Nanoparticles based fiber optic SPR sensor
NASA Astrophysics Data System (ADS)
Shah, Kruti; Sharma, Navneet K.
2018-05-01
Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.
Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R
2016-08-15
Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Chong; Ling, Lanyu; Li, Fumin
2017-01-01
In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of quantum dots (QDs) on the working electrodes. Second, to increase the light absorption of the CdS-sensitized DTTO electrodes and improve the efficiency of charge separation in CdS-sensitized QDSSCs, copper indium disulfide (CuInS2) is selected to cosensitize the DTTO electrodes with CdS, which has a complementary property of light absorption with CdS. The PCEs of QDSSCs based on these prepared QD-sensitized DTTO electrodes are measured. Our experimental results show that compared to those based on the CdS/DTTO electrodes without CuInS2, the PCEs of the QDSSCs based on CdS/CuInS2-sensitized DTTO electrode are significantly improved, which is mainly attributed to the increased light absorption and reduced charge recombination. Under simulated one-sun illumination, the best PCE of 1.42% is achieved for the QDSSCs based on CdS(10)/CuInS2/DTTO electrode, which is much higher than that (0.56%) of the QDSSCs based on CdS(10)/DTTO electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Narendra; Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016; Kumar, Jitendra
The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO{sub 2}/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS) structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 {sup o}C in N{sub 2} ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 {sup o}C. The increased pH sensitivity withmore » the film annealed at 400 {sup o}C in N{sub 2} gas was attributed to the enhanced lattice oxygen ions (based on the XPS data) and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 {sup o}C was attributed to defects in the films as well as the induced traps at the IGZO/SiO{sub 2} interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here) used as the active layer in a thin film transistors (TFTs) possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.« less
Jihui Guo; Steven J. Severtson; Larry E. Gwin; Carl J. Houtman
2008-01-01
Pressure-sensitive adhesives (PSAs) in recovered paper reduce efficiency and increase operating costs for paper recycling mills. Increased PSA fragmentation during pulping and the corresponding reduction in screening efficiency are indications that a PSA will likely interfere with paper recycling. Water-based PSAs, which dominate the label market, have complex...
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.
2018-03-01
In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).
NASA Astrophysics Data System (ADS)
Chen, Lei; Ma, Ning; Park, Yeonju; Jin, Sila; Hwang, Hoon; Jiang, Dayu; Jung, Young Mee
2018-05-01
In this paper, we introduced Raman spectroscopy techniques that were based on the traditional Fe3 + determination method with phenanthroline as a probe. Interestingly, surface-enhanced Raman spectroscopy (SERS)-based approach exhibited excellent sensitivities to phenanthroline. Different detection mechanisms were observed for the RR and SERS techniques, in which the RR intensity increased with increasing Fe3 + concentration due to the observation of the RR effect of the phenanthroline-Fe2 + complex, whereas the SERS intensity increased with decreasing Fe3 + concentration due to the observation of the SERS effect of the uncomplexed phenanthroline. More importantly, the determination sensitivity was substantially improved in the presence of a SERS-active substrate, giving a detection limit as low as 0.001 μg/mL, which is 20 times lower than the limit of the UV-vis and RR methods. Furthermore, the proposed SERS method was free from other ions interference and can be used quality and sensitivity for the determination of the city tap water.
Indium oxide based fiber optic SPR sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in
2016-05-06
Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.
Liu, Jinchuan; Guan, Zheng; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang
2014-02-15
Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution. © 2013 Elsevier B.V. All rights reserved.
On the origin of enhanced sensitivity in nanoscale FET-based biosensors
Shoorideh, Kaveh; Chui, Chi On
2014-01-01
Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect. PMID:24706861
Qiu, Sun-jie; Chen, Ye; Xu, Fei; Lu, Yan-qing
2012-03-01
We fabricate a simple, compact, and stable temperature sensor based on a liquid-sealed photonic crystal fiber (PCF) in-line nonpolarimetric modal interferometer. Different from other reported PCF devices, it does not need expensive polarimetric devices, and the liquid is sealed in one fiber. The device consists of a stub of isopropanol-filled PCF spliced between standard single-mode fibers. The temperature sensitivity (-166 pm/°C) increases over an order of magnitude compared with those of the previous sensors based on air-sealed PCF interferometers built via fusion splicing with the same mechanism. In addition, the refractive index sensitivity also increases. Higher temperature sensitivity can be realized by infiltrating some liquid having a higher thermo-optic coefficient into the microholes of the PCF. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik
2017-01-01
In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection sensitivity, and it can be seen that this shift is affected by the temperature change and the amount of electrostatic force. The thermal effects on the mass detection sensitivity are intensified in the linear oscillation regime and increase with increasing CNT length; this intensification can either improve or worsen the detection sensitivity.
Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.
2015-01-01
Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775
Lo, Kin Hing; Kontis, Konstantinos
2016-01-01
An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913
Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P
2015-09-01
We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035 nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.
NASA Astrophysics Data System (ADS)
Ban, G.; Bison, G.; Bodek, K.; Daum, M.; Fertl, M.; Franke, B.; Grujić, Z. D.; Heil, W.; Horras, M.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Mtchedlishvili, A.; Pignol, G.; Piegsa, F. M.; Prashanth, P.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Weis, A.; Wyszynski, G.; Zejma, J.; Zsigmond, G.
2018-07-01
We report on a laser based 199Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its 204Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based magnetometer satisfies the magnetic field sensitivity requirements for the next generation nEDM experiments.
NASA Astrophysics Data System (ADS)
Teomete, Egemen
2016-07-01
Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.
Defect-engineered graphene chemical sensors with ultrahigh sensitivity.
Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun
2016-05-25
We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.
NASA Astrophysics Data System (ADS)
Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten
2007-06-01
Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.
Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang
2018-06-22
Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.
Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles
NASA Astrophysics Data System (ADS)
Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang
2018-06-01
Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.
Yew, Chee-Hong Takahiro; Azari, Pedram; Choi, Jane Ru; Li, Fei; Pingguan-Murphy, Belinda
2018-06-07
Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Optical bio-chemical sensors on SNOW ring resonators.
Khorasaninejad, Mohammadreza; Clarke, Nigel; Anantram, M P; Saini, Simarjeet Singh
2011-08-29
In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.
Optical bio-chemical sensors on SNOW ring resonators
NASA Astrophysics Data System (ADS)
Khorasaninejad, Mohammadreza; Clarke, Nigel; Anantram, M. P.; Singh Saini, Simarjeet
2011-08-01
In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.
Dunham, C Michael; Sipe, Eilynn K; Peluso, LeeAnn
2004-01-01
Background We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO2/FiO2). Methods Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO2/FiO2 was < 350 and decreased spirometric volume was < 1.8 L. Results Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO2/FiO2, and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO2/FiO2 – 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. Conclusions Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO2/FiO2, or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury. PMID:14731306
Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham
2012-01-01
Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical diagnostics assays rely on optical and fluorescence readers. Our novel combination of detection technologies, which is new to biodetection may enable the development of new low cost optical detectors based on an inexpensive Webcam (<$10). It has the potential to form the basis for high sensitivity, low cost medical diagnostics in resource-poor settings.
Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham
2013-01-01
Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical diagnostics assays rely on optical and fluorescence readers. Our novel combination of detection technologies, which is new to biodetection may enable the development of new low cost optical detectors based on an inexpensive Webcam (<$10). It has the potential to form the basis for high sensitivity, low cost medical diagnostics in resource-poor settings. PMID:23990697
Effects of pirfenidone on increased cough reflex sensitivity in guinea pigs.
Okazaki, Akihito; Ohkura, Noriyuki; Fujimura, Masaki; Katayama, Nobuyuki; Kasahara, Kazuo
2013-10-01
Pirfenidone, an antifibrotic drug with anti-inflammatory and antioxidant effects, delays fibrosis in idiopathic pulmonary fibrosis (IPF). Patients with IPF have a greater cough reflex sensitivity to inhaled capsaicin than healthy people, and cough is an independent predictor of IPF disease progression; however, the effects of pirfenidone on cough reflex sensitivity are unknown. After challenge with an aerosolized antigen in actively sensitized guinea pigs, pirfenidone was administered intraperitoneally, and the cough reflex sensitivity was measured at 48 h after the challenge. Bronchoalveolar lavage (BAL) was performed, and the tracheal tissue was collected. Pirfenidone suppressed the capsaicin-induced increase in cough reflex sensitivity in a dose-dependent manner. Additionally, increased levels of prostaglandin E2, substance P, and leukotriene B4, but not histamine, in the BAL fluid were dose dependently suppressed by pirfenidone. The decrease in neutral endopeptidase activity in the tracheal tissue was also alleviated by pirfenidone treatment. The total number of cells and components in the BAL fluid was not influenced. These results suggest that pirfenidone ameliorates isolated cough based on increased cough reflex sensitivity associated with allergic airway diseases, and potentially relieve chronic cough in IPF patients who often have increased cough reflex sensitivity. Prospective studies on cough-relieving effects of pirfenidone in patients with IPF are therefore warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Effect of the Thickness of the Sensitive Layer on the Performance of the Accumulating NOx Sensor
Groß, Andrea; Richter, Miriam; Kubinski, David J.; Visser, Jacobus H.; Moos, Ralf
2012-01-01
A novel and promising method to measure low levels of NOx utilizes the accumulating sensor principle. During an integration cycle, incoming NOx molecules are stored in a sensitive layer based on an automotive lean NOx trap (LNT) material that changes its electrical resistivity proportional to the amount of stored NOx, making the sensor suitable for long-term detection of low levels of NOx. In this study, the influence of the thickness of the sensitive layer, prepared by multiple screen-printing, is investigated. All samples show good accumulating sensing properties for both NO and NO2. In accordance to a simplified model, the base resistance of the sensitive layer and the sensitivity to NOx decrease with increasing thickness. Contrarily, the sensor response time increases. The linear measurement range of all samples ends at a sensor response of about 30% resulting in an increase of the linearly detectable amount with the thickness. Hence, the variation of the thickness of the sensitive layer is a powerful tool to adapt the linear measurement range (proportional to the thickness) as well as the sensitivity (proportional to the inverse thickness) to the application requirements. Calculations combining the sensor model with the measurement results indicate that for operation in the linear range, about 3% of the LNT material is converted to nitrate.
Relative planetary radar sensitivities: Arecibo and Goldstone
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Thompson, T. W.; Slade, M. A.
1988-01-01
The increase of the Deep Space Network antennas from 64 meter to 70 meter diameter represents the first of several improvements that will be made over the next decade to enhance earth based radar sensitivity to solar system targets. The aperture increase at the Goldstone DSS-14 site, coupled with a proposed increase in transmitter power to 1000 kW, will improve the 3.5 cm radar by about one order of magnitude. Similarly, proposed Arecibo Observatory upgrades of a Gregorian feed structure and an increase of transmitter power to 1000 kW will increase the sensitivity of this radar about 20 fold. In addition, a Goldstone to Very Large Array bistatic observation with horizon to horizon tracking will have 3.5 times more sensitivity than will a Goldstone horizon to horizon monostatic observation. All of these improvements, which should be in place within the next decade, will enrich an already fertile field of planetary exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung
Highlights: Black-Right-Pointing-Pointer Sal sensitizes antimitotic drugs-treated cancer cells. Black-Right-Pointing-Pointer Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. Black-Right-Pointing-Pointer Sal also sensitizes them by increasing DNA damage and reducing p21 level. Black-Right-Pointing-Pointer A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitoticmore » drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.« less
Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Mirshekar-Syahkal, Dariush; Rasor, Paul; Deeble, Roger; Fox, Elaine
2007-11-01
Individuals with idiopathic environmental illness with attribution to electromagnetic fields (IEI-EMF) believe they suffer negative health effects when exposed to electromagnetic fields from everyday objects such as mobile phone base stations. This study used both open provocation and double-blind tests to determine if sensitive and control individuals experience more negative health effects when exposed to base station-like signals compared with sham. Fifty-six self-reported sensitive and 120 control participants were tested in an open provocation test. Of these, 12 sensitive and 6 controls withdrew after the first session. The remainder completed a series of double-blind tests. Subjective measures of well-being and symptoms as well as physiological measures of blood volume pulse, heart rate, and skin conductance were obtained. During the open provocation, sensitive individuals reported lower levels of well-being in both the global system for mobile communication (GSM) and universal mobile telecommunications system (UMTS) compared with sham exposure, whereas controls reported more symptoms during the UMTS exposure. During double-blind tests the GSM signal did not have any effect on either group. Sensitive participants did report elevated levels of arousal during the UMTS condition, whereas the number or severity of symptoms experienced did not increase. Physiological measures did not differ across the three exposure conditions for either group. Short-term exposure to a typical GSM base station-like signal did not affect well-being or physiological functions in sensitive or control individuals. Sensitive individuals reported elevated levels of arousal when exposed to a UMTS signal. Further analysis, however, indicated that this difference was likely to be due to the effect of order of exposure rather than the exposure itself.
Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Mirshekar-Syahkal, Dariush; Rasor, Paul; Deeble, Roger; Fox, Elaine
2007-01-01
Background Individuals with idiopathic environmental illness with attribution to electromagnetic fields (IEI-EMF) believe they suffer negative health effects when exposed to electromagnetic fields from everyday objects such as mobile phone base stations. Objectives This study used both open provocation and double-blind tests to determine if sensitive and control individuals experience more negative health effects when exposed to base station-like signals compared with sham. Methods Fifty-six self-reported sensitive and 120 control participants were tested in an open provocation test. Of these, 12 sensitive and 6 controls withdrew after the first session. The remainder completed a series of double-blind tests. Subjective measures of well-being and symptoms as well as physiological measures of blood volume pulse, heart rate, and skin conductance were obtained. Results During the open provocation, sensitive individuals reported lower levels of well-being in both the global system for mobile communication (GSM) and universal mobile telecommunications system (UMTS) compared with sham exposure, whereas controls reported more symptoms during the UMTS exposure. During double-blind tests the GSM signal did not have any effect on either group. Sensitive participants did report elevated levels of arousal during the UMTS condition, whereas the number or severity of symptoms experienced did not increase. Physiological measures did not differ across the three exposure conditions for either group. Conclusions Short-term exposure to a typical GSM base station-like signal did not affect well-being or physiological functions in sensitive or control individuals. Sensitive individuals reported elevated levels of arousal when exposed to a UMTS signal. Further analysis, however, indicated that this difference was likely to be due to the effect of order of exposure rather than the exposure itself. PMID:18007992
Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation
NASA Astrophysics Data System (ADS)
Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter
2015-04-01
Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.
Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout
Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Sheng, Jiteng; Shaffer, James P.
2017-01-01
We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of 5 μV cm−1 Hz−1/2. A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further. PMID:28218308
Sleep System Sensitization: Evidence for Changing Roles of Etiological Factors in Insomnia
Kalmbach, David A.; Pillai, Vivek; Arnedt, J. Todd; Anderson, Jason R.; Drake, Christopher L.
2016-01-01
Objectives To test for sensitization of the sleep system in response to insomnia development and major life stress. In addition, to evaluate the impact on depression and anxiety associated with sleep system sensitization. Methods A longitudinal study with three annual assessments. The community-based sample included 262 adults with no history of insomnia or depression who developed insomnia 1 year after baseline (67.6% female; 44.0±13.4y). Measures included the Ford Insomnia Response to Stress Test to assess sleep reactivity, Quick Inventory of Depressive Symptomatology, and Beck Anxiety Inventory. Insomnia classification was based on DSM-IV criteria. Sleep system sensitization was operationally defined as significant increases in sleep reactivity. Results Sensitization of the sleep system was observed from baseline to insomnia onset at 1-y follow-up among insomniacs with low premorbid vulnerability (p<.001), resulting in 68.3% of these individuals re-classified as highly sleep reactive. Major life stress was associated with greater sleep system sensitization (p=.02). Results showed that sleep reactivity at 2-y follow-up remained elevated among those with low premorbid vulnerability, even after insomnia remission (p<.01). Finally, analyses revealed that increases in sleep reactivity predicted greater depression (p<.001) and anxiety (p<.001) at insomnia onset. The impact of sensitization on depression was stable at 2-y follow-up (p=.01). Conclusions Evidence supports sensitization of the sleep system as consequence of insomnia development and major life stress among individuals with low premorbid sleep reactivity. Sleep system sensitization may serve as a mechanism by which insomnia is perpetuated. Harmful effects of the sensitization process may increase risk for insomnia-related depression and anxiety. PMID:27448474
Sleep system sensitization: evidence for changing roles of etiological factors in insomnia.
Kalmbach, David A; Pillai, Vivek; Arnedt, J Todd; Anderson, Jason R; Drake, Christopher L
2016-05-01
To test for sensitization of the sleep system in response to insomnia development and major life stress. In addition, to evaluate the impact on depression and anxiety associated with sleep system sensitization. A longitudinal study with three annual assessments. The community-based sample included 262 adults with no history of insomnia or depression who developed insomnia one year after baseline (67.6% female; 44.0 ± 13.4 yr). Measures included the Ford Insomnia Response to Stress Test to assess sleep reactivity, Quick Inventory of Depressive Symptomatology, and Beck Anxiety Inventory. Insomnia classification was based on DSM-IV criteria. Sleep system sensitization was operationally defined as significant increases in sleep reactivity. Sensitization of the sleep system was observed from baseline to insomnia onset at 1-yr follow-up among insomniacs with low premorbid vulnerability (p < 0.001), resulting in 68.3% of these individuals re-classified as highly sleep reactive. Major life stress was associated with greater sleep system sensitization (p = 0.02). Results showed that sleep reactivity at 2-yr follow-up remained elevated among those with low premorbid vulnerability, even after insomnia remission (p < 0.01). Finally, analyses revealed that increases in sleep reactivity predicted greater depression (p < 0.001) and anxiety (p < 0.001) at insomnia onset. The impact of sensitization on depression was stable at 2-yr follow-up (p = 0.01). Evidence supports sensitization of the sleep system as a consequence of insomnia development and major life stress among individuals with low premorbid sleep reactivity. Sleep system sensitization may serve as a mechanism by which insomnia is perpetuated. Harmful effects of the sensitization process may increase risk for insomnia-related depression and anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.
Current trends in nanomaterial embedded field effect transistor-based biosensor.
Nehra, Anuj; Pal Singh, Krishna
2015-12-15
Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Making Optical-Fiber Chemical Detectors More Sensitive
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Egalon, Claudio O.
1993-01-01
Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.
Investigation of explosives mechanic impact sensitivity on the samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loboyko, B.G.; Alekseev, A.V.; Litvinov, B.V.
1996-05-01
Several results of investigation into HMX-based explosive compound sensitivity to mechanic impact on the samples are presented. Mechanic loading of samples was effected by dynamic insertion of a pin. Alternation of physical state of explosive compound on account of preliminary thermal treatment or destruction of samples increased their sensitivity considerably. {copyright} {ital 1996 American Institute of Physics.}
Development of a HIV-1 Virus Detection System Based on Nanotechnology.
Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo
2015-04-27
Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.
Sensitivity of PBX-9502 after ratchet growth
NASA Astrophysics Data System (ADS)
Mulford, Roberta N.; Swift, Damian
2012-03-01
Ratchet growth, or irreversible thermal expansion of the TATB-based plastic-bonded explosive PBX-9502, leads to increased sensitivity, as a result of increased porosity. The observed increase of between 3.1 and 3.5 volume percent should increase sensitivity according to the published Pop-plots for PBX-9502 [1]. Because of the variable size, shape, and location of the increased porosity, the observed sensitivity of the ratchet-grown sample is less than the sensitivity of a sample pressed to the same density. Modeling of the composite, using a quasi-harmonic EOS for unreacted components [2] and a robust porosity model for variations in density [3], allowed comparison of the initiation observed in experiment with behavior modeled as a function of density. An Arrhenius model was used to describe reaction, and the EOS for products was generated using the CHEETAH code [4]. A 1-D Lagrangian hydrocode was used to model in-material gauge records and the measured turnover to detonation, predicting greater sensitivity to density than observed for ratchet-grown material. This observation is consistent with gauge records indicating intermittent growth of the reactive wave, possibly due to inhomogeneities in density, as observed in SEM images of the material [5].
Ronco, Guglielmo; Segnan, Nereo; Giorgi-Rossi, Paolo; Zappa, Marco; Casadei, Gian Piero; Carozzi, Francesca; Dalla Palma, Paolo; Del Mistro, Annarosa; Folicaldi, Stefania; Gillio-Tos, Anna; Nardo, Gaetano; Naldoni, Carlo; Schincaglia, Patrizia; Zorzi, Manuel; Confortini, Massimo; Cuzick, Jack
2006-06-07
Although testing for human papillomavirus (HPV) has higher sensitivity and lower specificity than cytology alone for detecting cervical intraepithelial neoplasia (CIN), studies comparing conventional and liquid-based cytology have had conflicting results. In the first phase of a two-phase multicenter randomized controlled trial, women aged 35-60 years in the conventional arm (n = 16,658) were screened using conventional cytology, and women in the experimental arm (n = 16,706) had liquid-based cytology and were tested for high-risk HPV types using the Hybrid Capture 2 assay. Women in the conventional arm were referred to colposcopy with atypical cells of undetermined significance (ASCUS) or higher and those in the experimental arm were referred with ASCUS or higher cytology or with a positive (> or = 1 pg/mL) HPV test. Sensitivity and positive predictive value (PPV) for detection of cervical intraepithelial neoplasia grade 2 or higher (CIN2+) were calculated. The screening methods and referral criterion applied in the experimental arm had higher sensitivity than that in the conventional arm (relative sensitivity = 1.47; 95% confidence interval [CI] = 1.03 to 2.09) but a lower PPV (relative PPV = 0.40; 95% CI = 0.23 to 0.66). With HPV testing alone at > or = 1 pg/mL and at > or = 2 pg/mL, the gain in sensitivity compared with the conventional arm remained similar (relative sensitivity = 1.43, 95% CI = 1.00 to 2.04 and relative sensitivity = 1.41, 95% CI = 0.98 to 2.01, respectively) but PPV progressively improved (relative PPV = 0.58, 95% CI = 0.33 to 0.98 and relative PPV = 0.75, 95% CI = 0.45 and 1.27, respectively). Referral based on liquid-based cytology alone did not increase sensitivity compared with conventional cytology (relative sensitivity = 1.06; 95% CI = 0.72 to 1.55) but reduced PPV (relative PPV = 0.57; 95% CI = 0.39 to 0.82). HPV testing alone was more sensitive than conventional cytology among women 35-60 years old. Adding liquid-based cytology improved sensitivity only marginally but increased false-positives. HPV testing using Hybrid Capture 2 with a 2 pg/mL cutoff may be more appropriate than a 1 pg/mL cutoff for primary cervical cancer screening.
Biomolecule detection based on Si single-electron transistors for practical use
NASA Astrophysics Data System (ADS)
Nakajima, Anri; Kudo, Takashi; Furuse, Sadaharu
2013-07-01
Experimental and theoretical analyses demonstrated that ultra-sensitive biomolecule detection can be achieved using a Si single-electron transistor (SET). A multi-island channel structure was used to enable room-temperature operation. Coulomb oscillation increases transconductance without increasing channel width, which increases detection sensitivity to a charged target. A biotin-modified SET biosensor was used to detect streptavidin at a dilute concentration. In addition, an antibody-functionalized SET biosensor was used for immunodetection of prostate-specific antigen, demonstrating its suitability for practical use. The feasibility of ultra-sensitive detection of biomolecules for practical use by using a SET biosensor was clearly proven through this systematic study.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.
2002-06-01
Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.
Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong
2018-01-26
As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.
Pali-Schöll, I.; Herzog, R.; Wallmann, J.; Szalai, K.; Brunner, R.; Lukschal, A.; Karagiannis, P.; Diesner, S. C.; Jensen-Jarolim, E.
2010-01-01
Summary Background Elevation of the gastric pH increases the risk for sensitization against food allergens by hindering protein breakdown. This can be caused by acid-suppressing medication like sucralphate, H2-receptor blockers and proton pump inhibitors, as shown in recent murine experimental and human observational studies. Objective The aim of the present study was to assess the sensitization capacity of the dietary supplement base powder and of over-the-counter antacids. Methods Changes of the pH as well as of protein digestion due to base powder or antacids were measured in vitro. To examine the in vivo influence, BALB/c mice were fed codfish extract with one of the acid-suppressing substances. Read-out of antibody levels in the sera, of cytokine levels of stimulated splenocytes and of intradermal skin tests was performed. Results The pH of hydrochloric acid was substantially increased in vitro by base powder as well as antacids in a time- and dose-dependent manner. This elevation hindered the digestion of codfish proteins in vitro. A significant increase in codfish-specific IgE antibodies was found in the groups fed codfish combined with Rennie® Antacidum or with base powder; the latter also showed significantly elevated IgG1 and IgG2a levels. The induction of an anaphylactic immune response was proven by positive results in intradermal skin tests. Conclusions Antacids and dietary supplements influencing the gastric pH increase the risk for sensitization against allergenic food proteins. As these substances are commonly used in the general population without consulting a physician, our data may have a major practical and clinical impact. PMID:20214670
NASA Astrophysics Data System (ADS)
Castro, N.; Reis, S.; Silva, M. P.; Correia, V.; Lanceros-Mendez, S.; Martins, P.
2018-06-01
The magnetoelectric (ME) effect is increasingly being considered an attractive alternative for magnetic field and smart current sensing, being able to sense static and dynamic magnetic fields. This work reports on a contactless DC current sensor device based on a ME PVDF/Metglas composite, a solenoid and the corresponding electronic instrumentation. The ME sample shows a maximum resonant ME coefficient (α 33) of 34.48 V cm‑1 Oe‑1, a linear response (R 2 = 0.998) and a sensitivity of 6.7 mV A‑1. With the incorporation of a charge amplifier, an AC-RMS converter and a microcontroller the linearity is maintained (R 2 = 0.997), the ME output voltage increases to a maximum of 2320 mV and the sensitivity rises to 476.5 mV A‑1. Such features allied to the highest sensitivity reported in the literature on polymer-based ME composites provide to the reported ME sensing device suitable characteristics to be used in non-contact electric current measurement, motor operational status checking, and condition monitoring of rechargeable batteries, among others.
Pernik, Meribeth
1987-01-01
The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)
Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y
2016-08-01
We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.
Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja
2016-08-01
Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance.
Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging
NASA Astrophysics Data System (ADS)
Marsden, Craig Michael
2000-12-01
This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Xia, Feng; Hu, Hai-feng; Chen, Mao-qing
2017-11-01
A novel refractive index (RI) sensor based on photonic crystal fiber Mach-Zehnder interferometer (PCF-MZI) was proposed. It was realized by cascading a section of PCF with half-taper collapse regions (HTCRs) between two single mode fibers (SMFs). The relationship between RI sensitivity and interference length of the PCF-MZI was firstly investigated. Both simulation and experimental results showed that RI sensitivity increased with the increase of interference length. Afterwards, influence of HTCR parameters on RI sensitivity was experimentally investigated to further improve the sensitivity. With intensification of arc discharge intensity in HTCR fabrication process, HTCR with larger maximum taper diameter and longer collapsed region length was obtained, which enhanced evanescent field of the PCF-MZI and then generated higher RI sensitivity. Consequently, a high RI sensitivity of 181.96 nm/refractive index unit (RIU) was achieved in the RI range of 1.3333-1.3574. Increasing arc discharge intensity in HTCR fabrication process has the capacity to improve RI sensitivity of PCF-MZI and meanwhile provides higher mechanical strength and longer sensor life compared to the traditional method of tapering the fiber, which improves the RI sensitivity at the cost of reducing mechanical strength of the sensor. This PCF-MZI was characterized by high RI sensitivity, ease of fabrication, high mechanical strength, and robustness.
