Sueur River. We then investigate how these sources have changed through time, from changes evident over the past few decades to changes associated with valley evolution over the past 13,400 years. The Minnesota River valley was carved ~13,400 years ago through catastrophic drainage of glacial Lake Agassiz. As the Minnesota River valley incised, knickpoints have migrated upstream into tributaries, carving out deep valleys where the most actively eroding near-channel sediment sources occur. The modern sediment budget, closed for the time period 2000 to 2010, shows that the majority of the fine sediment load in the Le Sueur River comes from bluffs and other near-channel sources in the deeply-incised knick zone. Numerical modeling of valley evolution constrained by mapped and dated strath terraces cut into the glacial till presents an opportunity to compare the modern sediment budget to that of the river prior to anthropogenic modification. This comparison reveals a natural background or "pre-agriculture" rate of erosion from near-channel sources to be 3-5 times lower than modern near-channel erosion rates. Notably, depositional records from a naturally-dammed lake downstream on the upper Mississippi River show a more dramatic 10-fold increase in deposition rates from pre-agricultural times to the present. Sediment fingerprinting shows that pre-agriculture sediment loads were dominated by near-channel sediment sources. As deposition rates rose in the late 1800s and early 1900s, the sources shifted increasingly to agricultural soil erosion. In the past few decades, deposition rates have remained high, but sediment fingerprinting indicates yet another significant shift back to near-channel sources. On-going changes in basin hydrology, from both installation of agricultural drainage systems and on-going climate change have put more water in the rivers, increasing rates of near-channel bank and bluff erosion. This most recent shift in sediment sources has significant implications for turbidity management in the Minnesota River basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000439','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000439"><span>Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bowden, W.B.; Gooseff, M.N.; Balser, A.; Green, A.; Peterson, B.J.; Bradford, J.</p> <p>2008-01-01</p> <p>Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ???1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999-2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B51E0474L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B51E0474L"><span>Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ladd, N.; Dubois, N.; Schubert, C. J.</p> <p>2015-12-01</p> <p>Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions. We present the first field assessment of how nutrient availability influences 2H fractionation in freshwater algae, and demonstrate how such measurements can be used to infer past information about anthropogenic nutrient loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.121..177G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.121..177G"><span>Continental sedimentary processes decouple Nd and Hf isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garçon, Marion; Chauvel, Catherine; France-Lanord, Christian; Huyghe, Pascale; Lavé, Jérôme</p> <p>2013-11-01</p> <p>The neodymium and hafnium isotopic compositions of most crustal and mantle rocks correlate to form the "Terrestrial Array". However, it is now well established that whereas coarse detrital sediments follow this trend, fine-grained oceanic sediments have high Hf ratios relative to their Nd isotopic ratios. It remains uncertain whether this "decoupling" of the two isotopic systems only occurs in the oceanic environment or if it is induced by sedimentary processes in continental settings. In this study, the hafnium and neodymium isotopic compositions of sediments in large rivers is expressly used to constrain the behavior of the two isotopic systems during erosion and sediment transport from continent to ocean. We report major and trace element concentrations together with Nd and Hf isotopic compositions of bedloads, suspended loads and river banks from the Ganges River and its tributaries draining the Himalayan Range i.e. the Karnali, the Narayani, the Kosi and the Marsyandi Rivers. The sample set includes sediments sampled within the Himalayan Range in Nepal, at the Himalayan mountain front, and also downstream on the floodplain and at the outflow of the Ganges in Bangladesh. Results show that hydrodynamic sorting of minerals explains the entire Hf isotopic range, i.e. more than 10 εHf units, observed in the river sediments but does not affect the Nd isotopic composition. Bedloads and bank sediments have systematically lower εHf values than suspended loads sampled at the same location. Coarse-grained sediments lie below or on the Terrestrial Array in an εHf vs. εNd diagram. In contrast, fine-grained sediments, including most of the suspended loads, deviate from the Terrestrial Array toward higher εHf relative to their εNd, as is the case for oceanic terrigenous clays. The observed Nd-Hf decoupling is explained by mineralogical sorting processes that enrich bottom sediments in coarse and dense minerals, including unradiogenic zircons, while surface sediments are enriched in fine material with radiogenic Hf signatures. The data also show that Nd-Hf isotopic decoupling increases with sediment transport in the floodplain to reach its maximum at the river mouth. This implies that the Nd-Hf isotopic decoupling observed in worldwide oceanic clays and river sediments is likely to have the same origin. Finally, we estimated the Nd-Hf isotopic composition of the present-day mantle if oceanic sediments had never been subducted and conclude that the addition of oceanic sediments with their anomalous Nd-Hf isotopic compositions has slowly shifted the composition of the Earth's mantle towards more radiogenic Hf values through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018243','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018243"><span>Interactions of frazil and anchor ice with sedimentary particles in a flume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.</p> <p>1993-01-01</p> <p>Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43G1531C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43G1531C"><span>Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corrigan, A.; Silins, U.; Stone, M.</p> <p>2016-12-01</p> <p>Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5205/pdf/sir2013-5205.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5205/pdf/sir2013-5205.pdf"><span>Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.</p> <p>2014-01-01</p> <p>Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines River at Jackson. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong relations with SSC at 10 of 14 sites and was superior to streamflow for estimating SSC at all sites. These results indicate that turbidity may be beneficial as a surrogate for SSC in many of Minnesota’s rivers. Suspended-sediment loads and annual basin yields indicated that the Minnesota River had the largest average annual sediment load of 1.8 million tons per year and the largest mean annual sediment basin yield of 120 tons of sediment per year per square mile. Annual TSS loads were considerably lower than suspended-sediment loads. Overall, the largest suspended-sediment and TSS loads were transported during spring snowmelt runoff, although loads during the fall and summer seasons occasionally exceeded spring runoff at some sites. This study provided data from which to characterize suspended sediment across Minnesota’s diverse geographical settings. The data analysis improves understanding of sediment transport relations, provides information for improving sediment budgets, and documents baseline data to aid in understanding the effects of future land use/land cover on water quality. Additionally, the data provides insight from which to evaluate the effectiveness and efficiency of best management practices at the watershed scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48815','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48815"><span>Discharge and sediment loads at the Kings River Experimental Forest in the Southern Sierra Nevada of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S.M. Eagan; C.T. Hunsaker; C.R. Dolanc; M.E. Lynch; C.R. Johnson</p> <p>2007-01-01</p> <p>The Kings River Experimental Watershed (KREW) is now in its third year of data collection on eight small perennial watersheds. We are collecting meteorology, stream discharge, sediment load, water chemistry, shallow soil water chemistry, vegetation, macro-invertebrate, stream microclimate, and air quality data. This paper primarily examines discharge and sediment data...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61123&Lab=NERL&keyword=biology+AND+physical&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61123&Lab=NERL&keyword=biology+AND+physical&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>USING CONONICAL CORRELATION TO DETECT ASSOCIATION OF LANDSCAPE METRICS WITH WATER BIOLOGICAL AND CHEMICAL PROPERTIES IN SAVANNAH RIVER BASIN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Surface water quality is related to conditions in the surrounding geophysical environment, including soils, landcover, and anthropogenic activities. For example, clearing vegetation exposes soil to increased water/wind erosion, resulting in increased sediment loads to surface wat...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23128230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23128230"><span>Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Foreman, Brady Z; Heller, Paul L; Clementz, Mark T</p> <p>2012-11-01</p> <p>Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8645','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8645"><span>An evaluation of flow-stratified sampling for estimating suspended sediment loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert B. Thomas; Jack Lewis</p> <p>1995-01-01</p> <p>Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0275/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0275/report.pdf"><span>Suspended-sediment data in the Salt River basin, Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berkas, Wayne R.</p> <p>1983-01-01</p> <p>Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1985/4215/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1985/4215/report.pdf"><span>Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koltun, G.F.</p> <p>1985-01-01</p> <p>Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21..571S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21..571S"><span>Quantifying uncertainty on sediment loads using bootstrap confidence intervals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg</p> <p>2017-01-01</p> <p>Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27923579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27923579"><span>Internal loading of phosphate in Lake Erie Central Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol</p> <p>2017-02-01</p> <p>After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26372939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26372939"><span>Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abbasian, Firouz; Lockington, Robin; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi</p> <p>2016-01-01</p> <p>Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://smig.usgs.gov/SMIG/features_0399/elmendorf.html','USGSPUBS'); return false;" href="http://smig.usgs.gov/SMIG/features_0399/elmendorf.html"><span>Precipitation-runoff, suspended-sediment, and flood-frequency characteristics for urbanized areas of Elmendorf Air Force Base, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brabets, Timothy P.</p> <p>1999-01-01</p> <p>The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff (averaged over the entire drainage basin) from the larger watershed and 1.1 inches of runoff from the smaller watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1999/0227/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1999/0227/report.pdf"><span>Suspended sediment in the St. Francis River at St. Francis, Arkansas, 1986-95</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Green, W. Reed; Barks, C. Shane; Hall, Alan P.</p> <p>2000-01-01</p> <p>Daily suspended-sediment concentrations were analyzed from the St. Francis River at St. Francis, Arkansas during 1986 through 1995. Suspended-sediment particle size distribution was measured in selected samples from 1978 through 1998. These data are used to assess changes in suspended-sediment concentrations and loads through time. Suspended-sediment concentrations were positively related to discharge. At higher flows, percent silt-clay was negatively related to discharge. Nonparametric trend analysis (Mann-Kendall test) of suspended-sediment concentration over the period of record indicated a slight decrease in concentration. Flow-adjusted residuals of suspended-sediment concentration also decreased slightly through the same period. No change was identified in annual suspended-sediment load or annual flow-weighted concentration. Continued monitorig of daily-suspended-sediment concentrations at this site and others, and similar data analysis at other sites where data are available will provide a better understanding of sediment transport withint the St. Francis River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26188652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26188652"><span>Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buendia, C; Bussi, G; Tuset, J; Vericat, D; Sabater, S; Palau, A; Batalla, R J</p> <p>2016-01-01</p> <p>This paper assesses annual and seasonal trends in runoff and sediment load resulting from climate variability and afforestation in an upland Mediterranean basin, the Ribera Salada (NE Iberian Peninsula). We implemented a hydrological and sediment transport distributed model (TETIS) with a daily time-step, using continuous discharge and sediment transport data collected at a monitoring station during the period 2009-2013. Once calibrated and validated, the model was used to simulate the hydrosedimentary response of the basin for the period 1971-2014 using historical climate and land use data. Simulated series were further used to (i) detect sediment transport and hydrologic trends at different temporal scales (annual, seasonal); (ii) assess changes in the contribution of extreme events (i.e. low and high flows) and (ii) assess the relative effect of forest expansion and climate variability on trends observed by applying a scenario of constant land use. The non-parametric Mann-Kendall test indicated upward trends for temperature and decreasing trends (although non-significant) for precipitation. Downward trends occurred for annual runoff, and less significantly for sediment yield. Reductions in runoff were less intense when afforestation was not considered in the model, while trends in sediment yield were reversed. Results also indicated that an increase in the river's torrential behaviour may have occurred throughout the studied period, with low and high flow events gaining importance with respect to the annual contribution, although its magnitude was reduced over time. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23770379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23770379"><span>The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8°S).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>León-Muñoz, Jorge; Echeverría, Cristian; Marcé, Rafael; Riss, Wolfgang; Sherman, Bradford; Iriarte, Jose Luis</p> <p>2013-10-15</p> <p>Water and sediment quality in North Patagonia's large, oligotrophic lakes are expected to suffer as native forest continues to be fragmented and degraded by its conversion to cropping and pasture land uses. These changes in land use are expected to increase diffuse nutrient loads to the region's lakes. In addition, these lakes are home to the world's second largest salmon aquaculture industry which provides additional point sources of nutrients within the lakes. We studied the combined influences of land use change and salmon farming on the nutrient concentrations in a North Patagonian lake (Lake Rupanco, 233 km(2) water surface, 163 m average depth) in four sub-watersheds ranging in disturbance from near-pristine forest to 53% converted to cropping and pasture. Nitrogen exports from the tributary sub-watersheds increased from 33 kg TN/km(2)/y to 621 kg TN/km(2)/y as the proportion of crop and pasture land increased. The combined nutrient load from land use change and salmon farming has led to significant differences in the nitrogen concentrations of the lake's water column and sediments in the near-shore zones across the lake. Total nitrogen concentrations in the sediments varied from 37 ± 18 mg/kg in near-pristine sub-watersheds without salmon farming to 6400 ± 698 mg/kg where the sub-watershed was dominated by crop and pasture lands combined with the presence of salmon farming. These results demonstrate the importance of considering the impacts of both salmon farming and land use on water and sediment quality for future environmental planning, management and decision making. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032755','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032755"><span>Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.</p> <p>2009-01-01</p> <p>Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP41D..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP41D..01W"><span>THE IMPACT OF HUMANS ON CONTINENTAL EROSION AND SEDIMENTATION (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkinson, B.; McElroy, B.</p> <p>2009-12-01</p> <p>Tectonic uplift and erosional denudation of orogenic belts have long been the most important geologic processes that serve to shape continental surfaces, but the rate of geomorphic change resulting from these natural phenomena has now been outstripped by human activities associated with agriculture, construction, and mining. Although humans are now the most important geomorphic agent on the planet’s surface, natural and anthropogenic processes serve to modify quite different parts of the Earth landscape. In order to better understand the impact of humans on continental erosion, we have examined both long-term and short-term data on rates of sediment transfer in response to glacio-fluvial and anthropogenic processes. Phanerozoic rates of subaerial denudation inferred from preserved volumes of sedimentary rock require a mean continental erosion rate on the order of 16 meters per million years (m/My), resulting in the accumulation of about 5 giga-tons of sediment per year (Gt/y). Erosion irregularly increased over the ~542 million year span of Phanerozoic time to a Pliocene value of 81 m/My (~19 Gt/y). Current estimates of large river sediment loads are similar to this late Neogene value, and require net denudation of ice-free land surfaces at a rate of about 74 m/My (~25 Gt/y). Consideration of variation in large river sediment loads and the geomorphology of respective river basin catchments suggests that natural erosion is primarily confined to drainage headwaters; ~83% of the global river sediment flux is derived from the highest 10% of the Earth’s surface. Subaerial erosion as a result of human activity, primarily through agricultural practices, has resulted in a sharp increase in net rates of continental denudation; although less well constrained than estimates based on surviving rock volumes or current river loads, available data suggest that present farmland denudation is proceeding at a rate of about 600 m/My (~74 Gt/y), and is largely confined to lower elevations of the Earth’s land surface, primarily along passive continental margins; ~83% of cropland erosion occurs over the lower 65% of the Earth’s surface. The conspicuous disparity between natural sediment fluxes suggested by data on rock volumes and river loads (~25 Gt/y) and anthropogenic fluxes inferred from measured and modeled cropland soil losses (74 Gt/y) is readily resolved by data on thicknesses and ages of alluvial sediment that has been deposited immediately down slope from eroding croplands over the history of human agriculture. Accumulation of post-settlement alluvium on higher order tributary channels and floodplains (mean rate ~12,600 m/My) is the most important geomorphic process in terms of the erosion and deposition of sediment that is currently shaping the landscape of the Earth. It far exceeds even the impact of Pleistocene continental glaciers or the current impact of alpine erosion by glacial and/or fluvial processes. Human beings are therefore the dominant agent of topographic change operating on the surface of the planet today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22204939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22204939"><span>Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baldwin, Darren S; Mitchell, Alison</p> <p>2012-03-15</p> <p>The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3692436','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3692436"><span>Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sinkko, Hanna; Lukkari, Kaarina; Sihvonen, Leila M.; Sivonen, Kaarina; Leivuori, Mirja; Rantanen, Matias; Paulin, Lars; Lyra, Christina</p> <p>2013-01-01</p> <p>In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment’s ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active nutrient recycling. This information is needed to improve our understanding on nutrient cycling in shallow seas where the dead zones are continuously spreading worldwide. PMID:23825619</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53C0916Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53C0916Z"><span>Improvement of suspended sediment concentration estimation for the Yarlung Zangbo river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, C.; Zhang, F.</p> <p>2017-12-01</p> <p>Suspended sediment load of a river represents integrated results of soil erosion, ecosystem variation and landform change occurring within basin over a specified period. Accurate estimation of suspended sediment concentration is important for calculating suspended sediment load, therefore is helpful for evaluating the impact of natural and anthropogenic factors on earth system processes under the background of global climate change. However, long-term observation of suspended sediment concentration usually very difficult in harsh condition areas e.g. rivers on the Tibet Plateau. This study proposed two sediment rating curve subdivision methods, the flood rank method and suspended sediment concentration stages method, to improve the estimations of daily suspended sediment concentration of the Yarlung Zangbo river during 2007 to 2009. The flood rank method, hypothesized that the higher water flow with larger erosive power can mobilize sediment sources not available during lower flows, suitable for application where sediments were mainly transported by first few flood events. The suspended sediment concentration stages method, assumed that precipitation is the dominating driving force of sediment erosion and transport processes during the flooding periods, suitable for application where soil erosion was closely related to precipitation events. Compared to traditional sediment rating curve and subdivision methods, results showed that the proposed methods can improve suspended sediment concentration and subsequent suspended sediment load estimations in the middle reach of the Yarlung Zangbo river with higher coefficients of determination (R2) and Nash-Sutcliffe efficiency coefficients (NSE), and yielded smaller bias (BIAS) and root-mean-square errors (RMSE). This study can provide guidelines for regional ecological and environmental management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H44A..