2012-01-01
Background The best sites for biopsy-based tests to evaluate H. pylori infection in gastritis with atrophy are not well known. This study aimed to evaluate the site and sensitivity of biopsy-based tests in terms of degree of gastritis with atrophy. Methods One hundred and sixty-four (164) uninvestigated dyspepsia patients were enrolled. Biopsy-based tests (i.e., culture, histology Giemsa stain and rapid urease test) and non-invasive tests (anti-H. pylori IgG) were performed. The gold standard of H. pylori infection was defined according to previous criteria. The sensitivity, specificity, positive predictive rate and negative predictive rate of biopsy-based tests at the gastric antrum and body were calculated in terms of degree of gastritis with atrophy. Results The prevalence rate of H. pylori infection in the 164 patients was 63.4%. Gastritis with atrophy was significantly higher at the antrum than at the body (76% vs. 31%; p<0.001). The sensitivity of biopsy-based test decreased when the degree of gastritis with atrophy increased regardless of biopsy site (for normal, mild, moderate, and severe gastritis with atrophy, the sensitivity of histology Giemsa stain was 100%, 100%, 88%, and 66%, respectively, and 100%, 97%, 91%, and 66%, respectively, for rapid urease test). In moderate to severe antrum or body gastritis with atrophy, additional corpus biopsy resulted in increased sensitivity to 16.67% compare to single antrum biopsy. Conclusions In moderate to severe gastritis with atrophy, biopsy-based test should include the corpus for avoiding false negative results. PMID:23272897
NASA Astrophysics Data System (ADS)
Karimov, Kh. S.; Fatima, Noshin; Sulaiman, Khaulah; Mahroof Tahir, M.; Ahmad, Zubair; Mateen, A.
2015-03-01
The humidity sensing properties of the thin films of an organic semiconductor material orange dye (OD) and its composite with CNTs deposited at high gravity conditions have been reported. Impedance, phase angle, capacitance and dissipation of the samples were measured at 1 kHz and room temperature conditions. The impedance decreases and capacitance increases with an increase in the humidity level. It was found that the sensitivity of the OD-based thin film samples deposited at high gravity condition is higher than the samples deposited at low gravity condition. The impedances and capacitance sensitivities of the of the samples deposited under high gravity condition are 6.1 times and 1.6 times higher than the films deposited under low gravity condition.
The Multi-Billion Dollar Drug-Sensitive Spending Opportunity.
Easter, Jon C; Thorpe, Kenneth
2018-01-01
Chronic diseases increase utilization and avoidable drug-sensitive spending, but little is done to optimize medication use and drive value. Value-based approaches to health care financing should shift focus to drug-sensitive spending to balance patient access and quality improvement with cost containment. ©2018 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.
Weir, Charles H.; Yeatts, Karin B.; Sarnat, Jeremy A.; Vizuete, William; Salo, Päivi M.; Jaramillo, Renee; Cohn, Richard D.; Chu, Haitao; Zeldin, Darryl C.; London, Stephanie J.
2014-01-01
Background Allergic sensitization is a risk factor for asthma and allergic diseases. The relationship between ambient air pollution and allergic sensitization is unclear. Objective To investigate the relationship between ambient air pollution and allergic sensitization in a nationally representative sample of the US population. Methods We linked annual average concentrations of nitrogen dioxide (NO2), particulate matter ≤ 10 µm (PM10), particulate matter ≤ 2.5 µm (PM25), and summer concentrations of ozone (O3), to allergen-specific immunoglobulin E (IgE) data for participants in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). In addition to the monitor-based air pollution estimates, we used the Community Multiscale Air Quality (CMAQ) model to increase the representation of rural participants in our sample. Logistic regression with population-based sampling weights was used to calculate adjusted prevalence odds ratios per 10 ppb increase in O3 and NO2, per 10 µg/m3 increase in PM10, and per 5 µg/m3 increase in PM2.5 adjusting for race, gender, age, socioeconomic status, smoking, and urban/rural status. Results Using CMAQ data, increased levels of NO2 were associated with positive IgE to any (OR 1.15, 95% CI 1.04, 1.27), inhalant (OR 1.17, 95% CI 1.02, 1.33), and outdoor (OR 1.16, 95% CI 1.03, 1.31) allergens. Higher PM2.5 levels were associated with positivity to indoor allergen-specific IgE (OR 1.24, 95% CI 1.13, 1.36). Effect estimates were similar using monitored data. Conclusions Increased ambient NO2 was consistently associated with increased prevalence of allergic sensitization. PMID:24045117
Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum
NASA Astrophysics Data System (ADS)
Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.
2018-01-01
Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.
Individual modulation of pain sensitivity under stress.
Reinhardt, Tatyana; Kleindienst, Nikolaus; Treede, Rolf-Detlef; Bohus, Martin; Schmahl, Christian
2013-05-01
Stress has a strong influence on pain sensitivity. However, the direction of this influence is unclear. Recent studies reported both decreased and increased pain sensitivities under stress, and one hypothesis is that interindividual differences account for these differences. The aim of our study was to investigate the effect of stress on individual pain sensitivity in a relatively large female sample. Eighty female participants were included. Pain thresholds and temporal summation of pain were tested before and after stress, which was induced by the Mannheim Multicomponent Stress Test. In an independent sample of 20 women, correlation coefficients between 0.45 and 0.89 indicated relatively high test-retest reliability for pain measurements. On average, there were significant differences between pain thresholds under non-stress and stress conditions, indicating an increased sensitivity to pain under stress. No significant differences between non-stress and stress conditions were found for temporal summation of pain. On an individual basis, both decreased and increased pain sensitivities under stress conditions based on Jacobson's criteria for reliable change were observed. Furthermore, we found significant negative associations between pain sensitivity under non-stress conditions and individual change of pain sensitivity under stress. Participants with relatively high pain sensitivity under non-stress conditions became less sensitive under stress and vice versa. These findings support the view that pain sensitivity under stress shows large interindividual variability, and point to a possible dichotomy of altered pain sensitivity under stress. Wiley Periodicals, Inc.
VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox
NASA Astrophysics Data System (ADS)
Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.
2016-12-01
VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.
An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR
Niu, Yanqin; Zhang, Limin; Qiu, Huiling; Wu, Yike; Wang, Zhiwei; Zai, Yujia; Liu, Lin; Qu, Junle; Kang, Kang; Gou, Deming
2015-01-01
We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers. PMID:26459910
Wei, Wei; Nong, Jinpeng; Zhang, Guiwen; Tang, Linlong; Jiang, Xiao; Chen, Na; Luo, Suqin; Lan, Guilian; Zhu, Yong
2016-01-01
A graphene-based long-period fiber grating (LPFG) surface plasmon resonance (SPR) sensor is proposed. A monolayer of graphene is coated onto the Ag film surface of the LPFG SPR sensor, which increases the intensity of the evanescent field on the surface of the fiber and thereby enhances the interaction between the SPR wave and molecules. Such features significantly improve the sensitivity of the sensor. The experimental results demonstrate that the sensitivity of the graphene-based LPFG SPR sensor can reach 0.344 nm%−1 for methane, which is improved 2.96 and 1.31 times with respect to the traditional LPFG sensor and Ag-coated LPFG SPR sensor, respectively. Meanwhile, the graphene-based LPFG SPR sensor exhibits excellent response characteristics and repeatability. Such a SPR sensing scheme offers a promising platform to achieve high sensitivity for gas-sensing applications. PMID:28025483
NASA Astrophysics Data System (ADS)
Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail
2017-08-01
We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Moeng, Chin-Hoh; Sullivan, Peter P.
1999-12-01
Large-eddy simulations of a smoke cloud are examined with respect to their sensitivity to small scales as manifest in either the grid spacing or the subgrid-scale (SGS) model. Calculations based on a Smagorinsky SGS model are found to be more sensitive to the effective resolution of the simulation than are calculations based on the prognostic turbulent kinetic energy (TKE) SGS model. The difference between calculations based on the two SGS models is attributed to the advective transport, diffusive transport, and/or time-rate-of-change terms in the TKE equation. These terms are found to be leading order in the entrainment zone and allow the SGS TKE to behave in a way that tends to compensate for changes that result in larger or smaller resolved scale entrainment fluxes. This compensating behavior of the SGS TKE model is attributed to the fact that changes that reduce the resolved entrainment flux (viz., values of the eddy viscosity in the upper part of the PBL) simultaneously tend to increase the buoyant production of SGS TKE in the radiatively destabilized portion of the smoke cloud. Increased production of SGS TKE in this region then leads to increased amounts of transported, or fossil, SGS TKE in the entrainment zone itself, which in turn leads to compensating increases in the SGS entrainment fluxes. In the Smagorinsky model, the absence of a direct connection between SGS TKE in the entrainment and radiatively destabilized zones prevents this compensating mechanism from being active, and thus leads to calculations whose entrainment rate sensitivities as a whole reflect the sensitivities of the resolved-scale fluxes to values of upper PBL eddy viscosities.
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data.
Yang, Yang; Niehaus, Katherine E; Walker, Timothy M; Iqbal, Zamin; Walker, A Sarah; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W; Smith, E Grace; Zhu, Tingting; Clifton, David A
2018-05-15
Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4-8% for other drugs (P < 0.01). The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. david.clifton@eng.ox.ac.uk. Supplementary data are available at Bioinformatics online.
Anti-adhesive effect of poloxamer-based thermo-sensitive sol-gel in rabbit laminectomy model.
Shin, Sung Joon; Lee, Jae Hyup; So, Jungwon; Min, Kyungdan
2016-11-01
Poloxamer-based thermo-sensitive sol-gel has been developed to reduce the incidence of postoperative scar formation at the laminectomy site. The purpose of this study was to evaluate the anti-adhesive effect of poloxamer based thermo-sensitive sol-gel compared to hyaluronate based solution after laminectomy, using a rabbit model. A thermo-sensitive anti-adhesive with a property of sol-gel transition was manufactured by a physical mixture of Poloxamer188/407, Chitosan and Gelatin. The viscosity in different temperatures was assessed. 72 adult New Zealand rabbits underwent lumbar laminectomy and were randomly divided into experimental (treated with the newly developed agent), positive (treated with hyaluronate based solution), and negative control groups. Each group was subdivided into 1 and 4-week subgroups. Gross and histological evaluations were performed to assess the extent of epidural adhesion. The experimental group showed significantly higher viscosity compared to the positive control group and showed a significant increase of viscosity as the temperature increased. Gross evaluation showed no statistically significant differences between the 1- and 4-week subgroups. However, histologic evaluation showed significant differences both in 1- and 4-week subgroups. Although the 4-week histologic results of the experimental and the positive control subgroups showed no significant difference, both subgroups revealed higher value compared to the negative control subgroup with regard to the ratio of adhesion less than 50 %. The new poloxamer based thermo-sensitive agent showed superior efficacy over the hyaluronate based agent at 1 week postoperatively. At 4 weeks postoperatively, there were no statistically significant differences between the two agents, although both showed efficacy over the sham group.
Evaluation of in silico tools to predict the skin sensitization potential of chemicals.
Verheyen, G R; Braeken, E; Van Deun, K; Van Miert, S
2017-01-01
Public domain and commercial in silico tools were compared for their performance in predicting the skin sensitization potential of chemicals. The packages were either statistical based (Vega, CASE Ultra) or rule based (OECD Toolbox, Toxtree, Derek Nexus). In practice, several of these in silico tools are used in gap filling and read-across, but here their use was limited to make predictions based on presence/absence of structural features associated to sensitization. The top 400 ranking substances of the ATSDR 2011 Priority List of Hazardous Substances were selected as a starting point. Experimental information was identified for 160 chemically diverse substances (82 positive and 78 negative). The prediction for skin sensitization potential was compared with the experimental data. Rule-based tools perform slightly better, with accuracies ranging from 0.6 (OECD Toolbox) to 0.78 (Derek Nexus), compared with statistical tools that had accuracies ranging from 0.48 (Vega) to 0.73 (CASE Ultra - LLNA weak model). Combining models increased the performance, with positive and negative predictive values up to 80% and 84%, respectively. However, the number of substances that were predicted positive or negative for skin sensitization in both models was low. Adding more substances to the dataset will increase the confidence in the conclusions reached. The insights obtained in this evaluation are incorporated in a web database www.asopus.weebly.com that provides a potential end user context for the scope and performance of different in silico tools with respect to a common dataset of curated skin sensitization data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghong; Fang, Xiangdong; Goddard, William
2013-10-17
Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less
Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K
2015-11-10
Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs can inform control programs. This manuscript describes modifications to high resolution melting technology that further increase its sensitivity to identify polygenomic infections in patient samples.
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).
Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei
2018-04-15
Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Post, Robert M
2016-06-01
The process of sensitization (increased responsivity) to the recurrence of stressors, affective episodes, and bouts of substance abuse that can drive illness progression in the recurrent affective disorders requires a memory of and increased reactivity to the prior exposures. A wealth of studies now supports the postulate that epigenetic mechanisms underlie both normal and pathological memory processes. We selectively reviewed the literature pertinent to the role of epigenetics in behavioral sensitization phenomena and discuss its clinical implications. Epigenetics means above genetics and refers to environmental effects on the chemistry of DNA, histones (around which DNA is wound), and microRNA that change how easily genes are turned on and off. The evidence supports that sensitization to repeated stressor, affective episodes, and substance is likely based on epigenetic mechanisms and that these environmentally based processes can then become targets for prevention, early intervention, and ongoing treatment. Sensitization processes are remediable or preventable risk factors for a poor illness outcome and deserve increased clinical, public health, and research attention in the hopes of making the recurrent unipolar and bipolar affective disorders less impairing, disabling, and lethal by suicide and increased medical mortality. The findings that epigenetic chemical marks, which change in the most fundamental way how genes are regulated, mediate the long-term increased responsivity to recurrent stressors, mood episodes, and bouts of substance abuse should help change how the affective disorders are conceptualized and move treatment toward earlier, more comprehensive, and sustained pharmacoprophylaxis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Sae-Wan; Lee, Jae-Sung; Lee, Sang-Won; Kang, Byoung-Ho; Kwon, Jin-Beom; Kim, Ok-Sik; Kim, Ju-Seong; Kim, Eung-Soo; Kwon, Dae-Hyuk; Kang, Shin-Won
2017-01-01
In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily. PMID:28406469
Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot
Raissi, Mahfoudh; Pellegrin, Yann; Jobic, Stéphane; Boujtita, Mohammed; Odobel, Fabrice
2016-01-01
Sensitized NiO based photocathode is a new field of investigation with increasing scientific interest in relation with the development of tandem dye-sensitized solar cells (photovoltaic) and dye-sensitized photoelectrosynthetic cells (solar fuel). We demonstrate herein that PbS quantum dots (QDs) represent promising inorganic sensitizers for NiO-based quantum dot-sensitized solar cells (QDSSCs). The solar cell sensitized with PbS quantum dot exhibits significantly higher photoconversion efficiency than solar cells sensitized with a classical and efficient molecular sensitizer (P1 dye = 4-(Bis-{4-[5-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl}-amino)-benzoic acid). Furthermore, the system features an IPCE (Incident Photon-to-Current Efficiency) spectrum that spreads into the infra-red region, reaching operating wavelengths of 950 nm. The QDSSC photoelectrochemical device works with the complexes tris(4,4′-ditert-butyl-2,2′-bipyridine)cobalt(III/II) redox mediators, underscoring the formation of a long-lived charge-separated state. The electrochemical impedance spectrocopy measurements are consistent with a high packing of the QDs upon the NiO surface, the high density of which limits the access of the electrolyte and results in favorable light absorption cross-sections and a significant hole lifetime. These notable results highlight the potential of NiO-based photocathodes sensitized with quantum dots for accessing and exploiting the low-energy part of the solar spectrum in photovoltaic and photocatalysis applications. PMID:27125454
NASA Astrophysics Data System (ADS)
KałuŻyński, P.; Maciak, E.; Herzog, T.; Wójcik, M.
2016-09-01
In this paper we propose low cost and easy in development fully working dye-sensitized solar cell module made with use of a different sensitizing dyes (various anthocyanins and P3HT) for increasing the absorption spectrum, transparent conducting substrates (vaccum spattered chromium and gold), nanometer sized TiO2 film, iodide and methyl viologen dichloride based electrolyte, and a counter electrode (vaccum spattered platinum or carbon). Moreover, some of the different technologies and optimization manufacturing processes were elaborated for energy efficiency increase and were presented in this paper.
Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K
2013-12-15
The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.
Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.
2016-01-01
The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy. PMID:27666316
Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers
NASA Astrophysics Data System (ADS)
Bonomini, M. P.; Ingallina, F.; Barone, V.; Valentinuzzi, M. E.; Arini, P. D.
2011-12-01
Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG = δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specifity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.
Ozone increases susceptibility to antigen inhalation in allergic dogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, M.; Ohrui, T.; Aikawa, T.
1990-06-01
To determine whether O3 exposure increased airway responsiveness to antigen inhalation, we studied airway responsiveness to acetylcholine (ACh) and Ascaris suum antigen (AA) before and after O3 in dogs both sensitive and insensitive to AA. Airway responsiveness was assessed by determining the provocative concentration of ACh and AA aerosols that increased respiratory resistance (Rrs) to twice the base-line value. O3 (3 parts per million) increased airway responsiveness to ACh in dogs both sensitive and insensitive to AA, and it significantly decreased the ACh provocation concentration from 0.541 +/- 0.095 to 0.102 +/- 0.047 (SE) mg/ml (P less than 0.01; nmore » = 10). AA aerosols, even at the highest concentration in combination with O3, did not increase Rrs in dogs insensitive to AA. However, O3 increased airway responsiveness to AA in AA-sensitive dogs and significantly decreased log AA provocation concentration from 2.34 +/- 0.22 to 0.50 +/- 0.17 (SE) log protein nitrogen units/ml (P less than 0.01; n = 7). O3-induced hyperresponsiveness to ACh returned to the base-line level within 2 wk, but hyperresponsiveness to AA continued for greater than 2 wk. The plasma histamine concentration after AA challenge was significantly higher after than before O3 (P less than 0.01). Intravenous infusion of OKY-046 (100 micrograms.kg-1.min-1), an inhibitor of thromboxane synthesis, inhibited the O3-induced increase in responsiveness to ACh, but it had no effects on the O3-induced increase in responsiveness to AA and the increase in the plasma histamine concentration. These results suggest that O3 increases susceptibility to the antigen in sensitized dogs via a different mechanism from that of O3-induced muscarinic hyperresponsiveness.« less
Kerhoulas, Lucy P; Kane, Jeffrey M
2012-01-01
Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.
Why sensitive bacteria are resistant to hospital infection control
van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S
2017-01-01
Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio ( IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community-based transmission. Observed lack of effectiveness of control measures for sensitive strains does not provide evidence that infection control interventions have been ineffective in reducing resistant strains. PMID:29260003
Why sensitive bacteria are resistant to hospital infection control.
van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S
2017-01-01
Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while community acquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally. This follows from differences in their adaptation to hospital- and community-based transmission. Observed lack of effectiveness of control measures for sensitive strains does not provide evidence that infection control interventions have been ineffective in reducing resistant strains.
Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui
2015-12-15
Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less
Optimization of silver-dielectric-silver nanoshell for sensing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirzaditabar, Farzad; Saliminasab, Maryam
2013-08-15
In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivitymore » of silver-dielectric-silver nanoshell.« less
Yagmur, Sengul; Mesman, Judi; Malda, Maike; Bakermans-Kranenburg, Marian J; Ekmekci, Hatice
2014-01-01
Using a randomized control trial design we tested the effectiveness of a culturally sensitive adaptation of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) in a sample of 76 Turkish minority families in the Netherlands. The VIPP-SD was adapted based on a pilot with feedback of the target mothers, resulting in the VIPP-TM (VIPP-Turkish Minorities). The sample included families with 20-47-month-old children with high levels of externalizing problems. Maternal sensitivity, nonintrusiveness, and discipline strategies were observed during pretest and posttest home visits. The VIPP-TM was effective in increasing maternal sensitivity and nonintrusiveness, but not in enhancing discipline strategies. Applying newly learned sensitivity skills in discipline situations may take more time, especially in a cultural context that favors more authoritarian strategies. We conclude that the VIPP-SD program and its video-feedback approach can be successfully applied in immigrant families with a non-Western cultural background, with demonstrated effects on parenting sensitivity and nonintrusiveness.
Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie
2017-01-01
Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.
The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.
2009-01-01
We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junhom, W.; Magaraphan, R.
2015-05-22
The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability ofmore » DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.« less
NASA Astrophysics Data System (ADS)
Junhom, W.; Magaraphan, R.
2015-05-01
The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.
Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing.
Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T
2012-04-01
We experimentally demonstrated photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon nano-membrane on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small mode volumes, but low quality factors for bio-sensing, we showed increasing the length of the microcavity enhances the quality factor of the resonance by an order of magnitude and increases the resonance wavelength shift while retaining compact device characteristics. Q~26760 and sensitivity down to 15 ng/ml and ~110 pg/mm2 in bio-sensing was experimentally demonstrated on silicon-on-insulator devices.
Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin
2015-05-15
A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. Copyright © 2014 Elsevier B.V. All rights reserved.
Chlenova, Anna A.; Moiseev, Alexey A.; Derevyanko, Mikhail S.; Semirov, Aleksandr V.; Lepalovsky, Vladimir N.
2017-01-01
Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy. PMID:28817084
Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor
NASA Astrophysics Data System (ADS)
Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam
2017-06-01
In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu
2013-06-01
The separate layer refractive index sensitivity of a coaxial-cable type three-layered gold nanotube has been studied. Theoretical calculation results based on quasi-static model show that the coaxial-cable type gold nanostructure has higher refractive index sensitivity than that of single-layered gold nanotube. This sensitivity could be improved by increasing the inner wire radius or decreasing the total radius of the tube, and the maximum sensitivity may exceed 1,000 nm per refractive index unit. The physical origin was also investigated based on the coupling of the dielectric media induced polarizations and the local electric fields in separate layer and outer surrounding. These separate layer refractive index sensing properties of coaxial-cable type gold nanostructure present well potential for plasmonic biosensing applications.
Optimizing signal recycling for detecting a stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Tao, Duo; Christensen, Nelson
2018-06-01
Signal recycling is applied in laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to increase their sensitivity to gravitational waves. In this study, signal recycling configurations for detecting a stochastic gravitational wave background are optimized based on aLIGO parameters. Optimal transmission of the signal recycling mirror (SRM) and detuning phase of the signal recycling cavity under a fixed laser power and low-frequency cutoff are calculated. Based on the optimal configurations, the compatibility with a binary neutron star (BNS) search is discussed. Then, different laser powers and low-frequency cutoffs are considered. Two models for the dimensionless energy density of gravitational waves , the flat model and the model, are studied. For a stochastic background search, it is found that an interferometer using signal recycling has a better sensitivity than an interferometer not using it. The optimal stochastic search configurations are typically found when both the SRM transmission and the signal recycling detuning phase are low. In this region, the BNS range mostly lies between 160 and 180 Mpc. When a lower laser power is used the optimal signal recycling detuning phase increases, the optimal SRM transmission increases and the optimal sensitivity improves. A reduced low-frequency cutoff gives a better sensitivity limit. For both models of , a typical optimal sensitivity limit on the order of 10‑10 is achieved at a reference frequency of Hz.
Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation
NASA Astrophysics Data System (ADS)
Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten
2015-04-01
Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.
Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data
Yang, Yang; Niehaus, Katherine E; Walker, Timothy M; Iqbal, Zamin; Walker, A Sarah; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W; Smith, E Grace; Zhu, Tingting; Clifton, David A
2018-01-01
Abstract Motivation Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Summary Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Results Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4–8% for other drugs (P < 0.01). Availability and implementation The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. Contact david.clifton@eng.ox.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29240876
Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.
Villa, E; Aja, B; de la Fuente, L; Artal, E
2016-01-01
This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, Boyd
Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced withmore » respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.« less
Acute vestibular syndrome: clinical head impulse test versus video head impulse test.
Celebisoy, Nese
2018-03-05
HINTS battery involving head impulse test (HIT), nystagmus, and test of skew is the critical bedside examination to differentiate acute unilateral peripheral vestibulopathy from posterior circulation stroke (PCS) in acute vestibular syndrome (AVS). The highest sensitivity component of the battery has been reported to be the horizontal HIT, whereas skew deviation is defined as the most specific but non-sensitive sign for PCS. Video-oculography-based HIT (vHIT) may have an additional power in making the differentiation. If vHIT is undertaken, then both gain and gain asymmetry should be taken into account as anterior inferior cerebellar artery (AICA) strokes are at risk of being misclassified based on VOR gain alone. Further refinement in video technology, increased operator proficiency and incorporation with saccade analysis will increase the sensitivity of vHIT for PCS diagnosis. For the time being, clinical examination seems adequate in frontline diagnostic evaluation of AVS.
Numerical Simulation of Pre-heated Confined PBX Charge Under Low Velocity
NASA Astrophysics Data System (ADS)
Hu, Cai; Wu, Yanqing; Huang, Fenglei; Liu, Yan; Explosion; damage Team
2017-06-01
Impact sensitivity and thermal safety are very important for explosive safety usage.To investigate the effect of thermal softening on impact sensitivity of HMX-based PBX, a finite element model aiming at pre-heated confined PBX charge sbujected to bullets impact has been established. The predicted ignition starting area of the explosive charge was evaluated based on volume strain and equivalent strain contours. It showed that the ignition starting area moves towards the center of the explosives from the surface with increase of heating temperature. The threshold velocity does not increase monotonically with the pre-heating temperature increases. Instead, the threshold velocity rises till 360 m/s when the cook-off temperature is lower than 75°, then decreases the increased temperature. The results imply that our PBX has the lowest impact sensitivity at about 75°. These numerical results agree very well with the corresponding experiment results conducted by Dai et al. The influence of thermal softening on the impact sensitivity has been analyzed. As the strength decreases, more impact energy will be absorbed. At the same time, shear resistance ability will be weaken and volume compression work may play a more important role to ignition. China National Nature Science Foundation (11572045), ``Science Challenging Program'' (JCKY2016212A501), opening fund from Safety ammunition research and Development Center (RMC2015B03).
Davenport, Tracey A; Burns, Jane M; Hickie, Ian B
2017-01-01
Background Web-based self-report surveying has increased in popularity, as it can rapidly yield large samples at a low cost. Despite this increase in popularity, in the area of youth mental health, there is a distinct lack of research comparing the results of Web-based self-report surveys with the more traditional and widely accepted computer-assisted telephone interviewing (CATI). Objective The Second Australian Young and Well National Survey 2014 sought to compare differences in respondent response patterns using matched items on CATI versus a Web-based self-report survey. The aim of this study was to examine whether responses varied as a result of item sensitivity, that is, the item’s susceptibility to exaggeration on underreporting and to assess whether certain subgroups demonstrated this effect to a greater extent. Methods A subsample of young people aged 16 to 25 years (N=101), recruited through the Second Australian Young and Well National Survey 2014, completed the identical items on two occasions: via CATI and via Web-based self-report survey. Respondents also rated perceived item sensitivity. Results When comparing CATI with the Web-based self-report survey, a Wilcoxon signed-rank analysis showed that respondents answered 14 of the 42 matched items in a significantly different way. Significant variation in responses (CATI vs Web-based) was more frequent if the item was also rated by the respondents as highly sensitive in nature. Specifically, 63% (5/8) of the high sensitivity items, 43% (3/7) of the neutral sensitivity items, and 0% (0/4) of the low sensitivity items were answered in a significantly different manner by respondents when comparing their matched CATI and Web-based question responses. The items that were perceived as highly sensitive by respondents and demonstrated response variability included the following: sexting activities, body image concerns, experience of diagnosis, and suicidal ideation. For high sensitivity items, a regression analysis showed respondents who were male (beta=−.19, P=.048) or who were not in employment, education, or training (NEET; beta=−.32, P=.001) were significantly more likely to provide different responses on matched items when responding in the CATI as compared with the Web-based self-report survey. The Web-based self-report survey, however, demonstrated some evidence of avidity and attrition bias. Conclusions Compared with CATI, Web-based self-report surveys are highly cost-effective and had higher rates of self-disclosure on sensitive items, particularly for respondents who identify as male and NEET. A drawback to Web-based surveying methodologies, however, includes the limited control over avidity bias and the greater incidence of attrition bias. These findings have important implications for further development of survey methods in the area of health and well-being, especially when considering research topics (in this case diagnosis, suicidal ideation, sexting, and body image) and groups that are being recruited (young people, males, and NEET). PMID:28951382
Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating
NASA Astrophysics Data System (ADS)
Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed
2016-11-01
A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.