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H44A..04M"><span>Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, E. R.; Pitlick, J.; Smith, M. E.</p> <p>2008-12-01</p> <p>Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043931','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043931"><span>Wetland management reduces sediment and nutrient loading to the upper Mississippi River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kreiling, Rebecca M.; Schubauer-Berigan, Joseph P.; Richardson, William B.; Bartsch, Lynn; Hughes, Peter E.; Strauss, Eric A.</p> <p>2013-01-01</p> <p>Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha−1 yr−1, 26 kg total N ha−1 yr−1, and 20 kg total P ha−1 yr−1. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH4+ and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m−2 h−1. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1001004','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1001004"><span>Ubiquity and persistance of Escherichia coli in a midwestern coastal stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Byappanahalli, Muruleedhara N.; Fowler, Melanie; Shively, Dawn; Whitman, Richard</p> <p>2003-01-01</p> <p>Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources ofE. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coliconcentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. colicounts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1995/4282/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1995/4282/report.pdf"><span>Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oblinger, C.J.; Treece, M.W.</p> <p>1996-01-01</p> <p>The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly greater than all other site categories. Phosphorus was significantly greater than for reservoir sites or headwater streams. Few concentrations of trace metals were greater than the minimum reporting limit, and U.S. Environmental Protection Agency drinking-water standards were rarely exceeded. Detections, when they occurred, were most frequent for sites below urban areas and wastewater-treatment plant effluents. A small number of samples for analysis of acetanilide, triazine, carbamate, and chlorophenoxy acid pesticides indicate that some of these compounds are generally present in area waters in small concentrations. Organochlorine and organophosphorus pesticides are ubiquitous in the study area in very small concentrations. Trihalomethanes were detected at sites below urban areas and wastewater-treatment plants. Otherwise, volatile organic compounds and semivolatile compounds were generally not detected. Suspended-sediment, nitrogen, phosphorus, lead, and zinc loads into Falls Lake, Jordan Lake, University Lake, Cane Creek Reservoir, Little River Reservoir, and Lake Michie were calculated. In general, reservoirs act as traps for suspended sediment and constituents associated with suspended sediments. During 1989-94, annual suspended-sediment load to Falls Lake ranged from 29,500 to 88,200 tons. Because Lake Michie trapped from 83 to 93 percent of the suspended sediment delivered by Flat River, Flat River is a minor contributor of suspended sediment to Falls Lake. Yields of suspended sediment from Little River, Little Lick Creek, and Flat River Basins were between 184 and 223 tons per square mile and appear to have increased increased slightly from yields reported in a study for the period 1970-79. Annual suspended-sediment load to Jordan Lake ranged from 271,000 to 622,000 tons from 1989 through 1994 water years. The Haw River contributed more than 75 percent of the tota load to Jordan Lake. The suspended-sediment yields for Haw River and Northeast Cree</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri034169/pdf/wri03-4169.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri034169/pdf/wri03-4169.pdf"><span>Occurrence, trends, and sources in particle-associated contaminants in selected streams and lakes in Fort Worth, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Metre, Peter C.; Wilson, Jennifer T.; Harwell, Glenn R.; Gary, Marcus O.; Heitmuller, Franklin T.; Mahler, Barbara J.</p> <p>2003-01-01</p> <p>Several lakes and stream segments in Fort Worth, Texas, have fish consumption bans because of elevated levels of chlordane, dieldrin, DDE, and polychlorinated biphenyls (PCBs). This study was undertaken to evaluate current loading, trends, and sources in these long-banned contaminants and other particle-associated contaminants commonly found in urban areas. Sampling included suspended sediments at 11 sites in streams and bottom-sediment cores in three lakes. Samples were analyzed for chlorinated hydrocarbons, major and trace elements, and polycyclic aromatic hydrocarbons (PAHs). All four legacy pollutants responsible for fish consumption bans were detected frequently. Concentrations of chlordane, lead, and PAHs most frequently exceeded sediment-quality guidelines. Trends in DDE and PCBs since the 1960s generally are decreasing; and trends in chlordane are mixed with a decreasing trend in Lake Como, no trend in Echo Lake, and an increasing trend in Fosdic Lake. All significant trends in trace elements are decreasing, and most significant trends in PAHs are increasing. Sedimentation surveys were conducted on each of the three lakes and used in combination with sediment core data to compute sediment mass balances for the lakes, to estimate long-term-average loads and yields of sediment, and to estimate recent loads and yields of selected contaminants.Concentrations of most trace elements in suspended sediments were similar to those at the tops of cores, but concentrations of many hydrophobic organic contaminants were two to three times larger. As a result, for these fluvial systems, sediment cores probably provide a historical record of trace element contamination but could underestimate historical concentrations of organic contaminants. However, down-core profiles suggest that relative concentration histories are preserved in these sediment cores for many organic contaminants (such as chlordane and total DDT) but not for all (such as dieldrin).Percent urban land use correlates strongly with selected contaminant concentrations in sediments. Organochlorine pesticides had significant correlations to residential land use, whereas PCBs, cadmium, lead, zinc, and PAHs more often correlate significantly with commercial and industrial land uses, which suggests different urban sources for different contaminants. The amount of enrichment in these contaminants associated with urban land use predicted from regression equations, expressed as the ratio of concentrations predicted for 100 percent urban to 30 percent urban, ranges from 3.6 to 6.9 for PCBs and heavy metals to about 15 for chlordane, total DDT, and PAHs. These data indicate that urbanization is having a substantial negative effect on sediment and water quality and that legacy pollutants are being actively transported to streams and lakes 13 to 30 years after their use was restricted or banned. They further suggest that fish in the lakes and these water bodies will continue to be exposed to legacy pollutants in sediment for many years to come.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5294465','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5294465"><span>Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie</p> <p>2017-01-01</p> <p>Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments. PMID:28169335</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176920','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176920"><span>Characterizing changes in streamflow and sediment supply in the Sacramento River Basin, California, using hydrological simulation program—FORTRAN (HSPF)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stern, Michelle A.; Flint, Lorraine E.; Minear, Justin T.; Flint, Alan L.; Wright, Scott A.</p> <p>2016-01-01</p> <p>A daily watershed model of the Sacramento River Basin of northern California was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay-Delta. To compensate for sparse data, a unique combination of model inputs was developed, including meteorological variables, potential evapotranspiration, and parameters defining hydraulic geometry. A slight decreasing trend of sediment loads and concentrations was statistically significant in the lowest 50% of flows, supporting the observed historical sediment decline. Historical changes in climate, including seasonality and decline of snowpack, contribute to changes in streamflow, and are a significant component describing the mechanisms responsible for the decline in sediment. Several wet and dry hypothetical climate change scenarios with temperature changes of 1.5 °C and 4.5 °C were applied to the base historical conditions to assess the model sensitivity of streamflow and sediment to changes in climate. Of the scenarios evaluated, sediment discharge for the Sacramento River Basin increased the most with increased storm magnitude and frequency and decreased the most with increases in air temperature, regardless of changes in precipitation. The model will be used to develop projections of potential hydrologic and sediment trends to the Bay-Delta in response to potential future climate scenarios, which will help assess the hydrological and ecological health of the Bay-Delta into the next century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017972','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017972"><span>The effects of Hurricane Hugo on suspended-sediment loads, Lago Loiza Basin, Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gellis, A.</p> <p>1993-01-01</p> <p>In the two main tributaries that enter Lago Loiza, Rio Grande de Loiza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58.2??106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Rio Grande de Loiza for Hurricane Hugo was 2290 mgl-1, the second lowest for the 12 storms that have been monitored at this site. In Rio Gurabo the storm-average suspended-sediment concentration was 1420 mg l -1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Rio Grande de Loiza, suspended-sediment concentrations were as low as 33 mg l-1 during peak runoff of 20m3s-1. Normally the suspended-sediment concentrations at this discharge are 300 mg l-1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads. High winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads. -from Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31D..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31D..07G"><span>The Impact of High-Turbidity Water's Seasonal and Decadal Variations on Offshore Phytoplankton and Nutrients Dynamics around The Changjiang Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ge, J.; Torres, R.; Chen, C.; Bellerby, R. G. J.</p> <p>2017-12-01</p> <p>The Changjiang Estuary is characterized as strong river discharge into the inner shelf of the East China Sea with abundant sediment load, producing significant high-turbidity water coverage from river mouth to deep region. The growth of offshore phytoplankton is dynamically controlled by river flushed low-salinity and high-turbidity water, and salter water from inner shelf of East China Sea. During last decade, the sediment and nutrients from the Changjiang River has significantly changed, which lead to the variation of offshore phytoplankton dynamics. The variations of sediment, nutrients, and their influenced phytoplankton has been simulated through a comprehensive modeling system, which integrated a multi-scale current-wave-sediment FVCOM model and generic marine biogeochemistry and ecosystem ERSEM model through The Framework for Aquatic Biogeochemical Models (FABM). This model system has successfully revealed the seasonal and decadal variations of sediment, nutrients transport around the inner shelf of the East China Sea. The spring and autumn peaks of phytoplankton growth were correctly captured by simulation. The modeling results, as well as MODIS and GOCI remote sensing, shows a strong sediment decreasing from northern to southern region, which creates different patterns of Chlorophyll-a distribution and seasonal variations. These results indicate the high-turbidity water in northern region strongly influenced the light attenuation in the water column and limits the phytoplankton growth in this relatively higher-nutrient area, especially in the wintertime. The relatively low-turbidity southern region has significant productivity of phytoplankton, even during low-temperature winter. The phytoplankton growth increased in the northern region from 2005 to 2010, with the increase of the nutrient load during this period. Then it became a decreasing trend after 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5580554','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5580554"><span>Quantifying Grain-Size Variability of Metal Pollutants in Road-Deposited Sediments Using the Coefficient of Variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xiaoxue; Li, Xuyong</p> <p>2017-01-01</p> <p>Particle grain size is an important indicator for the variability in physical characteristics and pollutants composition of road-deposited sediments (RDS). Quantitative assessment of the grain-size variability in RDS amount, metal concentration, metal load and GSFLoad is essential to elimination of the uncertainty it causes in estimation of RDS emission load and formulation of control strategies. In this study, grain-size variability was explored and quantified using the coefficient of variation (Cv) of the particle size compositions, metal concentrations, metal loads, and GSFLoad values in RDS. Several trends in grain-size variability of RDS were identified: (i) the medium class (105–450 µm) variability in terms of particle size composition, metal loads, and GSFLoad values in RDS was smaller than the fine (<105 µm) and coarse (450–2000 µm) class; (ii) The grain-size variability in terms of metal concentrations increased as the particle size increased, while the metal concentrations decreased; (iii) When compared to the Lorenz coefficient (Lc), the Cv was similarly effective at describing the grain-size variability, whereas it is simpler to calculate because it did not require the data to be pre-processed. The results of this study will facilitate identification of the uncertainty in modelling RDS caused by grain-size class variability. PMID:28788078</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/tm3c4/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/tm3c4/"><span>Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.</p> <p>2009-01-01</p> <p>In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800061637&hterms=River+Erosion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRiver%2BErosion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800061637&hterms=River+Erosion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRiver%2BErosion"><span>Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komar, P. D.</p> <p>1980-01-01</p> <p>The paper discusses application to Martian water flows of the criteria that determine which grain-size ranges are transported as bed load, suspension, and wash load. The results show nearly all sand-sized material and finer would have been transported as wash load and that basalt pebbles and even cobbles could have been transported at rapid rates of suspension. An analysis of the threshold of sediment motion on Mars further indicates that the flows would have been highly competent, the larger flows having been able to transport boulder-sized material. Comparisons with terrestrial rivers which transport hyperconcentration levels of sediments suggest that the Martian water flows could have achieved sediment concentrations up to 70% in weight. Although it is possible that flows could have picked up enough sediment to convert to pseudolaminar mud flows, they probably remained at hyperconcentration levels and fully turbulent in flow character.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512979P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512979P"><span>Suspended sediment load, climate and relief in the central Pamirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Schön, Ariane</p> <p>2013-04-01</p> <p>Relief and climate affect the generation of sediment transport. While relief and climate also affect each other, their influence on sediment transport can be investigated separately to determine their direct impact on this matter. Taking into account the complex topography of the central Pamirs and the fact that this region marks the transition zone of the Westerlies and the northward Indian Summer Monsoon, this region provides an excellent basis to investigate the interrelationship between sediment transport, climate and relief. The Panj River and its tributaries are representative for the hydrological setting of the central Pamirs as they drain most of the region. We first present suspended sediment characteristics from historical archive data for the whole river catchment and for the sub-catchments. We show the dynamics of the relationship between suspended sediment concentration and discharge on an annual basis for the different catchment sizes. The uppermost catchments are characterized by a transport-limited situation, showing a simple power-law relationship between discharge and sediment concentration for the entire year. The lowermost catchments show a strong hysteresis effect, especially in spring, which is related to the onset of snowmelt. The result is a differentiated power-law relationship within a year. As snow and glacier melt control the discharge in the central Pamirs, we investigate the climatological conditions derived from remote sensing data. We do this with respect to the different sub-catchments and with a special focus on the temporal variability. Results from the previous steps are finally interrelated with calculated geomorphological features at different catchment scales to characterize the suspended sediment load in the context of both relief and climatic conditions. Our results suggest climate to play the first-order determinant for the generation of suspended sediment load. This is in particular due to the Westerlies that provide the bulk of precipitation as snow in winter. Eventually temperature triggers snowmelt and causes high sediment loads. Still, relief causes the sediment load indirectly by forcing the climatic setting and providing the potential energy for stream flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5182/pdf/sir2014-5182.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5182/pdf/sir2014-5182.pdf"><span>Simulation of hydrologic conditions and suspended-sediment loads in the San Antonio River Basin downstream from San Antonio, Texas, 2000-12</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Banta, J. Ryan; Ockerman, Darwin J.</p> <p>2014-01-01</p> <p>Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand suspended-sediment loads and transport in a watershed, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, developed a Hydrological Simulation Program—FORTRAN model to simulate hydrologic conditions and suspended-sediment loads during 2000–12 for four watersheds, which comprise the overall study area in the San Antonio River Basin (hereinafter referred to as the “USGS–2014 model”). The study area consists of approximately 2,150 square miles encompassing parts of Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties. The USGS–2014 model was calibrated for hydrology and suspended sediment for 2006–12. Overall, model-fit statistics and graphic evaluations from the calibration and testing periods provided multiple lines of evidence indicating that the USGS–2014 model simulations of hydrologic and suspended-sediment conditions were mostly “good” to “very good.” Model simulation results indicated that approximately 1,230 tons per day of suspended sediment exited the study area and were delivered to the Guadalupe River during 2006–12, of which approximately 62 percent originated upstream from the study area. Sample data and simulated model results indicate that most of the suspended-sediment load in the study area consisted of silt- and clay-sized particles (less than 0.0625 millimeters). The Cibolo Creek watershed was the largest contributor of suspended sediment from the study area. For the entire study area, open/developed land and cropland exhibited the highest simulated soil erosion rates; however, the largest contributions of sediment (by land-cover type) were pasture and forest/rangeland/shrubland, which together composed approximately 80 percent of the land cover of the study area and generated about 70 percent of the suspended-sediment load from the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816393A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816393A"><span>Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri</p> <p>2016-04-01</p> <p>A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the Norwegian Research council and Statkraft AS. Statkraft is supporting this project in the framework of a large R&D project on future handling strategies of sediments at hydro power plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri024030','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri024030"><span>Streamflow and water-quality data for selected watersheds in the Lake Tahoe basin, California and Nevada, through September 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rowe, T.G.; Saleh, D.K.; Watkins, S.A.; Kratzer, C.R.