McMorrow, Meredith L.; Masanja, M. Irene; Abdulla, Salim M. K.; Kahigwa, Elizeus; Kachur, S. Patrick
2018-01-01
Rapid diagnostic tests (RDTs) represent an alternative to microscopy for malaria diagnosis and have shown high sensitivity and specificity in a variety of study settings. Current World Health Organization (WHO) guidelines for quality control of RDTs provide detailed instructions on pre-field testing, but offer little guidance for quality assurance once RDTs are deployed in health facilities. From September 2006 to April 2007, we introduced a histidine-rich protein II (HRP2)-based RDT (Paracheck) for suspected malaria cases five years of age and older in nine health facilities in Rufiji District, Tanzania, to assess sensitivity and specificity of RDTs in routine use at rural health facilities. Thick blood smears were collected for all patients tested with RDTs and stained and read by laboratory personnel in each facility. Thick smears were subsequently reviewed by a reference microscopist to determine RDT sensitivity and specificity. In all nine health facilities, there were significant problems with the quality of staining and microscopy. Sensitivity and specificity of RDTs were difficult to assess given the poor quality of routine blood smear staining. Mean operational sensitivity of RDTs based on reference microscopy was 64.8%, but varied greatly by health facility, range 18.8–85.9%. Sensitivity of RDTs increased with increasing parasite density. Specificity remained high at 87.8% despite relatively poor slide quality. Institution of quality control of RDTs based on poor quality blood smear staining may impede reliable measurement of sensitivity and specificity and undermine confidence in the new diagnostic. There is an urgent need for the development of alternative quality control procedures for rapid diagnostic tests that can be performed at the facility level. PMID:18784230
Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.
Jung, Sungmook; Kim, Ji Hoon; Kim, Jaemin; Choi, Suji; Lee, Jongsu; Park, Inhyuk; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-07-23
A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Messina, Marco; Njuguna, James; Palas, Chrysovalantis
2018-01-01
This work focuses on the proof-mass mechanical structural design improvement of a tri-axial piezoresistive accelerometer specifically designed for head injuries monitoring where medium-G impacts are common; for example, in sports such as racing cars or American Football. The device requires the highest sensitivity achievable with a single proof-mass approach, and a very low error (<1%) as the accuracy for these types of applications is paramount. The optimization method differs from previous work as it is based on the progressive increment of the sensor proof-mass mass moment of inertia (MMI) in all three axes. Three different designs are presented in this study, where at each step of design evolution, the MMI of the sensor proof-mass gradually increases in all axes. The work numerically demonstrates that an increment of MMI determines an increment of device sensitivity with a simultaneous reduction of cross-axis sensitivity in the particular axis under study. This is due to the linkage between the external applied stress and the distribution of mass (of the proof-mass), and therefore of its mass moment of inertia. Progressively concentrating the mass on the axes where the piezoresistors are located (i.e., x- and y-axis) by increasing the MMI in the x- and y-axis, will undoubtedly increase the longitudinal stresses applied in that areas for a given external acceleration, therefore increasing the piezoresistors fractional resistance change and eventually positively affecting the sensor sensitivity. The final device shows a sensitivity increase of about 80% in the z-axis and a reduction of cross-axis sensitivity of 18% respect to state-of-art sensors available in the literature from a previous work of the authors. Sensor design, modelling, and optimization are presented, concluding the work with results, discussion, and conclusion. PMID:29351221
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Genetics and clinical response to warfarin and edoxaban in patients with venous thromboembolism
Vandell, Alexander G; Walker, Joseph; Brown, Karen S; Zhang, George; Lin, Min; Grosso, Michael A; Mercuri, Michele F
2017-01-01
Objective The aim of this study was to investigate whether genetic variants can identify patients with venous thromboembolism (VTE) at an increased risk of bleeding with warfarin. Methods Hokusai-venous thromboembolism (Hokusai VTE), a randomised, multinational, double-blind, non-inferiority trial, evaluated the safety and efficacy of edoxaban versus warfarin in patients with VTE initially treated with heparin. In this subanalysis of Hokusai VTE, patients genotyped for variants in CYP2C9 and VKORC1 genes were divided into three warfarin sensitivity types (normal, sensitive and highly sensitive) based on their genotypes. An exploratory analysis was also conducted comparing normal responders to pooled sensitive responders (ie, sensitive and highly sensitive responders). Results The analysis included 47.7% (3956/8292) of the patients in Hokusai VTE. Among 1978 patients randomised to warfarin, 63.0% (1247) were normal responders, 34.1% (675) were sensitive responders and 2.8% (56) were highly sensitive responders. Compared with normal responders, sensitive and highly sensitive responders had heparin therapy discontinued earlier (p<0.001), had a decreased final weekly warfarin dose (p<0.001), spent more time overanticoagulated (p<0.001) and had an increased bleeding risk with warfarin (sensitive responders HR 1.38 [95% CI 1.11 to 1.71], p=0.0035; highly sensitive responders 1.79 [1.09 to 2.99]; p=0.0252). Conclusion In this study, CYP2C9 and VKORC1 genotypes identified patients with VTE at increased bleeding risk with warfarin. Trial registration number NCT00986154. PMID:28689179
Sensitive detection of active Shiga toxin using low cost CCD based optical detector
USDA-ARS?s Scientific Manuscript database
To reduce the sources and incidence of food-borne illness there is a need to develop inexpensive sensitive devices for detection of active toxin, such as Shiga toxin type 2 (Stx2). This approach increases the availability of foodborne bacterial toxin diagnostics in regions where there are limited r...
Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao
2016-01-19
Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis.
Post, Robert M.; Kalivas, Peter
2015-01-01
Background Bipolar disorder has a high co-occurrence with substance abuse disorders, but the pathophysiological mechanisms have not been adequately explored. Aims Review the role of stress in the onset and recurrence of affective episodes and substance abuse. Method We review the mechanisms involved in sensitization (increased responsivity) to recurrence of stressors, mood episodes, and cocaine use. Results Evidence suggests that intermittent stressors, mood episodes, and bouts of cocaine use not only show sensitization to themselves, but cross sensitization to the others contributing to illness progression. However, common mechanisms of sensitization, (such as regionally selective alterations in brain derived neurotrophic factor (BDNF) and hyperactivity of striatally-based habit memories), could also result in single therapies (such as N-acetylcysteine) having positive effects in all 3 domains. Conclusions These interacting sensitization processes suggest the importance of early intervention in attempting to prevent increasingly severe manifestations of bipolar illness and substance abuse progression. PMID:23457180
Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H
2012-06-01
The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.
Development of a high-sensitivity strain measurement system based on a SH SAW sensor
NASA Astrophysics Data System (ADS)
Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik
2012-02-01
A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.
Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren
2014-01-01
Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.
Sensitivity curves for searches for gravitational-wave backgrounds
NASA Astrophysics Data System (ADS)
Thrane, Eric; Romano, Joseph D.
2013-12-01
We propose a graphical representation of detector sensitivity curves for stochastic gravitational-wave backgrounds that takes into account the increase in sensitivity that comes from integrating over frequency in addition to integrating over time. This method is valid for backgrounds that have a power-law spectrum in the analysis band. We call these graphs “power-law integrated curves.” For simplicity, we consider cross-correlation searches for unpolarized and isotropic stochastic backgrounds using two or more detectors. We apply our method to construct power-law integrated sensitivity curves for second-generation ground-based detectors such as Advanced LIGO, space-based detectors such as LISA and the Big Bang Observer, and timing residuals from a pulsar timing array. The code used to produce these plots is available at https://dcc.ligo.org/LIGO-P1300115/public for researchers interested in constructing similar sensitivity curves.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun
2015-07-01
This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.
Hinshaw, Ling; Mallad, Ashwini; Dalla Man, Chiara; Basu, Rita; Cobelli, Claudio; Carter, Rickey E; Kudva, Yogish C; Basu, Ananda
2015-09-01
Glucagon use in artificial pancreas for type 1 diabetes (T1D) is being explored for prevention and rescue from hypoglycemia. However, the relationship between glucagon stimulation of endogenous glucose production (EGP) viz., hepatic glucagon sensitivity, and prevailing glucose concentrations has not been examined. To test the hypothesis that glucagon sensitivity is increased at hypoglycemia vs. euglycemia, we studied 29 subjects with T1D randomized to a hypoglycemia or euglycemia clamp. Each subject was studied at three glucagon doses at euglycemia or hypoglycemia, with EGP measured by isotope dilution technique. The peak EGP increments and the integrated EGP response increased with increasing glucagon dose during euglycemia and hypoglycemia. However, the difference in dose response based on glycemia was not significant despite higher catecholamine concentrations in the hypoglycemia group. Knowledge of glucagon's effects on EGP was used to develop an in silico glucagon action model. The model-derived output fitted the obtained data at both euglycemia and hypoglycemia for all glucagon doses tested. Glucagon clearance did not differ between glucagon doses studied in both groups. Therefore, the glucagon controller of a dual hormone control system may not need to adjust glucagon sensitivity, and hence glucagon dosing, based on glucose concentrations during euglycemia and hypoglycemia. Copyright © 2015 the American Physiological Society.
High sensitivity, high surface area Enzyme-linked Immunosorbent Assay (ELISA).
Singh, Harpal; Morita, Takahiro; Suzuki, Yuma; Shimojima, Masayuki; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked immunosorbent assays (ELISA) are considered the gold standard in the demonstration of various immunological reactions with an application in the detection of infectious diseases such as during outbreaks or in patient care. This study aimed to produce an ELISA-based diagnostic with an increased sensitivity of detection compared to the standard 96-well method in the immunologic diagnosis of infectious diseases. A '3DStack' was developed using readily available, low cost fabrication technologies namely nanoimprinting and press stamping with an increased surface area of 4 to 6 times more compared to 96-well plates. This was achieved by stacking multiple nanoimprinted polymer sheets. The flow of analytes between the sheets was enhanced by rotating the 3DStack and confirmed by Finite-Element (FE) simulation. An Immunoglobulin G (IgG) ELISA for the detection of antibodies in human serum raised against Rubella virus was performed for validation. An improved sensitivity of up to 1.9 folds higher was observed using the 3DStack compared to the standard method. The increased surface area of the 3DStack developed using nanoimprinting and press stamping technologies, and the flow pattern between sheets generated by rotating the 3DStack were potential contributors to a more sensitive ELISA-based diagnostic device.
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Binfeng, Yun; Guohua, Hu; Ruohu, Zhang; Yiping, Cui
2014-11-17
A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1,488 nm/RIU around Bragg resonance wavelength of 1,550 nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.
Reduced size first-order subsonic and supersonic aeroelastic modeling
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.
NASA Astrophysics Data System (ADS)
Choi, Jongwan; Kim, Felix Sunjoo
2018-03-01
We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.
nanostructures for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Rashad, M. M.; Shalan, A. E.
2014-08-01
Hierarchical architectures consisting of one-dimensional (1D) nanostructures are of great interest for potential use in energy and environmental applications in recent years. In this work, hierarchical tungsten oxide (WO3) has been synthesized via a facile hydrothermal route from ammonium metatungstate hydrate and implemented as photoelectrode for dye-sensitized solar cells. The urchin-like WO3 micro-patterns are constructed by self-organized nanoscale length 1D building blocks, which are single crystalline in nature, grown along (001) direction and confirm an orthorhombic crystal phase. The obtained powders were investigated by XRD, SEM, TEM and UV-Vis Spectroscopy. The photovoltaic performance of dye-sensitized solar cells based on WO3 photoanodes was investigated. With increasing the calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency ( η) was increased. The results were attributed to increase the crystallinity of the particles and ease of electron movement. The DSSC based on hierarchical WO3 showed a short-circuit current, an open-circuit voltage, a fill factor, and a conversion efficiency of 4.241 mA/cm2, 0.656 V, 66.74, and 1.85 %, respectively.
Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides.
Lázár, Viktória; Martins, Ana; Spohn, Réka; Daruka, Lejla; Grézal, Gábor; Fekete, Gergely; Számel, Mónika; Jangir, Pramod K; Kintses, Bálint; Csörgő, Bálint; Nyerges, Ákos; Györkei, Ádám; Kincses, András; Dér, András; Walter, Fruzsina R; Deli, Mária A; Urbán, Edit; Hegedűs, Zsófia; Olajos, Gábor; Méhi, Orsolya; Bálint, Balázs; Nagy, István; Martinek, Tamás A; Papp, Balázs; Pál, Csaba
2018-06-01
Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.
Sensitivity of resonant tunneling diode photodetectors.
Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas
2016-09-02
We have studied the sensitivity of AlGaAs/GaAs double barrier resonant tunneling diode photodetectors with an integrated GaInNAs absorption layer for light sensing at the telecommunication wavelength of λ = 1.3 μm for illumination powers from pico- to microwatts. The sensitivity decreases nonlinearly with power. An illumination power increase of seven orders of magnitude leads to a reduction of the photocurrent sensitivity from S I = 5.82 × 10(3) A W(-1) to 3.2 A W(-1). We attribute the nonlinear sensitivity-power dependence to an altered local electrostatic potential due to hole-accumulation that on the one hand tunes the tunneling current, but on the other hand affects the lifetime of photogenerated holes. In particular, the lifetime decreases exponentially with increasing hole population. The lifetime reduction results from an enhanced electrical field, a rise of the quasi-Fermi level, and an increased energy splitting within the triangular potential well. The non-constant sensitivity is a direct result of the non-constant lifetime. Based on these findings, we provide an expression that allows us to calculate the sensitivity as a function of illumination power and bias voltage, show a way to model the time-resolved photocurrent, and determine the critical power up to which the resonant tunneling diode photodetector sensitivity can be assumed constant.
NASA Astrophysics Data System (ADS)
Chen, Chun-Yuan; Chou, Jung-Chuan; Chou, Hsueh-Tao
2009-04-01
In this paper, we present a novel sensitive ion-sensitive field-effect transistor (ISFET) membrane based on Ba0.7Sr0.3TiO3 (BST)/SiO2 fabricated by sputtering deposition. The proposed device exhibits a linear shift in acidic solutions in the pH range from 1 to 10. The device sensitivity was about 50-55 mV/pH for different deposition times. We also examined the trapping behavior of the surface hydrated layer using the metal-insulator-semiconductor (MIS) structure. Results show that the hydration layer gives rise to stress polarity dependence of electron injection when immersed in pH buffer solutions. Injection from the gate electrode produces larger positive charges and interface state densities in contrast to the substrate injection, which causes simultaneous positive and negative charge trapping. A physical model that quantitatively describes the asymmetry associated with the hydrated diffusion layer is presented, and the temperature effects of BST/SiO2 ISFET devices in the range from 25 to 65 °C were examined. We observed that pH sensitivity increases with increasing temperature. The temperature coefficient of sensitivity (TCS) can be divided into two different ranges: 0.08 mV/pH °C between 25 and 45 °C, and 0.57 mV/pH °C between 45 and 65 °C. A better thermal stability is produced in the 25 and 45 °C range in comparison with other sensitive layers.
Cirrus and Future Space Based Astronomy
NASA Technical Reports Server (NTRS)
Gautier, T. N.
1993-01-01
Astronomical observations from space make possible observations of sensitivity and spatial resolution impossible in the past. This increase in sensitivity will both make possible the observation of new phenomena and will bring observations against limitations not encountered before. This paper discusses the effects that infrared cirrus and diffuse interstellar clouds will have on space based observations. Some special opportunities provided by space observations of cirrus are presented and a partial list of currently planned observations of cirrus by space telescopes is given.
Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing
2016-01-01
Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108
Voltage-sensitive rhodol with enhanced two-photon brightness.
Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W
2017-03-14
We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.
NASA Astrophysics Data System (ADS)
Masuzawa, Tomoaki; Ebisudani, Taishi; Ochiai, Jun; Saito, Ichitaro; Yamada, Takatoshi; Chua, Daniel H. C.; Mimura, Hidenori; Okano, Ken
2016-09-01
Although present imaging devices are mostly silicon-based devices such as CMOS and CCD, these devices are reaching their sensitivity limit due to the band gap of silicon. Amorphous selenium (a-Se) is a promising candidate for high- sensitivity photo imaging devices, because of its low thermal noise, high spatial resolution, as well as adaptability to wide-area deposition. In addition, internal signal amplification is reported on a-Se based photodetectors, which enables a photodetector having effective quantum efficiency over 100 % against visible light. Since a-Se has sensitivity to UV and soft X-rays, the reported internal signal amplification should be applicable to UV and X-ray detection. However, application of the internal signal amplification required high voltage, which caused unexpected breakdown at the contact or thin-film transistor-based signal read-out. For this reason, vacuum devices having electron-beam read-out is proposed. The advantages of vacuum-type devices are vacuum insulation and its extremely low dark current. In this study, we present recent progresses in developing a-Se based photoconductive films and photodetector using nitrogen-doped diamond electron beam source as signal read-out. A novel electrochemical method is used to dope impurities into a-Se, turning the material from weak p-type to n-type. A p-n junction is formed within a-Se photoconductive film, which has increased the sensitivity of a-Se based photodetector. Our result suggests a possibility of high sensitivity photodetector that can potentially break the limit of silicon-based devices.
University Practice as a Key Factor in Increasing the Sensitivity to Educational Inclusion
ERIC Educational Resources Information Center
De Luna Velasco, Laura E.; Hernández Fernández, Antonio; Ferrándiz Vindel, Isabel María
2012-01-01
The present article is based on research carried out in three universities, the University Center South (Cusur, Mexico), Jaen and Cuenca (Spain) on the influence of university practice in the development of sensitivity towards inclusive education in our students the first years of the Diploma in Education, using the subject "pedagogical basis…
NASA Astrophysics Data System (ADS)
Jaafar, Hidayani; Ahmad, Zainal Arifin; Ain, Mohd Fadzil
2018-05-01
In this paper, counter electrodes based on carbon black (CB)-TiO2 composite are proposed as a cost-effective alternative to conventional Pt counter electrodes used in dye-sensitized solar cell (DSSC) applications. CB-TiO2 composite counter electrodes with different weight percentages of CB were prepared using the solid state method and coated onto fluorine-doped tin oxide (FTO) glass using doctor blade method while Eleiodoxa conferta (E. conferta) and Nb-doped TiO2 were used as sensitizer and photoanode, respectively, with electrolyte containing I-/I-3 redox couple. The experimental results revealed that the CB-TiO2 composite influenced the photovoltaic performance by enhancing the electrocatalytic activity. As the amount of CB increased, the catalytic activity improved due to the increase in surface area which then led to low charge-transfer resistance (RCT) at the electrolyte/CB electrode interface. Due to the use of the modified photoanode together with natural dye sensitizers, the counter electrode based on 15 wt% CB-TiO2 composite was able to produce the highest energy conversion efficiency (2.5%) making it a viable alternative counter electrode.
NASA Astrophysics Data System (ADS)
Pandey, A. K.; Ahmad, Muhammad Shakeel; Alizadeh, Mahdi; Rahim, Nasrudin Abd
2018-07-01
The combined effect of dual sensitization and hetero-junction symmetry has been investigated on the performance of TiO2 based dye sensitized solar cell. CdTe nanoparticles have been introduced in TiO2 matrix to function as sensitizer as well as act as hetero-junction between D719 dye and TiO2 nanoarchitecture. Four concentrations of CdTe i.e. 0.5 wt%, 2 wt%, 5 wt% and 8 wt% have been investigated. Morphological and compositional studies have been conducted using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Light absorption characteristics have been investigated by employing Uv-vis spectroscopy and the overall performance has been studied using solar simulator and electrochemical impedance spectroscopy (EIS). Performance has been found to be increased with the addition of CdTe due to high electron density and reduction in recombination reactions. An increase of 41.73% in incident photo conversion efficiency (IPCE) and 75.57% in short circuit current density (Jsc) have been recorded for the specimens containing 5 wt% CdTe compared to bare TiO2 based DSSCs. Further addition of CdTe leads to reduction in overall performance of DSSCs.
Genetics and clinical response to warfarin and edoxaban in patients with venous thromboembolism.
Vandell, Alexander G; Walker, Joseph; Brown, Karen S; Zhang, George; Lin, Min; Grosso, Michael A; Mercuri, Michele F
2017-11-01
The aim of this study was to investigate whether genetic variants can identify patients with venous thromboembolism (VTE) at an increased risk of bleeding with warfarin. Hokusai-venous thromboembolism (Hokusai VTE), a randomised, multinational, double-blind, non-inferiority trial, evaluated the safety and efficacy of edoxaban versus warfarin in patients with VTE initially treated with heparin. In this subanalysis of Hokusai VTE, patients genotyped for variants in CYP2C9 and VKORC1 genes were divided into three warfarin sensitivity types (normal, sensitive and highly sensitive) based on their genotypes. An exploratory analysis was also conducted comparing normal responders to pooled sensitive responders (ie, sensitive and highly sensitive responders). The analysis included 47.7% (3956/8292) of the patients in Hokusai VTE. Among 1978 patients randomised to warfarin, 63.0% (1247) were normal responders, 34.1% (675) were sensitive responders and 2.8% (56) were highly sensitive responders. Compared with normal responders, sensitive and highly sensitive responders had heparin therapy discontinued earlier (p<0.001), had a decreased final weekly warfarin dose (p<0.001), spent more time overanticoagulated (p<0.001) and had an increased bleeding risk with warfarin (sensitive responders HR 1.38 [95% CI 1.11 to 1.71], p=0.0035; highly sensitive responders 1.79 [1.09 to 2.99]; p=0.0252). In this study, CYP2C9 and VKORC1 genotypes identified patients with VTE at increased bleeding risk with warfarin. NCT00986154. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-09-21
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.
A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-01-01
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679
Magnetic sensor technology based on giant magneto-impedance effect in amorphous wires
NASA Astrophysics Data System (ADS)
Wang, X.; Teng, Y.; Wang, C.; Li, Q.
2012-12-01
This project focuses on giant magneto-impedance (GMI) effect that found in the soft magnetic amorphous wires in recent years, when AC current through the amorphous wire, induced voltage in the wires would change sensitively with a small external magnetic field along the wire vertical imposed changes. GMI magnetic sensor could compensate for the shortcomings of the traditional magnetic sensors and detect weak magnetic field, meanwhile the characteristics of high stability, high sensitivity, high resolution, fast response and low power consumption, which makes it becoming the focus of extensive research at home and abroad and being new mode of the next age of the physical geography observation. The emphasis of the project is the research on the high sensitivity amorphous wire detector and the low noise capability circuit design. In this paper, it is analyzed the theory of the Amorphous Wire Giant-Magneto-Impedance (AWGMI) effect and its influence factors in details, and expatiated the sensor principle based on AWGMI. On the basis of AWGMI, the experimental system of the micro-magnetic sensor is designed, which is composed of the detecting signals, processing and collecting data, display and transmitting data circuit and corresponding functional software etc. The properties of this kind of micro-magnetic sensor are studied by experiments, such as its linearity, sensitivity, frequency response, noise, stability and temperature properties and so on, especially analyzed the relation of the drive signals with all kinds of characteristics. The results show that there is no direct relationship between the frequency of the drive signals and linear property of the sensor. But with the increase of its frequency, some fluctuation appears on the characteristic curves; the direct relation is found between the frequency of the drive signal and sensitivity, with the increase of the frequency, AWGMI effect increases monotonously. It leads to the amplitude of the output voltage increase with the change of the outer magnetic field and results in the increase of the sensor sensitivity; it can be enhanced the corresponding rate of the sensor to the low frequency magnetic field by increasing the drive signal frequency. By experiments, the best sensitivity and noise valves is 0.5225 mV/nT, 1.566nT respectively.
Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection
NASA Astrophysics Data System (ADS)
Okita, Y.; Katagiri, T.; Matsuura, Y.
2011-03-01
The highly sensitive Raman cell based on the hollow optical fiber that is suitable for the real-time breath analysis is reported. Hollow optical fiber with inner coating of silver is used as a gas cell and a Stokes light collector. A very small cell whose volume is only 0.4 ml or less enables fast response and real-time measurement of trace gases. To increase the sensitivity the cell is arranged in a cavity which includes of a long-pass filter and a high reflective mirror. The sensitivity of the cavity cell is more than two times higher than that of the cell without cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it; Colantoni, Andrea; Carlucci, Margherita
Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of landmore » sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.« less
Milton, Alyssa C; Ellis, Louise A; Davenport, Tracey A; Burns, Jane M; Hickie, Ian B
2017-09-26
Web-based self-report surveying has increased in popularity, as it can rapidly yield large samples at a low cost. Despite this increase in popularity, in the area of youth mental health, there is a distinct lack of research comparing the results of Web-based self-report surveys with the more traditional and widely accepted computer-assisted telephone interviewing (CATI). The Second Australian Young and Well National Survey 2014 sought to compare differences in respondent response patterns using matched items on CATI versus a Web-based self-report survey. The aim of this study was to examine whether responses varied as a result of item sensitivity, that is, the item's susceptibility to exaggeration on underreporting and to assess whether certain subgroups demonstrated this effect to a greater extent. A subsample of young people aged 16 to 25 years (N=101), recruited through the Second Australian Young and Well National Survey 2014, completed the identical items on two occasions: via CATI and via Web-based self-report survey. Respondents also rated perceived item sensitivity. When comparing CATI with the Web-based self-report survey, a Wilcoxon signed-rank analysis showed that respondents answered 14 of the 42 matched items in a significantly different way. Significant variation in responses (CATI vs Web-based) was more frequent if the item was also rated by the respondents as highly sensitive in nature. Specifically, 63% (5/8) of the high sensitivity items, 43% (3/7) of the neutral sensitivity items, and 0% (0/4) of the low sensitivity items were answered in a significantly different manner by respondents when comparing their matched CATI and Web-based question responses. The items that were perceived as highly sensitive by respondents and demonstrated response variability included the following: sexting activities, body image concerns, experience of diagnosis, and suicidal ideation. For high sensitivity items, a regression analysis showed respondents who were male (beta=-.19, P=.048) or who were not in employment, education, or training (NEET; beta=-.32, P=.001) were significantly more likely to provide different responses on matched items when responding in the CATI as compared with the Web-based self-report survey. The Web-based self-report survey, however, demonstrated some evidence of avidity and attrition bias. Compared with CATI, Web-based self-report surveys are highly cost-effective and had higher rates of self-disclosure on sensitive items, particularly for respondents who identify as male and NEET. A drawback to Web-based surveying methodologies, however, includes the limited control over avidity bias and the greater incidence of attrition bias. These findings have important implications for further development of survey methods in the area of health and well-being, especially when considering research topics (in this case diagnosis, suicidal ideation, sexting, and body image) and groups that are being recruited (young people, males, and NEET). ©Alyssa C Milton, Louise A Ellis, Tracey A Davenport, Jane M Burns, Ian B Hickie. Originally published in JMIR Mental Health (http://mental.jmir.org), 26.09.2017.
Surface sensitization mechanism on negative electron affinity p-GaN nanowires
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-03-01
The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.
Improved Optical Fiber Chemical Sensors
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1994-01-01
Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.
Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com
2015-04-07
We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less
Constitutive equation of friction based on the subloading-surface concept
Ueno, Masami; Kuwayama, Takuya; Suzuki, Noriyuki; Yonemura, Shigeru; Yoshikawa, Nobuo
2016-01-01
The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article by incorporating the concept of overstress for viscoplastic sliding velocity into the subloading-friction model to describe not only negative rate sensitivity but also positive rate sensitivity (i.e. an increase in friction resistance with increasing sliding velocity) at a general sliding velocity ranging from quasi-static to impact sliding. The validity of the model is verified by numerical experiments and comparisons with test data obtained from friction tests using a lubricated steel specimen. PMID:27493570
Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools
NASA Astrophysics Data System (ADS)
Hararuk, O.; Obrist, D.; Luo, Y.