</p> <p>2002-01-01</p> <p>The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency, and the University of California, Davis-Tahoe Research Group, has monitored tributaries in the Lake Tahoe Basin since 1988. This monitoring has characterized streamflow and has determined concentrations of nutrients and suspended sediment, which may have contributed to loss of clarity in Lake Tahoe. The Lake Tahoe Interagency Monitoring Program was developed to collect water-quality data in the basin. In 1998, the tributary-monitoring program included 41 water-quality stations in 14 of the 63 watersheds totaling half the area tributary to Lake Tahoe. The monitored watershed areas range from 1.08 square miles for First Creek to 56.5 square miles for the Upper Truckee River.Annual and unit runoff for 20 primary and secondary streamflow gaging stations in 10 selected watersheds are described. Water years 1988-98 were used to compare runoff data. The Upper Truckee River at South Lake Tahoe, Calif., had the highest annual runoff and Logan House Creek near Glenbrook, Nev., had the lowest. Blackwood Creek near Tahoe City, Calif., had the highest unit runoff and Logan House Creek had the lowest. The highest instantaneous peak flow was recorded at Upper Truckee River at South Lake Tahoe during the January 2, 1997, flood event.Certain water-quality measurements were made in the field. Ranges and median values of those measurements are described for 41 stations. Water temperature ranged from 0 to 23?C. Specific conductance ranged from 13 to 900 microsiemens per centimeter at 25?C. pH ranged from 6.7 to 10.6. Dissolved-oxygen concentrations ranged from 5.2 to 12.6 mg/L and from 70 to 157 percent of saturation.Loads, yields, and trends of nutrients and suspended sediment during water years 1988-98 at the streamflow gaging stations also are described. The Upper Truckee River at South Lake Tahoe had the largest median monthly load for five of the six measured nutrients and of suspended sediment, while Trout Creek at South Lake Tahoe had the largest median monthly load for the remaining nutrient. Logan House Creek near Glenbrook had the smallest median monthly loads for all nutrients and suspended sediment. Seasonal load summaries at selected stations showed nutrient and suspended-sediment loads were greatest in the spring months of April, May and June and least in the summer months of July, August, and September. Monthly load comparisons also were described for five watersheds with multiple stations.Incline Creek had the highest combined rank for all nutrients and sediment. Incline Creek had the largest monthly yields for dissolved nitrite plus nitrate nitrogen and soluble reactive phosphorus. Third Creek had the second highest combined rank and had the largest monthly yields for total nitrogen, total phosphorus, biologically reactive iron, and suspended sediment. Edgewood Creek had the largest monthly yield for dissolved ammonia nitrogen. Logan House Creek had the lowest combined rank and the smallest monthly yields for all nutrients and sediment.Trends in concentrations are either decreasing or not significant for all nutrients in all sampled watersheds, with the exception of biologically reactive iron. Biologically reactive iron and suspended sediment show an increasing trend in three watersheds and decreasing or no significant trend in the other seven watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGD....1110229O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGD....1110229O"><span>Calcium phosphate formation due to pH-induced adsorption/precipitation switching along salinity gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oxmann, J. F.; Schwendenmann, L.</p> <p>2014-07-01</p> <p>Mechanisms governing phosphorus (P) speciation in coastal sediments remain unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation along salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a P-unenriched site. To improve analytical specificity, octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite; CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Sediment pH primarily affected P fractions across ecosystems and independent of the P status. Increasing pH caused a pronounced downstream transition from adsorbed Al/Fe-P to mineral Ca-P. Downstream decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. This marked upstream-to-downstream switch occurred at near-neutral sediment pH and was enhanced by increased P loads. Accordingly, the site comparison indicated two location-dependent accumulation mechanisms at the P-enriched site, which mainly resulted in elevated Al/Fe-P at pH < 6.6 (upstream; adsorption) and elevated Ca-P at pH > 6.6 (downstream; precipitation). Enhanced Ca-P precipitation by increased loads was also evident from disproportional accumulation of metastable Ca-P (Ca-PMmeta). The average Ca-Pmeta concentration was six-fold, whereas total Ca-P was only twofold higher at the P-enriched site compared to the P-unenriched site. Species concentrations showed that these largely elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP due to decreasing acidity from land to the sea. Formation of OCP and CFAP results in P retention in coastal zones, which may lead to substantial inorganic P accumulation by anthropogenic P input in near-shore sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H31D1428Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H31D1428Q"><span>Characteristics of Sediment Transportation in Two Contrasting Oak Forested Watersheds in the Lesser Central Himalaya, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qazi, N. U. Q.; Bruijnzeel, S., Sr.; Rai, S. P., Sr.</p> <p>2015-12-01</p> <p>Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bedload) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and streamflow and showed a 10-63 fold range between wet and dry years. Of the annual load, some 93% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 1.9-fold (suspended sediment) to 5.9-fold (bedload) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.6 times and 4.6 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.69 and 1.04 mm per 1000 years, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998ECSS...46..757T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998ECSS...46..757T"><span>Changes in Community Structure and Biomass of Seagrass Communities along Gradients of Siltation in SE Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terrados, J.; Duarte, C. M.; Fortes, M. D.; Borum, J.; Agawin, N. S. R.; Bach, S.; Thampanya, U.; Kamp-Nielsen, L.; Kenworthy, W. J.; Geertz-Hansen, O.; Vermaat, J.</p> <p>1998-05-01</p> <p>The patterns of change in species richness and biomass of Southeast Asian seagrass communities along siltation gradients were compared at different sites in The Philippines and Thailand. Seagrass species richness and community leaf biomass declined sharply when the silt and clay content of the sediment exceeded 15%. Syringodium isoetifoliumand Cymodocea rotundatawere present only in multispecific meadows, while Enhalus acoroideswas the only species remaining in heavily silted sediments. The following ranking of species sensitivity to siltation is proposed (from the least to most sensitive): S. isoetifolium→ C. rotundata→ Thalassia hemprichii→ Cymodocea serrulata→ Halodule uninervis→ Halophila ovalis→ Enhalus acoroides. Positive correlations were found between species richness and both community leaf biomass and the leaf biomass of individual seagrass species. The increase in community biomass with increasing species richness was associated with a more even distribution of the leaf biomass among seagrass species. The relationships between percent silt and clay in the sediment and seagrass community leaf biomass and species richness provide useful dose-response relationships which can be used to set allowable or threshold siltation loads in SE Asian coastal waters, and indicate that species loss from seagrass meadows is an early warning of detrimental siltation loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6449376-couplings-watersheds-coastal-waters-sources-consequences-nutrient-enrichment-waquoit-bay-massachusetts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6449376-couplings-watersheds-coastal-waters-sources-consequences-nutrient-enrichment-waquoit-bay-massachusetts"><span>Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Valiela, I.; Foreman, K.; LaMontagne, M.</p> <p>1992-12-01</p> <p>Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content ofmore » groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5110/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5110/"><span>Bathymetry and Sediment-Storage Capacity Change in Three Reservoirs on the Lower Susquehanna River, 1996-2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langland, Michael J.</p> <p>2009-01-01</p> <p>The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3513M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3513M"><span>Fate and Transport of Cohesive Sediment and HCB in the Middle Elbe River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moshenberg, Kari; Heise, Susanne; Calmano, Wolfgang</p> <p>2014-05-01</p> <p>Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly during flood events. This study focuses on Hexachlorobenzene (HCB), a persistent organic pollutant that has been identified as a contaminant of concern in the Elbe Basin. To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic, suspended sediment, and contaminated transport model for the 271-km reach of the Elbe River basin between Dresden and Magdeburg was developed. Additionally, trends in suspended sediment and contaminant transport were investigated in the context of the recent high frequency of floods in the Elbe Basin. This study presents strong evidence that extreme high water events, such as the August, 2002 floods, have a permanent effect on the sediment transport regime in the Elbe River. Additionally, results indicate that a significant component annual HCB loads are transported downstream during floods. Additionally, modeled results for suspended sediment and HCB accumulation on floodplains are presented and discussed. Uncertainty and issues related to model development are also addressed. A worst case analysis of HCB uptake by dairy cows and beef cattle indicate that significant, biologically relevant quantities of sediment-sorbed HCB accumulate on the Elbe floodplains following flood events. Given both the recent high frequency of floods in the Elbe Basin, and the potential increase in flood frequency due to climate change, an evaluation of source control measures and/or additional monitoring of floodplain soils and grasses is recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26475025','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26475025"><span>Macrofaunal recolonization of copper-contaminated sediments in San Diego Bay.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neira, Carlos; Mendoza, Guillermo; Porrachia, Magali; Stransky, Chris; Levin, Lisa A</p> <p>2015-12-30</p> <p>Effects of Cu-loading on macrofaunal recolonization were examined in Shelter Island Yacht Basin (San Diego Bay, California). Sediments with high and low Cu levels were defaunated and Cu-spiked, translocated, and then placed back into the environment. These demonstrated that the alteration observed in benthic communities associated with Cu contamination occurs during initial recolonization. After a 3-month exposure to sediments with varying Cu levels, two primary colonizing communities were identified: (1) a "mouth assemblage" resembling adjacent background fauna associated with low-Cu levels that was more diverse and predominantly dominated by surface- and subsurface-deposit feeders, burrowers, and tube builders, and (2) a "head assemblage" resembling adjacent background fauna associated with high-Cu concentrations, with few dominant species and an increasing importance of carnivores and mobile epifauna. Cu loading can cause reduced biodiversity and lower structural complexity that may last several months if high concentrations persist, with a direct effect on community functioning. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21658731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21658731"><span>The extent and historical trend of metal pollution recorded in core sediments from the artificial Lake Shihwa, Korea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ra, Kongtae; Bang, Jae-Hyun; Lee, Jung-Moo; Kim, Kyung-Tae; Kim, Eun-Soo</p> <p>2011-08-01</p> <p>The vertical distribution of trace metals in sediment cores was investigated to evaluate the extent and the historical record of metal pollution over 30 years in the artificial Lake Shihwa in Korea. A marked increase of trace metals after 1980 was observed due to the operation of two large industrial complexes and dike construction for a reclamation project. There was a decreasing trend of metal concentrations with the distance from the pollution source. The enrichment factor and pollution load index of the metals indicated that the metal pollution was mainly derived from Cu, Zn and Cd loads due to anthropogenic activities. The concentrations of Cr, Ni, Cu, Zn, As and Pb in the upper part of all core sediments exceeded the ERL criteria of NOAA. Our results indicate that inadequate planning and management of industrialization and a large reclamation project accomplished by dike construction have continued to strongly accelerate metal pollution in Lake Shihwa. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5204/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5204/"><span>Organic compounds and cadmium in the tributaries to the Elizabeth River in New Jersey, October 2008 to November 2008: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bonin, Jennifer L.</p> <p>2010-01-01</p> <p>Samples of surface water and suspended sediment were collected from the two branches that make up the Elizabeth River in New Jersey - the West Branch and the Main Stem - from October to November 2008 to determine the concentrations of selected chlorinated organic and inorganic constituents. The sampling and analyses were conducted as part of Phase II of the New York-New Jersey Harbor Estuary Plan-Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted by the U.S. Geological Survey to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. This portion of the Phase II study was conducted on the two branches of the Elizabeth River, which were previously sampled during July and August of 2003 at low-flow conditions. Samples were collected during 2008 from the West Branch and Main Stem of the Elizabeth River just upstream from their confluence at Hillside, N.J. Both tributaries were sampled once during low-flow discharge conditions and once during high-flow discharge conditions using the protocols and analytical methods that were used in the initial part of Phase II of the Workplan. Grab samples of streamwater also were collected at each site and were analyzed for cadmium, suspended sediment, and particulate organic carbon. The measured concentrations, along with available historical suspended-sediment and stream-discharge data were used to estimate average annual loads of suspended sediment and organic compounds in the two branches of the Elizabeth River. Total suspended-sediment loads for 1975 to 2000 were estimated using rating curves developed from historical U.S. Geological Survey suspended-sediment and discharge data, where available. Concentrations of suspended-sediment-bound polychlorinated biphenyls (PCBs) in the Main Stem and the West Branch of the Elizabeth River during low-flow conditions were 534 ng/g (nanograms per gram) and 1,120 ng/g, respectively, representing loads of 27 g/yr (grams per year) and 416 g/yr, respectively. These loads were estimated using contaminant concentrations during low flow, and the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound PCBs in the Main Stem and the West Branch of the Elizabeth River during high-flow conditions were 3,530 ng/g and 623 ng/g, respectively, representing loads of 176 g/yr and 231 g/yr, respectively. These loads were estimated using contaminant concentrations during high-flow conditions, the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-difuran compounds (PCDD/PCDFs) during low-flow conditions were 2,880 pg/g (picograms per gram) and 5,910 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 0.14 g/yr and 2.2 g/yr, respectively. Concentrations of suspended-sediment-bound PCDD/PCDFs during high-flow conditions were 40,900 pg/g and 12,400 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 2.05 g/yr and 4.6 g/yr, respectively. Total toxic equivalency (TEQ) loads (sum of PCDD/PCDF and PCB TEQs) were 3.1 mg/yr (milligrams per year) (as 2, 3, 7, 8-TCDD) in the Main Stem and 28 mg/yr in the West Branch during low-flow conditions. Total TEQ loads (sum of PCDD/PCDFs and PCBs) were 27 mg/yr (as 2, 3, 7, 8-TCDD) in the Main Stem and 32 mg/yr in the West Branch during high-flow conditions. All of these load estimates, however, are directly related to the assumed annual discharge for the two branches. Long-term measurement of stream discharge and suspended-sediment concentrations would be needed to verify these loads. On the basis of the loads cal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2001/4085/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2001/4085/report.pdf"><span>Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mau, D.P.</p> <p>2001-01-01</p> <p>Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis of calculations from deposited sediment in the reservoir. Mean total phosphorus concentration in the surface-water inflow to Cheney Reservoir was 0.76 milligram per liter, mean annual phosphorus yield of the watershed was estimated to be 0.38 pound per year per acre, and both are based on sediment deposition in the reservoir. A comparison of the Cheney Reservoir watershed to the Webster Reservoir, Tuttle Creek Lake, and Hillsdale Lake watersheds showed that phosphorus yields were smallest in the Webster Reservoir watershed where precipitation was less than in the other watersheds. Mean concentrations of total ammonia plus organic nitrogen in bottom sediment from Cheney Reservoir ranged from 1,200 to 2,400 milligrams per kilogram as nitrogen. A regression analysis between total ammonia plus organic nitrogen as nitrogen and sediment particle size showed a strong relation between the two variables and suggests, as with phosphorus, that total ammonia plus organic nitrogen as nitrogen adsorbs to the silt- and clay-sized particles that are transported to the deeper parts of the reservoir. An analysis of trends with depth of total ammonia plus organic nitrogen as nitrogen did not indicate a strong relation between the two variables despite the increase in fertilizer use in the watershed during the past 40 years. Selected cores were analyzed for trace elements. Concentrations of arsenic, chromium, copper, and nickel at many sites exceeded levels where adverse effects on aquatic organisms sometimes occur. Larger concentrations of these elements also occurred in sediment closer to the reservoir dam where there is a larger percentage of silt and clay in the bottom sediment than farther upstream. However, the lack of industrial or commercial land use in the watershed suggests that these concentrations may be the result of natural conditions. Organochlorine insecticides were detected in the reservoir-bottom sediment in Cheney Reservoir. DDT and its degradation products DDD and DD</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27321802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27321802"><span>Artificial soft sediment resuspension and high density opportunistic macroalgal mat fragmentation as method for increasing sediment zoobenthic assemblage diversity in a eutrophic lagoon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martelloni, Tatiana; Tomassetti, Paolo; Gennaro, Paola; Vani, Danilo; Persia, Emma; Persiano, Marco; Falchi, Riccardo; Porrello, Salvatore; Lenzi, Mauro</p> <p>2016-09-15</p> <p>Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon environments. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7246696-contaminant-loading-puget-sound-from-two-marinas-puget-sound-estuary-program-final-report-june-october','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7246696-contaminant-loading-puget-sound-from-two-marinas-puget-sound-estuary-program-final-report-june-october"><span>Contaminant loading to Puget Sound from two marinas. Puget Sound estuary program. Final report, June 1988-October 1988</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crecelius, E.A.; Fortman, T.J.; Kiesser, S.L.</p> <p>1989-07-01</p> <p>Concentrations of Cu, Pb, Zn, PAH's, TBT and FC bacteria were measured in surface sediment, sediment-trap, and water-column samples at two marinas in Puget Sound during summer of 1988. Levels of contaminants inside the marinas were compared with levels outside. TBT had greatest elevation in marina sediments compared to reference sediments. Few of sediments exceeded Puget Sound AET sediment quality values but most did exceed PSDDA screening levels for in-water disposal of dredged sediment. All marinas estimated to contribute less than one percent of total mass loading of Cu, Pb and Zn to main basin of Puget Sound. Contribution ofmore » TBT may be much more significant if antifouling paints are the major source for Puget Sound.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036772','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036772"><span>Recent land cover history and nutrient retention in riparian wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hogan, D.M.; Walbridge, M.R.</p> <p>2009-01-01</p> <p>Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5018/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5018/"><span>Selenium and Other Elements in Water and Adjacent Rock and Sediment of Toll Gate Creek, Aurora, Arapahoe County, Colorado, December 2003 through March 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Herring, J.R.; Walton-Day, Katherine</p> <p>2007-01-01</p> <p>Streamwater and solid samples (rock, unconsolidated sediment, stream sediment, and efflorescent material) in the Toll Gate Creek watershed, Colorado, were collected and analyzed for major and trace elements to determine trace-element concentrations and stream loads from December 2003 through March 2004, a period of seasonally low flow. Special emphasis was given to selenium (Se) concentrations because historic Se concentrations exceeded current (2004) stream standards. The goal of the project was to assess the distribution of Se concentration and loads in Toll Gate Creek and to determine the potential for rock and unconsolidated sediment in the basin to be sources of Se to the streamwater. Streamwater samples and discharge measurements were collected during December 2003 and March 2004 along Toll Gate Creek and its two primary tributaries - West Toll Gate Creek and East Toll Gate Creek. During both sampling periods, discharge ranged from 2.5 liters per second to 138 liters per second in the watershed. Discharge was greater in March 2004 than December 2003, but both periods represent low flow in Toll Gate Creek, and results of this study should not be extended to periods of higher flow. Discharge decreased moving downstream in East Toll Gate Creek but increased moving downstream along West Toll Gate Creek and the main stem of Toll Gate Creek, indicating that these two streams gain flow from ground water. Se concentrations in streamwater samples ranged from 7 to 70 micrograms per liter, were elevated in the upstream-most samples, and were greater than the State stream standard of 4.6 micrograms per liter. Se loads ranged from 6 grams per day to 250 grams per day, decreased in a downstream direction along East Toll Gate Creek, and increased in a downstream direction along West Toll Gate Creek and Toll Gate Creek. The largest Se-load increases occurred between two sampling locations on West Toll Gate Creek during both sampling periods and between the two sampling locations on the main stem of Toll Gate Creek during the December 2003 sampling. These load increases may indicate that sources of Se exist between these two locations; however, Se loading along West Toll Gate Creek and Toll Gate Creek primarily was characterized by gradual downstream increases in load. Linear regressions between Se load and discharge for both sampling periods had large, significant values of r2 (r2 > 0.96, p < 0.0001) because increases in Se load (per unit of flow increase) were generally constant. This relation is evidence for a constant addition of water having a relatively constant Se concentration over much of the length of Toll Gate Creek, a result which is consistent with a ground-water source for the Se loads. Rock outcroppings along the stream were highly weathered, and Se concentrations in rock and other solid samples ranged from below detection (1 part per million) to 25 parts per million. One sample of efflorescence (a surface encrustation produced by evaporation) had the greatest selenium concentration of all solid samples, was composed of thenardite (sodium sulfate), gypsum (calcium sulfate) and minor halite (sodium chloride), and released all of its Se during a 30-minute water-leaching procedure. Calculations indicate there was an insufficient amount of this material present throughout the watershed to account for the observed Se load in the stream. However, this material likely indicates zones of ground-water discharge that contain Se. This report did not identify an unequivocal source of Se in Toll Gate Creek. However, multiple lines of evidence indicate that ground-water discharge supplies Se to Toll Gate Creek: (1) the occurrence of elevated Se concentrations in the stream throughout the watershed and in the headwater regions, upstream from industrial sources; (2) the progressive increase in Se loads moving downstream, which indicates a continuous input of Se along the stream rather than input from point sources; (3) the occurr</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=239256','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=239256"><span>Rivierine Nutrient, Sediment and Carbon Load Reductions Through Modeling/Simulation Directed Field Targeting of Best Management Practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Increased agricultural production has led to a reduction in water quality while funding for protection or improvement of water quality from agricultural runoff has been decreasing over time. It is becoming increasingly important that available funds be spent where it will result in the most benefici...