2013-04-01
Substantial amounts of mercury (Hg) in the terrestrial environment reside in soils and are associated with soil organic carbon (C) pools, where they accumulated due to increased atmospheric deposition resulting from anthropogenic activities. The purpose of this study was to examine potential sensitivity of surface soil Hg pools to global change variables, particularly affected by predicted changes in soil C pools, in the contiguous US. To investigate, we included a soil Hg component in the Community Land Model based on empirical statistical relationships between soil Hg / C ratios and precipitation, latitude, and clay; and subsequently explored the sensitivity of soil C and soil Hg densities (i.e., areal-mass) to climate scenarios in which we altered annual precipitation, carbon dioxide (CO2) concentrations and temperature. Our model simulations showed that current sequestration of Hg in the contiguous US accounted for 15 230 metric tons of Hg in the top 0-40 cm of soils, or for over 300 000 metric tons when extrapolated globally. In the simulations, US soil Hg pools were most sensitive to changes in precipitation because of strong effects on soil C pools, plus a direct effect of precipitation on soil Hg / C ratios. Soil Hg pools were predicted to increase beyond present-day values following an increase in precipitation amounts and decrease following a reduction in precipitation. We found pronounced regional differences in sensitivity of soil Hg to precipitation, which were particularly high along high-precipitation areas along the West and East Coasts. Modelled increases in CO2 concentrations to 700 ppm stimulated soil C and Hg accrual, while increased air temperatures had small negative effects on soil C and Hg densities. The combined effects of increased CO2, increased temperature and increased or decreased precipitation were strongly governed by precipitation and CO2 showing pronounced regional patterns. Based on these results, we conclude that the combination of precipitation and CO2 should be emphasised when assessing how climate-induced changes in soil C may affect sequestration of Hg in soils.
Breloy, Isabelle; Pacharra, Sandra; Aust, Christina; Hanisch, Franz-Georg
2012-08-01
We developed a gel-based global O-glycomics method applicable for highly complex protein mixtures entrapped in discontinuous gradient gel layers. The protocol is based on in-gel proteolysis with pronase followed by (glyco)peptide elution and off-gel reductive β-elimination. The protocol offers robust performance with sensitivity in the low picomolar range, is compatible with gel-based proteomics, and shows superior performance in global applications in comparison with workflows eliminating glycans in-gel or from electroblotted glycoproteins. By applying this method, we analyzed the O-glycome of human myoblasts and of the mouse brain O-glycoproteome. After semipreparative separation of mouse brain proteins by one-dimensional SDS gel electrophoresis, the O-glycans from proteins in different mass ranges were characterized with a focus on O-mannose-based glycans. The relative proportion of the latter, which generally represent a rare modification, increases to comparatively high levels in the mouse brain proteome in dependence of increasing protein masses.
A value-based medicine cost-utility analysis of idiopathic epiretinal membrane surgery.
Gupta, Omesh P; Brown, Gary C; Brown, Melissa M
2008-05-01
To perform a reference case, cost-utility analysis of epiretinal membrane (ERM) surgery using current literature on outcomes and complications. Computer-based, value-based medicine analysis. Decision analyses were performed under two scenarios: ERM surgery in better-seeing eye and ERM surgery in worse-seeing eye. The models applied long-term published data primarily from the Blue Mountains Eye Study and the Beaver Dam Eye Study. Visual acuity and major complications were derived from 25-gauge pars plana vitrectomy studies. Patient-based, time trade-off utility values, Markov modeling, sensitivity analysis, and net present value adjustments were used in the design and calculation of results. Main outcome measures included the number of discounted quality-adjusted-life-years (QALYs) gained and dollars spent per QALY gained. ERM surgery in the better-seeing eye compared with observation resulted in a mean gain of 0.755 discounted QALYs (3% annual rate) per patient treated. This model resulted in $4,680 per QALY for this procedure. When sensitivity analysis was performed, utility values varied from $6,245 to $3,746/QALY gained, medical costs varied from $3,510 to $5,850/QALY gained, and ERM recurrence rate increased to $5,524/QALY. ERM surgery in the worse-seeing eye compared with observation resulted in a mean gain of 0.27 discounted QALYs per patient treated. The $/QALY was $16,146 with a range of $20,183 to $12,110 based on sensitivity analyses. Utility values ranged from $21,520 to $12,916/QALY and ERM recurrence rate increased to $16,846/QALY based on sensitivity analysis. ERM surgery is a very cost-effective procedure when compared with other interventions across medical subspecialties.
Refractive index sensors based on the fused tapered special multi-mode fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong
2016-01-01
In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.
Optical fiber strain sensor for application in intelligent intruder detection systems
NASA Astrophysics Data System (ADS)
Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz
2017-10-01
Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.
An ultrasensitive quartz crystal microbalance-micropillars based sensor for humidity detection
NASA Astrophysics Data System (ADS)
Wang, Pengtao; Su, Junwei; Su, Che-Fu; Dai, Wen; Cernigliaro, George; Sun, Hongwei
2014-06-01
A unique sensing device, which couples microscale pillars with quartz crystal microbalance (QCM) substrate to form a resonant system, is developed to achieve several orders of magnitude enhancement in sensitivity compared to conventional QCM sensors. In this research, Polymethyl Methacrylate (PMMA) micropillars are fabricated on a QCM substrate using nanoimprinting lithography. The effects of pillar geometry and physical properties, tuned by molecular weight (MW) of PMMA, on the resonant characteristics of QCM-micropillars device are systematically investigated. It is found that the resonant frequency shift increases with increasing MW. The coupled QCM-micropillars device displays nonlinear frequency response, which is opposite to the linear response of conventional QCM devices. In addition, a positive resonant frequency shift is captured near the resonant point of the coupled QCM-micropillars system. Humidity detection experiments show that compared to current nanoscale feature based QCM sensors, QCM-micropillars devices offer higher sensitivity and moderate response time. This research points to a novel way of improving sensitivity of acoustic wave sensors without the need for fabricating surface nanostructures.
Gibbons, Robert D; Hooker, Giles; Finkelman, Matthew D; Weiss, David J; Pilkonis, Paul A; Frank, Ellen; Moore, Tara; Kupfer, David J
2013-07-01
To develop a computerized adaptive diagnostic screening tool for depression that decreases patient and clinician burden and increases sensitivity and specificity for clinician-based DSM-IV diagnosis of major depressive disorder (MDD). 656 individuals with and without minor and major depression were recruited from a psychiatric clinic and a community mental health center and through public announcements (controls without depression). The focus of the study was the development of the Computerized Adaptive Diagnostic Test for Major Depressive Disorder (CAD-MDD) diagnostic screening tool based on a decision-theoretical approach (random forests and decision trees). The item bank consisted of 88 depression scale items drawn from 73 depression measures. Sensitivity and specificity for predicting clinician-based Structured Clinical Interview for DSM-IV Axis I Disorders diagnoses of MDD were the primary outcomes. Diagnostic screening accuracy was then compared to that of the Patient Health Questionnaire-9 (PHQ-9). An average of 4 items per participant was required (maximum of 6 items). Overall sensitivity and specificity were 0.95 and 0.87, respectively. For the PHQ-9, sensitivity was 0.70 and specificity was 0.91. High sensitivity and reasonable specificity for a clinician-based DSM-IV diagnosis of depression can be obtained using an average of 4 adaptively administered self-report items in less than 1 minute. Relative to the currently used PHQ-9, the CAD-MDD dramatically increased sensitivity while maintaining similar specificity. As such, the CAD-MDD will identify more true positives (lower false-negative rate) than the PHQ-9 using half the number of items. Inexpensive (relative to clinical assessment), efficient, and accurate screening of depression in the settings of primary care, psychiatric epidemiology, molecular genetics, and global health are all direct applications of the current system. © Copyright 2013 Physicians Postgraduate Press, Inc.
Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity.
Ingelsson, Erik; Arnlöv, Johan; Zethelius, Björn; Vasan, Ramachandran S; Flyvbjerg, Allan; Frystyk, Jan; Berne, Christian; Hänni, Arvo; Lind, Lars; Sundström, Johan
2009-03-01
Skeletal muscle morphology and function are strongly associated with insulin sensitivity. The objective of the study was to test the hypothesis that circulating adiponectin is associated with skeletal muscle morphology and that adiponectin mediates the relation of muscle morphology to insulin sensitivity. This was a cross-sectional investigation of 461 men aged 71 yr, participants of the community-based Uppsala Longitudinal Study of Adult Men study. Measures included serum adiponectin, insulin sensitivity measured with euglycemic insulin clamp technique, and capillary density and muscle fiber composition determined from vastus lateralis muscle biopsies. In multivariable linear regression models (adjusting for age, physical activity, fasting glucose, and pharmacological treatment for diabetes), serum adiponectin levels rose with increasing capillary density (beta, 0.30 per 50 capillaries per square millimeter increase; P = 0.041) and higher proportion of type I muscle fibers (beta, 0.27 per 10% increase; P = 0.036) but declined with a higher proportion of type IIb fibers (beta, -0.39 per 10% increase; P = 0.014). Using bootstrap methods to examine the potential role of adiponectin in associations between muscle morphology and insulin sensitivity and the associations of capillary density (beta difference, 0.041; 95% confidence interval 0.001, 0.085) and proportion of type IIb muscle fibers (beta difference, -0.053; 95% confidence interval -0.107, -0.002) with insulin sensitivity were significantly attenuated when adiponectin was included in the models. Circulating adiponectin concentrations were higher with increasing skeletal muscle capillary density and in individuals with higher proportion of slow oxidative muscle fibers. Furthermore, our results indicate that adiponectin could be a partial mediator of the relations between skeletal muscle morphology and insulin sensitivity.
Pest controllers: a high-risk group for Multiple Chemical Sensitivity (MCS)?
Bornschein, Susanne; Hausteiner, Constanze; Pohl, Corina; Jahn, Thomas; Angerer, Jürgen; Foerstl, Hans; Zilker, Thomas
2008-03-01
Based on the assumption that professional groups with frequent chemical exposure are at an increased risk for developing Multiple Chemical Sensitivity (MCS), a sample of 45 professional pest controllers was investigated. The examination of the pest controllers consisted of a physical and laboratory examination with urine screening for pyrethroid metabolites, a psychiatric interview, a neuropsychological test battery, and a chemical sensitivity questionnaire. Persistent or serious work related health problems and chemical sensitivity were not reported. In urine, cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br(2)CA) was detected in 11%, 4-fluoro-3-phenoxybenzoic acid (F-PBA) in 7%. 3-phenoxybenzoic acid (3-PBA) exceeded the reference range in 9%, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (Cl(2)CA) in 20%. Increased liver enzymes and blood count deviations were rather common. 38% had psychiatric disorders. With few exceptions, neuropsychological testing results were normal. The results do not support the hypothesis that work-related insecticide exposure promotes chemical sensitivity.
Shock Initiation Characteristics of an Aluminized DNAN/RDX Melt-Cast Explosive
NASA Astrophysics Data System (ADS)
Cao, Tong-Tang; Zhou, Lin; Zhang, Xiang-Rong; Zhang, Wei; Miao, Fei-Chao
2017-10-01
Shock sensitivity is one of the key parameters for newly developed, 2,4-dinitroanisole (DNAN)-based, melt-cast explosives. For this paper, a series of shock initiation experiments were conducted using a one-dimensional Lagrangian system with a manganin piezoresistive pressure gauge technique to evaluate the shock sensitivity of an aluminized DNAN/cyclotrimethylenetrinitramine (RDX) melt-cast explosive. This study fully investigated the effects of particle size distributions in both RDX and aluminum, as well as the RDX's crystal quality on the shock sensitivity of the aluminized DNAN/RDX melt-cast explosive. Ultimately, the shock sensitivity of the aluminized DNAN/RDX melt-cast explosives increases when the particle size decreases in both RDX and aluminum. Additionally, shock sensitivity increases when the RDX's crystal quality decreases. In order to simulate these effects, an Ignition and Growth (I&G) reactive flow model was calibrated. This calibrated I&G model was able to predict the shock initiation characteristics of the aluminized DNAN/RDX melt-cast explosive.
Li, Ya; Li, Yanqing; Zhao, Junli; Zheng, Xiaojing; Mao, Qinwen; Xia, Haibin
2016-12-01
Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.
Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng
2014-01-01
Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319
Baliatsas, Christos; van Kamp, Irene; Bolte, John; Kelfkens, Gert; van Dijk, Christel; Spreeuwenberg, Peter; Hooiveld, Mariette; Lebret, Erik; Yzermans, Joris
2016-09-15
The number of mobile phone base station(s) (MPBS) has been increasing to meet the rapid technological changes and growing needs for mobile communication. The primary objective of the present study was to test possible changes in prevalence and number of NSS in relation to MPBS exposure before and after increase of installed MPBS antennas. A retrospective cohort study was conducted, comparing two time periods with high contrast in terms of number of installed MPBS. Symptom data were based on electronic health records from 1069 adult participants, registered in 9 general practices in different regions in the Netherlands. All participants were living within 500m from the nearest bases station. Among them, 55 participants reported to be sensitive to MPBS at T1. A propagation model combined with a questionnaire was used to assess indoor exposure to RF-EMF from MPBS at T1. Estimation of exposure at T0 was based on number of antennas at T0 relative to T1. At T1, there was a >30% increase in the total number of MPBS antennas. A higher prevalence for most NSS was observed in the MPBS-sensitive group at T1 compared to baseline. Exposure estimates were not associated with GP-registered NSS in the total sample. Some significant interactions were observed between MPBS-sensitivity and exposure estimates on risk of symptoms. Using clinically defined outcomes and a time difference of >6years it was demonstrated that RF-EMF exposure to MPBS was not associated with the development of NSS. Nonetheless, there was some indication for a higher risk of NSS for the MPBS-sensitive group, mainly in relation to exposure to UMTS, but this should be interpreted with caution. Results have to be verified by future longitudinal studies with a particular focus on potentially susceptible population subgroups of large sample size and integrated exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
John, Beena Mary; Ushamani, M.; Sreekumar, K.; Joseph, Rani; Sudha Kartha, C.
2007-01-01
The diffraction efficiency, sensitivity, and storage life of methylene blue-sensitized poly(vinyl chloride) film was improved by the addition of an electron donor in the matrix. The addition of pyridine enhanced the diffraction efficiency by two times, and storage life of the gratings was increased to 2-3 days.
NASA Astrophysics Data System (ADS)
Dong, Xinran; Xie, Zheng; Song, Yuxin; Yin, Kai; Luo, Zhi; Duan, Ji'an; Wang, Cong
2017-12-01
A highly sensitive torsion sensor based on long period fiber grating (LPFG) fabricated by 800 nm femtosecond laser pulses is proposed and demonstrated. LPFG with an attenuation depth of ∼14 dB is achieved within the wavelength range of 1425-1575 nm. The experiment results show that the LP02 and LP03 resonant wavelengths experience red-shift when the twist direction is clockwise while they occur blue-shift in the twist counterclockwise direction as the twist rate increases. However, the LP04 resonant wavelength is always shifted toward shorter wavelength independently of the twist directions and higher twist sensitivity is observed. In addition, the loss peak amplitude of LPFG shows a tendency to decrease with the twist rate increases whether the LPFG is twisted clockwise or counterclockwise. Meanwhile, the resonant wavelength occurs splitting phenomenon in the case of higher twist rate as well as the high order resonant wavelength performs more significantly. Additionally, the sensor shows a twist sensitivity as high as 118.7 pm/(rad/m) in the range of -105 to -52.5 rad/m and that of 181.7 pm/(rad/m) in the range of 52.5-105 rad/m.
Sensitive liquid refractive index sensors using tapered optical fiber tips.
Tai, Yi-Hsin; Wei, Pei-Kuen
2010-04-01
An optical fiber sensor based on the change of optical confinement in a subwavelength tip is presented. The optical spot is substantially increased when the environmental refractive index (RI) increases from 1.3 to 1.4. By measuring the intensity of low angular spectral components, an intensity sensitivity up to 8000% per RI unit is achieved. The fiber tip sensors take advantage of the small detection volume and real-time responses. We demonstrate the application of the nanofiber sensors for measuring concentrations of acids and evaporation rates of aqueous mixtures.
NASA Astrophysics Data System (ADS)
Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.
2016-12-01
Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our results highlight the importance of geology and subsurface flow conditions, in addition to snow accumulation. In parallel, the remotely-sensed drought sensitivity can be used as a scalable metric to identify the vulnerable regions to the future climate change, as well as to inform future sampling and characterization.
Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.
Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J
2012-11-09
A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.
[Analysis and experimental verification of sensitivity and SNR of laser warning receiver].
Zhang, Ji-Long; Wang, Ming; Tian, Er-Ming; Li, Xiao; Wang, Zhi-Bin; Zhang, Yue
2009-01-01
In order to countermeasure increasingly serious threat from hostile laser in modern war, it is urgent to do research on laser warning technology and system, and the sensitivity and signal to noise ratio (SNR) are two important performance parameters in laser warning system. In the present paper, based on the signal statistical detection theory, a method for calculation of the sensitivity and SNR in coherent detection laser warning receiver (LWR) has been proposed. Firstly, the probabilities of the laser signal and receiver noise were analyzed. Secondly, based on the threshold detection theory and Neyman-Pearson criteria, the signal current equation was established by introducing detection probability factor and false alarm rate factor, then, the mathematical expressions of sensitivity and SNR were deduced. Finally, by using method, the sensitivity and SNR of the sinusoidal grating laser warning receiver developed by our group were analyzed, and the theoretic calculation and experimental results indicate that the SNR analysis method is feasible, and can be used in performance analysis of LWR.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
Theurer, M E; White, B J; Larson, R L; Schroeder, T C
2015-03-01
Bovine respiratory disease is an economically important syndrome in the beef industry, and diagnostic accuracy is important for optimal disease management. The objective of this study was to determine whether improving diagnostic sensitivity or specificity was of greater economic value at varied levels of respiratory disease prevalence by using Monte Carlo simulation. Existing literature was used to populate model distributions of published sensitivity, specificity, and performance (ADG, carcass weight, yield grade, quality grade, and mortality risk) differences among calves based on clinical respiratory disease status. Data from multiple cattle feeding operations were used to generate true ranges of respiratory disease prevalence and associated mortality. Input variables were combined into a single model that calculated estimated net returns for animals by diagnostic category (true positive, false positive, false negative, and true negative) based on the prevalence, sensitivity, and specificity for each iteration. Net returns for each diagnostic category were multiplied by the proportion of animals in each diagnostic category to determine group profitability. Apparent prevalence was categorized into low (<15%) and high (≥15%) groups. For both apparent prevalence categories, increasing specificity created more rapid, positive change in net returns than increasing sensitivity. Improvement of diagnostic specificity, perhaps through a confirmatory test interpreted in series or pen-level diagnostics, can increase diagnostic value more than improving sensitivity. Mortality risk was the primary driver for net returns. The results from this study are important for determining future research priorities to analyze diagnostic techniques for bovine respiratory disease and provide a novel way for modeling diagnostic tests.
Bassi, Maria Rosaria; Sempere, Raquel Navarro; Meyn, Prashansa; Polacek, Charlotta; Arias, Armando
2018-06-18
Flaviviruses constitute an increasing source of public health concern with growing numbers of pathogens causing disease, and a geographic spread to temperate climates. Despite a large body of evidence supporting mutagenesis as a conceivable antiviral strategy, there is currently no data on the sensitivity to increased mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral threats. In this study, we demonstrate that both viruses are sensitive to three ribonucleosides that have shown mutagenic activity against other RNA viruses - favipiravir, ribavirin and 5-fluorouracil - while they remain unaffected by a mutagenic deoxyribonucleoside. Serial cell culture passages of ZIKV in the presence of these compounds resulted in the rapid extinction of infectivity, suggesting elevated sensitivity to mutagenesis. USUV extinction was achieved when a 10-fold dilution was applied between every passage, but not in experiments involving undiluted virus, indicating an overall lower susceptibility than ZIKV. Although both viruses are inhibited by the same three drugs, ZIKV is relatively more susceptive to serial passage in the presence of purine analogues (favipiravir and ribavirin) while USUV replication is suppressed more efficiently by 5-fluorouracil. These differences in sensitivity typically correlate with the increases in the mutation frequencies observed in each nucleoside treatment. These results are relevant to the development of efficient therapies based on lethal mutagenesis, and support the rational selection of different mutagenic nucleosides for each pathogen. We will discuss the implications of these results to the fidelity of flavivirus replication, and the design of antiviral therapies based on lethal mutagenesis. Copyright © 2018 Bassi et al.
Tapered GRIN fiber microsensor.
Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B
2014-12-15
The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach.
Effect of polymer electrolyte on the performance of natural dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.
2015-10-01
Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.
Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H
2016-09-21
Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.
The effect of an atomically deposited layer of alumina on NiO in P-type dye-sensitized solar cells.
Natu, Gayatri; Huang, Zhongjie; Ji, Zhiqiang; Wu, Yiying
2012-01-10
We present a systematic investigation of the fundamental effects of an atomically deposited alumina (AlO(x)H(y)) onto the NiO films in p-type dye-sensitized solar cells (p-DSCs). With P1 as the sensitizing dye and 0.1 M I(2) and 1.0 M LiI in 3-methoxypropionitrile as the electrolyte, one atomic layer deposition (ALD) cycle of alumina was used to achieve a 74% increase in the overall conversion efficiency of a NiO-based DSC. The open circuit voltage of the cells increased from 0.11 to 0.15 V, and the short circuit current density increased from 0.83 to 0.95 mA/cm(2). Adsorption isotherm studies were performed to show that the amount of dye adsorbed on the NiO-alumina film is slightly lower than the amount adsorbed on the nontreated NiO film. The increased J(sc) was therefore assigned to the increased efficiency of carrier collection at the semiconductor-FTO interface. Our study of the photocurrent onset potentials of NiO and NiO-alumina films with the chopped light measurement technique showed no definitive difference in the onset potential values. However, the DSCs based on NiO-alumina showed a higher recombination resistance value from the electrochemical impedance studies and a higher diode ideality factor from the V(oc) versus ln(light intensity) plots as compared to the DSCs based on untreated NiO. It has thus been established that the increase in V(oc) upon alumina treatment arises due to a higher resistance for electron-hole recombination across NiO surface locally.
Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation.
Sellmann, Lea; Rabe, Kim; Bünting, Ivonne; Dammann, Elke; Göhring, Gudrun; Ganser, Arnold; Stadler, Michael; Weissinger, Eva M; Hambach, Lothar
2018-05-02
Conventional analysis of host chimerism (HC) frequently fails to detect relapse before its clinical manifestation in patients with hematological malignancies after allogeneic stem cell transplantation (allo-SCT). Quantitative PCR (qPCR)-based highly-sensitive chimerism analysis extends the detection limit of conventional (short tandem repeats-based) chimerism analysis from 1 to 0.01% host cells in whole blood. To date, the diagnostic value of highly-sensitive chimerism analysis is hardly defined. Here, we applied qPCR-based chimerism analysis to 901 blood samples of 71 out-patients with hematological malignancies after allo-SCT. Receiver operating characteristics (ROC) curves were calculated for absolute HC values and for the increments of HC before relapse. Using the best cut-offs, relapse was detected with sensitivities of 74 or 85% and specificities of 69 or 75%, respectively. Positive predictive values (PPVs) were only 12 or 18%, but the respective negative predictive values were 98 or 99%. Relapse was detected median 38 or 45 days prior to clinical diagnosis, respectively. Considering also durations of steadily increasing HC of more than 28 days improved PPVs to more than 28 or 59%, respectively. Overall, highly-sensitive chimerism analysis excludes relapses with high certainty and predicts relapses with high sensitivity and specificity more than a month prior to clinical diagnosis.
Majumder, Muntasir Mamun; Silvennoinen, Raija; Anttila, Pekka; Tamborero, David; Eldfors, Samuli; Yadav, Bhagwan; Karjalainen, Riikka; Kuusanmäki, Heikki; Lievonen, Juha; Parsons, Alun; Suvela, Minna; Jantunen, Esa; Porkka, Kimmo; Heckman, Caroline A
2017-08-22
Novel agents have increased survival of multiple myeloma (MM) patients, however high-risk and relapsed/refractory patients remain challenging to treat and their outcome is poor. To identify novel therapies and aid treatment selection for MM, we assessed the ex vivo sensitivity of 50 MM patient samples to 308 approved and investigational drugs. With the results we i) classified patients based on their ex vivo drug response profile; ii) identified and matched potential drug candidates to recurrent cytogenetic alterations; and iii) correlated ex vivo drug sensitivity to patient outcome. Based on their drug sensitivity profiles, MM patients were stratified into four distinct subgroups with varied survival outcomes. Patients with progressive disease and poor survival clustered in a drug response group exhibiting high sensitivity to signal transduction inhibitors. Del(17p) positive samples were resistant to most drugs tested with the exception of histone deacetylase and BCL2 inhibitors. Samples positive for t(4;14) were highly sensitive to immunomodulatory drugs, proteasome inhibitors and several targeted drugs. Three patients treated based on the ex vivo results showed good response to the selected treatments. Our results demonstrate that ex vivo drug testing may potentially be applied to optimize treatment selection and achieve therapeutic benefit for relapsed/refractory MM.
Voltage-sensitive rhodol with enhanced two-photon brightness
Kulkarni, Rishikesh U.; Kramer, Daniel J.; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S.
2017-01-01
We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue. PMID:28242676
Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls
NASA Astrophysics Data System (ADS)
Guha Ray, A.; Baidya, D. K.
2012-09-01
Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.
NASA Astrophysics Data System (ADS)
Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.
2017-05-01
Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.
NASA Astrophysics Data System (ADS)
Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.
2017-12-01
Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.
Kim, Seon-Mee; Park, Hyesoon; Park, Chang gyu; Park, Hye Kyung
2015-01-01
Background High sodium intake is associated with the development of chronic diseases such as obesity. Although its role in obesity remains controversial, there may be a correlation between salt sensitivity and the early onset of chronic diseases in obese children. Methods In all, 2,163 Korean children (1,106 boys and 1,057 girls) aged 8–9 years were recruited from seven elementary schools in Seoul. To evaluate whether obesity risk was modulated by the salt sensitivity, 11 SNPs related to salt sensitive genes (SSG) became the target of sodium intakes in obese children. Results BP, HOMA-IR, LDLc, TG, and the girls’ sodium intake significantly increased, but HDLc significantly decreased with increase in BMI. Regardless of sex, the obesity risk was 5.27-fold (CI; 1.320–27.560) higher in the Q2 to Q5 of sodium intake adjusted by energy (4044.9–5058.9 mg/day) than in the lowest Q1 level (2287.6 mg/day) in obese children. BP was sensitively dependent on insulin resistance and lipid accumulation in all subjects; however, sodium intake may be an independent risk factor of obesity without increasing BP in girls. GRK4 A486V mutant homozygote was highly distributed in the obese group, but other SNPs had no impact. The obesity risk increased 7.06, 16.8, and 46.09-fold more in boys with GRK4 A486V, ACE, and SLC12A3 mutants as sodium intake increased. Among girls, the obesity risk increased in GRK4 A486V heterozygote and CYP11β-2 mutant homozygote although sodium intake was relatively lower, implying that ACE, SLC12A, CYP11β-2, and GRK4 A486V polymorphisms showed gender-based differences with regard to interaction between sodium intake and obesity. Conclusion A high sodium intake markedly increased the obesity risk in variants of GRK4 A486V regardless of sex. The obesity risk increased with GRK4 A486V, ACE, and SLC12A3 variants in boys, whereas it increased with GRK4 A486V and CYP11B2 variants in girls as sodium intake increased. Obese children with the specific gene variants are recommended to reduce their sodium intake. PMID:25768006
Lee, Myoungsook; Kim, Mi Kyung; Kim, Seon-Mee; Park, Hyesoon; Park, Chang Gyu; Park, Hye Kyung
2015-01-01
High sodium intake is associated with the development of chronic diseases such as obesity. Although its role in obesity remains controversial, there may be a correlation between salt sensitivity and the early onset of chronic diseases in obese children. In all, 2,163 Korean children (1,106 boys and 1,057 girls) aged 8-9 years were recruited from seven elementary schools in Seoul. To evaluate whether obesity risk was modulated by the salt sensitivity, 11 SNPs related to salt sensitive genes (SSG) became the target of sodium intakes in obese children. BP, HOMA-IR, LDLc, TG, and the girls' sodium intake significantly increased, but HDLc significantly decreased with increase in BMI. Regardless of sex, the obesity risk was 5.27-fold (CI; 1.320-27.560) higher in the Q2 to Q5 of sodium intake adjusted by energy (4044.9-5058.9 mg/day) than in the lowest Q1 level (2287.6 mg/day) in obese children. BP was sensitively dependent on insulin resistance and lipid accumulation in all subjects; however, sodium intake may be an independent risk factor of obesity without increasing BP in girls. GRK4 A486V mutant homozygote was highly distributed in the obese group, but other SNPs had no impact. The obesity risk increased 7.06, 16.8, and 46.09-fold more in boys with GRK4 A486V, ACE, and SLC12A3 mutants as sodium intake increased. Among girls, the obesity risk increased in GRK4 A486V heterozygote and CYP11β-2 mutant homozygote although sodium intake was relatively lower, implying that ACE, SLC12A, CYP11β-2, and GRK4 A486V polymorphisms showed gender-based differences with regard to interaction between sodium intake and obesity. A high sodium intake markedly increased the obesity risk in variants of GRK4 A486V regardless of sex. The obesity risk increased with GRK4 A486V, ACE, and SLC12A3 variants in boys, whereas it increased with GRK4 A486V and CYP11B2 variants in girls as sodium intake increased. Obese children with the specific gene variants are recommended to reduce their sodium intake.
NASA Astrophysics Data System (ADS)
Narasimha Rao, B.; Padma suvarna, R.; Giribabu, L.; Raghavender, M.; kumar, V. Ramesh
2018-02-01
Poly (ethylene oxide) (PEO) based gel polymer electrolytes (GPEs) with added acetamide, NaI/I2 have been prepared for dye-sensitized solar cells application (DSSC). The Dye-sensitized solar cell investigated the performance of the optimized gel polymer electrolyte. GPEs synthesized by adding up of acetamide with different wt% in poly (ethylene oxide) (PEO) and poly (ethylene glycol) dimethyl ether (PEGDME) with NaI/I2. A maximum power conversion efficiency of 5.92% is achieved for PEO/PEGDME with 10 wt% acetamide in the photovoltaic performance under 100 mW/cm2 illumination and it exhibits maximum ionic conductivity (σ = 2.81×10-3 S/cm) among all electrolytes, compared to PEO without acetamide (η = 4.35%). The gain in open circuit voltage (Voc) was observed for GPEs due to the decrease in the recombination effect and electron lifetime increases by the addition of acetamide on the PEO. The fill factor (FF) is increased due to the growth in the ionic conductivity and amorphous nature of the GPE increases by the addition of acetamide on the PEO.
Besar, Kalpana; Dailey, Jennifer; Katz, Howard E
2017-01-18
Ethylene sensing is a highly challenging problem for the horticulture industry because of the limited physiochemical reactivity of ethylene. Ethylene plays a very important role in the fruit life cycle and has a significant role in determining the shelf life of fruits. Limited ethylene monitoring capability results in huge losses to the horticulture industry as fruits may spoil before they reach the consumer, or they may not ripen properly. Herein we present a poly(3-hexylthiophene-2,5-diyl) (P3HT)-based organic field effect transistor as a sensing platform for ethylene with sensitivity of 25 ppm V/V. To achieve this response, we used N-(tert-Butoxy-carbonyloxy)-phthalimide and palladium particles as additives to the P3HT film. N-(tert-Butoxy-carbonyloxy)-phthalimide is used to increase the porosity of the P3HT, thereby increasing the overall sensor surface area, whereas the palladium (<1 μm diameter) particles are used as receptors for ethylene molecules in order to further enhance the sensitivity of the sensor platform. Both modifications give statistically significant sensitivity increases over pure P3HT. The sensor response is reversible and is also highly selective for ethylene compared to common solvent vapors.
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
A Practical Model of Quartz Crystal Microbalance in Actual Applications.
Huang, Xianhe; Bai, Qingsong; Hu, Jianguo; Hou, Dong
2017-08-03
A practical model of quartz crystal microbalance (QCM) is presented, which considers both the Gaussian distribution characteristic of mass sensitivity and the influence of electrodes on the mass sensitivity. The equivalent mass sensitivity of 5 MHz and 10 MHz AT-cut QCMs with different sized electrodes were calculated according to this practical model. The equivalent mass sensitivity of this practical model is different from the Sauerbrey's mass sensitivity, and the error between them increases sharply as the electrode radius decreases. A series of experiments which plate rigid gold film onto QCMs were carried out and the experimental results proved this practical model is more valid and correct rather than the classical Sauerbrey equation. The practical model based on the equivalent mass sensitivity is convenient and accurate in actual measurements.
Claussen, Catherine M; Dafny, Nachum
2016-01-01
The misuse and abuse of the psychostimulant, methylphenidate (MPD) the drug of choice in the treatment of attention deficit hyperactivity disorder (ADHD) has seen a sharp uprising in recent years among both youth and adults for its cognitive enhancing effects and for recreational purposes. This uprise in illicit use has lead to many questions concerning the long term consequences of MPD exposure. The objective of this study was to record animal behavior concomitantly with the caudate nucleus (CN) neuronal activity following acute and repetitive (chronic) dose response exposure to methylphenidate (MPD). A saline control and three MPD dose (0.6, 2.5, and 10.0 mg/kg) groups were used. Behaviorally, the same MPD dose in some animals following chronic MPD exposure elicited behavioral sensitization and other animals elicited behavioral tolerance. Based on this finding, the CN neuronal population recorded from animals expressing behavioral sensitization were also evaluated separately from CN neurons recorded from animals expressing behavioral tolerance to chronic MPD exposure, respectively. Significant differences in CN neuronal population responses between the behaviorally sensitized and the behaviorally tolerant animals was observed for the 2.5 and 10.0 mg/kg MPD exposed groups. For 2.5 mg/kg MPD, behaviorally sensitized animals responded by decreasing their firing rates while behaviorally tolerant animals showed mainly an increase in their firing rates. The CN neuronal responses recorded from the behaviorally sensitized animals following 10.0 mg/kg MPD responded by increasing their firing rates whereas the CN neuronal recordings from the behaviorally tolerant animals showed that approximately half decreased their firing rates in response to 10.0 mg/kg MPD exposure. The comparison of percentage change in neuronal firing rates showed that the behaviorally tolerant animals trended to exhibit increases in their neuronal firing rates at ED1 following initial MPD exposure and oppositely at ED10 MPD rechallenge. While the behaviorally sensitized animals in general increased in their percentage change of firing rats were observed following acute 10.0 mg/kg MPD and the behaviorally sensitized 10.0 mg/kg MPD animals and a robust increase in neuronal firing rates at ED1 and ED10 rechallenge. These results suggest the need to first individually analyze animal behavioral activity, and than to evaluate the neuronal responses to the drug based on the animals behavioral response to chronic MPD exposure. PMID:26101057
Campos, Nicole G.; Castle, Philip E.; Wright, Thomas C.; Kim, Jane J.
2016-01-01
As cervical cancer screening programs are implemented in low-resource settings, protocols are needed to maximize health benefits under operational constraints. Our objective was to develop a framework for examining health and economic tradeoffs between screening test sensitivity, population coverage, and follow-up of screen-positive women, to help decision makers identify where program investments yield the greatest value. As an illustrative example, we used an individual-based Monte Carlo simulation model of the natural history of human papillomavirus (HPV) and cervical cancer calibrated to epidemiologic data from Uganda. We assumed once in a lifetime screening at age 35 with two-visit HPV DNA testing or one-visit visual inspection with acetic acid (VIA). We assessed the health and economic tradeoffs that arise between 1) test sensitivity and screening coverage; 2) test sensitivity and loss to follow-up (LTFU) of screen-positive women; and 3) test sensitivity, screening coverage, and LTFU simultaneously. The decline in health benefits associated with sacrificing HPV DNA test sensitivity by 20% (e.g., shifting from provider- to self-collection of specimens) could be offset by gains in coverage if coverage increased by at least 20%. When LTFU was 10%, two-visit HPV DNA testing with 80-90% sensitivity was more effective and more cost-effective than one-visit VIA with 40% sensitivity, and yielded greater health benefits than VIA even as VIA sensitivity increased to 60% and HPV test sensitivity declined to 70%. As LTFU increased, two-visit HPV DNA testing became more costly and less effective than one-visit VIA. Setting-specific data on achievable test sensitivity, coverage, follow-up rates, and programmatic costs are needed to guide programmatic decision making for cervical cancer screening. PMID:25943074
Visual context processing deficits in schizophrenia: effects of deafness and disorganization.
Horton, Heather K; Silverstein, Steven M
2011-07-01
Visual illusions allow for strong tests of perceptual functioning. Perceptual impairments can produce superior task performance on certain tasks (i.e., more veridical perception), thereby avoiding generalized deficit confounds while tapping mechanisms that are largely outside of conscious control. Using a task based on the Ebbinghaus illusion, a perceptual phenomenon where the perceived size of a central target object is affected by the size of surrounding inducers, we tested hypotheses related to visual integration in deaf (n = 31) and hearing (n = 34) patients with schizophrenia. In past studies, psychiatrically healthy samples displayed increased visual integration relative to schizophrenia samples and thus were less able to correctly judge target sizes. Deafness, and especially the use of sign language, leads to heightened sensitivity to peripheral visual cues and increased sensitivity to visual context. Therefore, relative to hearing subjects, deaf subjects were expected to display increased context sensitivity (ie, a more normal illusion effect as evidenced by a decreased ability to correctly judge central target sizes). Confirming the hypothesis, deaf signers were significantly more sensitive to the illusion than nonsigning hearing patients. Moreover, an earlier age of sign language acquisition, higher levels of linguistic ability, and shorter illness duration were significantly related to increased context sensitivity. As predicted, disorganization was associated with reduced context sensitivity for all subjects. The primary implications of these data are that perceptual organization impairment in schizophrenia is plastic and that it is related to a broader failure in coordinating cognitive activity.
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...
2016-07-01
Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi 2Te 3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi 2Te 3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor.more » The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi 2Te 3 with the previously studied Mn-doped Bi 2Te 3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less
A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2016-01-01
Computer simulation models are continually growing in complexity with increasingly more factors to be identified. Sensitivity Analysis (SA) provides an essential means for understanding the role and importance of these factors in producing model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to "variogram analysis," that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. Synthetic functions that resemble actual model response surfaces are used to illustrate the concepts, and show VARS to be as much as two orders of magnitude more computationally efficient than the state-of-the-art Sobol approach. In a companion paper, we propose a practical implementation strategy, and demonstrate the effectiveness, efficiency, and reliability (robustness) of the VARS framework on real-data case studies.
Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M
2009-05-01
A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.
Robins, Meridith T.; Lu, Julie
2016-01-01
The number of highly caffeinated products has increased dramatically in the past few years. Among these products, highly caffeinated energy drinks are the most heavily advertised and purchased, which has resulted in increased incidences of co-consumption of energy drinks with alcohol. Despite the growing number of adolescents and young adults reporting caffeine-mixed alcohol use, knowledge of the potential consequences associated with co-consumption has been limited to survey-based results and in-laboratory human behavioral testing. Here, we investigate the effect of repeated adolescent (post-natal days P35-61) exposure to caffeine-mixed alcohol in C57BL/6 mice on common drug-related behaviors such as locomotor sensitivity, drug reward and cross-sensitivity, and natural reward. To determine changes in neurological activity resulting from adolescent exposure, we monitored changes in expression of the transcription factor ΔFosB in the dopaminergic reward pathway as a sign of long-term increases in neuronal activity. Repeated adolescent exposure to caffeine-mixed alcohol exposure induced significant locomotor sensitization, desensitized cocaine conditioned place preference, decreased cocaine locomotor cross-sensitivity, and increased natural reward consumption. We also observed increased accumulation of ΔFosB in the nucleus accumbens following repeated adolescent caffeine-mixed alcohol exposure compared to alcohol or caffeine alone. Using our exposure model, we found that repeated exposure to caffeine-mixed alcohol during adolescence causes unique behavioral and neurochemical effects not observed in mice exposed to caffeine or alcohol alone. Based on similar findings for different substances of abuse, it is possible that repeated exposure to caffeine-mixed alcohol during adolescence could potentially alter or escalate future substance abuse as means to compensate for these behavioral and neurochemical alterations. PMID:27380261
Maternal and child correlates of anxiety in 2½-year-old children.
Mount, Kristin S; Crockenberg, Susan C; Jó, Patricia S Bárrig; Wagar, Jessica-Lyn
2010-12-01
The goal of this study was to predict the development of anxiety in 2½ year olds as a function of maternal anxiety and child inhibited temperament, and to test the mediating, moderating, and curvilinear effects of maternal sensitivity. Participants were 83 mothers and their 2½-year-old children (32 females). Maternal anxiety, child inhibition, and child anxiety were assessed by maternal report. Maternal sensitivity was rated based on the appropriateness and timeliness of mothers' responses to children's fear observed during their exposure to novel events in the laboratory and from mothers' diaries documenting their responses to children's fear in everyday situations. Gender predicted child anxiety, with mothers reporting girls as more anxious, as did child inhibition, with more inhibited children exhibiting more anxiety. Maternal sensitivity predicted child anxiety as a main effect and, in addition, inhibition moderated the curvilinear association of maternal sensitivity and child anxiety. For highly inhibited children, maternal sensitivity predicted anxiety in both a negative linear and a curvilinear fashion; anxiety decreased as maternal sensitivity increased up to a moderately high level, then increased at very high levels of maternal sensitivity. For less inhibited children, maternal sensitivity showed only a significant negative linear association with child anxiety. Copyright © 2010. Published by Elsevier Inc.
Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping
2018-06-25
A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.
NASA Astrophysics Data System (ADS)
Siadaty, Moein; Kazazi, Mohsen
2018-04-01
Convective heat transfer, entropy generation and pressure drop of two water based nanofluids (Cu-water and Al2O3-water) in horizontal annular tubes are scrutinized by means of computational fluids dynamics, response surface methodology and sensitivity analysis. First, central composite design is used to perform a series of experiments with diameter ratio, length to diameter ratio, Reynolds number and solid volume fraction. Then, CFD is used to calculate the Nusselt Number, Euler number and entropy generation. After that, RSM is applied to fit second order polynomials on responses. Finally, sensitivity analysis is conducted to manage the above mentioned parameters inside tube. Totally, 62 different cases are examined. CFD results show that Cu-water and Al2O3-water have the highest and lowest heat transfer rate, respectively. In addition, analysis of variances indicates that increase in solid volume fraction increases dimensionless pressure drop for Al2O3-water. Moreover, it has a significant negative and insignificant effects on Cu-water Nusselt and Euler numbers, respectively. Analysis of Bejan number indicates that frictional and thermal entropy generations are the dominant irreversibility in Al2O3-water and Cu-water flows, respectively. Sensitivity analysis indicates dimensionless pressure drop sensitivity to tube length for Cu-water is independent of its diameter ratio at different Reynolds numbers.
Qualitative Methods in Field Research: An Indonesian Experience in Community Based Practice.
ERIC Educational Resources Information Center
Lysack, Catherine L.; Krefting, Laura
1994-01-01
Cross-cultural evaluation of a community-based rehabilitation project in Indonesia used three methods: focus groups, questionnaires, and key informant interviews. A continuous cyclical approach to data collection and concern for cultural sensitivity increased the rigor of the research. (SK)
NASA Astrophysics Data System (ADS)
Ma, Jiashuai; Jiao, Jie; Fang, Cong; Zhao, Xiangyong; Luo, Haosu
2016-05-01
In this paper both linear and nonlinear magnetoelectric (ME) effects have been investigated intensively. In order to obtain magnetic amplification, we fabricated 3 multi-push-pull mode magnetoelectric laminated composites metglas/PMNT/metglas based on dumbbell-shaped metglas. The linear magnetoelectric charge coefficient is enhanced to 2600 pC/Oe at 2 Hz based on dumbbell-shaped metglas and it increases as the end-flange width of the dumbbell-shaped metglas increases at 2 Hz, respectively. Based on these 3 ME composites, we establish an active mode nonlinear modulation system for ME magnetic sensor, the sensitivity of which are enhanced to 80, 100 and 102 pT / √ Hz at 1 Hz for the composites with the end-flange width 20, 15 and 10 mm, respectively, via nonlinear ME modulation method. Strain distribution simulations illustrate the theoretically accurate amplification of the dumbbell-shaped geometry. The center strains of 3 dumbbell-shaped metglas decrease as the width of end-flanges decreases
ERIC Educational Resources Information Center
Koedel, Cory; Betts, Julian
2009-01-01
Value-added measures of teacher quality may be sensitive to the quantitative properties of the student tests upon which they are based. This paper focuses on the sensitivity of value- added to test-score-ceiling effects. Test-score ceilings are increasingly common in testing instruments across the country as education policy continues to emphasize…
Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves
2013-10-01
ABSTRACT Based upon the results obtained from these studies, we can draw the following conclusions: 1) Airway hyperresponsiveness developed in Ova ...hyperthermia in Ova -sensitized rats. The manuscript reporting the results obtained frim this study has been accepted for publication by the Journal of...to increasing airway temperature. Our results showed: 1) In Brown-Norway rats actively sensitized by ovalbumin ( Ova ), isocapnic hyperventilation with
Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices
NASA Astrophysics Data System (ADS)
Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.
2008-03-01
An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.
Enhancement of the sensitivity of gas sensor based on microstructure optical fiber
NASA Astrophysics Data System (ADS)
Morshed, Monir; Hasan, Md. Imran; Razzak, S. M. Abdur
2015-12-01
This paper proposes the design and characterization of microstructure optical fiber for gas sensing applications. The aim is to detect toxic and colorless gases over a wide transmission band covering 0.80 µm to 2.00 µm wavelength. Numerical investigation is carried out by using the finite element method (FEM). The numerical study shows that sensitivity of the proposed sensor is moderately increased by introducing four non-circular holes around the defected core of photonic crystal fiber and the confinement loss is also reduced. Furthermore, we confirm that increasing the diameter of central air core and size of the non-circular holes can improve the relative sensitivity and the confinement loss is reduced by increasing the diameter of air holes in the cladding. The enhancement of the relative sensitivity is more than 27.58% (0.1323 to 0.1688) at the wavelength λ=1.33µm that is the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. The confinement loss of the fiber is 1.765×10-8 dB/m.
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
Xu, Feng; Zhu, Kai; Zhao, Yixin
2016-10-10
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Zhu, Kai; Zhao, Yixin
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
Fabrication and Characterization of a Nanocoax-Based Electrochemical Sensor
NASA Astrophysics Data System (ADS)
Rizal, Binod; Archibald, Michelle M.; Naughton, Jeffrey R.; Connolly, Timothy; Shepard, Stephen C.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-03-01
We used an imprint lithography process to fabricate three dimensional electrochemical sensors comprising arrays of vertically-oriented coaxial electrodes, with the coax cores and shields serving as working and counter electrodes, respectively, and with nanoscale separation gaps.[2] Arrays of devices with different electrode gaps (coax annuli) were prepared, yielding increasing sensitivity with decreasing annulus thickness. A coax-based sensor with a 100 nm annulus was found to have sensitivity 100 times greater than that of a conventional planar sensor control, which had millimeter-scale electrode gap spacing. We suggest that this enhancement is due to an increase in the diffusion of molecules between electrodes, which improves the current per unit surface area compared to the planar device. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).
Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
2003-01-01
This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.
Cederberg, Henna; Stančáková, Alena; Yaluri, Nagendra; Modi, Shalem; Kuusisto, Johanna; Laakso, Markku
2015-05-01
The aim of this work was to investigate the mechanisms underlying the risk of type 2 diabetes associated with statin treatment in the population-based Metabolic Syndrome in Men (METSIM) cohort. A total of 8,749 non-diabetic participants, aged 45-73 years, were followed up for 5.9 years. New diabetes was diagnosed in 625 men by means of an OGTT, HbA1c ≥6.5% (48 mmol/mol) or glucose-lowering medication started during the follow-up. Insulin sensitivity and secretion were evaluated with OGTT-derived indices. Participants on statin treatment (N = 2,142) had a 46% increased risk of type 2 diabetes (adjusted HR 1.46 [95% CI 1.22, 1.74]). The risk was dose dependent for simvastatin and atorvastatin. Statin treatment significantly increased 2 h glucose (2hPG) and glucose AUC of an OGTT at follow-up, with a nominally significant increase in fasting plasma glucose (FPG). Insulin sensitivity was decreased by 24% and insulin secretion by 12% in individuals on statin treatment (at FPG and 2hPG <5.0 mmol/l) compared with individuals without statin treatment (p < 0.01). Decreases in insulin sensitivity and insulin secretion were dose dependent for simvastatin and atorvastatin. Statin treatment increased the risk of type 2 diabetes by 46%, attributable to decreases in insulin sensitivity and insulin secretion.
Rubí, Sebastià; Costes, Nicolas; Heckemann, Rolf A; Bouvard, Sandrine; Hammers, Alexander; Martí Fuster, Berta; Ostrowsky, Karine; Montavont, Alexandra; Jung, Julien; Setoain, Xavier; Catenoix, Hélène; Hino, Keiko; Liger, François; Le Bars, Didier; Ryvlin, Philippe
2013-12-01
Tuberous sclerosis complex (TSC) is often associated with cerebral tubers and medically intractable epilepsy. We reevaluated whether increased uptake of α-[(11) C]methyl-l-tryptophan (AMT) in cerebral tubers is associated with tuber epileptogenicity. We included 12 patients (six male, 4-53 years old) with TSC and refractory seizures who were evaluated for epilepsy surgery in our center, including video-electroencephalographic (EEG) monitoring, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI), and positron emission tomography (PET) with α-[(11) C]methyl-l-tryptophan (AMT-PET). Nine of these 12 patients also underwent intracerebral EEG recording. AMT uptake in each tuber was visually evaluated on PET coregistered with MRI. An AMT uptake index based on lesional/healthy cortex ratio was also calculated. Sensitivity and specificity values of AMT-PET in the detection of epileptogenic lesions were obtained, using the available electroclinical and neuroimaging evidence as the gold standard for epileptogenicity. A total of 126 tubers were identified. Two of 12 patients demonstrated a tuber with clearly increased AMT uptake, one of whom also showed a subtle increased AMT uptake in another contralateral tuber. Four other patients showed only subtle increased AMT uptake. The only two tubers with clearly increased AMT uptake proved to be epileptogenic based on intracerebral EEG data, whereas none of the tubers associated with subtle increased AMT uptake were involved at ictal onset. In a per-patient approach, this yielded a sensitivity of clearly increased AMT uptake in detecting tuber epileptogenicity of 17% (2/12 patients), whereas the per-lesion sensitivity and specificity were 12% (95% confidence interval [CI]: 3-34%) and 100% (95% CI: 97-100%), respectively. AMT-PET is a specific neuroimaging technique in the identification of epileptogenic tubers in TSC. Despite its low sensitivity, the clinical usefulness of AMT-PET still deserves to be considered according to the challenging complexity of epilepsy surgery in tuberous sclerosis. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
210 Study on the Sensitization Rates to Airbone Pollen and Mold in Children
Park, So Hyun; Lim, Dae Hyun; Son, Byong Kwan; Kim, Jeong Hee; Oh, In Bo; Kim, Yang Ho; Lee, Keun Hwa; Kim, Su Young; Hong, Sung Chul
2012-01-01
Background Aeroallergens are important causative factors for allergies such as allergic rhinitis, allergic conjunctivitis and asthma. Previous studies for the sensitization rate to aeroallergen were based on those patient groups who had visited the pediatric allergy clinic. Compared to that, we inquired into the sensitization rates based on general school aged student population group in the city of Incheon, Jeju and Ulsan. Methods With informed consent, skin prick tests were performed on 5,094 students between April and June, 2010. Common 21 aeroallergens were used on elementary school student while middle and high school students were tested upon 28 allergens. 28 allergen list as positive control (1%Histamine), negative control (Normal saline), D.pteronyssinus, D.farinae, Citrus red mite, pollen (Birch, Alder, Oak, Japanese cedar, Pine, Willow, Elm, Maple, Bermuda grass, Timothy grass, Rye grass, Orchard, Meadow grass, Vernal grass, Mugwort, Japanese hop, Fat hen, Ragweed, Plantain), mold (Penicillatum, Asperugillus, Cladosporium, Alternaria) and 21 kinds of allergens that were used on elementary school students count as same as above except Elm, Rye grass, Orchard, Meadow grass, Vernal grass, Fat hen, Plantain. Results If arranged in rates of higher sensitization were D. pteronyssinus (25.79%), D. farinae (18.66%), Mugwort (6.20%), Willow (4.07%) in Incheon, D. pteronyssinus (33.35%), D. farinae (24.78%), Japanese cedar (15.36%), Alternaria (7.33%) in Jeju, D. pteronyssinus (32.79%), D. farinae (30.27%), Alder (10.13%), Birch (8.68%) in Ulsan respectively. The sensitization rate of Japanese cedar was statistically significantly higher in Jeju. The sensitization rate of Birch, Alder, Oak was higher in Ulsan. The sensitization rate of Ragweed was 0.99% in Incheon, 1.07% in Jeju, 0.81% in Ulsan. The sensitization rate of Mugwort in Incheon was 6.20% which was meaningfully higher in comparison to 2.32% of Jeju and 2.73% of Ulsan. The sensitization rate of Alternaria was 2.98% in Incheon, 7.33% in Jeju, 2.39% in Ulsan and as we can see it was higher in Jeju. The sensitization rate of Dermatophagoides had an increasing tendency with increasing age. Conclusions Changes in exposure rate to allergens with increasing ages brings changes in sensitization rates. And because there are changes in sensitization rates due to different regional living environmental status and discrepancies of surrounding biologic species, this would leave us there lies needs for subsequent studies and nationwide researches.
Bidirectional Associations Among Sensitive Parenting, Language Development, and Social Competence
Barnett, Melissa A.; Gustafsson, Hanna; Deng, Min; Mills-Koonce, W. Roger; Cox, Martha
2014-01-01
Rapid changes in language skills and social competence, both of which are linked to sensitive parenting, characterize early childhood. The present study examines bidirectional associations among mothers’ sensitive parenting and children’s language skills and social competence from 24 to 36 months in a community sample of 174 families. In addition, this study examines how these developmental pathways vary by child sex. Findings indicate stability across time in sensitive parenting, expressive language skills, and social competence, as well as positive main effects of sensitive parenting on expressive and receptive language skills for girls and boys. We find mixed evidence over time of reciprocal links between social competence and sensitive parenting. Further, boys’ receptive language skills at 24 months uniquely contribute to increases in mothers’ observed sensitive parenting from 24 to 36 months. These findings highlight the utility of applying transactional frameworks to the study of sex-based differences in early developmental processes. PMID:25126021
Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Lianmin; Su, Delong; Wang, Zhaofang
A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previouslymore » similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.« less
Sensitivity-Based Guided Model Calibration
NASA Astrophysics Data System (ADS)
Semnani, M.; Asadzadeh, M.
2017-12-01
A common practice in automatic calibration of hydrologic models is applying the sensitivity analysis prior to the global optimization to reduce the number of decision variables (DVs) by identifying the most sensitive ones. This two-stage process aims to improve the optimization efficiency. However, Parameter sensitivity information can be used to enhance the ability of the optimization algorithms to find good quality solutions in a fewer number of solution evaluations. This improvement can be achieved by increasing the focus of optimization on sampling from the most sensitive parameters in each iteration. In this study, the selection process of the dynamically dimensioned search (DDS) optimization algorithm is enhanced by utilizing a sensitivity analysis method to put more emphasis on the most sensitive decision variables for perturbation. The performance of DDS with the sensitivity information is compared to the original version of DDS for different mathematical test functions and a model calibration case study. Overall, the results show that DDS with sensitivity information finds nearly the same solutions as original DDS, however, in a significantly fewer number of solution evaluations.