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62051&Lab=NERL&keyword=usle+AND+soil&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62051&Lab=NERL&keyword=usle+AND+soil&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>MODELING FRAMEWORK FOR EVALUATING SEDIMENTATION IN STREAM NETWORKS: FOR USE IN SEDIMENT TMDL ANALYSIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A modeling framework that can be used to evaluate sedimentation in stream networks is described. This methodology can be used to determine sediment Total Maximum Daily Loads (TMDLs) in sediment impaired waters, and provide the necessary hydrodynamic and sediment-related data t...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=334252','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=334252"><span>Effects of algal-derived carbon on sediment methane ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2016/5174/sir20165174.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2016/5174/sir20165174.pdf"><span>Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.</p> <p>2016-12-20</p> <p>Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched the range for stream gradients from greatest to smallest. Bedload ranged from 3 to 20 percent of the total load at the Le Sueur River, Minnesota River at Mankato, and High Island Creek and was less than 1 percent of the total load at the Minnesota River near Jordan and at Fort Snelling State Park. The reach of the Minnesota River between Mankato and Jordan is a major source of sediment, with the sediment yield at Jordan being two and a half times greater than at Mankato. Between Jordan and Fort Snelling, the sediment yield decreases substantially, which indicates that the Minnesota River in this reach is a sink for sediment. Surrogate measurements (acoustic backscatter) collected with suspended-sediment concentration data from water years 2012 through 2016 from the Minnesota River at Fort Snelling State Park indicated strong relations between the acoustic backscatter and suspended-sediment concentrations. These results point to the dynamic nature of sediment aggradation, degradation, and transport in the Minnesota River Basin. The analyses described in this report will improve the understanding of sediment-transport relations and sediment budgets in the Minnesota River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5217/pdf/sir13-5217.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5217/pdf/sir13-5217.pdf"><span>Water-quality trends for selected sampling sites in the upper Clark Fork Basin, Montana, water years 1996-2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sando, Steven K.; Vecchia, Aldo V.; Lorenz, David L.; Barnhart, Elliott P.</p> <p>2014-01-01</p> <p>A large-scale trend analysis was done on specific conductance, selected trace elements (arsenic, cadmium, copper, iron, lead, manganese, and zinc), and suspended-sediment data for 22 sites in the upper Clark Fork Basin for water years 1996–2010. Trend analysis was conducted by using two parametric methods: a time-series model (TSM) and multiple linear regression on time, streamflow, and season (MLR). Trend results for 1996–2010 indicate moderate to large decreases in flow-adjusted concentrations (FACs) and loads of copper (and other metallic elements) and suspended sediment in Silver Bow Creek upstream from Warm Springs. Deposition of metallic elements and suspended sediment within Warm Springs Ponds substantially reduces the downstream transport of those constituents. However, mobilization of copper and suspended sediment from floodplain tailings and stream banks in the Clark Fork reach from Galen to Deer Lodge is a large source of metallic elements and suspended sediment, which also affects downstream transport of those constituents. Copper and suspended-sediment loads mobilized from within this reach accounted for about 40 and 20 percent, respectively, of the loads for Clark Fork at Turah Bridge (site 20); whereas, streamflow contributed from within this reach only accounted for about 8 percent of the streamflow at Turah Bridge. Minor changes in FACs and loads of copper and suspended sediment are indicated for this reach during 1996–2010. Clark Fork reaches downstream from Deer Lodge are relatively smaller sources of metallic elements than the reach from Galen to Deer Lodge. In general, small decreases in loads and FACs of copper and suspended sediment are indicated for Clark Fork sites downstream from Deer Lodge during 1996–2010. Thus, although large decreases in FACs and loads of copper and suspended sediment are indicated for Silver Bow Creek upstream from Warm Springs, those large decreases are not translated to the more downstream reaches largely because of temporal stationarity in constituent transport relations in the Clark Fork reach from Galen to Deer Lodge. Unlike metallic elements, arsenic (a metalloid element) in streams in the upper Clark Fork Basin typically is mostly in dissolved phase, has less variability in concentrations, and has weaker direct relations with suspended-sediment concentrations and streamflow. Arsenic trend results for 1996–2010 indicate generally moderate decreases in FACs and loads in Silver Bow Creek upstream from Opportunity. In general, small temporal changes in loads and FACs of arsenic are indicated for Silver Bow Creek and Clark Fork reaches downstream from Opportunity during 1996–2010. Contribution of arsenic (from Warm Springs Ponds, the Mill-Willow bypass, and groundwater sources) in the Silver Bow Creek reach from Opportunity to Warm Springs is a relatively large source of arsenic. Arsenic loads originating from within this reach accounted for about 11 percent of the load for Clark Fork at Turah Bridge; whereas, streamflow contributed from within this reach only accounted for about 2 percent of the streamflow at Turah Bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336804&Lab=NERL&keyword=algae&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336804&Lab=NERL&keyword=algae&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Water Quality Protection from Nutrient Pollution: Case Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28498115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28498115"><span>Field campaign on sediment transport behaviour in a pressure main from pumping station to wastewater treatment plant in Berlin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gunkel, M; Pawlowsky-Reusing, E</p> <p>2017-05-01</p> <p>As part of the project KURAS, the Berliner Wasserbetriebe realized a field campaign in 2015 in order to increase the process knowledge regarding the behaviour of transported sediment in the pressure main leading from the pumpstation to the wastewater treatment plant. The field campaign was conducted because of a lack of knowledge about the general condition of the pressure main due to its bad accessibility and the suspicion of deposits caused by hydraulic underload. The practical evidence of the sediment transport performance of this part of the sewer system, dependent on different load cases, should present a basis for further analysis, for example regarding flushing measures. A positive side-effect of the investigation was the description of the amount of pollutants caused by different weather conditions in combined sewer systems and the alterations of the sewage composition due to biogenic processes during transport. The concept included the parallel sampling of the inflow at the pumpstation and the outflow at the end of the pressure main during different weather conditions. By calculating the inflow to the pressure main, as well as its outflow at different flow conditions, it was possible to draw conclusions in regard to the transport behaviour of sediment and the bioprocesses within an 8.5 km section of the pressure main. The results show clearly that the effects of sedimentation and remobilization depend on the flow conditions. The balance of the total suspended solids (TSS) load during daily variations in dry weather shows that the remobilization effect during the run-off peak is not able to compensate for the period of sedimentation happening during the low flow at night. Based on the data for dry weather, an average of 238 kg of TSS deposits in the pressure main remains per day. The remobilization of sediment occurs only due to the abruptly increased delivery rates caused by precipitation events. These high pollution loads lead to a sudden strain at the wastewater treatment plant. It was found that the sediment transport behaviour is characterized by sedimentation up to a flow velocity of 0.35 m/s, while remobilization effects occur above 0.5 m/s. The assumption of bad sediment transport performance in the pressure main was confirmed. Therefore, the results can be used as a basis for further analysis, for example regarding periodical flushing as a means of cleaning the pressure main. The findings, especially regarding the methods and processes, are transferable and can be applied to other pressure mains in combined sewer systems. Besides the outlined evaluation of the sediment transport behaviour of the pressure main, the collected data were used in the project to calibrate a sewer system model, including a water quality model for the catchment area, and as a contribution towards an early physically based sediment transport modelling in InfoWorks CS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP51A1634Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP51A1634Y"><span>Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, M.; Rhoads, B. L.; Stumpf, A.</p> <p>2017-12-01</p> <p>The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2592Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2592Z"><span>Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan</p> <p>2013-04-01</p> <p>Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest Monsoon. Thus, Pahang River estuary found to be directly affected by the monsoon factors especially due to high amount of river discharge and surface erosion from catchment areas. This study provides several useful understanding on the hydrodynamic and sediment transport of Pahang River estuary and catchment area. Keywords: Pahang River Estuary, hydrodynamic, sediment transport, MIKE21 MT</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMEP21A0665D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMEP21A0665D"><span>Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.</p> <p>2011-12-01</p> <p>Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in fluvial zones of the Apalachicola River and its distributaries through field investigation and laboratory analysis of a series of total suspended solid (TSS) samples. Time-series TSS samples are collected at the alluvial zone. TSS and particle-size distribution analyses are performed to determine the TSS hydrograph and particle-size distribution of suspended solids. Relationships between the TSS hydrograph, discharge hydrograph, and tidal data provide a better understanding of the deposition and re-suspension of the fluvial system in the region. Total suspended particle-size distribution data are used to determine the deposition rate or diminishing rate of alluvial landform in the estuarine system. This dataset and analysis provide excellent information for future modeling work and wetland morphologic studies in the Apalachicola River and similar systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050000400&hterms=APICAL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAPICAL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050000400&hterms=APICAL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAPICAL"><span>Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwuchow, J.; Sack, F. D.</p> <p>1994-01-01</p> <p>Apical cells of protonemata of the moss Ceratodon purpureus are unusual among plant cells with sedimentation in that only some amyloplasts sediment and these do not fall completely to the bottom of vertical cells. To determine whether the cytoskeleton restricts plastid sedimentation, the effects of amiprophos-methyl (APM) and cytochalasin D (CD) on plastid position were quantified. APM treatments of 30-60 min increased the plastid sedimentation that is normally seen along the length of untreated or control cells. Longer APM treatments often resulted in more dramatic plastid sedimentation, and in some cases almost all plastids sedimented to the lowermost point in the cell. In contrast, the microfilament inhibitor CD did not affect longitudinal plastid sedimentation compared to untreated cells, although it did disturb or eliminate plastid zonation in the tip. These data suggest that microtubules restrict the sedimentation of plastids along the length of the cell and that microtubules are load-bearing for all the plastids in the apical cell. This demonstrates the importance of the cytoskeleton in maintaining organelle position and cell organization against the force of gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP53A0933A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP53A0933A"><span>Examining the Relationship Between Suspended Sand Load and Bedload on the Colorado River Using Concurrent Measurements of Suspended Sand and Observations of Sand Dune Migration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashley, T.; McElroy, B. J.; Buscombe, D.; Grams, P. E.; Kaplinski, M. A.</p> <p>2015-12-01</p> <p>Spatial variability in sediment flux is directly related to geomorphic change. Along the Colorado River, measurements of sediment flux are used to track changes in sediment storage and time the release of controlled floods aimed at building eroded sandbars. The very high uncertainty typical of measurements of sediment flux has been reduced by a program of continuous measurement of suspended-sediment concentration by acoustic surrogates. However, there is still significant uncertainty in calculations of total flux. A large fraction of that uncertainty may be caused by overly simplified treatment of bedload flux, which is currently estimated as a constant 5% of the suspended sand flux. That constant is based on estimates of bedform migration rate made with side-scan sonar. Here, we apply theory which relates bedform migration and streamwise sediment flux, to bathymetric data collected at unprecedented temporal and spatial resolution adjacent to the USGS sediment monitoring station above Diamond Creek (362 km downstream from Lees Ferry, AZ). Quantitative time series measurements of reach averaged bedform transport are calculated and compared to fluxes estimated by expressing bedload as a constant fraction of suspended load. Over the range of discharges expected during normal dam operations, bedload transport estimated from the migration of bedforms in the study reach is at least 20% of instantaneous suspended sand load measured at the gage. While bedload appears to be controlled primarily by discharge (and therefore transport capacity of the flow), suspended sand load varies inversely with the grain size of suspended material, suggesting dependence on sediment supply. Sediment transport capacity can vary significantly at a given discharge depending on local hydraulic geometry, so it is likely that there is more spatial variability in bedload transport than suspended sand transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70100646','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70100646"><span>River turbidity and sediment loads during dam removal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.</p> <p>2012-01-01</p> <p>Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5038/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5038/"><span>Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bragg, Heather M.; Uhrich, Mark A.</p> <p>2010-01-01</p> <p>Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H23C0960B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H23C0960B"><span>Impacts of Landuse Management and Climate Change on Landslides Susceptibility over the Olympic Peninsula of Washington State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barik, M. G.; Adam, J. C.</p> <p>2009-12-01</p> <p>The commercial forests on the western side of the Olympic Mountains in Washington State are a region of steep slopes and high annual rainfall (2500-6000 mm/year) and are therefore highly susceptible to landslides. Potential climatic change (more intense and frequent winter storms) may exacerbate landslide susceptibility unless forest management practices are changed. As this area is a critical habitat for numerous organisms, including salmon, this may result in potentially severe consequences to riparian habitat due to increased sediment loads. Therefore, there is a need to investigate potential forest management plans to promote the economic viability of timber extraction while protecting the natural habitat, particularly in riparian areas. The objective of this study is to predict the long term effects of forest management decisions under projected climate change on slope stability. We applied the physically-based Distributed Hydrology Soil Vegetation Model (DHSVM) with its sediment module to simulate mass wasting and sediment delivery under different vegetation and climate scenarios. Sub-basins were selected and classified according to elevation, slope, land cover and soil type. Various land management practices (such as clear-cutting in riparian areas, logging under short rotations, varying amount of timbers left intact in riparian areas) were applied to each of the selected sub-basins. DHSVM was used to simulate landslide volume, frequency, and sediment loads for each of the land cover applications under various future climate scenarios. We comment on the suitability of various harvesting techniques for different parts of the forest to minimize landslide-induced sediment loading to streams in an altered climate. This approach can be developed as a decision making tool that can be used by forest managers to make long-term planning decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...141....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...141....1W"><span>Sediment entrainment into sea ice and transport in the Transpolar Drift: A case study from the Laptev Sea in winter 2011/2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wegner, C.; Wittbrodt, K.; Hölemann, J. A.; Janout, M. A.; Krumpen, T.; Selyuzhenok, V.; Novikhin, A.; Polyakova, Ye.; Krykova, I.; Kassens, H.; Timokhov, L.</p> <p>2017-06-01</p> <p>Sea ice is an important vehicle for sediment transport in the Arctic Ocean. On the Laptev Sea shelf (Siberian Arctic) large volumes of sediment-laden sea ice are formed during freeze-up in autumn, then exported and transported across the Arctic Ocean into Fram Strait where it partly melts. The incorporated sediments are released, settle on the sea floor, and serve as a proxy for ice-transport in the Arctic Ocean on geological time scales. However, the formation process of sediment-laden ice in the source area has been scarcely observed. Sediment-laden ice was sampled during a helicopter-based expedition to the Laptev Sea in March/April 2012. Sedimentological, biogeochemical and biological studies on the ice core as well as in the water column give insights into the formation process and, in combination with oceanographic process studies, on matter fluxes beneath the sea ice. Based on satellite images and ice drift back-trajectories the sediments were likely incorporated into the sea ice during a mid-winter coastal polynya near one of the main outlets of the Lena River, which is supported by the presence of abundant freshwater diatoms typical for the Lena River phytoplankton, and subsequently transported about 80 km northwards onto the shelf. Assuming ice growth of 12-19 cm during this period and mean suspended matter content in the newly formed ice of 91.9 mg l-1 suggests that a minimum sediment load of 8.4×104 t might have been incorporated into sea ice. Extrapolating these sediment loads for the entire Lena Delta region suggests that at least 65% of the estimated sediment loads which are incorporated during freeze-up, and up to 10% of the annually exported sediment load may be incorporated during an event such as described in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196899','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196899"><span>Testing a two-scale focused conservation strategy for reducing phosphorus and sediment loads from agricultural watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle</p> <p>2018-01-01</p> <p>This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p < 0.01) compared to the control watershed. This study demonstrated that a strategy that first identifies watersheds likely to respond to conservation efforts and then focuses implementation on relatively high-contributing fields within those watersheds can be successful in reducing stream P concentrations and loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50885','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50885"><span>The use of acoustic doppler meters to estimate sediment and nutrient concentrations in freshwater inflows to Texas coastal ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Zullmar Lucena; Micheal Lee</p> <p>2016-01-01</p> <p>Excessive sediment and nutrient loading are among the leading causes of impairment in water bodies of the United States due to their effect on biologic productivity, water quality, and aquatic food webs. Understanding the nutrient and suspended sediment loads affecting estuarine waters is fundamental to the assessment of the physical, chemical, and biological processes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0880/pdf/ds880.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0880/pdf/ds880.pdf"><span>Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Conn, Kathleen E.; Black, Robert W.</p> <p>2014-01-01</p> <p>Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...129....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...129....1S"><span>Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.</p> <p>2016-10-01</p> <p>Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5262/pdf/sir2006-5262.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5262/pdf/sir2006-5262.pdf"><span>Concentrations, loads, and yields of particle-associated contaminants in urban creeks, Austin, Texas, 1999-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Guilfoyle, A.L.; Sunvison, M.W.</p> <p>2006-01-01</p> <p>Concentrations, loads, and yields of particle-associated (hydrophobic) contaminants (PACs) in urban runoff in creeks in Austin, Texas, were characterized using an innovative approach: large-volume suspended-sediment sampling. This approach isolates suspended sediment from the water column in quantities sufficient for direct chemical analysis of PACs. During 1999-2004, samples were collected after selected rain events from each of five stream sites and Barton Springs for a study by the U.S. Geological Survey, in cooperation with the City of Austin. Sediment isolated from composited samples was analyzed for major elements, metals, organochlorine compounds, and polycyclic aromatic hydrocarbons (PAHs). In addition, at the Shoal Creek and Boggy Creek sites, individual samples for some events were analyzed to investigate within-event variation in sediment chemistry. Organochlorine compounds detected in suspended sediment included chlordane, dieldrin, DDD, DDE, DDT, and polychlorinated biphenyls (PCBs). Concentrations of PACs varied widely both within and between sites, with higher concentrations at the more urban sites and multiple nondetections at the least-urban sites. Within-site variation for metals and PAHs was smaller than between-site variation, and concentrations and yields of these and the organochlorine compounds correlated positively to the percentage of urban land use in the watershed. Loads of most PACs tested correlated significantly with suspended-sediment loads. Concentrations of most PACs correlated strongly with three measures of urban land use. Variation in suspended-sediment chemistry during runoff events was investigated at the Shoal and Boggy Creek sites. Five of the eight metals analyzed, dieldrin, chlordane, PCBs, and PAHs were detected at the highest concentrations in the first sample collected at the Shoal Creek site, a first-flush effect, but not at the Boggy Creek site. Temporal patterns in concentrations of DDT and its breakdown products varied from one event to the next. In spite of the first-flush effect in concentrations at the Shoal Creek site, most of the contaminant load was transported at peak discharge, when suspended-sediment concentration and load are maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59720&keyword=corridor&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59720&keyword=corridor&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>STREAM CORRIDOR RESTORATION AND ITS POTENTIAL TO IMPROVE WATER QUALITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Watershed stream corridors are being degraded by anthropogenic impacts of increased flow from runoff, sediment loading from erosion and contaminants such as nitrate from non-point sources. One solution is to restore stream corridors with bank stabilization and energy dissipation ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..538..429R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..538..429R"><span>The effect of flow data resolution on sediment yield estimation and channel design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.</p> <p>2016-07-01</p> <p>The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23673850','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23673850"><span>Wetland management reduces sediment and nutrient loading to the upper Mississippi river.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kreiling, Rebecca M; Schubauer-Berigan, Joseph P; Richardson, William B; Bartsch, Lynn A; Hughes, Peter E; Cavanaugh, Jennifer C; Strauss, Eric A</p> <p>2013-01-01</p> <p>Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha yr, 26 kg total N ha yr, and 20 kg total P ha yr. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m h. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197322"><span>Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.</p> <p>2018-01-01</p> <p>Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/wri/2003/4224/wri20034224.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/wri/2003/4224/wri20034224.pdf"><span>Effects of flow modification on a cattail wetland at the mouth of Irondequoit Creek near Rochester, New York: Water levels, wetland biota, sediment, and water quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coon, William F.</p> <p>2004-01-01</p> <p>An 11-year (1990-2001) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) wetland at the mouth of Irondequoit Creek, was conducted to document the effects that flow modifications, including installation of a flow-control structure (FCS) in 1997 and increased diversion of stormflows to the backwater areas of the wetland, would have on the wetland's ability to decrease chemical loads transported by Irondequoit Creek into Irondequoit Bay on Lake Ontario. The FCS was designed to raise the water-surface elevation and thereby increase the dispersal and detention of stormflows in the upstream half of the wetland; this was expected to promote sedimentation and microbial utilization of nutrients, and thereby decrease the loads of certain constituents, primarily phosphorus, that would otherwise be carried into Irondequoit Bay. An ecological monitoring program was established to document changes in the wetland's water levels, biota, sedimentation rates, and chemical quality of water and sediment that might be attributable to the flow modifications.Water-level increases during storms were mostly confined to the wetland area, within about 5,000 ft upstream from the FCS. Backwater at a point of local concern, about 13,000 ft upstream, was due to local debris jams or constriction of flow by bridges and was not attributable to the FCS.Plant surveys documented species richness, concentrations of nutrients and metals in cattail tissues, and cattail productivity. Results indicated that observed differences among survey periods and between the areas upstream and downstream from the FCS were due to seasonal changes in water levels—either during the current year or at the end of the previous year's growing season—that reflected the water-surface elevation of Lake Ontario, rather than water-level control by the FCS. Results showed no adverse effects from the naturally high water levels that prevail annually during the spring and summer in the wetland, nor from the short-duration increases in water levels that result from FCS operation. Fish surveys documented the use of the wetland by 44 species, of which 25 to 29 species were found in any given year. Community composition was relatively consistent during the study, but seasonal and year-to-year variations in dominant resident and nonresident species were noted, and probably reflected natural or regional population patterns in Lake Ontario and Irondequoit Bay. The FCS allowed fish passage at all water levels and had no discernible adverse effect on the fish community.Bird surveys documented the use of the wetland by more than 90 species for breeding, feeding, and migration. Ground-nesting birds were unaffected by the FCS. Seasonally high water levels, rather than short-duration increases caused by the FCS, might have caused the scarcity or absence of certain wetland species by limiting the extent of breeding habitat for some species and the exposure of mud flats that attracted other species. Some noticeably scarce or absent species also were rare or absent elsewhere along the south-central shore of Lake Ontario.Benthic-macroinvertebrate studies were of minimal use for evaluating the effect of the FCS because no surveys were conducted after FCS installation. The precontrol results allowed assessment of the ecological quality of the wetland on the basis of biotic indices, and generally indicated moderately to severely impaired conditions. Differences between the macroinvertebrate communities in the southern part of the wetland and those in the northern part were attributed to habitat differences, such as substrate composition, water depth, and density of submerged aquatic vegetation.Sedimentation rates in the areas upstream and downstream from the FCS increased after the flow modifications, more in the area upstream from the FCS than in the downstream area. The concurrent downstream increase and the dynamic patterns of deposition and scour indicated that although the FCS and the other flow modifications undoubtedly were major factors in the postcontrol upstream increase in sedimentation rates, other factors, such as the magnitude, frequency, and the timing (season) of peak flows, might also have contributed.Periodic analyses of sediment samples from three longterm depositional sites in the wetland documented the concentrations of major and trace elements, polycyclic aromatic hydrocarbons, and organochlorine and organophosphate compounds. The concentrations of most constituents showed no substantial fluctuation or consistent upward or downward trend during the years sampled, nor did they identify any change after FCS installation. Comparison of the measured concentrations with sediment-quality guidelines that are used to assess the ecological quality of substrate environments indicated that the wetland was moderately to severely impaired—an assessment consistent with the benthic-macroinvertebrate biotic indices.During the precontrol period (1990–96), the wetland was a sink for particulate constituents (removal efficiencies for total phosphorus and total suspended solids were 28 and 47 percent, respectively), but had little effect on conservative constituents (chloride and sulfate). The wetland was a source of orthophosphate and ammonia (removal efficiencies were -38 and -84 percent, respectively).During the postcontrol period (1997–2001), the wetland continued to be a sink for particulate constituents (removal efficiencies for total phosphorus and total suspended solids were 45 and 52 percent, respectively); the exportation of orthophosphate by the wetland decreased (by 7 percent), whereas that of ammonia increased (by about 70 percent). The outflow loads of orthophosphate and ammonia represented about 15 and 2.3 percent of total phosphorus and total nitrogen loads, respectively. Changes in the loads of conservative constituents were negligible, and the overall removal efficiencies for other constituents during the precontrol period differed from those of the postcontrol period by no more than 5.4 percent.Statistical analyses of monthly inflow and outflow loads indicated significant differences between inflow and outflow loads of most constituents during the pre- and postcontrol periods. Load data were adjusted to remove the effects of dissimilar hydrologic conditions that prevailed during the pre- and postcontrol periods, and to isolate the water-quality-improvement effect that could be attributed solely to the FCS. Results indicated that the FCS contributed significantly to the decrease in total phosphorus loads, and slightly to a decrease in ammonia-plus-organic nitrogen loads, but had little or no significant effect on loads of other constituents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17520933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17520933"><span>Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik</p> <p>2007-04-01</p> <p>Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..553...35V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..553...35V"><span>A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vauchel, Philippe; Santini, William; Guyot, Jean Loup; Moquet, Jean Sébastien; Martinez, Jean Michel; Espinoza, Jhan Carlo; Baby, Patrice; Fuertes, Oscar; Noriega, Luis; Puita, Oscar; Sondag, Francis; Fraizy, Pascal; Armijos, Elisa; Cochonneau, Gérard; Timouk, Franck; de Oliveira, Eurides; Filizola, Naziano; Molina, Jorge; Ronchail, Josyane</p> <p>2017-10-01</p> <p>The Madeira River is the second largest tributary of the Amazon River. It contributes approximately 13% of the Amazon River flow and it may contribute up to 50% of its sediment discharge to the Atlantic Ocean. Until now, the suspended sediment load of the Madeira River was not well known and was estimated in a broad range from 240 to 715 Mt yr-1. Since 2002, the HYBAM international network developed a new monitoring programme specially designed to provide more reliable data than in previous intents. It is based on the continuous monitoring of a set of 11 gauging stations in the Madeira River watershed from the Andes piedmont to the confluence with the Amazon River, and discrete sampling of the suspended sediment concentration every 7 or 10 days. This paper presents the results of the suspended sediment data obtained in the Madeira drainage basin during 2002-2011. The Madeira River suspended sediment load is estimated at 430 Mt yr-1 near its confluence with the Amazon River. The average production of the Madeira River Andean catchment is estimated at 640 Mt yr-1 (±30%), the corresponding sediment yield for the Andes is estimated at 3000 t km-2 yr-1 (±30%), and the average denudation rate is estimated at 1.20 mm yr-1 (±30%). Contrary to previous results that had mentioned high sedimentation rates in the Beni River floodplain, we detected no measurable sedimentation process in this part of the basin. On the Mamoré River basin, we observed heavy sediment deposition of approximately 210 Mt yr-1 that seem to confirm previous studies. But while these studies mentioned heavy sedimentation in the floodplain, we showed that sediment deposition occurred mainly in the Andean piedmont and immediate foreland in rivers (Parapeti, Grande, Pirai, Yapacani, Chimoré, Chaparé, Secure, Maniqui) with discharges that are not sufficiently large to transport their sediment load downstream in the lowlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25603259','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25603259"><span>Spatial characterization of riparian buffer effects on sediment loads from watershed systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Momm, Henrique G; Bingner, Ronald L; Yuan, Yongping; Locke, Martin A; Wells, Robert R</p> <p>2014-09-01</p> <p>Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6006D"><span>Land factors affecting soil erosion during snow melting: a case study from Lebanon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darwich, Talal</p> <p>2014-05-01</p> <p>Soil erosion is one of the major problems facing the mountainous agricultural lands in Lebanon. In order to assess the land factors acting on soil erosion; a study was conducted in the upper watershed of Ibrahim River in the spring months of April, May and June. Water and bed load sediments from six locations alimented by six sub-basins were sampled. Four sub-basins (1, 2, 3 and 6) were dominated by agricultural lands while lands in sub-basins 4 and 7 were occupied by grassland and bare soils. The highest quantities of suspended sediments were found in waters originating from watersheds dominated by agricultural lands, such as Location 2 (713.72 mg L-1 in April 2012). Low clay content and the combination of land occupation (orchards = 71%) and slope (20.7 degrees) caused this ecosystem disturbance. Locations 1, 2, 3 and 6 were alimented by runoff water due to the melting of the snow. For this, the concentrations of sediments decreased by 4 fold between April and May in sub-basin 1 and by 11-14 fold in sub-basins 2, 3 and 6. Globally, some 1669.4 tons of sediments were delivered in the upper river during April. Bed load sediments were separated into 4 classes according to their size. The size of the particles found in the bed load reflected to a large extent the type of soils surrounding the watershed. The range of sand in the regions surrounding locations 6 and 7 was 64% and 82%, while the average in the bed load was 80.9% and 78.25% respectively. The silt content in locations 2, 3 and 5 was well reflected in the concentrations of silt in the bed load. In bed load samples, the exchangeable potassium ranged from 70-250 mg kg-1 in sub-basins dominated by agricultural lands against 20-50 mg kg-1 in sub-basins dominated by grassland and bare rocks. Further quantitative studies need to be conducted especially during the first rains to fully estimate the water load sediments after a prolonged dry season, characterizing the east Mediterranean. Action must be taken for land conservation by improving the farmer's practices, modifying the frequency of plowing and introducing no tillage beside the maintenance of terraces. Keywords: Mountains, erosion, sediments, East Mediterranean, river, bed load quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20969804-year-sediment-record-black-carbon-polycyclic-aromatic-hydrocarbons-near-emep-air-monitoring-station-aspvreten-sweden','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20969804-year-sediment-record-black-carbon-polycyclic-aromatic-hydrocarbons-near-emep-air-monitoring-station-aspvreten-sweden"><span>A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marie Elmquist; Zdenek Zencak; Oerjan Gustafsson</p> <p>2007-10-15</p> <p>In view of poor constraints on historical combustion emissions, past environmental loadings of black carbon (BC) and polycyclic aromatic hydrocarbon (PAH) were reconstructed from dated lake sediment cores collected 70 km south of Stockholm, Sweden. Compared to several dramatic variations over the recent 150 years, the preindustrial loadings were steady within {+-}50% through the entire medieval with BC fluxes of 0.071 g m{sup -2} yr{sup -1} and PAH fluxes of 6 g m{sup -2} yr{sup -1}. In the wood-burning dominated century leading up to the industrial revolution around 1850, increasing BC fluxes were leading PAH fluxes. BC fluxes reached theirmore » millennial-scale maximum around 1920, whereas PAH fluxes increased exponentially to its record maximum around 1960, 50-fold above preindustrial values. For 1920-1950, BC fluxes consistently decreased as PAH fluxes kept increasing. Coal and coke represented >50% of the Swedish energy market in the 1930s. Combined with sharply decreasing (1,7-)/(1,7{+-}2,6-dimethylphenanthrene), indicative of diminishing wood combustion, and decreasing methylphenanthrenes/phenanthrene, indicative of higher-temperature combustion (coal instead of wood), the sediment archive suggests that the relative BC/PAH emission factors thus are lower for coal than for wood combustion. For the first time, both BC and PAH fluxes decreased after 1960. This trend break is a testament to the positive effects of decreasing reliance on petroleum fuels and a number of legislative actions aimed at curbing emissions and by 1990, the loading of BC was back at preindustrial levels, whereas that of PAH were the lowest since the 1910s. However, for the most recent period (1990-2004) the BC and PAH fluxes are no longer decreasing. 55 refs., 3 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP43C2294F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP43C2294F"><span>Incorporating Sediment Compaction Into a Gravitationally Self-consistent Model for Global Sea-level Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrier, K.; Mitrovica, J. X.</p> <p>2015-12-01</p> <p>In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017467','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017467"><span>Effect of organic loading on nitrification and denitrification in a marine sediment microcosm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.</p> <p>1993-01-01</p> <p>The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018077','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018077"><span>Denitrification and mixing in a stream-aquifer system: Effects on nitrate loading to surface water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McMahon, P.B.; Böhlke, J.K.</p> <p>1996-01-01</p> <p>Ground water in terrace deposits of the South Platte River alluvial aquifer near Greeley, Colorado, USA, had a median nitrate concentration of 1857 ??mol l-1. Median nitrate concentrations in ground water from adjacent floodplain deposits (468 ??mol l-1) and riverbed sediments (461 ??mol l-1), both of which are downgradient from the terrace deposits, were lower than the median concentration in the terrace deposits. The concentrations and ??15N values of nitrate and N2 in ground water indicated that denitrifying activity in the floodplain deposits and riverbed sediments accounted for 15- 30% of the difference in nitrate concentrations. Concentrations of Cl- and SiO2 indicated that mixing between river water and ground water in the floodplain deposits and riverbed sediments accounted for the remainder of the difference in nitrate concentrations. River flux measurements indicated that ground-water discharge in a 7.5 km segment of river had a nitrate load of 1718 kg N day-1 and accounted for about 18% of the total nitrate load in the river at the downstream end of that segment. This nitrate load was 70% less than the load predicted on the basis of the median nitrate concentration in the terrace deposits and assuming no denitrification or mixing in the aquifer. Water exchange between the river and aquifer caused ground water that originally discharged to the river to reenter denitrifying sediments in the riverbed and floodplain, thereby further decreasing the nitrate load in this stream-aquifer system. Results from this study indicated that denitrification and mixing within alluvial aquifer sediments may substantially decrease the nitrate load added to rivers by discharging ground water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034541','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034541"><span>Landscape evolution in south-central Minnesota and the role of geomorphic history on modern erosional processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gran, K.B.; Belmont, P.; Day, S.S.; Finnegan, N.; Jennings, C.; Lauer, J.W.; Wilcock, P.R.