Ethical Sensitivity in Nursing Ethical Leadership: A Content Analysis of Iranian Nurses Experiences
Esmaelzadeh, Fatemeh; Abbaszadeh, Abbas; Borhani, Fariba; Peyrovi, Hamid
2017-01-01
Background: Considering that many nursing actions affect other people’s health and life, sensitivity to ethics in nursing practice is highly important to ethical leaders as a role model. Objective: The study aims to explore ethical sensitivity in ethical nursing leaders in Iran. Method: This was a qualitative study based on the conventional content analysis in 2015. Data were collected using deep and semi-structured interviews with 20 Iranian nurses. The participants were chosen using purposive sampling. Data were analyzed using conventional content analysis. In order to increase the accuracy and integrity of the data, Lincoln and Guba's criteria were considered. Results: Fourteen sub-categories and five main categories emerged. Main categories consisted of sensitivity to care, sensitivity to errors, sensitivity to communication, sensitivity in decision making and sensitivity to ethical practice. Conclusion: Ethical sensitivity appears to be a valuable attribute for ethical nurse leaders, having an important effect on various aspects of professional practice and help the development of ethics in nursing practice. PMID:28584564
Improved sensitivity of vaginal self-collection and high-risk human papillomavirus testing.
Belinson, Jerome L; Du, Hui; Yang, Bin; Wu, Ruifang; Belinson, Suzanne E; Qu, Xinfeng; Pretorius, Robert G; Yi, Xin; Castle, Philip E
2012-04-15
Self-collected vaginal specimens tested for high-risk human papillomavirus (HR-HPV) have been shown to be less sensitive for the detection of cervical intraepithelial neoplasia or cancer (≥CIN 3) than physician-collected endocervical specimens. To increase the sensitivity of self-collected specimens, we studied a self-sampling device designed to obtain a larger specimen from the upper vagina (POI/NIH self-sampler) and a more sensitive polymerase chain reaction (PCR)-based HR-HPV assay. Women (10,000) were screened with cervical cytology and HR-HPV testing of vaginal self-collected and endocervical physician-collected specimens. Women were randomly assigned to use either a novel self-collection device (POI/NIH self-sampler) or conical-shaped brush (Qiagen). The self-collected and clinician-collected specimens were assayed by Cervista (Hologic) and the research only PCR-based matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Women with any abnormal screening test underwent colposcopy and biopsy. Women (8,556), mean age of 38.9, had complete data; 1.6% had ≥ CIN 3. For either HR-HPV assay, the sensitivity was similar for the two self-collection devices. Tested with Cervista, the sensitivity for ≥CIN 3 of self-collected specimens was 70.9% and for endocervical specimens was 95.0% (p = 0.0001). Tested with MALDI-TOF, the sensitivity for ≥CIN 3 of self-collected specimens was 94.3% and for endocervical specimens was also 94.3% (p = 1.0). A self-collected sample using a PCR-based assay with the capability of very high throughput has similar sensitivity as a direct endocervical specimen obtained by a physician. Large population-based screening "events" in low-resource settings could be achieved by promoting self-collection and centralized high-throughput, low-cost testing by PCR-based MALDI-TOF. Copyright © 2011 UICC.
Effects of Gain Changes on RPM Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lousteau, Angela L; York, Robbie Lynn; Livesay, Jake
2012-03-01
The mission of the U.S. Department of Energy/National Nuclear Security Administration's (DOE/NNSA's) Office of the Second Line of Defense (SLD) is to strengthen the capability of foreign governments to deter, detect, and interdict the illicit trafficking of special nuclear and other radioactive materials across international borders and through the global maritime shipping system. The goal of this mission is to reduce the probability of these materials being fashioned into a weapon of mass destruction or radiological dispersal device that could be used against the United States or its international partners. This goal is achieved primarily through the installation and operationmore » of radiation detection equipment at border crossings, airports, seaports, and other strategic locations around the world. In order to effectively detect the movement of radioactive material, the response of these radiation detectors to various materials in various configurations must be well characterized. Oak Ridge National Laboratory (ORNL) investigated two aspects of Radiation Portal Monitor (RPM) settings, based on a preliminary investigation done by the Los Alamos National Laboratory (LANL): source-to-detector distance effect on amplifier gain and optimized discriminator settings. This report discusses this investigation. A number of conclusions can be drawn from the ORNL testing. First, for increased distance between the source and the detector, thus illuminating the entire detector rather than just the center of the detector (as is done during detector alignments), an increase in gain may provide a 5-15% increase in sensitivity (Fig. 4). However, increasing the gain without adjusting the discriminator settings is not recommended as this makes the monitor more sensitive to electronic noise and temperature-induced fluctuations. Furthermore, if the discriminators are adjusted in relation to the increase in gain, thus appropriately discriminating against electronic noise, the sensitivity gains are less than 5% (Fig. 6). ORNL does not consider this slight increase in sensitivity to be a worthwhile pursuit. Second, increasing the ULD will increase sensitivity a few percent (Fig. 7); however, it is not clear that the slight increase in sensitivity is worth the effort required to make the change (e.g., reliability, cost, etc.). Additionally, while the monitor would be more sensitive to HEU, it would also be more sensitive to NORM. Third, the sensitivity of the system remains approximately the same whether it is calibrated to a small source on contact or a large source far away (Fig. 6). This affirms that no changes to the existing calibration procedure are necessary.« less
Interpreting IgE sensitization tests in food allergy.
Chokshi, Niti Y; Sicherer, Scott H
2016-01-01
Food allergies are increasing in prevalence, and with it, IgE testing to foods is becoming more commonplace. Food-specific IgE tests, including serum assays and prick skin tests, are sensitive for detecting the presence of food-specific IgE (sensitization), but specificity for predicting clinical allergy is limited. Therefore, positive tests are generally not, in isolation, diagnostic of clinical disease. However, rationale test selection and interpretation, based on clinical history and understanding of food allergy epidemiology and pathophysiology, makes these tests invaluable. Additionally, there exist highly predictive test cutoff values for common allergens in atopic children. Newer testing methodologies, such as component resolved diagnostics, are promising for increasing the utility of testing. This review highlights the use of IgE serum tests in the diagnosis of food allergy.
Increased sensitivity to caffeine in patients with panic disorders. Preliminary evidence.
Boulenger, J P; Uhde, T W; Wolff, E A; Post, R M
1984-11-01
The results of a caffeine consumption inventory indicated that patients with panic anxiety disorder, but not affectively ill patients or normal controls, had levels of self-rated anxiety and depression that correlated with their degree of caffeine consumption. In addition, this self-report survey suggested that patients with panic disorder had an increased sensitivity to the effects of one cup of coffee. This apparent sensitivity to caffeine was also documented by the observation that more patients with panic disorder reported the discontinuation of coffee intake due to untoward side effects than controls. These results, based on self-reports, suggest that the hypothesis that patients with panic disorder are more reactive to caffeine should be directly tested using caffeine challenges and that the mechanisms underlying caffeine's effects on anxiety should be further explored.
Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok
2014-08-27
We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.
Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.
Amundrud, Sarah L; Srivastava, Diane S
2015-07-01
Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Song; Balter, Peter A.; Rose, Mark
2013-04-15
Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to {+-}15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F{sub DN}), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3more » Multiplication-Sign 3 cm{sup 2} and 10 Multiplication-Sign 10 cm{sup 2} fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F{sub DN} was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F{sub DN} was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.« less
USDA-ARS?s Scientific Manuscript database
In recent years, increasing consumer sensitivity to environmental sustainability and favorable legislation has resulted in a rising demand for renewable and bio-based products, including biodegradable plastic. A recent market research report has projected a 15% annual increase in the demand of biode...
Prevention of bacterial foodborne disease using nanobiotechnology.
Billington, Craig; Hudson, J Andrew; D'Sa, Elaine
2014-01-01
Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large "burst size" resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a number of foodborne pathogens on diverse foods. As a method for control of pathogens, nanobiotechnology is therefore flourishing.
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Chen, Yonghua; Rangwala, Imtiaz; Miller, James R.
2013-01-01
Several studies have suggested enhanced rates of warming in high-elevation regions since the latter half of the twentieth century. One of the potential reasons why enhanced rates of warming might occur at high elevations is the nonlinear relationship between downward longwave radiation (DLR) and specific humidity (q). Using ground-based observations at a high-elevation site in southwestern Colorado and coincident satellite-borne cloud retrievals, the sensitivity of DLR to changes in q and cloud properties is examined and quantified using a neural network method. It is also used to explore how the sensitivity of DLR to q (dDLR/dq) is affected by cloud properties. When binned by season, dDLR/dq is maximum in winter and minimum in summer for both clear and cloudy skies. However, the cloudy-sky sensitivities are smaller, primarily because (1) for both clear and cloudy skies dDLR/dq is proportional to 1/q, for q>0.5 g/kg, and (2) the seasonal values of q are on average larger in the cloudy-sky cases than in clear-sky cases. For a given value of q, dDLR/dq is slightly reduced in the presence of clouds and this reduction increases as q increases. In addition, DLR is found to be more sensitive to changes in cloud fraction when cloud fraction is large. In the limit of overcast skies, DLR sensitivity to optical thickness decreases as clouds become more opaque. These results are based on only one high-elevation site, so the conclusions here need to be tested at other high-elevation locations.
Stronach, Euan A.; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H.; Browne, Alacoque; Magdy, Nesreen; Studd, James B.; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona
2015-01-01
Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease. PMID:26267317
Stronach, Euan A; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H; Browne, Alacoque; Magdy, Nesreen; Studd, James B; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona
2015-10-13
Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease.
Accuracy of polimerase chain reaction for the diagnosis of pleural tuberculosis.
Trajman, Anete; da Silva Santos Kleiz de Oliveira, Elen Fabricia; Bastos, Mayara Lisboa; Belo Neto, Epaminondas; Silva, Edgar Manoel; da Silva Lourenço, Maria Cristina; Kritski, Afrânio; Oliveira, Martha Maria
2014-06-01
Polymerase chain reaction (PCR)-based techniques to detect Mycobacterium tuberculosis DNA in respiratory specimens have been increasingly used to diagnose pulmonary tuberculosis. Their use in non-respiratory specimens to diagnose extrapulmonary tuberculosis is, however, controversial. In this study, we estimated the accuracy of three in-country commercialized PCR-based diagnostic techniques in pleural fluid samples for the diagnosis of pleural tuberculosis. Patients underwent thoracenthesis for diagnosis purposes; pleural fluid aliquots were frozen and subsequently submitted to two real time PCR tests (COBAS(®)TAQMAN(®)MTB and Xpert(®)MTB/Rif) and one conventional PCR test (Detect-TB(®)). Two different reference standards were considered: probable tuberculosis (based on clinical grounds) and confirmed tuberculosis (bacteriologically or histologically). Ninety-three patients were included, of whom 65 with pleural tuberculosis, 35 of them confirmed. Sensitivities were 29% for COBAS(®)TAQMAN(®)MTB, 3% for Xpert(®)MTB/Rif and 3% for Detect-TB(®); specificities were 86%, 100% and 97% respectively, considering confirmed tuberculosis. Considering all cases, sensitivities were 16%, 3% and 2%, and specificities, 86%, 100%, and 97%. Compared to the 95% sensitivity of adenosine deaminase, the most sensitive test for pleural tuberculosis, the sensitivities of the three PCR-based tests were very low. We conclude that at present, there is no major place for such tests in routine clinical use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory
Alster, Charlotte J.; Baas, Peter; Wallenstein, Matthew D.; Johnson, Nels G.; von Fischer, Joseph C.
2016-01-01
The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes. PMID:27909429
Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection
2017-09-01
Sensitivity-based finite element model updating and structural damage detection has been limited by the number of modes available in a vibration test and...increase the number of modes and corresponding sensitivity data by artificially constraining the structure under test, producing a large number of... structural modifications to the measured data, including both springs-to-ground and mass modifications. This is accomplished with frequency domain
Cideciyan, Artur V.; Aleman, Tomas S.; Boye, Sanford L.; Schwartz, Sharon B.; Kaushal, Shalesh; Roman, Alejandro J.; Pang, Ji-jing; Sumaroka, Alexander; Windsor, Elizabeth A. M.; Wilson, James M.; Flotte, Terence R.; Fishman, Gerald A.; Heon, Elise; Stone, Edwin M.; Byrne, Barry J.; Jacobson, Samuel G.; Hauswirth, William W.
2008-01-01
The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy. PMID:18809924
A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.
Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert
2011-10-01
Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.
A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager
Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert
2012-01-01
Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624
Kidd, Chloe; Loxton, Natalie J
2018-05-01
The current study aimed to identify how underlying individual differences increases vulnerability to television food advertising. In particular, this study examined how reward sensitivity, a biologically-based predisposition to approach rewards (such as appetitive foods) in the environment, influenced participants' vulnerability to television food advertising and subsequent food consumption. Ninety-eight participants were randomly assigned to a cue condition (food cues versus non-food cues) and then viewed a 30 min documentary interrupted by advertising featuring a mix of food and neutral advertising (food cue condition) or only neutral advertising (non-food cue condition). Participants' reward sensitivity, approach motivation measured as urge to eat, and food consumption were recorded. Moderated mediation regression analyses revealed the positive association between reward sensitivity and food consumption was mediated by an increase in urge to eat, but only when participants were exposed to food advertising. These findings suggest heightened reward sensitivity, exposure to appetitive food cues, and approach motivation are key interacting mechanisms that may lead to maladaptive eating behaviours. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasouli, Zolaikha; Ghavami, Raouf
2018-02-01
A simple, sensitive and efficient colorimetric assay platform for the determination of Cu2 + was proposed with the aim of developing sensitive detection based on the aggregation of AuNPs in presence of a histamine H2-receptor antagonist (famotidine, FAM) as recognition site. This study is the first to demonstrate that the molar extinction coefficients of the complexes formed by FAM and Cu2 + are very low (by analyzing the chemometrics methods on the first order data arising from different metal to ligand ratio method), leading to the undesirable sensitivity of FAM-based assays. To resolve the problem of low sensitivity, the colorimetry method based on the Cu2 +-induced aggregation of AuNPs functionalized with FAM was introduced. This procedure is accompanied by a color change from bright red to blue which can be observed with the naked eyes. Detection sensitivity obtained by the developed method increased about 100 fold compared with the spectrophotometry method. This sensor exhibited a good linear relation between the absorbance ratios at 670 to 520 nm (A670/520) and the concentration in the range 2-110 nM with LOD = 0.76 nM. The satisfactory analytical performance of the proposed sensor facilitates the development of simple and affordable UV-Vis chemosensors for environmental applications.
Van der Waals pressure sensors using reduced graphene oxide composites
NASA Astrophysics Data System (ADS)
Jung, Ju Ra; Ahn, Sung Il
2018-04-01
Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.
Aptamer-Based Biosensors for Antibiotic Detection: A Review.
Mehlhorn, Asol; Rahimi, Parvaneh; Joseph, Yvonne
2018-06-11
Antibiotic resistance and, accordingly, their pollution because of uncontrolled usage has emerged as a serious problem in recent years. Hence, there is an increased demand to develop robust, easy, and sensitive methods for rapid evaluation of antibiotics and their residues. Among different analytical methods, the aptamer-based biosensors (aptasensors) have attracted considerable attention because of good selectivity, specificity, and sensitivity. This review gives an overview about recently-developed aptasensors for antibiotic detection. The use of various aptamer assays to determine different groups of antibiotics, like β-lactams, aminoglycosides, anthracyclines, chloramphenicol, (fluoro)quinolones, lincosamide, tetracyclines, and sulfonamides are presented in this paper.
Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng
2009-05-01
A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.
Smart zwitterionic membranes with on/off behavior for protein transport.
Su, Yanlei; Zheng, Lili; Li, Chao; Jiang, Zhongyi
2008-09-25
Poly(acrylonitrile) (PAN)-based zwitterionic membranes, composed of PAN and poly( N, N-dimethyl- N-methacryloxyethyl- N-(3-sulfopropyl) copolymer, are electrolyte-sensitive smart membranes. The hydrophilicity was increased and protein adsorption was remarkably decreased for the membranes in response to environmental stimuli. FTIR spectroscopic analysis directly provided molecular-level observation of the enhanced dissociation and hydration of zwitterionic sulfobetaine dipoles at higher electrolyte concentrations. The smart PAN-based zwitterionic membranes can close or open channels for protein transport under different NaCl concentrations. The electrolyte-sensitive switch of on/off behavior for protein transport is reversible.
Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers
NASA Astrophysics Data System (ADS)
Sun, Xiaolan; Li, Nana; Zhou, Bin; Zhao, Wei; Liu, Liyuan; Huang, Chao; Ma, Longfei; Kost, Alan R.
2018-06-01
A non-enzymatic, sensitive glucose sensor was fabricated based on an evanescent wave absorbing optical fiber probe. The optical fiber sensor was functionalized by fixing a poly (phenylboronic acid) (polyPBA) film onto the conical region of the single mode fiber. The reflected light intensity of the polyPBA-functionalized fiber sensor increased proportionally with glucose concentration in the range of 0-60 mM, and the sensor showed good reproducibility and stability. The developed sensor possessed a high sensitivity of 0.1787%/mM and good linearity. The measurement of glucose concentration in human serum was also demonstrated.
Mass Spectrometry for Paper-Based Immunoassays: Toward On-Demand Diagnosis.
Chen, Suming; Wan, Qiongqiong; Badu-Tawiah, Abraham K
2016-05-25
Current analytical methods, either point-of-care or centralized detection, are not able to meet recent demands of patient-friendly testing and increased reliability of results. Here, we describe a two-point separation on-demand diagnostic strategy based on a paper-based mass spectrometry immunoassay platform that adopts stable and cleavable ionic probes as mass reporter; these probes make possible sensitive, interruptible, storable, and restorable on-demand detection. In addition, a new touch paper spray method was developed for on-chip, sensitive, and cost-effective analyte detection. This concept is successfully demonstrated via (i) the detection of Plasmodium falciparum histidine-rich protein 2 antigen and (ii) multiplexed and simultaneous detection of cancer antigen 125 and carcinoembryonic antigen.
High resolution laboratory grating-based x-ray phase-contrast CT
NASA Astrophysics Data System (ADS)
Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia
2017-03-01
Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.
Improved detection of endoparasite DNA in soil sample PCR by the use of anti-inhibitory substances.
Krämer, F; Vollrath, T; Schnieder, T; Epe, C
2002-09-26
Although there have been numerous microbial examinations of soil for the presence of human pathogenic developmental parasite stages of Ancylostoma caninum and Toxocara canis, molecular techniques (e.g. DNA extraction, purification and subsequent PCR) have scarcely been applied. Here, DNA preparations of soil samples artificially contaminated with genomic DNA or parasite eggs were examined by PCR. A. caninum and T. canis-specific primers based on the ITS-2 sequence were used for amplification. After the sheer DNA preparation a high content of PCR-interfering substances was still detectable. Subsequently, two different inhibitors of PCR-interfering agents (GeneReleaser, Bioventures Inc. and Maximator, Connex GmbH) were compared in PCR. Both substances increased PCR sensitivity greatly. However, comparison of the increase in sensitivity achieved with the two compounds demonstrated the superiority of Maximator, which enhanced sensitivity to the point of permitting positive detection of a single A. caninum egg and three T. canis eggs in a soil sample. This degree of sensitivity could not be achieved with GeneReleaser for either parasite Furthermore, Maximator not only increased sensitivity; it also cost less, required less time and had a lower risk of contamination. Future applications of molecular methods in epidemiological examinations of soil samples are discussed/elaborated.
NASA Astrophysics Data System (ADS)
Starodub, Nickolaj F.; Starodub, Valentyna M.; Krivenchuk, Vladimir E.; Shapovalenko, Valentyna F.
2002-02-01
New type of the multi-immune sensor was elaborated. It is based on electrolyte-insulator-semiconductors structures and intended for determination of such herbicides as simazine, atrazine and 2,4-D. The specific antibodies were immobilized on nitrocellulose disks, which were placed in measuring cells. The analysis was fulfilled by sequential saturation of antibodies, left unbound after their exposure to native herbicide in investigated sample, with labelled herbicide. If horse radish peroxidase (HRP) was used as label the sensitivity of this multi-immune sensor was about 5 and 1.25 (mu) g/L for simazine and 2,4-D, respectively. At the changing of HRP by (beta) -glucose oxidase the sensitivity of analysis of these herbicides increased approximately in 5 times. The linear plots of the registered concentrations were in the range of 1,0-150,0 and 0,25-150,0 ng/mL for simazine and 2,4-D respectively. It was recommended to use the developed immune sensor for wide screening of herbicides in environment. The ways for increasing of its sensitivity were proposed.
Starecki, Tomasz
2017-01-01
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude. PMID:29099765
Starecki, Tomasz; Wieczorek, Piotr Z
2017-11-03
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.
Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiuhua, E-mail: xhwang@mail.ahnu.edu.cn; Shi, Zhijie; Yao, Shangwu
2014-11-15
AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiationmore » improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.« less
A stress sensitivity model for the permeability of porous media based on bi-dispersed fractal theory
NASA Astrophysics Data System (ADS)
Tan, X.-H.; Liu, C.-Y.; Li, X.-P.; Wang, H.-Q.; Deng, H.
A stress sensitivity model for the permeability of porous media based on bidispersed fractal theory is established, considering the change of the flow path, the fractal geometry approach and the mechanics of porous media. It is noted that the two fractal parameters of the porous media construction perform differently when the stress changes. The tortuosity fractal dimension of solid cluster DcTσ become bigger with an increase of stress. However, the pore fractal dimension of solid cluster Dcfσ and capillary bundle Dpfσ remains the same with an increase of stress. The definition of normalized permeability is introduced for the analyzation of the impacts of stress sensitivity on permeability. The normalized permeability is related to solid cluster tortuosity dimension, pore fractal dimension, solid cluster maximum diameter, Young’s modulus and Poisson’s ratio. Every parameter has clear physical meaning without the use of empirical constants. Predictions of permeability of the model is accordant with the obtained experimental data. Thus, the proposed model can precisely depict the flow of fluid in porous media under stress.
Optimizing Ionic Electrolytes for Dye-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Fan, Xiaojuan; Hall, Sarah
2009-03-01
Dye-sensitized solar cells DSSCs provide next generation, low cost, and easy fabrication photovoltaic devices based on organic sensitizing molecules, polymer gel electrolyte, and metal oxide semiconductors. One of the key components is the solvent-free ionic liquid electrolyte that has low volatility and high stability. We report a rapid and low cost method to fabricate ionic polymer electrolyte used in DSSCs. Poly(ethylene oxide) (PEO) is blended with imidazolinium salt without any chemical solvent to form a gel electrolyte. Uniform and crack-free porous TiO2 thin films are sensitized by porphrine dye covered by the synthesized gel electrolyte. The fabricated DSSCs are more stable and potentially increase the photo-electricity conversion efficiency.
NASA Astrophysics Data System (ADS)
Zhong, Mi; Liu, Qi-Jun; Qin, Han; Jiao, Zhen; Zhao, Feng; Shang, Hai-Lin; Liu, Fu-Sheng; Liu, Zheng-Tang
2017-06-01
First-principles calculations were employed to investigate the influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane. The obtained structural parameters based on the GGA-PB E +G calculations are in good agreement with theoretical and experimental data. The rotation of methyl group appears under pressure, which influences the mechanical, thermal properties and sensitivity of solid NM. The anisotropy of elasticity, sound velocity and Debye temperature under pressure have been shown, which are related to the thermal properties of solid NM. The enhanced sensitivity with the increasing pressure has been discussed and the change of the most likely transition path is associated with methyl group.
Interplay between morphology and frequency in lexical access: The case of the base frequency effect
Vannest, Jennifer; Newport, Elissa L.; Newman, Aaron J.; Bavelier, Daphne
2011-01-01
A major issue in lexical processing concerns storage and access of lexical items. Here we make use of the base frequency effect to examine this. Specifically, reaction time to morphologically complex words (words made up of base and suffix, e.g., agree+able) typically reflects frequency of the base element (i.e., total frequency of all words in which agree appears) rather than surface word frequency (i.e., frequency of agreeable itself). We term these complex words decomposable. However, a class of words termed whole-word do not show such sensitivity to base frequency (e.g., serenity). Using an event-related MRI design, we exploited the fact that processing low-frequency words increases BOLD activity relative to high frequency ones, and examined effects of base frequency on brain activity for decomposable and whole-word items. Morphologically complex words, half high and half low base frequency, were compared to matched high and low frequency simple monomorphemic words using a lexical decision task. Morphologically complex words increased activation in left inferior frontal and left superior temporal cortices versus simple words. The only area to mirror the behavioral distinction between decomposable and whole-word types was the thalamus. Surprisingly, most frequency-sensitive areas failed to show base frequency effects. This variety of responses to frequency and word type across brain areas supports an integrative view of multiple variables during lexical access, rather than a dichotomy between memory-based access and on-line computation. Lexical access appears best captured as interplay of several neural processes with different sensitivities to various linguistic factors including frequency and morphological complexity. PMID:21167136
Cell Electrosensitization Exists Only in Certain Electroporation Buffers.
Dermol, Janja; Pakhomova, Olga N; Pakhomov, Andrei G; Miklavčič, Damijan
2016-01-01
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms.
Cell Electrosensitization Exists Only in Certain Electroporation Buffers
Dermol, Janja; Pakhomova, Olga N.; Pakhomov, Andrei G.; Miklavčič, Damijan
2016-01-01
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms. PMID:27454174
Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong
2017-10-11
The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
Nadri, Johara; Sauvageot, Delphine; Njanpop-Lafourcade, Berthe-Marie; Baltazar, Cynthia S; Banla Kere, Abiba; Bwire, Godfrey; Coulibaly, Daouda; Kacou N'Douba, Adele; Kagirita, Atek; Keita, Sakoba; Koivogui, Lamine; Landoh, Dadja E; Langa, Jose P; Miwanda, Berthe N; Mutombo Ndongala, Guy; Mwakapeje, Elibariki R; Mwambeta, Jacob L; Mengel, Martin A; Gessner, Bradford D
2018-04-01
During 2014, Africa reported more than half of the global suspected cholera cases. Based on the data collected from seven countries in the African Cholera Surveillance Network (Africhol), we assessed the sensitivity, specificity, and positive and negative predictive values of clinical cholera case definitions, including that recommended by the World Health Organization (WHO) using culture confirmation as the gold standard. The study was designed to assess results in real-world field situations in settings with recent cholera outbreaks or endemicity. From June 2011 to July 2015, a total of 5,084 persons with suspected cholera were tested for Vibrio cholerae in seven different countries of which 35.7% had culture confirmation. For all countries combined, the WHO case definition had a sensitivity = 92.7%, specificity = 8.1%, positive predictive value = 36.1%, and negative predictive value = 66.6%. Adding dehydration, vomiting, or rice water stools to the case definition could increase the specificity without a substantial decrease in sensitivity. Future studies could further refine our findings primarily by using more sensitive methods for cholera confirmation.
Kulkarni, Rishikesh U; Yin, Hang; Pourmandi, Narges; James, Feroz; Adil, Maroof M; Schaffer, David V; Wang, Yi; Miller, Evan W
2017-02-17
Voltage imaging with fluorescent dyes offers promise for interrogating the complex roles of membrane potential in coordinating the activity of neurons in the brain. Yet, low sensitivity often limits the broad applicability of optical voltage indicators. In this paper, we use molecular dynamics (MD) simulations to guide the design of new, ultrasensitive fluorescent voltage indicators that use photoinduced electron transfer (PeT) as a voltage-sensing switch. MD simulations predict an approximately 16% increase in voltage sensitivity resulting purely from improved alignment of dye with the membrane. We confirm this theoretical finding by synthesizing 9 new voltage-sensitive (VoltageFluor, or VF) dyes and establishing that all of them display the expected improvement of approximately 19%. This synergistic outworking of theory and experiment enabled computational and theoretical estimation of VF dye orientation in lipid bilayers and has yielded the most sensitive PeT-based VF dye to date. We use this new voltage indicator to monitor voltage spikes in neurons from rat hippocampus and human pluripotent-stem-cell-derived dopaminergic neurons.
Trusted Computing Technologies, Intel Trusted Execution Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guise, Max Joseph; Wendt, Jeremy Daniel
2011-01-01
We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorizedmore » users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.« less
A conceptualisation framework for building consensus on environmental sensitivity.