</p> <p>2011-01-01</p> <p>The Minnesota River Valley was carved during catastrophic drainage of glacial Lake Agassiz at the end of the late Pleistocene. The ensuing base-level drop on tributaries created knickpoints that excavated deep valleys as they migrated upstream. A sediment budget compiled in one of these tributaries, the Le Sueur River, shows that these deep valleys are now the primary source of sediment to the Minnesota River. To compare modern sediment loads with pre-European settlement erosion rates, we analyzed incision history using fluvial terrace ages to constrain a valley incision model. Results indicate that even thoughthe dominant sediment sources are derived from natural sources (bluffs, ravines, and streambanks), erosion rates have increased substantially, due in part to pervasive changes in watershed hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614686S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614686S"><span>Laminar laboratory rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Éric; Métivier, François</p> <p>2014-05-01</p> <p>A viscous fluid flowing over fine plastic grains spontaneously channelizes into a few centimeters-wide river. After reaching its equilibrium shape, this stable laboratory flume is able to carry a steady load of sediments, like many alluvial rivers. When the sediment discharge vanishes, the river size, shape and slope fit the threshold theory proposed by Glover and Florey (1951), which assumes that the Shields parameter is critical on the channel bed. As the sediment discharge is increased, the river widens and flattens. Surprisingly, the aspect ratio of its cross section depends on the sediment discharge only, regardless of the water discharge. We propose a theoretical interpretation of these findings based on the balance between gravity, which pulls particles towards the center of the channel, and the diffusion of bedload particles, which pushes them away from areas of intense bedload.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.303..299C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.303..299C"><span>The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.</p> <p>2018-02-01</p> <p>Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=295046','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=295046"><span>Storm flow dynamics and loads of fecal bacteria associated with ponds in southern piedmont and coastal plain watersheds with animal agriculture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Storm events that increase hydrologic flow rates can disturb sediments and produce overland runoff in watersheds with animal agriculture, and, thus, can increase surface water concentrations of fecal bacteria and risk to public health. We tested the hypothesis that strategically placed ponds in wate...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5127/sir20155127.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5127/sir20155127.pdf"><span>Characteristics of sediment transport at selected sites along the Missouri River, 2011–12</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rus, David L.; Galloway, Joel M.; Alexander, Jason S.</p> <p>2015-10-22</p> <p>The Modified-Einstein Procedure tended to predict greater total-sediment loads when compared to measured values. These differences may be the result of sediment deficits in the Missouri River that lead to an overprediction by the Modified-Einstein Procedure, the unsampled zone above the streambed that leads to an underprediction by the suspended sampler, or general uncertainty in the sampling approach. The differences between total-sediment load obtained through measurements and that estimated from applied theoretical procedures such as the Modified-Einstein Procedure pose a challenge for reliably characterizing total-sediment transport. Though it is not clear which of the two techniques is more accurate, the general tendency of the two to be within an order of magnitude of one another may be adequate for many sediment studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2016/3035/fs20163035.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2016/3035/fs20163035.pdf"><span>May through July 2015 storm event effects on suspended-sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foster, Guy M.; King, Lindsey R.</p> <p>2016-06-20</p> <p>The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/721/pdf/ds721.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/721/pdf/ds721.pdf"><span>Atmospheric deposition, water-quality, and sediment data for selected lakes in Mount Rainer, North Cascades, and Olympic National Parks, Washington, 2008-10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sheibley, Rich W.; Foreman, James R.; Moran, Patrick W.; Swarzenski, Peter W.</p> <p>2012-01-01</p> <p>To evaluate the potential effect from atmospheric deposition of nitrogen to high-elevation lakes, the U.S. Geological Survey partnered with the National Park Service to develop a "critical load" of nitrogen for sediment diatoms. A critical load is defined as the level of a given pollutant (in this case, nitrogen) at which detrimental effects to a target endpoint (sediment diatoms) result. Because sediment diatoms are considered one of the "first responders" to ecosystem changes from nitrogen, they are a sensitive indicator for nitrogen deposition changes in natural areas. This report presents atmospheric deposition, water quality, sediment geochronology, and sediment diatom data collected from July 2008 through August 2010 in support of this effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027581','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027581"><span>Sediment calibration strategies of Phase 5 Chesapeake Bay watershed model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, J.; Shenk, G.W.; Raffensperger, Jeff P.; Moyer, D.; Linker, L.C.; ,</p> <p>2005-01-01</p> <p>Sediment is a primary constituent of concern for Chesapeake Bay due to its effect on water clarity. Accurate representation of sediment processes and behavior in Chesapeake Bay watershed model is critical for developing sound load reduction strategies. Sediment calibration remains one of the most difficult components of watershed-scale assessment. This is especially true for Chesapeake Bay watershed model given the size of the watershed being modeled and complexity involved in land and stream simulation processes. To obtain the best calibration, the Chesapeake Bay program has developed four different strategies for sediment calibration of Phase 5 watershed model, including 1) comparing observed and simulated sediment rating curves for different parts of the hydrograph; 2) analyzing change of bed depth over time; 3) relating deposition/scour to total annual sediment loads; and 4) calculating "goodness-of-fit' statistics. These strategies allow a more accurate sediment calibration, and also provide some insightful information on sediment processes and behavior in Chesapeake Bay watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=350238','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=350238"><span>Streambank alluvial unit contributions to suspended sediment and total phosphorus loads, Walnut Creek, Iowa, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Streambank erosion may represent a significant source of sediment and P to overall watershed loads, however, watershed-scale quantification of contributions are rare. In addition, streambanks are often comprised of highly-variable stratigraphic source materials (e.g., alluvial deposits), which may d...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311788&keyword=core&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311788&keyword=core&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A method for estimation of historic contaminant loads using dated sediment cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Dated sediment cores were used to assess the history of contaminant loads. The contaminant selected must be one that is not significantly remobilized by post depositional processes such as diagenesis. In addition, the core must be from an area with a high deposition rate and litt...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19700840','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19700840"><span>Factors influencing release of phosphorus from sediments in a high productive polymictic lake system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solim, S U; Wanganeo, A</p> <p>2009-01-01</p> <p>Phosphorus (P) release rates from bottom sediments are high (20.6 mg/m(2)/day) in Dal Lake (India), a polymictic hyper-eutrophic lake. These gross release rates occur over a period of 72 days during summer only. Likewise, a net internal load of 11.3 tons was obtained from mass balance estimates. Significant proportion i.e. approximately 80% of 287.3 tons/yr of nitrate nitrogen (NO(3)-N) load is either eliminated by denitrification or gets entrapped for a short period in high macrophyte biomass of 3.2 kg/m(2) f.w., which eventually get decomposed and nitrogen (N) is released back. These processes result in low lake water NO(3)-N concentrations which potentially influence sediment phosphorus (P) release. Especially, nitrate nitrogen (NO(3)-N) <500 microg/L in the lake waters were associated with high P concentrations. Phosphorus was also observed to increase significantly in relation to temperature and pH, and it seems likely that release of phosphorus and ammonical nitrogen (NH(4)-N) depend on decomposition of rich reserves of organic matter (893 tons d.w. in superficial 10-cm bottom sediment layer). Lake P concentrations were significantly predicted by a multivariate regression model developed for the lake. This study describes significance of various lake water variables in relation to P-release from bottom sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/230842-mercury-other-metals-sediments-lakes-from-northern-canada','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/230842-mercury-other-metals-sediments-lakes-from-northern-canada"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lockhart, L.; Ramial, K.; Wilkinson, P.</p> <p></p> <p>Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25464304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25464304"><span>Mixture design and treatment methods for recycling contaminated sediment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lei; Kwok, June S H; Tsang, Daniel C W; Poon, Chi-Sun</p> <p>2015-01-01</p> <p>Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO2 curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO2 (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.4423Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.4423Z"><span>Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.</p> <p>2017-10-01</p> <p>The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.106..379N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.106..379N"><span>Influence of salinity intrusion on the speciation and partitioning of mercury in the Mekong River Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noh, Seam; Choi, Mijin; Kim, Eunhee; Dan, Nguyen Phuoc; Thanh, Bui Xuan; Ha, Nguyen Thi Van; Sthiannopkao, Suthipong; Han, Seunghee</p> <p>2013-04-01</p> <p>The lower Mekong and Saigon River Basins are dominated by distinctive monsoon seasons, dry and rainy seasons. Most of the Mekong River is a freshwater region during the rainy season, whereas during the dry season, salt water intrudes approximately 70 km inland. To understand the role of salinity intrusion controlling Hg behavior in the Mekong and Saigon River Basins, Hg and monomethylmercury (MMHg) in surface water and sediment of the Mekong River and in sediment of the Saigon River were investigated in the dry season. Sediment Hg distribution, ranging from 0.12 to 0.76 nmol g-1, was mainly controlled by organic carbon distribution in the Mekong River; however, the location of point sources was more important in the Saigon River (0.21-0.65 nmol g-1). The MMHg concentrations in Mekong (0.16-6.1 pmol g-1) and Saigon (0.70-8.7 pmol g-1) sediment typically showed significant increases in the estuarine head, with sharp increases of acid volatile sulfide. Unfiltered Hg (4.6-222 pM) and filtered Hg (1.2-14 pM) in the Mekong River increased in the estuarine zone due to enhanced particle loads. Conversely, unfiltered MMHg (0.056-0.39 pM) and filtered MMHg (0.020-0.17 pM) was similar between freshwater and estuarine zones, which was associated with mixing dilution of particulate MMHg by organic- and MMHg-depleted resuspended sediment. Partitioning of Hg between water and suspended particle showed tight correlation with the partitioning of organic carbon across study sites, while that of MMHg implied influences of chloride: enhanced chloride in addition to organic matter depletion decreased particulate MMHg in the estuarine zone. Primary production was an important determinant of inter-annual variation of particulate Hg and sediment MMHg. The bloom year showed relatively low particulate Hg with low C/N ratio, indicating biodilution of Hg. In contrast, the percentage of MMHg in sediment increased significantly in the bloom year, likely due to greater availability of metabolizable fresh organic matter. The overall results emphasize that Hg behavior in the lower Mekong River Basin is strongly connected to the local monsoon climate, via alterations in particle loads, biological productivity, and availability of sulfate, chloride and organic matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.5362E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.5362E"><span>First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter</p> <p>2015-07-01</p> <p>The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these orogenic systems. We show that the observed model behavior is consistent with observations from a number of natural orogenic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....12774B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....12774B"><span>Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.</p> <p>2003-04-01</p> <p>The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows of an increase flux of metals, nutrients and hydrogen sulfide. Acknowledgements: The study was supported by German Science Foundation within the DFG-research group "BioGeoChemistry of the Waddensea" and Max Planck Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034618','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034618"><span>From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, Sandra M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L.</p> <p>2011-01-01</p> <p>The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km2/year during 2006 and 5,950 kg/km2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment – whereas large dams limit sediment supply from larger tributaries – to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river–floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality management includes reducing fine sediment contributions that can couple with other pollutants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP31C3577B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP31C3577B"><span>Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.</p> <p>2014-12-01</p> <p>In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary results from this study demonstrate the biogeomorphic relationships between hydrologic regime, vegetation establishment, and sediment storage within the MRB. An understanding of these relationships will aid in development and implication of management actions necessary to address sediment related impairments in the MRB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP31B1003C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP31B1003C"><span>River Suspended Sediment and Particulate Organic Carbon Transport in Two Montane Catchments in the Luquillo Critical Zone Observatory of Puerto Rico over 25 years: 1989 to 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.</p> <p>2015-12-01</p> <p>Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27548952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27548952"><span>[GIS Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediments of Shallow Lakes in Jiangsu Province].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Ying-jie; Zhang, Lie-yu; Wu, Yi-wen; Li, Cao-le; Yang, Tian-xue; Tang, Jun</p> <p>2016-04-15</p> <p>To understand pollution of heavy metals in surface sediments of shallow lakes, surface sediments samples of 11 lakes in Jiangsu province were collected to determine the content of six heavy metals including As, Cr, Cu, Pb, Zn and Ni. GIS was used to analyze the spatial distribution of heavy metals, and geological accumulation index (Igeo), modified contamination index (mCd) pollution load index (PLI) and potential ecological risk index (RI) were used to evaluate heavy metal contamination in the sediments. The results showed that: in the lakes' surface sediments, the average content of As, Cu, Zn, Cr, Pb, Ni in multiples of soil background of Jiangsu province were 1.74-3.85, 0.65-2.66, 0.48-3.56, 0.43-1.52, 0.02-1.49 and 0.12-1.42. According to the evaluation results of Igeo and RI, As, which had high degree of enrichment and great potential ecological risk, was the main pollutant, followed by Cu, and pollution of the rest of heavy metals was relatively light. Combining the results of several evaluation methods, in surface sediments of Sanjiu Lake, Gaoyou Lake and Shaobo Lake, these heavy metals had the most serious pollution, the maximum pollution loading and moderate potential ecological risk; in surface sediments of Gehu Lake, Baima Lake and Hongze Lake, some regions were polluted by certain metals, the overall trend of pollution was aggravating, the pollution loading was large, and the potential ecological risk reached moderate; in the other 5 lakes, the risk of sediments polluted by heavy metals, as well as the pollution loading, was small, and the overall was not polluted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148363','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148363"><span>Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott</p> <p>2015-01-01</p> <p>Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS33B1061M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS33B1061M"><span>Assessing Subaqueous Mudflow Hazard on the Mississippi River Delta Front, Part 1: A Historical Perspective on Mississippi River Delta Front Sedimentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maloney, J. M.; Bentley, S. J.; Obelcz, J.; Xu, K.; Miner, M. D.; Georgiou, I. Y.; Hanegan, K.; Keller, G.</p> <p>2014-12-01</p> <p>Subaqueous mudflows are known to be ubiquitous across the Mississippi River delta front (MRDF) and have been identified as a hazard to offshore infrastructure. Among other factors, sediment accumulation rates and patterns play an important role in governing the stability of delta front sediment. High sedimentation rates result in underconsolidation, slope steepening, and increased biogenic gas production, which are all known to decrease stability. Sedimentation rates are highly variable across the MRDF, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River sediment into the Gulf of Mexico. Since the 1950s, the sediment load of the Mississippi River has decreased by ~50% due to dam construction upstream. The impact of this decreased sediment load on MRDF mudflow dynamics has yet to be examined. We compiled MRDF bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009, in order to identify historic trends in sedimentation patterns. The progradation of Southwest Pass (measured at 10 m depth contour) has slowed from ~66 m/yr between 1764 and 1940 to ~25 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre. Advancement of the delta also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward ~25 m/yr, but did not advance from 1979-2005. Furthermore, over the same area and time ranges, the sediment accumulation rate decreased by ~82%. We expect these sedimentation trends are occurring across the delta front, with potential impacts on spatial and temporal patterns of subaqueous mudflows. The MRDF appears to be entering a phase of decline, which will likely be accelerated by future upstream sediment diversion projects. New geophysical data will be required to assess potential mudflow hazards associated with new MRDF sedimentation rates and patterns (See Part 2, Obelcz et al.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H51I0725S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H51I0725S"><span>Predicting watershed sediment yields after wildland fire with the InVEST sediment retention model at large geographic extent in the western USA: accuracy and uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sankey, J. B.; Kreitler, J.; McVay, J.; Hawbaker, T. J.; Vaillant, N.; Lowe, S. E.</p> <p>2014-12-01</p> <p>Wildland fire is a primary threat to watersheds that can impact water supply through increased sedimentation, water quality decline, and change the timing and amount of runoff leading to increased risk from flood and sediment natural hazards. It is of great societal importance in the western USA and throughout the world to improve understanding of how changing fire frequency, extent, and location, in conjunction with fuel treatments will affect watersheds and the ecosystem services they supply to communities. In this work we assess the utility of the InVEST Sediment Retention Model to accurately characterize vulnerability of burned watersheds to erosion and sedimentation. The InVEST tools are GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., RUSLE -Revised Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. We evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured post-fire sedimentation rates available for many watersheds in different rainfall regimes throughout the western USA from an existing, large USGS database of post-fire sediment yield [synthesized in Moody J, Martin D (2009) Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire 18: 96-115]. The ultimate goal of this work is to calibrate and implement the model to accurately predict variability in post-fire sediment yield as a function of future landscape heterogeneity predicted by wildfire simulations, and future landscape fuel treatment scenarios, within watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Geomo.139....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Geomo.139....1G"><span>Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goode, Jaime R.; Luce, Charles H.; Buffington, John M.