González Del Campo, Ainhoa
2017-09-15
Examination of the intrinsic attributes of a system that render it more or less sensitive to potential stressors provides further insight into the baseline environment. In impact assessment, sensitivity of environmental receptors can be conceptualised on the basis of their: a) quality status according to statutory indicators and associated thresholds or targets; b) statutory protection; or c) inherent risk. Where none of these considerations are pertinent, subjective value judgments can be applied to determine sensitivity. This pragmatic conceptual framework formed the basis of a stakeholder consultation process for harmonising degrees of sensitivity of a number of environmental criteria. Harmonisation was sought to facilitate their comparative and combined analysis. Overall, full or wide agreement was reached on relative sensitivity values for the large majority of the reviewed criteria. Consensus was easier to reach on some themes (e.g. biodiversity, water and cultural heritage) than others (e.g. population and soils). As anticipated, existing statutory measures shaped the outcomes but, ultimately, knowledge-based values prevailed. The agreed relative sensitivities warrant extensive consultation but the conceptual framework provides a basis for increasing stakeholder consensus and objectivity of baseline assessments. This, in turn, can contribute to improving the evidence-base for characterising the significance of potential impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Refractive index sensor based on plastic optical fiber with tapered structure.
De-Jun, Feng; Guan-Xiu, Liu; Xi-Lu, Liu; Ming-Shun, Jiang; Qing-Mei, Sui
2014-04-01
This work reports a refractive index sensor made of plastic optical fiber (POF) with tapered structure. Transmission loss is measured when the external environment's refractive index changes from 1.33 to 1.41. Three wavelengths (532, 633, and 780 nm) are used to evaluate the sensitivity of the sensor, and results indicate that 633 nm is the best sensing wavelength due to the increased levels of sensitivity achieved at this wavelength. A biconical sensing structure is designed to enhance the sensitivity of the sensor. A sensitivity of 950 μW/RIU at 633 nm is obtained for a biconical sensing structure when launched power is 1 mW. Due to its sensitivity to the refractive index and simple construction, POF with tapered structure has potential applications in the biosensing field.
The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites
Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.
2013-01-01
Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155
Casarin, Elisabetta; Lucchese, Laura; Grazioli, Santina; Facchin, Sonia; Realdon, Nicola; Brocchi, Emiliana; Morpurgo, Margherita; Nardelli, Stefano
2016-01-01
Diagnostic tests for veterinary surveillance programs should be efficient, easy to use and, possibly, economical. In this context, classic Enzyme linked ImmunoSorbent Assay (ELISA) remains the most common analytical platform employed for serological analyses. The analysis of pooled samples instead of individual ones is a common procedure that permits to certify, with one single test, entire herds as "disease-free". However, diagnostic tests for pooled samples need to be particularly sensitive, especially when the levels of disease markers are low, as in the case of anti-BoHV1 antibodies in milk as markers of Infectious Bovine Rhinotracheitis (IBR) disease. The avidin-nucleic-acid-nanoassembly (ANANAS) is a novel kind of signal amplification platform for immunodiagnostics based on colloidal poly-avidin nanoparticles that, using model analytes, was shown to strongly increase ELISA test performance as compared to monomeric avidin. Here, for the first time, we applied the ANANAS reagent integration in a real diagnostic context. The monoclonal 1G10 anti-bovine IgG1 antibody was biotinylated and integrated with the ANANAS reagents for indirect IBR diagnosis from pooled milk mimicking tank samples from herds with IBR prevalence between 1 to 8%. The sensitivity and specificity of the ANANAS integrated method was compared to that of a classic test based on the same 1G10 antibody directly linked to horseradish peroxidase, and a commercial IDEXX kit recently introduced in the market. ANANAS integration increased by 5-fold the sensitivity of the 1G10 mAb-based conventional ELISA without loosing specificity. When compared to the commercial kit, the 1G10-ANANAS integrated method was capable to detect the presence of anti-BHV1 antibodies from bulk milk of gE antibody positive animals with 2-fold higher sensitivity and similar specificity. The results demonstrate the potentials of this new amplification technology, which permits improving current classic ELISA sensitivity limits without the need for new hardware investments.
Chen, Sam Li-Sheng; Hsu, Chen-Yang; Yen, Amy Ming-Fang; Young, Graeme P; Chiu, Sherry Yueh-Hsia; Fann, Jean Ching-Yuan; Lee, Yi-Chia; Chiu, Han-Mo; Chiou, Shu-Ti; Chen, Hsiu-Hsi
2018-06-01
Background: Despite age and sex differences in fecal hemoglobin (f-Hb) concentrations, most fecal immunochemical test (FIT) screening programs use population-average cut-points for test positivity. The impact of age/sex-specific threshold on FIT accuracy and colonoscopy demand for colorectal cancer screening are unknown. Methods: Using data from 723,113 participants enrolled in a Taiwanese population-based colorectal cancer screening with single FIT between 2004 and 2009, sensitivity and specificity were estimated for various f-Hb thresholds for test positivity. This included estimates based on a "universal" threshold, receiver-operating-characteristic curve-derived threshold, targeted sensitivity, targeted false-positive rate, and a colonoscopy-capacity-adjusted method integrating colonoscopy workload with and without age/sex adjustments. Results: Optimal age/sex-specific thresholds were found to be equal to or lower than the universal 20 μg Hb/g threshold. For older males, a higher threshold (24 μg Hb/g) was identified using a 5% false-positive rate. Importantly, a nonlinear relationship was observed between sensitivity and colonoscopy workload with workload rising disproportionately to sensitivity at 16 μg Hb/g. At this "colonoscopy-capacity-adjusted" threshold, the test positivity (colonoscopy workload) was 4.67% and sensitivity was 79.5%, compared with a lower 4.0% workload and a lower 78.7% sensitivity using 20 μg Hb/g. When constrained on capacity, age/sex-adjusted estimates were generally lower. However, optimizing age/-sex-adjusted thresholds increased colonoscopy demand across models by 17% or greater compared with a universal threshold. Conclusions: Age/sex-specific thresholds improve FIT accuracy with modest increases in colonoscopy demand. Impact: Colonoscopy-capacity-adjusted and age/sex-specific f-Hb thresholds may be useful in optimizing individual screening programs based on detection accuracy, population characteristics, and clinical capacity. Cancer Epidemiol Biomarkers Prev; 27(6); 704-9. ©2018 AACR . ©2018 American Association for Cancer Research.
Liang, Wenbin; Zhuo, Ying; Xiong, Chengyi; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo
2017-08-15
A sensitive electrochemiluminescent (ECL) sandwich immunosensor was proposed herein based on the tris (2-phenylpyridine) iridium [Ir(ppy) 3 ] doped silica nanoparticles (SiO 2 @Ir) with improved ECL emission as signal probes and glucose oxidase (GOD)-based in situ enzymatic reaction to generate H 2 O 2 for efficiently quenching the ECL emission of SiO 2 @Ir. Typically, the SiO 2 @Ir not only increased the loading amount of Ir(ppy) 3 as ECL indicators with high ECL emission, but also improved their water-solubility, which efficiently enhanced the ECL emission. Furthermore, by the efficient quench effect of H 2 O 2 from in situ glucose oxidase (GOD)-based enzymatic reaction on the ECL emission of SiO 2 @Ir, a signal-off ECL immunsensor could be established for sensitive assay. With N-terminal of the prohormone brain natriuretic peptide (BNPT) as a model, the proposed ECL assay performed high sensitivity and low detection limit. Importantly, the proposed sensitive ECL strategy was not only suitable for the detection of BNPT for acute myocardial infarction, but also revealed a new avenue for early diagnosis of various diseases via proteins, nucleotide sequence, microRNA and cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Aeroallergen and food IgE sensitization and local and systemic inflammation in asthma.
Patelis, A; Janson, C; Borres, M P; Nordvall, L; Alving, K; Malinovschi, A
2014-03-01
We recently reported an independent association between IgE sensitization to food allergens and increased airway inflammation, assessed by fraction of exhaled nitric oxide (FeNO), in a population-based study (J Allergy Clin Immunol, 130, 2012, 397). Similar studies have not been performed in populations with asthma. The aim of the present study was to investigate the allergic sensitization profile in asthmatics and examine FeNO, airway responsiveness and blood eosinophilia in relation to type and degree of IgE sensitization. FeNO, airway responsiveness, blood eosinophil count (B-Eos) and IgE sensitization to food allergens and aeroallergens were determined in 408 subjects with asthma, aged 10-34 years. Asthmatics had higher prevalence of IgE sensitization against all allergens than controls (P < 0.001). Mite, pollen, furry animal, mould and food sensitizations were each associated with increased FeNO, airway responsiveness and B-Eos in asthmatics. IgE sensitization to mould, furry animals and food allergens was independently related to FeNO (all P < 0.05) after adjustment for age, sex, height, smoking history and medication. IgE sensitization to mould (P < 0.001) and furry animals (P = 0.02) was related to airway responsiveness in a similar model. Finally, IgE sensitization to mould (P = 0.001), furry animals (P < 0.001) and food allergens (P < 0.001) was independently related to B-Eos. Independent effects of IgE sensitization to aeroallergens (furry animals and mould) and food allergens were found on both local and systemic markers of inflammation in asthma. The finding regarding food IgE sensitization is novel, and a clinical implication might be that even food sensitization must be assessed to fully understand inflammation patterns in asthma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Efficacy of high-fiber diets in the management of type 2 diabetes mellitus.
Wolfram, Taylor; Ismail-Beigi, Faramarz
2011-01-01
To review outcomes of randomized controlled clinical trials exploring the efficacy of different types of diets containing various amounts of fiber in the management of type 2 diabetes mellitus. We searched PubMed, Medline, and Google Scholar for published data from the past decade (through December 2009) on dietary patterns and risk of type 2 diabetes mellitus. Only randomized controlled trials investigating the effect of whole grains, fiber, or vegetarian diets on type 2 diabetes were included. Search criteria included whole grain, fruit, vegetable, fiber, and meat intake regarding insulin sensitivity and glycemic responses in healthy, prediabetic, and diabetic persons. A total of 14 randomized clinical trials were included. Addition of insoluble or soluble fiber to meals, increased consumption of diets rich in whole grains and vegetables, and vegan diets improve glucose metabolism and increase insulin sensitivity. The greatest improvement in blood lipids, body weight, and hemoglobin A(1c) level occurred in participants following low-fat, plant-based diets. Increased consumption of vegetables, whole grains, and soluble and insoluble fiber is associated with improved glucose metabolism in both diabetic and nondiabetic individuals. Improvements in insulin sensitivity and glucose homeostasis were more evident in participants following a plant-based diet compared with other commonly used diets.
Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.
Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D
2014-07-15
As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.
NASA Astrophysics Data System (ADS)
Kumar, Narendra; Sutradhar, Moitri; Kumar, Jitendra; Panda, Siddhartha
2017-03-01
The deposition of the top gate dielectric in thin film transistor (TFT)-based dual-gate ion-sensitive field-effect transistors (DG ISFETs) is critical, and expected not to affect the bottom gate TFT characteristics, while providing a higher pH sensitive surface and efficient capacitive coupling between the gates. Amorphous Ta2O5, in addition to having good sensing properties, possesses a high dielectric constant of ˜25 making it well suited as the top gate dielectric in a DG ISFET by providing higher capacitive coupling (ratio of C top/C bottom) leading to higher amplification. To avoid damage of the a-IGZO channel reported to be caused by plasma exposure, deposition of Ta2O5 by e-beam evaporation followed by annealing was investigated in this work to obtain sensitivity over the Nernst limit. The deteriorated bottom gate TFT characteristics, indicated by an increase in the channel conductance, confirmed that plasma exposure is not the sole contributor to the changes. Oxygen vacancies at the Ta2O5/a-IGZO interface, which emerged during processing, increased the channel conductivity, became filled by optimum annealing in oxygen at 400 °C for 1 h, which was confirmed by an x-ray photoelectron spectroscopy depth profiling analysis. The obtained pH sensitivity of the TFT-based DG ISFET was 402 mV pH-1, which is about 6.8 times the Nernst limit (59 mV pH-1). The concept of capacitive coupling was also demonstrated by simulating an a-IGZO-based DG TFT structure. Here, the exposure of the top gate dielectric to the electrolyte without applying any top gate bias led to changes in the measured threshold voltage of the bottom gate TFT, and this obviated the requirement of a reference electrode needed in conventional ISFETs and other reported DG ISFETs. These devices, with high sensitivities and requiring low volumes (˜2 μl) of analyte solution, could be potential candidates for utilization as chemical sensors and biosensors.
Hutsell, Blake A; Negus, S Stevens; Banks, Matthew L
2015-01-01
We have previously demonstrated reductions in cocaine choice produced by either continuous 14-day phendimetrazine and d-amphetamine treatment or removing cocaine availability under a cocaine vs. food choice procedure in rhesus monkeys. The aim of the present investigation was to apply the concatenated generalized matching law (GML) to cocaine vs. food choice dose-effect functions incorporating sensitivity to both the relative magnitude and price of each reinforcer. Our goal was to determine potential behavioral mechanisms underlying pharmacological treatment efficacy to decrease cocaine choice. A multi-model comparison approach was used to characterize dose- and time-course effects of both pharmacological and environmental manipulations on sensitivity to reinforcement. GML models provided an excellent fit of the cocaine choice dose-effect functions in individual monkeys. Reductions in cocaine choice by both pharmacological and environmental manipulations were principally produced by systematic decreases in sensitivity to reinforcer price and non-systematic changes in sensitivity to reinforcer magnitude. The modeling approach used provides a theoretical link between the experimental analysis of choice and pharmacological treatments being evaluated as candidate 'agonist-based' medications for cocaine addiction. The analysis suggests that monoamine releaser treatment efficacy to decrease cocaine choice was mediated by selectively increasing the relative price of cocaine. Overall, the net behavioral effect of these pharmacological treatments was to increase substitutability of food pellets, a nondrug reinforcer, for cocaine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?
NASA Astrophysics Data System (ADS)
Thompson, Kevin P.; Schiesser, Eric; Rolland, Jannick P.
2015-10-01
As freeform optical systems emerge as interesting and innovative solutions for imaging in 3D packages there is an assumption they are going to be more sensitive particularly at assembly. While it is true that the clocking of the component becomes a relatively weak new tolerance, for the most effective new class of freeform systems the alignment sensitivity is actually lower in most cases than for a comparable traditional unobscured three mirror anastigmatic (TMA) telescope. Traditional unobscured TMA telescopes, whose designs emerged in the mid-70s and which begin to appear as hardware in the literature in the early 90s, are based on using increasingly offset apertures with otherwise coaxial rotationally symmetric mirrors. The mirrors (typically 3 to correct spherical, coma, and astigmatism) have evolved to contain more high order terms as the designs are pushed to more compact and wider field packages - the NIRCAM camera for the JWST is an excellent example of this [1]. As the higher order terms are added, the mirrors become increasingly sensitive to decenters and tilts. An emerging class of freeform telescopes that provide wider field of view and/or faster f/numbers than the traditional TMA are based on a strategy where the surface shape remains a low order Zernike-type surface even in compact, unobscured packages. This optical design strategy results in an optical form that is not only higher performance but simultaneously less sensitive to alignment.
Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin
2016-06-28
Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.
Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification.
Matzrafi, Maor; Seiwert, Bettina; Reemtsma, Thorsten; Rubin, Baruch; Peleg, Zvi
2016-12-01
Global warming will increase the incidence of metabolism-based reduced herbicide efficacy on weeds and, therefore, the risk for evolution of non-target site herbicide resistance. Climate changes affect food security both directly and indirectly. Weeds are the major biotic factor limiting crop production worldwide, and herbicides are the most cost-effective way for weed management. Processes associated with climatic changes, such as elevated temperatures, can strongly affect weed control efficiency. Responses of several grass weed populations to herbicides that inhibit acetyl-CoA carboxylase (ACCase) were examined under different temperature regimes. We characterized the mechanism of temperature-dependent sensitivity and the kinetics of pinoxaden detoxification. The products of pinoxaden detoxification were quantified. Decreased sensitivity to ACCase inhibitors was observed under elevated temperatures. Pre-treatment with the cytochrome-P450 inhibitor malathion supports a non-target site metabolism-based mechanism of herbicide resistance. The first 48 h after herbicide application were crucial for pinoxaden detoxification. The levels of the inactive glucose-conjugated pinoxaden product (M5) were found significantly higher under high- than low-temperature regime. Under high temperature, a rapid elevation in the level of the intermediate metabolite (M4) was found only in pinoxaden-resistant plants. Our results highlight the quantitative nature of non-target-site resistance. To the best of our knowledge, this is the first experimental evidence for temperature-dependent herbicide sensitivity based on metabolic detoxification. These findings suggest an increased risk for the evolution of herbicide-resistant weeds under predicted climatic conditions.
NASA Astrophysics Data System (ADS)
Serebryakov, D. V.; Morozov, I. V.; Kosterev, A. A.; Letokhov, V. S.
2010-02-01
A microphotoacoustic highly selective sensor of ammonia is built. Main attention is paid to the operation mechanism of the acoustic sensor based on a quartz tuning fork. The optimal dimensions and configuration of the acoustic resonator are determined, which made it possible to increase the sensor sensitivity by two—three times compared to the sensitivity of the existing devices. The detector sensitivity for ammonia was 60ppb (0.05 mg m-3) for the measurement time of 10s and a 25-mW, 1.53-μm laser beam in the acoustic resonator.
Attention-based long-lasting sensitization and suppression of colors.
Tseng, Chia-Huei; Vidnyanszky, Zoltan; Papathomas, Thomas; Sperling, George
2010-02-22
In contrast to the short-duration and quick reversibility of attention, a long-term sensitization to color based on protracted attention in a visual search task was reported by Tseng, Gobell, and Sperling (2004). When subjects were trained for a few hours to search for a red object among colored distracters, sensitivity to red was increased for weeks. This sensitization was quantified using ambiguous motion displays containing isoluminant red-green and texture-contrast gratings, in which the perceived motion-direction depended both on the attended color and on the relative red-green saturation. Such long-term effects could result from either sensitization of the attended color, or suppression of unattended colors, or a combination of the two. Here we unconfound these effects by eliminating one of the paired colors of the motion display from the search task. The other paired color in the motion display can then be either a target or a distracter in the search task. Thereby, we separately measure the effect of attention on sensitizing the target color or suppressing distracter colors. The results indicate that only sensitization of the target color in the search task is statistically significant for the present experimental conditions. We conclude that selective attention to a color in our visual search task caused long-term sensitization to the attended color but not significant long-term suppression of the unattended color. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamilpanah, L.; Azadian, S.; Shoa e Gharehbagh, J.; Haghniaz Jahromi, S.; Sheykhifard, Z.; Hosseinizadeh, S.; Erfanifam, S.; Hajiali, M. R.; Tehranchi, M. M.; Mohseni, S. M.
2018-07-01
Graphene oxide (GO) layers have shown to be fascinating elements for application in high performance sensors. They can be applied in multi-disciplinary designs based on surface selective sensing mechanisms. One immediate application of such surface sensitive elements is implementing of GO layer in magnetoimpedance (MI) sensors to improve their multi-functionality. In this paper, deposition of GO on the surface of Co-based amorphous ribbons (Co68.15Fe4.35Si12.5B15) is performed using electrophoretic deposition (EPD) method to evaluate the MI response. MI ratio increased from 271% (bare ribbon) up to 281% and 301% EPD GO deposited within 4 and 8 min, respectively. Similar experiment for the ribbon drop coated with GO was carried out while no enhancement in MI response was seen. Vertical growth of GO on the surface of the ribbon in EPD and drop coated layers observed by topographical measurements. We explained the difference between the MI responses based on layers verticality and surface coverage. UV-Visible absorption and Raman spectroscopy were used to study the nature of GO. Gaining a high surface area of GO along with their biocompatible and anticorrosive properties atop the MI sensors can open pathways towards increasing applications of surface selective and high sensitive MI sensors.
Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors
NASA Astrophysics Data System (ADS)
Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In
2012-10-01
In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.
Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo
2009-07-21
Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a range of nanosized carriers (micelles, liposomes, microemulsions, and the like, as well as biological structures such as apoferritin and lipoproteins) properly loaded with Gd-based chelates. Furthermore, the sensitivity of Gd-based agents can be markedly affected either by their interactions with biological structures or by their cellular localization. For CEST agents, a huge sensitivity enhancement has been obtained by using the water molecules contained in the inner cavity of liposomes as the exchangeable source of protons for magnetization transfer. Several "tricks" (for example, the use of multimeric lanthanide(III) shift reagents, changes in the shape of the liposome container, and so forth) have been devised to improve the chemical shift separation between the intraliposomal water and the "bulk" water resonances. Overall, excellent sensitivity enhancements have been obtained for both classes of agents, enabling their use in MR molecular imaging applications.
Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water.
Ren, Wen; Mura, Stefania; Irudayaraj, Joseph M K
2015-10-01
Nitrate ions is a very common contaminant in drinking water and has a significant impact on the environment, necessitating routine monitoring. Due to its chemical and physical properties, it is hard to directly detect nitrate ions with high sensitivity in a simple and inexpensive manner. Herein with amino group modified graphene oxide (GO) as a sensing element, we show a direct and ultra-sensitive method to detect nitrate ions, at a lowest detected concentration of 5 nM in river water samples, much lower than the reported methods based on absorption spectroscopy. Furthermore, unlike the reported strategies based on absorption spectroscopy wherein the nitrate concentration is determined by monitoring an increase in aggregation of gold nanoparticles (GNPs), our method evaluates the concentration of nitrate ions based on reduction in aggregation of GNPs for monitoring in real samples. To improve sensitivity, several optimizations were performed, including the assessment of the amount of modified GO required, concentration of GNPs and incubation time. The detection methodology was characterized by zeta potential, TEM and SEM. Our results indicate that an enrichment of modified GO with nitrate ions contributed to excellent sensitivity and the entire detection procedure could be completed within 75 min with only 20 μl of sample. This simple and rapid methodology was applied to monitor nitrate ions in real samples with excellent sensitivity and minimum pretreatment. The proposed approach paves the way for a novel means to detect anions in real samples and highlights the potential of GO based detection strategy for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)
Schultz, Martin T.; Lance, Richard F.
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives. PMID:26509674
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).
Schultz, Martin T; Lance, Richard F
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.
NASA Astrophysics Data System (ADS)
Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex
2016-03-01
Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.
Effects of normalization on quantitative traits in association test
2009-01-01
Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414
NASA Astrophysics Data System (ADS)
Xiao, Dingbang; Su, Jianbin; Chen, Zhihua; Hou, Zhanqiang; Wang, Xinghua; Wu, Xuezhong
2013-04-01
In order to improve its structural sensitivity, a vibratory microgyroscope is commonly sealed in high vacuum to increase the drive mode quality factor. The sense mode quality factor of the microgyroscope will also increase simultaneously after vacuum sealing, which will lead to a long decay time of free response and even self-oscillation of the sense mode. As a result, the mechanical performance of the microgyroscope will be seriously degraded. In order to solve this problem, a closed-loop control technique is presented to adjust and optimize the sense mode quality factor. A velocity feedback loop was designed to increase the electric damping of the sense mode vibration. A circuit was fabricated based on this technique, and experimental results indicate that the sense mode quality factor of the microgyroscope was adjusted from 8052 to 428. The decay time of the sense mode free response was shortened from 3 to 0.5 s, and the vibration-rejecting ability of the microgyroscope was improved obviously without sensitivity degradation.
Tuning pentacene based dye-sensitized solar cells.
Kunzmann, Andreas; Gruber, Marco; Casillas, Rubén; Tykwinski, Rik R; Costa, Rubén D; Guldi, Dirk M
2018-05-10
We report on the synthesis, as well as photophysical and electrochemical characterization of a new family of pentacene derivatives, which are applied in n-type dye-sensitized solar cells (DSSCs). As far as the molecular structure of the pentacene is concerned, the synthetic design focuses on cyano acrylic tethered at the 13-position of the pentacene chromophore. The electrolyte composition features increasing amounts of Li+ ions as an additive. In general, the increase of Li+ concentrations extrinsically reduces the quasi Fermi level of the photoanode and as such facilitates the electron injection process. We demonstrate that pentacene derivatives give rise to a unique charge injection process, which is controlled by the positioning of the quasi Fermi level energies as a function of the Li+ concentration. As a result of the enhanced charge injection, device efficiencies as high as 1.5% are achieved, representing a 3-fold increase from previously reported efficiencies in pentacene-based DSSCs. These findings are supported by device analysis in combination with transient absorption and electrochemical impedance spectroscopy assays.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
2003-01-01
This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Xiang, Junfeng; Wang, Peng; Koyama, Yasushi; Yanagida, Shozo; Wada, Yuji; Hamada, Kazunori; Sasaki, Shin-ichi; Tamiaki, Hitoshi
2005-06-01
Titania-based Grätzel-type solar cells were fabricated by the use of a chlorophyll a derivative (methyl 3-carboxy-3-devinyl-pyropheophorobide a) as the dye sensitizer. A 10% each of carotenoids, including neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin with numbers of conjugated double bonds, n = 9-13, was added as a conjugated spacer in order to neutralize the dye radical cation and to block the reverse electron transfer. The short-circuit current density ( Jsc) and the solar energy-to-electricity conversion efficiency ( η) systematically increased, with increasing n, from the values of 10.1 mA cm -2 and 3.1% (with no carotenoid) up to 11.5 mA cm -2 and 4.0% (with spirilloxanthin, n = 13), i.e., an enhancement of ≈30%.
The population of older Americans is increasing due to the aging of the Baby Boomers as well as an increase in the average life span. A number of physiological and biochemical changes occur during aging that could influence the relationship between exposure, dose, and response to...
Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R
2016-02-01
Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.
Development and testing of an electrochemical methane sensor
Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich; ...
2016-01-12
In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less
An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.
Hu, Yating; Xu, Yong
2012-01-01
This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.
Development and testing of an electrochemical methane sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich
In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less
Data-driven sensitivity inference for Thomson scattering electron density measurement systems.
Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro
2017-01-01
We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.
Detection of telomerase on upconversion nanoparticle modified cellulose paper.
Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang
2015-07-25
Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.
Platje, Evelien; Sterkenburg, Paula; Overbeek, Mathile; Kef, Sabina; Schuengel, Carlo
2018-01-23
Video-feedback Intervention to promote positive parenting-visual (VIPP-V) or visual-and-intellectual disability is an attachment-based intervention aimed at enhancing sensitive parenting and promoting positive parent-child relationships. A randomized controlled trial was conducted to assess the efficacy of VIPP-V for parents of children aged 1-5 with visual or visual-and-intellectual disabilities. A total of 37 dyads received only care-as-usual (CAU) and 40 received VIPP-V besides CAU. The parents receiving VIPP-V did not show increased parental sensitivity or parent-child interaction quality, however, their parenting self-efficacy increased. Moreover, the increase in parental self-efficacy predicted the increase in parent-child interaction. In conclusion, VIPP-V does not appear to directly improve the quality of contact between parent and child, but does contribute to the self-efficacy of parents to support and to comfort their child. Moreover, as parents experience their parenting as more positive, this may eventually lead to higher sensitive responsiveness and more positive parent-child interactions.
NASA Astrophysics Data System (ADS)
Lin, Yibing; Lin, Yu; Wu, Jihuai; Zhang, Xiaolong; Fang, Biaopeng
2017-03-01
The composite photoanodes based on the ZnO/SnO2 hierarchical structures with high photoelectricity properties have been successfully synthesized, and used in the CdS and CdSe quantum dots co-sensitized solar cells (QDSSCs). In this experiment, the ZnO/SnO2 nanoparticles (ZS-NP) and hierarchical nanosheets-based microflowers (ZS-MF) were prepared by the one-step hydrothermal route and the morphologies of the products were controlled by the solvent variation. An improved power conversion efficiency of 4.98% was achieved for the cell based on the ZS-MF composite photoanodes, which showed an increase of 21.8% compared to the ZS-NP photoanodes (4.09%). This result is mainly connected to the unique superiority of the three-dimensional hierarchical microflower nanostructures for light scattering and quantum dots loading, which is responsible for the increase of photocurrent values and eventual PCE.