</p> <p>2012-02-01</p> <p>The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to increase sediment yield primarily through changes in temperature and hydrology that promote vegetation disturbances (i.e., wildfire, insect/pathogen outbreak, drought-related die off). Here, we synthesize existing data from central Idaho to explore (1) how sediment yields are likely to respond to climate change in semi-arid basins influenced by wildfire, (2) the potential consequences for aquatic habitat and water resource infrastructure, and (3) prospects for mitigating sediment yields in forest basins. Recent climate-driven increases in the severity and extent of wildfire suggest that basin-scale sediment yields within the next few years to decades could be greater than the long-term average rate of 146 T km - 2 year - 1 observed for central Idaho. These elevated sediment yields will likely impact downstream reservoirs, which were designed under conditions of historically lower sediment yield. Episodic erosional events (massive debris flows) that dominate post-fire sediment yields are impractical to mitigate, leaving road restoration as the most viable management opportunity for offsetting climate-related increases in sediment yield. However, short-term sediment yields from experimental basins with roads are three orders of magnitude smaller than those from individual fire-related events (on the order of 10 1 T km - 2 year - 1 compared to 10 4 T km - 2 year - 1 , respectively, for similar contributing areas), suggesting that road restoration would provide a relatively minor reduction in sediment loads at the basin-scale. Nevertheless, the ecologically damaging effects of fine sediment (material < 6 mm) chronically produced from roads will require continued management efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54.1549B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54.1549B"><span>Nutrient Fluxes From Profundal Sediment of Ultra-Oligotrophic Lake Tahoe, California/Nevada: Implications for Water Quality and Management in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beutel, Marc W.; Horne, Alexander J.</p> <p>2018-03-01</p> <p>A warming climate is expected to lead to stronger thermal stratification, less frequent deep mixing, and greater potential for bottom water anoxia in deep, temperate oligotrophic lakes. As a result, there is growing interest in understanding nutrient cycling at the profundal sediment-water interface of these rare ecosystems. This paper assessed nutrient content and nutrient flux rates from profundal sediment at Lake Tahoe, California/Nevada, USA. Sediment is a large reservoir of nutrients, with the upper 5 cm containing reduced nitrogen (˜6,300 metric tons) and redox-sensitive phosphorus (˜710 metric tons) equivalent to ˜15 times the annual external load. Experimental results indicate that if deep water in Lake Tahoe goes anoxic, profundal sediment will release appreciable amounts of phosphate (0.13-0.29 mg P/m2·d), ammonia (0.49 mg N/m2·d), and iron to overlaying water. Assuming a 10 year duration of bottom water anoxia followed by a deep-water mixing event, water column phosphate, and ammonia concentrations would increase by an estimated 1.6 µg P/L and 2.9 µg N/L, nearly doubling ambient concentrations. Based on historic nutrient enrichment assays this could lead to a ˜40% increase in algal growth. Iron release could have the dual effect of alleviating nitrate limitation on algal growth while promoting the formation of fine iron oxyhydroxide particles that degrade water clarity. If the depth and frequency of lake mixing decrease in the future as hydrodynamic models suggest, large-scale in-lake management strategies that impede internal nutrient loading in Lake Tahoe, such as bottom water oxygen addition or aluminum salt addition, may need to be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41D..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41D..02D"><span>Fluvial gravel stabilization by net-spinning Hydropsychid caddisflies: exploring the magnitude and geographic scope of ecosystem engineering effect and evaluating resistance to anthropogenic stresses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.</p> <p>2017-12-01</p> <p>Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70116316','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70116316"><span>Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kroes, Daniel E.; Kraemer, Thomas F.</p> <p>2013-01-01</p> <p>The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H51F0955W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H51F0955W"><span>Effects of the First Floods on Water Quality and Sediment Transport in the Sierra Nevada Foothill Streams, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z.; Baca, J.; He, Z.; Blunmenshine, S.</p> <p>2010-12-01</p> <p>The typical Mediterranean climate of California (wet winter and spring season followed by dry summer and fall season) makes it necessary to closely monitor the first few floods in early November or December when the accumulated surface matters in the past rainless months would be flushed into the streams causing water quality impairment and sediment mobilization. In order to evaluate the effects of the first floods, two storm water samplers were installed, one on the main stem of the Fresno River and the other on the Coarsegold tributary. The storm water sampler collects two different samples during a storm event. The “first flush” sample is collected at the beginning of a storm event and the “time weighted” composite sample is collected at selected intervals during the storm. Nutrient contents in all the water samples were measured to evaluate water quality status, and the fine particle size distributions of the suspended sediments in the flood water were measured using laser diffraction. Results show that: (1)The effects of the first floods are significant: it cleans the tributary (nutrient losing) streams while aggravating nutrient loadings in the main stem of the river; (2) The sediment flux in the upper areas of the watershed is generally low, however it increases ten folds during the flood in the lower part of the watershed, loading large amounts of sediments in the Hensley Lake; and (3) After the first floods, the river channel is typically deposited with increased amount of very fine (< 2 micros) and very coarse particles (>200 microns), causing significant substrate siltation thus affecting habitat quality for the stream biota. The hydrology of the first floods needs to be further studied for water quality assessment in the Mediterranean climate regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.7013S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.7013S"><span>Vertical motions of passive margins of Greenland: influence of ice sheet, glacial erosion, and sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Souche, A.; Medvedev, S.; Hartz, E. H.</p> <p>2009-04-01</p> <p>The sub-ice topography of Greenland is characterized by a central depression below the sea level and by elevated (in some places significantly) margins. Whereas the central depression may be explained by significant load of the Greenland ice sheet, the origin of the peripheral relief remains unclear. We analyze the influence of formation of the ice sheet and carving by glacial erosion on the evolution of topography along the margins of Greenland. Our analysis shows that: (1) The heavy ice loading in the central part of Greenland and consecutive peripheral bulging has a negligible effect on amplitude of the uplifted Greenland margins. (2) First order estimates of uplift due to isostatic readjustment caused by glacial erosion and unloading in the fjord systems is up to 1.1 km. (3) The increase of accuracy of topographic data (comparing several data sets of resolution with grid size from 5 km to 50 m) results in increase of the isostatic response in the model. (4) The analysis of mass redistribution during erosion-sedimentation process and data on age of offshore sediments allows us to estimate the timing of erosion along the margins of Greenland. This ongoing analysis, however, requires careful account for the link between sources (localized glacial erosion) and sinks (offshore sedimentary basins around Greenland).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5033/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5033/"><span>Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soler-López, Luis R.</p> <p>2007-01-01</p> <p>The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1995/4222/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1995/4222/report.pdf"><span>Sediment transport, particle size, and loads in North Fish Creek in Bayfield County, Wisconsin, water years 1990-91</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rose, W.J.; Graczyk, D.J.</p> <p>1996-01-01</p> <p>There was little relation between watershed area and sediment loads for the three sites. The watershed of site C is about 41 percent of that of site A, but the sand load at site C was only 1 percent of that at site A. The watershed area between sites B and C is 40 percent of that above site A, but this area yielded 49 percent of the sand load at site A. Nineteen percent of the watershed above site A is between sites A and B, yet this area yielded about 50 percent of the sand load at site A.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51H0503R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51H0503R"><span>Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randall, M.; Carling, G. T.; Nelson, S.; Bickmore, B.; Miller, T.</p> <p>2016-12-01</p> <p>An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to nutrient inputs. Utah Lake, located in northern Utah, is a eutrophic freshwater lake that is unique because it is naturally shallow, turbid, and alkaline with high dissolved oxygen levels. Recently, the Utah Division of Water Quality has proposed a new rule to limit phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study is to characterize the fate and mobility of P in Utah Lake to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 9 locations across Utah Lake. P concentrations in sediment ranged from 1120 to 1610 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Likewise, P concentrations in sediment pore water were highest in Provo Bay with concentrations up to 4 mg/L. Sequential leach tests indicate that 30-45% of P is bound to apatite and another 40-55% is adsorbed onto the surface of redox sensitive Fe/Mn hydroxides. This was confirmed by SEM images, which showed the highest P concentrations correlating with both Ca (apatite) and Fe (Fe hydroxides). The apatite-bound P fraction is likely immobile, but the P fraction sorbed to Fe/Mn hydroxides is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% of P from spiked surface water with concentrations ranging from 1-10 mg/L. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond reducing nutrient loads to the water body and requires a better understanding of internal P cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53G..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53G..07C"><span>Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carling, G. T.; Randall, M.; Nelson, S.; Rey, K.; Hansen, N.; Bickmore, B.; Miller, T.</p> <p>2017-12-01</p> <p>An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to anthropogenic nutrient inputs. Utah Lake is a unique eutrophic freshwater lake that is naturally shallow, turbid, and alkaline with high dissolved oxygen levels that has experienced severe algal blooms in recent years. Recently, the Utah Division of Water Quality has proposed a new limitation of phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study was to characterize the fate and mobility of P in Utah Lake sediments to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 15 locations across Utah Lake. P concentrations in sediment ranged from 615 to 1894 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Sequential leach tests indicate that 25-50% of P is associated with Ca (CaCO₃/ Ca10(PO4)6(OH,F,Cl)2 ≈ P) and 40-60% is associated with Fe (Fe(OOH) ≈ P). Ca-associated P was confirmed by SEM images, which showed the highest P concentrations correlating with Ca (carbonate minerals/apatite). The Ca-associated P fraction is likely immobile, but the Fe-bound P is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% removal over the range of 1-10 mg/L P. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be temporarily available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond decreasing external nutrient loads to the water body and requires a better understanding in-lake P cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ECSS...56..909G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ECSS...56..909G"><span>Sediment deposition and production in SE-Asia seagrass meadows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gacia, E.; Duarte, C. M.; Marbà, N.; Terrados, J.; Kennedy, H.; Fortes, M. D.; Tri, N. H.</p> <p>2003-04-01</p> <p>Seagrass meadows play an important role in the trapping and binding of particles in coastal sediments. Yet seagrass may also contribute to sediment production directly, through the deposition of detritus and also the deposition of the associated mineral particles. This study aims at estimating the contribution of different seagrass species growing across an extensive range of deposition to inorganic (carbonate and non-carbonate) and organic sediment production. Total daily deposition measured with sediment traps varied from 18.8 (±2.0) g DW m -2 d -1 in Silaqui (Philippines) to 681.1 (±102) g DW m -2 d -1 in Bay Tien (Vietnam). These measurements correspond to a single sampling event and represent sedimentation conditions during the dry season in SE-Asia coastal areas. Enhalus acoroides was the most common species in the seagrass meadows visited and, together with Thalassia hemprichii, was present at sites from low to very high deposition. Halodule uninervis and Cymodocea species were present in sites from low to medium deposition. The mineral load in seagrass leaves increased with age, and was high in E. acoroides because it had the largest and long-lived leaves (up to 417 mg calcium carbonate per leaf and 507 mg non-carbonate minerals per leaf) and low in H. uninervis with short-lived leaves (4 mg calcium carbonate per leaf and 2 mg non-carbonate minerals per leaf). In SE-Asia seagrass meadows non-carbonate minerals accumulate at slower rates than the production of calcium carbonate by the epiphytic community, consequently the final loads supported by fully grown leaves were, as average, lower than calcium carbonate loads. Our results show that organic and inorganic production of the seagrasses in SE-Asia represents a small contribution (maximum of 15%) of the materials sedimented on a daily base by the water column during the sampling period. The contribution of the carbonate fraction can be locally significant (i.e. 34% in Silaqui) in areas where the depositional flux is low, but is minor (<1%) in sites were siltation is significant (i.e. Umalagan and all the visited sites in Vietnam).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29644464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29644464"><span>Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M</p> <p>2018-04-11</p> <p>The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25553201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25553201"><span>Effect of a dual inlet channel on cell loading in microfluidics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu</p> <p>2014-11-01</p> <p>Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=249168','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=249168"><span>Phosphorus and nitrogen loading depths in fluvial sediments following manure spill simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Manure spills that enter streams can devastate the aquatic ecosystem. The depth of nitrogen (N) and phosphorus (P) loading in fluvial sediments following a manure spill have not been documented. Thus, the objectives of this study were (i) to determine the depth of N and P contamination as a result o...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=202927&keyword=one+AND+box&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=202927&keyword=one+AND+box&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Estimation of a Historic Mercury Load Function for Lake Michigan using Dated Sediment Cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Box cores collected between 1994 and 1996 were used to estimate historic mercury loads to Lake Michigan. Based on a kriging spatial interpolation of 54 Pb-210 dated cores, 228 metric tons of mercury are stored in the lake’s sediments (excluding Green Bay). To estimate the time ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/11470','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/11470"><span>Geochemical and lithological factors in acid precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James R. Kramer</p> <p>1976-01-01</p> <p>Acid precipitation is altered by interaction with rocks, sediment and soil. A calcareous region buffers even the most intense loading at pH ~8; an alumino silicate region with unconsolidated sediment buffers acid loadings at pH ~6.5; alumino silicate outcrops are generally acidified. Either FeOOH or alumino silicates are probable H+...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62031&keyword=tale&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62031&keyword=tale&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ECOLOGICAL RISKS OF DIOXINS IN LAKE ONTARIO: A TALE OF TWO CORES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Sediment box cores have frequently been used to determine organochlorine chemical loading histories of lakes and reservoirs. ? Typical profiles for PCBs or DDT show concentrations that increase from around 1940 to 1970 and then decline to the present. Applying these data to retr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B21E0298T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B21E0298T"><span>Shifts in alpine lakes' ecosystems in Japan driven by increasing Asian dusts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsugeki, N. K.; Tani, Y.; Ueda, S.; Agusa, T.; Toyoda, K.; Kuwae, M.; Oda, H.; Tanabe, S.; Urabe, J.</p> <p>2011-12-01</p> <p>Recently in East Asia the amount of fossil fuel combustion have increased with economic growth. It has caused a problem of trans-boundary air pollution in the whole of eastern Asia. Furthermore, Asian dust storms contribute episodically to the global aerosol load. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. If biologically important nutrients such as nitrogen (N) and phosphorus (P) are transported via air dust, the atmospheric deposition of the dust may have serious impacts on recipient aquatic ecosystems because the biological production is limited by these nutrient elements. A previous report using sedimentary records has evaluated that atmospheric P inputs to the alpine lakes in the United States increased fivefold following the increased western settlement to this country during the nineteenth century. Since P is the most deficient nutrient for production in many lakes increase in P loading through atmospheric deposition of anthropogenically-derived dust might greatly affect the lake ecosystems. We examined fossil pigments and zooplankton remains from Pb-dated sediments taken from a high mountain lake of Hourai-Numa, located in the Towada-Hachimantai National Park of Japan, to uncover historical changes in the phyto- and zooplankton community over the past 100 years. Simultaneously, we measured the biogeochemical variables of TOC, TN, TP, δ13C, δ15N, and 206Pb/207Pb, 208Pb/207Pb in the sediments to identify environmental factors causing such changes. As a result, despite little anthropogenic activities in the watersheds, alpine lakes in Japan Islands increased algal and herbivore plankton biomasses by 3-6 folds for recent years depending on terrestrial the surrounded vegetations and landscape conditions. Biological and biogeochemical proxies recorded in the lake sediments indicate that this eutrophication occurred after the 1990s when P deposition increased due to atmospheric loading transported from Asian continent. It is most likely that continued anthropogenic amplification of the global P and other element cycles will further alter aquatic ecosystems even in the world's of mountain lakes located lakes even at far from direct human disturbance due to transportation and deposition of the nutrient-rich dusts emitted anthropogenically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3801027L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3801027L"><span>Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xin; Yue, Yi</p> <p>2018-06-01</p> <p>Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20063806','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20063806"><span>Mineral metabolism in a black-necked swan (Cygnus melanocoryphus) population from southern Chile.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Norambuena, M Cecilia; Bozinovic, Francisco</p> <p>2009-12-01</p> <p>A population of black-necked swans (Cygnus melanocoryphus) residing in a perturbed habitat revealed a low body mass, malnutrition, and hyperferremia during 2005; the swans main dietary item, Egeria densa, was lost during an environmental crisis which occurred in 2004. The objective of this study was to monitor the diet and nutritional status of this population during 2006, as well as to verify how the consumption of sediment, as part of their new diet, may explain the mineral disorders observed in these birds. Results revealed that swans increased their body mass and had an adequate protein, lipid, and iron metabolism, in spite of the fact that they maintained the same new diet (sediment and roots) during 2005-2006. In addition, transferrine saturation was indicative of the high endogenous iron load in birds which agrees with the high iron load of their environment. On the other hand, the consumption of the Cayumapu River sediment in the diet (25%) did not affect the body mass nor the nutritional and hepatic function in domestic geese over a 45-day period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5250/support/sir2012-5250.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5250/support/sir2012-5250.pdf"><span>Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.</p> <p>2012-01-01</p> <p>Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total nitrogen loading was from stormflows. The stormflow load accounted for 76.6 percent of the total load for the 2010 water year and 80.6 percent of the total load for the 2011 water year. The estimated monthly total nitrogen loads were higher during the winter and spring (December through May) than during the summer (June through August). For the Bakersville station, the estimated suspended-sediment load (SSL) was 17,700 tons for 11 months of the 2010 water year (November 2009 to September 2010). The storm beginning January 24, 2010, provided 34.4 percent of the annual SSL, and the storm beginning March 10, 2010, provided 31.9 percent of the annual SSL. Together, these two winter storms provided 66 percent of the annual SSL for the 2010 water year. For the 2011 water year, the estimated annual SSL was 13,500 tons. For the 2011 water year, the SSLs were more evenly divided among storms than for the 2010 water year. Seven of 37 storms with the highest SSLs provided a total of 65.7 percent of the annual SSL for the 2011 water year; each storm provided from 4.6 to 12.3 percent of the annual SSL. The highest cumulative SSL for the 2010 and 2011 water years generally occurred during the late winter. Stormflows with the highest peak discharges generally carried the highest SSL. The sediment-fingerprinting approach was used to quantify sources of fine-grained suspended sediment in the watershed draining to the Laurel Hill Creek near Bakersville streamflow-gaging station. Sediment source samples were collected from five source types: 20 from cropland, 9 from pasture, 18 from forested areas, 20 from unpaved roads, and 23 from streambanks. At the Bakersville station, 10 suspended-sediment samples were collected during 6 storms for sediment-source analysis. Thirty-five tracers from elemental analysis and 4 tracers from stable isotope analysis were used to fingerprint the source of sediment for the 10 storm samples. Statistical analysis determined that cropland and pasture could not be discriminated by the set of tracers and were combined into one source group—agriculture. Stepwise discriminant function analysis determined that 11 tracers best described the 4 sources. An "unmixing" model applied to the 11 tracers showed that agricultural land (cropland and pasture) was the major source of sediment, contributing an average of 53 percent of the sediment for the 10 storm samples. Streambanks, unpaved roads, and forest contributions for the 10 storm samples averaged 30, 17, and 0 percent, respectively. Agriculture was the major contributor of sediment during the highest sampled stormflows. The highest stormflows also produced the highest total nitrogen and suspended-sediment loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006Sci...314..449T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006Sci...314..449T"><span>Wetland Sedimentation from Hurricanes Katrina and Rita</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turner, R. Eugene; Baustian, Joseph J.; Swenson, Erick M.; Spicer, Jennifer S.</p> <p>2006-10-01</p> <p>More than 131 × 106 metric tons (MT) of inorganic sediments accumulated in coastal wetlands when Hurricanes Katrina and Rita crossed the Louisiana coast in 2005, plus another 281 × 106 MT when accumulation was prorated for open water area. The annualized combined amount of inorganic sediments per hurricane equals (i) 12% of the Mississippi River's suspended load, (ii) 5.5 times the inorganic load delivered by overbank flooding before flood protection levees were constructed, and (iii) 227 times the amount introduced by a river diversion built for wetland restoration. The accumulation from hurricanes is sufficient to account for all the inorganic sediments in healthy saltmarsh wetlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2030A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2030A"><span>Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audette, Yuki; O'Halloran, Ivan; Voroney, Paul</p> <p>2016-04-01</p> <p>Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.306...28S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.306...28S"><span>Influence of declining mean annual rainfall on the behavior and yield of sediment and particulate organic carbon from tropical watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.</p> <p>2018-04-01</p> <p>The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to capture the high variability in tropical streamflow. Taken together, results indicate that declines in MAR can have contrasting effects on hydrological processes in tropical watersheds, with consequences for instream ecology, downstream water users, and nearshore habitat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.7467H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.7467H"><span>Does small-bodied salmon spawning activity enhance streambed mobility?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassan, Marwan A.; Tonina, Daniele; Buxton, Todd H.</p> <p>2015-09-01</p> <p>Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit that is dug immediately upstream. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (<10-1 channel width, W), but may reduce the size of macro bedforms by eroding reach-scale topography (100-101W). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning, also prevents streambed armoring by mixing surface and subsurface material, potentially increasing particle mobility. Here we use two-dimensional hydraulic modeling with detailed prespawning and postspawning bathymetries and field observations to test the effect of spawning by small-bodied salmonids on sediment transport. Our results show that topographical roughness from small salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids and are the focus of habitat restoration actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26885658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26885658"><span>Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, G A; Sheshukov, A; Cruse, R; Kolar, R L; Guertault, L; Gesch, K R; Dutnell, R C</p> <p>2016-05-01</p> <p>The future reliance on water supply and flood control reservoirs across the globe will continue to expand, especially under a variable climate. As the inventory of new potential dam sites is shrinking, construction of additional reservoirs is less likely compared to simultaneous flow and sediment management in existing reservoirs. One aspect of this sediment management is related to the control of upstream sediment sources. However, key research questions remain regarding upstream sediment loading rates. Highlighted in this article are research needs relative to measuring and predicting sediment transport rates and loading due to streambank and gully erosion within a watershed. For example, additional instream sediment transport and reservoir sedimentation rate measurements are needed across a range of watershed conditions, reservoir sizes, and geographical locations. More research is needed to understand the intricate linkage between upland practices and instream response. A need still exists to clarify the benefit of restoration or stabilization of a small reach within a channel system or maturing gully on total watershed sediment load. We need to better understand the intricate interactions between hydrological and erosion processes to improve prediction, location, and timing of streambank erosion and failure and gully formation. Also, improved process-based measurement and prediction techniques are needed that balance data requirements regarding cohesive soil erodibility and stability as compared to simpler topographic indices for gullies or stream classification systems. Such techniques will allow the research community to address the benefit of various conservation and/or stabilization practices at targeted locations within watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EnMan..57..945F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EnMan..57..945F"><span>Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fox, G. A.; Sheshukov, A.; Cruse, R.; Kolar, R. L.; Guertault, L.; Gesch, K. R.; Dutnell, R. C.</p> <p>2016-05-01</p> <p>The future reliance on water supply and flood control reservoirs across the globe will continue to expand, especially under a variable climate. As the inventory of new potential dam sites is shrinking, construction of additional reservoirs is less likely compared to simultaneous flow and sediment management in existing reservoirs. One aspect of this sediment management is related to the control of upstream sediment sources. However, key research questions remain regarding upstream sediment loading rates. Highlighted in this article are research needs relative to measuring and predicting sediment transport rates and loading due to streambank and gully erosion within a watershed. For example, additional instream sediment transport and reservoir sedimentation rate measurements are needed across a range of watershed conditions, reservoir sizes, and geographical locations. More research is needed to understand the intricate linkage between upland practices and instream response. A need still exists to clarify the benefit of restoration or stabilization of a small reach within a channel system or maturing gully on total watershed sediment load. We need to better understand the intricate interactions between hydrological and erosion processes to improve prediction, location, and timing of streambank erosion and failure and gully formation. Also, improved process-based measurement and prediction techniques are needed that balance data requirements regarding cohesive soil erodibility and stability as compared to simpler topographic indices for gullies or stream classification systems. Such techniques will allow the research community to address the benefit of various conservation and/or stabilization practices at targeted locations within watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43E1106X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43E1106X"><span>Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, M., III; Liu, X.</p> <p>2017-12-01</p> <p>In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4397L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4397L"><span>Evaluating the effect of different vegetative filter strip designs on sediment movement in an agricultural watershed using LISEM, Iowa, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luquin Oroz, Eduardo; Cruse, Rick; Baartman, Jantiene; Keesstra, Saskia</p> <p>2016-04-01</p> <p>Although restoration of native vegetation in vulnerable areas would decrease soil loss, this approach is not feasible in communities that base their income on agriculture. However, an alternative exists: strategically placing a small percentage of vegetative filter strips (VFS) within agriculture fields for erosion control. Factors influencing their effectiveness are shallow conditions, vegetation type, filter strip width, slope, soil type, and rainfall characteristics. Generally, the first few meters of the strip are where most sediments deposit. For slopes higher than 10%, effectiveness decreases with increasing slope gradient. Usually, high rainfall intensity and sediment load in overland flow decrease vegetative filter strips' effectiveness. Nowadays, Iowa (USA), experiences increasingly stronger rainstorms; climate change is expected to increase rainfall erosive forces between 16 to 58%. Thus, there is a need to obtain new insights about strip design and its influence on sediment dynamics. Therefore, the objective of this study is to analyze strip design (width) impact on soil and water movement. To do so, different strip widths (no strips, 1.5, 3, 5, 7.5 and 10 meters wide) were analyzed under four rainfall intensities (increments of 10, 25, 50 and 75%) The event-based, hydrological and soil erosion model LISEM was used to simulate different scenarios. The model has been calibrated with data from 3-ha 'Interim 1' watershed, which is part of Walnut Creek (Iowa, USA). During a single event with sediment load, on July 18th 2010, intensities reached up to 80 mm/h. Two different land covers exist: (i) perennial vegetation, which has prairie vegetation covering patches and strips; and (ii) row crop agriculture where corn and soybeans are the main two crops in the area. Based on the different combination of widths and intensities, 24 scenarios were generated. At the moment, the model is on the final part of the calibration; scenario results will be presented on the poster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25173725','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25173725"><span>Modeling catchment nutrients and sediment loads to inform regional management of water quality in coastal-marine ecosystems: a comparison of two approaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Álvarez-Romero, Jorge G; Wilkinson, Scott N; Pressey, Robert L; Ban, Natalie C; Kool, Johnathan; Brodie, Jon</p> <p>2014-12-15</p> <p>Human-induced changes in flows of water, nutrients, and sediments have impacts on marine ecosystems. Quantifying these changes to systematically allocate management actions is a priority for many areas worldwide. Modeling nutrient and sediment loads and contributions from subcatchments can inform prioritization of management interventions to mitigate the impacts of land-based pollution on marine ecosystems. Among the catchment models appropriate for large-scale applications, N-SPECT and SedNet have been used to prioritize areas for management of water quality in coastal-marine ecosystems. However, an assessment of their relative performance, parameterization, and utility for regional-scale planning is needed. We examined how these considerations can influence the choice between the two models and the areas identified as priorities for management actions. We assessed their application in selected catchments of the Gulf of California, where managing land-based threats to marine ecosystems is a priority. We found important differences in performance between models. SedNet consistently estimated spatial variations in runoff with higher accuracy than N-SPECT and modeled suspended sediment (TSS) loads mostly within the range of variation in observed loads. N-SPECT overestimated TSS loads by orders of magnitude when using the spatially-distributed sediment delivery ratio (SDR), but outperformed SedNet when using a calibrated SDR. Differences in subcatchments' contribution to pollutant loads were principally due to explicit representation of sediment sinks and particulate nutrients by SedNet. Improving the floodplain extent model, and constraining erosion estimates by local data including gully erosion in SedNet, would improve results of this model and help identify effective management responses. Differences between models in the patterns of modeled pollutant supply were modest, but significantly influenced the prioritization of subcatchments for management. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5090/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5090/"><span>Trends In Nutrient and Sediment Concentrations and Loads In Major River Basins of the South-Central United States, 1993-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rebich, Richard A.; Demcheck, Dennis K.</p> <p>2008-01-01</p> <p>Nutrient and sediment data collected at 115 sites by Federal and State agencies from 1993 to 2004 were analyzed by the U.S. Geological Survey to determine trends in concentrations and loads for selected rivers and streams that drain into the northwestern Gulf of Mexico from the south-central United States, specifically from the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf Basins. Trends observed in the study area were compared to determine potential regional patterns and to determine cause-effect relations with trends in hydrologic and human-induced factors such as nutrient sources, streamflow, and implementation of best management practices. Secondary objectives included calculation of loads and yields for the study period as a basis for comparing the delivery of nutrients and sediment to the northwestern Gulf of Mexico from the various rivers within the study area. In addition, loads were assessed at seven selected sites for the period 1980-2004 to give hydrologic perspective to trends in loads observed during 1993-2004. Most study sites (about 64 percent) either had no trends or decreasing trends in streamflow during the study period. The regional pattern of decreasing trends in streamflow during the study period appeared to correspond to moist conditions at the beginning of the study period and the influence of three drought periods during the study period, of which the most extreme was in 2000. Trend tests were completed for ammonia at 49 sites, for nitrite plus nitrate at 69 sites, and for total nitrogen at 41 sites. For all nitrogen constituents analyzed, no trends were observed at half or more of the sites. No regional trend patterns could be confirmed because there was poor spatial representation of the trend sites. Decreasing trends in flow-adjusted concentrations of ammonia were observed at 25 sites. No increasing trends in concentrations of ammonia were noted at any sites. Flow-adjusted concentrations of nitrite plus nitrate decreased at 7 sites and increased at14 sites. Flow-adjusted concentrations of total nitrogen decreased at 2 sites and increased at 12 sites. Improvements to municipal wastewater treatment facilities contributed to the decline of ammonia concentrations at selected sites. Notable increasing trends in nitrite plus nitrate and total nitrogen at selected study sites were attributed to both point and nonpointsources. Trend patterns in total nitrogen generally followed trend patterns in nitrite plus nitrate, which was understandable given that nitrite plus nitrate loads generally were 70-90 percent of the total nitrogen loads at most sites. Population data were used as a surrogate to understand the relation between changes in point sources and nutrient trends because data from wastewater treatment plants were inconsistent for this study area. Although population increased throughout the study area during the study period, there was no observed relation between increasing trends in nitrogen in study area streams and increasing trends in population. With respect to other nitrogen sources, statistical results did suggest that increasing trends in nitrogen could be related to increasing trends in nitrogen from either commercial fertilizer use and/or land application of manure. Loads of ammonia, nitrite plus nitrate, and total nitrogen decreased during the study period, but some trends in nitrogen loads were part of long-term decreases since 1980. For example, ammonia loads were shown to decrease at nearly all sites over the past decade, but at selected sites, these decreasing trends were part of much longer trends since 1980. The Mississippi and Atchafalaya Rivers contributed the highest nitrogen loads to the northwestern Gulf of Mexico as expected; however, nitrogen yields from smaller rivers had similar or higher yields than yields from the Mississippi River. Trend tests were completed for orthophosphorus at 34 sites and for total phosphorus at 52 sites. No trends were observed in abo</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16738404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16738404"><span>Conditions affecting the release of phosphorus from surface lake sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christophoridis, Christophoros; Fytianos, Konstantinos</p> <p>2006-01-01</p> <p>Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP51A1624B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP51A1624B"><span>Improvements in Quantifying Bank Erosion for Sediment Budgets within the Chesapeake Bay Watershed by Integrating Structure-From-Motion Photogrammetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, J. M.; Cashman, M. J.; Nibert, L.; Jackson, S.</p> <p>2017-12-01</p> <p>Fine sediment is a major source of pollution due to its ability to attenuate light, smother habitat, and sorb and transport nutrients, such as phosphorus and nitrogen. Piedmont streams in the Mid-Atlantic region of the United States are frequently characterized as incised with steep, highly erodible banks of legacy sediment that can contribute to high sediment loads. Multiple sediment fingerprinting studies in this region have demonstrated that stream banks can contribute a large proportion of the total sediment load, but stream banks are frequently overlooked in sediment delivery models and Total Maximum Daily Load allocations. The direct quantification of bank erosion is therefore essential to producing accurate sediment budgets, which are needed to inform the targeted mitigation and remediation of degraded fluvial systems. This study contrasts the use of traditional bank pin measurements, structure-from-motion photogrammetric techniques, and aerial LIDAR at sites within Maryland, USA. Bank pin measurements, representing only single points in space, were found to be highly variable with subjective initial placement often missing nearby, large-scale bank failures. In contrast, photogrammetric techniques, using structure-from-motion, were able to capture a more spatially-complete streambank profile. Using a Nikon D810 camera, bank scans were able to reconstruct banks with a RMSE as low as 0.1mm and repeat scan alignment resolution of <2mm. However, during summer months, photogrammetry exhibited some coverage gaps in areas of high vegetation density. Difference-maps rendered from multiple UAV structure-from-motion scans provided an ability to rapidly assess changes to river channel morphology during leaf-off conditions. Additionally, UAV-derived scans were georeferenced over historical LIDAR data to evaluate historical bank-erosion over multi-year timescales. Future work will include difference mapping channel features at watershed scales. This photogrammetric approach of quantifying geomorphic change, when coupled with bank-sediment bulk density, has promise to accurately quantify volumetric change as well as sediment loads originating from bank erosion, and may provide valuable data of the quantification of bank erosion for incorporation into regional sediment models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70184994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70184994"><span>Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia</p> <p>2016-01-01</p> <p>Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGeo...11.2225H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGeo...11.2225H"><span>Thin terrestrial sediment deposits on intertidal sandflats: effects on pore-water solutes and juvenile bivalve burial behaviour</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hohaia, A.; Vopel, K.; Pilditch, C. A.</p> <p>2014-04-01</p> <p>Nearshore zones experience increased sedimentation due to coastal development and enhanced loads of fine terrestrial sediment (hereafter, TS) in river waters. Deposition of TS can alter seabed biogeochemical processes but the effects on benthic ecosystem functioning are unknown. The results of a past experiment with defaunated, intertidal sediment suggest that a decrease in the oxygenation of this sediment by a thin (mm) TS deposit causes substrate rejection (refusal to bury) by post-settlement juvenile recruits of the tellinid bivalve Macomona liliana. We further examined this behaviour, asking if such deposits negatively affect burial when applied to intertidal sediment that is oxygenated by bioturbation (C) or depleted of dead and living organic matter (D). We observed recruits on the surface of four treatments: C, D, and the same sediments to which we added a 1.7-1.9 mm layer of TS (CTS, DTS). The TS deposit decreased the oxygenation and the pH of the underlying intertidal sediment (CTS) confirming previous results, but significantly increased but not decreased the probability of burial, irrespectively of treatment. Juveniles more likely buried into C than into D. The mechanism that caused previously observed substrate rejection by post-settlement juvenile M. liliana remains unclear but our results suggest that contact of the recruits with the TS deposit does not cause substrate rejection. We now hypothesise that conditioning of sediment by bioturbation can mediate negative effects of TS deposits on the recruits' burial behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29627707','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29627707"><span>Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja</p> <p>2018-07-01</p> <p>Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>