The "shoulds" and "should nots" of moral emotions: a self-regulatory perspective on shame and guilt.
Sheikh, Sana; Janoff-Bulman, Ronnie
2010-02-01
A self-regulatory framework for distinguishing between shame and guilt was tested in three studies. Recently, two forms of moral regulation based on approach versus avoidance motivation have been proposed in the literature. Proscriptive regulation is sensitive to negative outcomes, inhibition based, and focused on what we should not do. Prescriptive regulation is sensitive to positive outcomes, activation based, and focused on what we should do. In the current research, consistent support was found for shame's proscriptive and guilt's prescriptive moral underpinnings. Study 1 found a positive association between avoidance orientation and shame proneness and between approach orientation and guilt proneness. In Study 2, priming a proscriptive orientation increased shame and priming a prescriptive orientation increased guilt. In Study 3, transgressions most apt to represent proscriptive and prescriptive violations predicted subsequent judgments of shame and guilt, respectively. This self-regulatory perspective provides a broad interpretive framework for understanding and extending past research findings.
NASA Astrophysics Data System (ADS)
Kwon, Oh Kuen; Lee, Jun Ha; Kim, Ki-Sub; Kang, Jeong Won
2013-01-01
We propose schematics for an ultra-sensitive pressure sensor based on graphene-nanoribbon (GNR) and investigate its electromechanical properties using classical molecular dynamics simulations and piezo-electricity theory. Since the top plate applied to the actual pressure is large whereas the contact area on the GNR is very small, both the sensitivity and the sensing range can be adjusted by controlling the aspect ratio between the top plate and the contact point areas. Our calculation shows that the electrical conductivity of GNRs can be tuned by the applied pressure and the electric conductance of the deflected GNR linearly increases with increasing applied pressure for the linear elastic region in low pressure below the cut-off point. In the curves for both the deflection and potential energy, the linear elastic regime in low pressure was explicitly separated with the non-linear elastic regime in high pressure. The proposed GNR-based nanoelectromechanical devices have great potential for application as electromechanical memory, relay or switching devices.
NASA Astrophysics Data System (ADS)
Yu, Yingying; Sun, Bo
2018-07-01
We investigate the multi-resonance coupling of inverted quadrangular frustum pyramid (IQFP) groove metal arrays at terahertz frequencies. The surface plasmon resonance (SPR) and groove resonance are induced, resulting in resonance coupling. The dipole of the groove resonance drives the quadrupole of the SPR and creates a sharp Fano-like resonance. The effects of geometry parameters including the width (at the bottom) and height are analyzed in detail. The results show that with the decrease in the sidewall slope of the groove, the confinement of the groove region on the electromagnetic field decreases, thereby increasing the resonance coupling. The Fano-like resonance is enhanced. The sensitivity and quality factor are discussed. The results show that the Fano-like resonance has high sensitivity and quality factor. With the increase in the sidewall slope of the groove, the sensitivity increases, and the quality factor decreases. The results show that the Fano-like resonance of IQFP groove metal arrays has a significant potential for biological monitoring and sensing.
Gullo, Matthew J; Stieger, Adam A
2011-09-01
Substance abusers are characterized by hypersensitivity to reward. This leads to maladaptive decisions generally, as well as those on laboratory-based decision-making tasks, such as the Iowa Gambling Task (IGT). Negative affect has also been shown to disrupt the decision-making of healthy individuals, particularly decisions made under uncertainty. Neuropsychological theories of learning, including the Somatic Marker Hypothesis (SMH), argue this occurs by amplifying affective responses to punishment. In substance abusers, this might serve to rebalance their sensitivity to reward with punishment, and improve decision-making. Before completing the IGT, 45 heavy and 47 light drinkers were randomly assigned to a control condition, or led to believe they had to give a stressful public speech. IGT performance was analyzed with the Expectancy-Valence (EV) learning model. Working memory and IQ were also assessed. Heavy drinkers made more disadvantageous decisions than light drinkers, due to higher attention to gains (versus losses) on the IGT. Anticipatory stress increased participants' attention to losses, significantly improving heavy drinkers' decision-making. Anticipatory stress increased attention to losses, effectively restoring decision-making deficits in heavy drinkers by rebalancing their reward sensitivity with punishment sensitivity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Analysis of multimode BDK doped POF gratings for temperature sensing
NASA Astrophysics Data System (ADS)
Luo, Yanhua; Wu, Wenxuan; Wang, Tongxin; Cheng, Xusheng; Zhang, Qijin; Peng, Gang-Ding; Zhu, Bing
2012-10-01
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from -79.5 pm/°C to -104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from -0.097 nm/°C to -0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.
Pereira, Diane M.; Simões, André E. S.; Gomes, Sofia E.; Castro, Rui E.; Carvalho, Tânia; Rodrigues, Cecília M. P.; Borralho, Pedro M.
2016-01-01
The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment. PMID:27144434
Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok
2015-01-01
Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and may be used in the future as a screening method for AD.
The Issue of Death and Dying: Employing Problem-Based Learning in Nursing Education.
ERIC Educational Resources Information Center
Mok, Esther; Lee, Wai Man; Wong, Frances Kam-yuet
2002-01-01
Hong Kong nursing students used journals to problem-based learning (PBL) related to dying patients. Increased self-awareness, positive attitude toward death, and culturally sensitive care resulted. PBL methods included information searches, interviews with experts and patients, and tutorials for sharing feelings and information. (Contains 21…
Assessing Sensitivity of Early Head Start Study Findings to Manipulated Randomization Threats
ERIC Educational Resources Information Center
Green, Sheridan
2013-01-01
Increasing demands for design rigor and an emphasis on evidence-based practice on a national level indicated a need for further guidance related to successful implementation of randomized studies in education. Rigorous and meaningful experimental research and its conclusions help establish a valid theoretical and evidence base for educational…
A Critical Review of 13 Years of Mobile Game-Based Learning
ERIC Educational Resources Information Center
Giannakas, Filippos; Kambourakis, Georgios; Papasalouros, Andreas; Gritzalis, Stefanos
2018-01-01
With the increasing popularity of smartphones and tablets, game-based learning (GBL) is undergoing a rapid shift to mobile platforms. This transformation is driven by mobility, wireless interfaces, and built-in sensors that these smart devices offer in order to enable blended and context-sensitive mobile learning (m-Learning) activities. Thus,…
NASA Astrophysics Data System (ADS)
Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.
2018-01-01
Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in some of the cases higher stress-sensitivity of elastic properties can be seen in the direction parallel to the bedding plane.
Duration comparison: relative stimulus differences stimulus age, and stimulus predictiveness.
Stubbs, D A; Dreyfus, L R; Fetterman, J G; Boynton, D M; Locklin, N; Smith, L D
1994-01-01
Under a psychophysical trials procedure, pigeons were presented with a red light of one duration followed by a green light of a second duration. Eight geometrically spaced base durations were paired with one of four shorter and four longer durations as the alternate member of a duration pair, with different pairs randomly intermixed. One choice was reinforced if red had lasted longer than green, and a second choice was reinforced if green had lasted longer. Performance was compared when all the base durations and their pair members were included (entire-range condition) or when only the four longest base durations and their comparison durations (restricted-range condition) were used. Discrimination sensitivity decreased for longer duration pairs under both conditions, supporting a memory-based account. Sensitivity was lower under the restricted-range condition. Under both conditions, a bias to report "green as longer" increased as the second green duration increased. Bias changed as a matching function of the green-duration predictiveness of the correct choice. The results are related to a quantitative model of timing and remembering proposed by Staddon. PMID:8064211
Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin
2018-05-09
Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.
Yu, Hye-Weon; Jang, Am; Kim, Lan Hee; Kim, Sung-Jo; Kim, In S
2011-09-15
Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.
Zhao, Xuemei; Bender, Florent; Shukla, Rajiv; Kang, John J; Caro-Aguilar, Ivette; Laterza, Omar F
2016-04-01
Pathogenic Clostridium difficile produces two proinflammatory exotoxins, toxin A and toxin B. Low level of serum antitoxin IgG antibodies is a risk factor for the development of primary and recurrent C. difficile infection (CDI). We developed and validated two sensitive, titer-based electrochemiluminescence assays for the detection of serum antibody levels against C. difficile toxins A and B. These assays demonstrated excellent precision. The sensitivity of the assays allowed the detection of antitoxin A and antitoxin B IgG antibodies in all tested serum samples during assay validation. The validated titer-based assays enable assessment of antitoxin A and antitoxin B IgG antibodies as potential biomarkers to identify patients with CDI at increased risk for CDI recurrence.
High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong
2016-05-01
In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.
High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xu, Yao; Yang, Yuguang; Jin, Wenxing; Jiang, Youchao; Shen, Ya; Jian, Shuisheng
2017-10-01
In this paper we propose and experimentally demonstrate an optical fiber structure sensor based on a Mach-Zehnder interferometer for pressure measurement. The fiber sensor is composed of a single-mode-no-core-single-mode structure, a section of capillary pure silica tube and refractive index matching fluid (RIMF). As the pressure decreases, the sealed air in the tube expands and the liquid level of the RIMF increases, which causes a wavelength shift of the interferometer. The measurement of the pressure variation can thus be achieved by monitoring the wavelength shift. The experimental results agree well with the numerical simulation, and a maximum pressure sensitivity of 266.6 nm Mpa-1 is achieved experimentally. Furthermore, the proposed fiber sensor has the potential to obtain higher sensitivity by enlarging the length of the air cavity.
Theron, Jacques; Eugene Cloete, Thomas; de Kwaadsteniet, Michele
2010-11-01
Waterborne microbial diseases are escalating worldwide increasing the need for powerful and sensitive diagnostics tools. Molecular methodologies, including immunological and nucleic acid-based methods, have only recently been applied in the water sector. Advances in nanotechnology and nanomaterials have opened the door for the development of new diagnostic tools with increased sensitivity and speed, and reduced cost and labor. Quantum dots, flo dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, nanowires, and nanocantilevers, with their unique optical and physical properties, have already been applied in nanodiagnostics. Nanobiotechnology, once remaining technical and practical problems has been addressed, will play an important role in the detection of microbial pathogens.
Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum
2017-05-15
E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Sook-Kyung; Cheng, Nancy; Hull-Ryde, Emily; Potempa, Marc; Schiffer, Celia A; Janzen, William; Swanstrom, Ronald
2013-07-23
The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. By limiting the size of CA and increasing the size of MA (with an N-terminal GST fusion), we were able to measure significant differences in polarization values as a function of HIV-1 protease cleavage. The sensitivity of the assay was tested in the presence of increasing amounts of an HIV-1 protease inhibitor, which resulted in a gradual decrease in the fluorescence polarization values demonstrating that the assay is sensitive in discerning changes in protease processing. The high-throughput screening assay validation in 384-well plates showed that the assay is reproducible and robust with an average Z' value of 0.79 and average coefficient of variation values of <3%. The robustness and reproducibility of the assay were further validated using the LOPAC(1280) compound library, demonstrating that the assay provides a sensitive high-throughput screening platform that can be used with large compound libraries for identifying novel maturation inhibitors targeting the MA/CA site of the HIV-1 Gag polyprotein.
Gedi, Vinayakumar; Kim, Young-Pil
2014-01-01
Detection and characterization of cells using aptamers and aptamer-conjugated nanoprobes has evolved a great deal over the past few decades. This evolution has been driven by the easy selection of aptamers via in vitro cell-SELEX, permitting sensitive discrimination between target and normal cells, which includes pathogenic prokaryotic and cancerous eukaryotic cells. Additionally, when the aptamer-based strategies are used in conjunction with nanomaterials, there is the potential for cell targeting and therapeutic effects with improved specificity and sensitivity. Here we review recent advances in aptamer-based nano-conjugates and their applications for detecting cancer cells and pathogenic bacteria. The multidisciplinary research utilized in this field will play an increasingly significant role in clinical medicine and drug discovery. PMID:25268922
Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo
2014-01-01
A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.
Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.
Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai
2014-03-31
Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.
Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin
2015-10-01
A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.
Goniometer-based femtosecond crystallography with X-ray free electron lasers
Cohen, Aina E.; Soltis, S. Michael; González, Ana; ...
2014-10-31
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. With smaller crystals, high-density grids were usedmore » to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β 2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.« less
Goniometer-based femtosecond crystallography with X-ray free electron lasers
Cohen, Aina E.; Soltis, S. Michael; González, Ana; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Baxter, Elizabeth L.; Brehmer, Winnie; Brewster, Aaron S.; Brunger, Axel T.; Calero, Guillermo; Chang, Joseph F.; Chollet, Matthieu; Ehrensberger, Paul; Eriksson, Thomas L.; Feng, Yiping; Hattne, Johan; Hedman, Britt; Hollenbeck, Michael; Holton, James M.; Keable, Stephen; Kobilka, Brian K.; Kovaleva, Elena G.; Kruse, Andrew C.; Lemke, Henrik T.; Lin, Guowu; Lyubimov, Artem Y.; Manglik, Aashish; Mathews, Irimpan I.; McPhillips, Scott E.; Nelson, Silke; Peters, John W.; Sauter, Nicholas K.; Smith, Clyde A.; Song, Jinhu; Stevenson, Hilary P.; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Vinetsky, Vladimir; Wakatsuki, Soichi; Weis, William I.; Zadvornyy, Oleg A.; Zeldin, Oliver B.; Zhu, Diling; Hodgson, Keith O.
2014-01-01
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources. PMID:25362050
Henriksen, Emilie L; Carlsen, Jonathan F; Vejborg, Ilse Mm; Nielsen, Michael B; Lauridsen, Carsten A
2018-01-01
Background Early detection of breast cancer (BC) is crucial in lowering the mortality. Purpose To present an overview of studies concerning computer-aided detection (CAD) in screening mammography for early detection of BC and compare diagnostic accuracy and recall rates (RR) of single reading (SR) with SR + CAD and double reading (DR) with SR + CAD. Material and Methods PRISMA guidelines were used as a review protocol. Articles on clinical trials concerning CAD for detection of BC in a screening population were included. The literature search resulted in 1522 records. A total of 1491 records were excluded by abstract and 18 were excluded by full text reading. A total of 13 articles were included. Results All but two studies from the SR vs. SR + CAD group showed an increased sensitivity and/or cancer detection rate (CDR) when adding CAD. The DR vs. SR + CAD group showed no significant differences in sensitivity and CDR. Adding CAD to SR increased the RR and decreased the specificity in all but one study. For the DR vs. SR + CAD group only one study reported a significant difference in RR. Conclusion All but two studies showed an increase in RR, sensitivity and CDR when adding CAD to SR. Compared to DR no statistically significant differences in sensitivity or CDR were reported. Additional studies based on organized population-based screening programs, with longer follow-up time, high-volume readers, and digital mammography are needed to evaluate the efficacy of CAD.
Enhancement of electrical and optical performance of N719 by co-sensitization
NASA Astrophysics Data System (ADS)
Shikoh, Ali Sephar; Ahmad, Zubair; Touati, Farid; Al-Muhtaseb, Shaheen A.
2018-04-01
This paper deals with the electrical, optical and electrochemical properties of a metal-free dye C78H74O8 (AS-2), which has been used to improve the photo-detection properties of C58H86N8O8RuS2 (N719) based Dye sensitized photo-sensors (DSPSs). Both dyes were mixed together in various proportions and the most promising ratio N719/AS-2 (1:0.25) was selected for staining photo-anodes for DSPS integration. The fabricated DSPSs were studied in terms of electrical parameters and photodetection properties. The N719/AS-2 (1:0.25) based DSPS were found to have a reduced leakage current, increased breakdown voltage and a closer proximity to an ideal diode, as compared to the N719 based DSPS. Further, the N719/AS-2 (1:0.25) based DSPS was also found to have better linearity at high irradiance levels, thus rendering the co-sensitized device useful as a photosensor in various applications. Electrochemical Impedance Spectroscopy (EIS) analysis was also performed to explain the interfacial charge recombination process.
Guseman, Alex J.; Miller, Kaliah; Kunkle, Grace; Dively, Galen P.; Pettis, Jeffrey S.; Evans, Jay D.; vanEngelsdorp, Dennis; Hawthorne, David J.
2016-01-01
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460
Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J
2016-01-01
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.
Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode
NASA Astrophysics Data System (ADS)
Luo, Shi; Yang, Jun; Song, Xuefen; Zhou, Xi; Yu, Leyong; Sun, Tai; Yu, Chongsheng; Huang, Deping; Du, Chunlei; Wei, Dapeng
2018-07-01
Tunable-sensitivity and flexibility are considered as two crucial characteristics for future pressure sensors or electronic skins. By the theoretical calculation model, we simulated the relationship curve between the sensitivity and PDMS pyramids with different spacings, and found that the spacing of pyramids is a main factor to affect the sensitivity of the capacitance pressure sensor. Furthermore, we fabricated the capacitance pressure sensors using graphene electrodes and the PDMS pyramid dielectric layers with different spacings. The measurement data were consistent with the simulation results that the sensitivity increases with the spacing of pyramids. In addition, graphene electrode exhibits prefect flexibility and reliability, while the ITO electrode would be destroyed rapidly after bending. These graphene pressure sensors exhibit the potential in the application in the wearable products for monitoring breath, pulse, and other physiological signals.
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
NASA Astrophysics Data System (ADS)
Han, Maeum; Keon Kim, Jae; Kong, Seong Ho; Kang, Shin-Won; Jung, Daewoong
2018-06-01
This paper reports a micro-electro-mechanical-system (MEMS)-based tilt sensor using air medium. Since the working mechanism of the sensor is the thermal convection in a sealed chamber, structural parameters that can affect thermal convection must be considered to optimize the performance of the sensor. This paper presents the experimental results that were conducted by optimizing several parameters such as the heater geometry, input power and cavity volume. We observed that an increase in the heating power and cavity volume can improve the sensitivity, and heater geometry plays important role in performance of the sensor.
Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application
NASA Astrophysics Data System (ADS)
Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.
2016-05-01
In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.
NASA Astrophysics Data System (ADS)
Erler, Engin
Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this region, this approach would entail a nominal performance penalty. Therefore, the chosen rotor design philosophy aims to keep the spanwise loading constant to avoid trading performance for desensitization. The rotor designs that resulted from this exercise are simulated in ANSYS CFX at different tip clearance sizes. The change in their performance with respect to tip clearance size (sensitivity) is compared both on an integral level in terms of pressure ratio and adiabatic efficiency, as well as on a detailed level in terms of aerodynamic losses and blockage associated with tip clearance flow. The sensitivity of aerodynamic stability is evaluated either directly through the simulations of the rotor characteristics up to the stall point (expensive in time and resources) for a few designs or indirectly through the position of the interface between the incoming and tip clearance flow with respect to the rotor leading edge plane. The latter approach is based on a generally observed stall criteria in modern axial compressors. The rotor designs are then assessed according to their sensitivity in comparison to that of the reference rotor design to detect features that can explain the trend in sensitivity to tip clearance size. These features can then be validated and the associated flow mechanisms explained through numerical simulations and modelling. Analysis of the database from the rotor parametric study shows that the observed trend in sensitivity cannot be explained by the shifting of the aerodynamic loading along the blade chord, as initially hypothesized based on the literature review. Instead, two flow features are found to reduce sensitivity of performance and stability to tip clearance, namely an increase in incoming meridional momentum in the tip region and a reduction/elimination of double leakage flow. Double leakage flow is the flow that exits the tip clearance of one blade and proceeds into the clearance of the adjacent blade rather than convecting downstream out of the local blade passage. These flow features are isolated and validated based on the reference rotor design through changes in the inlet total pressure condition to alter incoming flow momentum and blade number count to change double leakage rate. In terms of flow mechanism, double leakage is shown to be detrimental to performance and stability, and its proportional increase with tip clearance size explains the sensitivity increase in the presence of double leakage and, conversely, the desensitization effect of reducing or eliminating double leakage. The increase in incoming meridional momentum in the tip region reduces sensitivity to tip clearance through its reduction of double leakage as well as through improved mixing with tip clearance flow, as demonstrated by an analytical model without double leakage flow. The above results imply that any blade design strategy that exploits the two desensitizing flow features would reduce the performance and stability sensitivity to tip clearance size. The increase of the incoming meridional momentum can be achieved through forward chordwise sweep of the blade. The reduction of double leakage without changing blade pitch can be obtained by decreasing the blade stagger angle in the tip region. Examples of blade designs associated with these strategies are shown through CFX simulations to be successful in reducing sensitivity to tip clearance size.
van Gelder, Marleen M H J; Vorstenbosch, Saskia; Te Winkel, Bernke; van Puijenbroek, Eugène P; Roeleveld, Nel
2018-02-01
Medication use is often underreported in paper-based questionnaires or interviews. Web-based questionnaires may improve recall of medication use, but data on their validity are currently lacking. Participants in the Pregnancy and Infant Development (PRIDE) Study (2014-2016; n = 557) and the Pregnancy Drug Registry (pREGnant) (2015-2016; n = 169) completed a 6-week paper-based medication diary during gestational weeks 19-24 or 26-31. In week 34, they completed a Web-based questionnaire with questions on medication names, time period and frequency of use, and quantity taken. To assess the degree of underreporting, we calculated the questionnaire's sensitivity using the medication diary as the reference standard. Sensitivity was high for many medication groups, including antiepileptic medication (sensitivity (Sn) = 0.96, 95% confidence interval (CI): 0.89, 1.00), antacids (Sn = 0.89, 95% CI: 0.86, 0.93), and iron preparations (Sn = 0.81, 95% CI: 0.64, 0.98). However, medications for short-term use were underreported more frequently, with sensitivities of 0.54 (95% CI: 0.35, 0.72) for antihistamines, 0.63 (95% CI: 0.57, 0.69) for analgesic and antipyretic agents, and 0.57 (95% CI: 0.51, 0.64) for acetaminophen. Shortening the period of time between exposure and questionnaire administration increased sensitivity substantially. In conclusion, underreporting in Web-based questionnaires is limited for many medication groups. In prospective studies, underreporting of medications for short-term use may be reduced by decreasing the interval between consecutive questionnaires. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju
2016-12-01
Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system. Copyright © 2016 Elsevier B.V. All rights reserved.
Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N
2011-01-01
We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335
Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry
Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...
2017-05-26
Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less
NASA Astrophysics Data System (ADS)
Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga
2017-06-01
There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16 × 16 × 4 array of crystals with dimensions of 2.8 × 2.8 × 7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlecht, William; Li, King-Lun; Hu, Dehong
By examining the behavior of each Ca2+ -sensitizer on cTnC at different levels of reconstitution (cTnI-cTnC, full troponin, or full troponin in thin filament) the importance of these proteins on sensitizer efficacy was evaluated, lending insight into the mechanism of action behind each drug. A fluorescence based approach was used to monitor the opening and closing of cardiac troponin C's hydrophobic pocket in the presence and absence of four common Ca2+ -sensitizers: EMD 57033, levosimendan, bepridil and pimobendan. Ca2+ -titration experiments were employed to determine the effect on Ca2+- sensitivity and cooperativity of cTnC opening, while stopped flow experiments weremore » used to investigate the impact on cTnC relaxation kinetics. This study shows EMD 57033 is unable to sensitize cTnC to Ca2+, and likely requires the presence of myosin to illicit a response. Levosimendan, bepridil, and pimobendan were all able to increase the sensitivity of cTnC for Ca2+ to varying degrees; levosimendan and pimobendan reduced the rate of cTnC closing, while bepridil increased this rate. Additionally the same experiments were run on thin filament samples containing cTnT (T204E), a known Ca2+- blunting phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the Ca2+-sensitivity of cTnT(T204E) containing thin filaments to within range of the wild type thin filaments.« less
NASA Astrophysics Data System (ADS)
Gamage, Nipuni-Dhanesha Horadugoda
One main aspect of high energy density material (HEDM) design is to obtain greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into groundwater has resulted in human exposure to ClO4-- ions, which cause disruptions of thyroid related metabolic pathways and even thyroid cancer. Many research efforts to find replacements have gained little success. Thus, there is a need for greener HEDMs. Peroxo-based oxygen-rich compounds are proposed as a potential new class of greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O 2 as the main decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide (MEKP) are the only well-studied highly energetic peroxides. However, due to their high impact and friction sensitivities, low thermal stabilities, and low detonation velocities they have not found any civil or military HEDM applications. In this dissertation research, we have synthesized and fully characterized four categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and the energetic properties for potential use as greener HEDMs. tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to handle. tert-Butyl peroxy esters were all surprisingly energetic (4896--6003 m/s), despite the low oxygen and nitrogen contents. Aromatic tert -butyl peroxy esters were much lower in impact and friction sensitivities with respect to the known peroxo-based explosives. These are among the first low sensitivity peroxo-based compounds that can be categorized as secondary HEDMs. Oxygen-rich (0.80--1.00) geminal hydroperoxides have detonation velocities in the range of 6150--7130 m/s. These impressive detonation velocities are greater than the detonation velocities of the known peroxo-based explosives. The highest detonation velocity (7130 m/s) was obtained for 1,4-bis(dihydroperoxymethyl)benzene, which has the highest crystalline density (1.648 g/cm3). This detonation velocity is greater than the secondary explosive 2,4,6-trinitrotoluene (TNT). The sensitivities of these oxygen-rich geminal hydroperoxides are lower than the known peroxo-based explosives due to the O--H•••O hydrogen bonds and O•••O contacts, which stabilize the weak O--O bonds in the crystalline lattice. They could be useful as primary HEDMs. Dihydroperoxy dioxane and dioxolanes have impressive detonation velocities in the range of 6350--6694 m/s. However, their extremely high sensitivities render them unsafe for HEDM applications. Interestingly, hydroperoxy dioxanol and dioxolanols also have high detonation velocities in the range of 6100--6461 m/s even with the lower oxygen contents. The hydroperoxy compounds with one less O--O bond were much less sensitive than the dihydroperoxy compounds. These hydroperoxy compounds could be useful as primary HEDMs. We observed that the ring strain was useful in increasing the detonation velocities, since it led to compounds with higher crystalline densities. However, increasing the steric strain using bulky groups led to lower crystalline densities and lower detonation velocities. Higher steric strain not only resulted in higher sensitivities but also lower thermal stabilities. Peroxy acids have high detonation velocities in the range of 5262--7885 m/s. The detonation velocity of 3,5-dinitrobenzoperoxoic acid (7217 m/s) was the highest detonation velocity obtained for the peroxo-based compounds synthesized in our study, which is greater than the detonation velocity of TNT. The detonation velocity of 2,4,6-trinitrobenzoperoxoic acid (7885 m/s) is close to the detonation velocity of the secondary high explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Peroxy acids have surprisingly low impact and friction sensitivities that are well below the known peroxo-based explosives TATP, DADP, HMTD, and MEKP. Based on the crystal structure of 3,5-dinitrobenzoperoxoic acid, the low sensitivities can be attributed to the stabilization of the weak O--O bonds in the crystalline lattice by O--H•••O hydrogen bonds and O•••O short contacts. These are the first peroxo-based oxygen-rich compounds that can be useful as secondary HEDMs. The ease of synthesis in high yields with minimum synthetic manipulations, storability, and high thermal stabilities are all advantageous properties of peroxy acids for their use as HEDMs. Through this work, we have gained a wealth of fundamental information about the structures and energetic materials properties of a large family of peroxo-based compounds. Solid state intermolecular interactions were useful to understand the impact and friction sensitivities. The safe peroxy O:C ratio was found to be approximately 1.00. However, the oxygen contents could be further increased with more stable nitro and hydroxy groups. Highly attractive low sensitivity peroxo-based compounds were obtained with impressive detonation performances for potential use as greener primary and secondary HEDMs.
Questions concerning the potential impact of glyphosate-based herbicides on amphibians.
Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan
2013-08-01
Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.
Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra
2009-11-01
The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.
Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.
2016-01-01
The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.
Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael
2015-11-01
Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.
Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection
Cunningham, Brian T.; Zangar, Richard C.
2013-01-01
Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539
[Insect venom allergies : Update 2016 for otorhinolaryngologists].
Klimek, L; Dippold, N; Sperl, A
2016-12-01
Due to the increasing incidence of hymenoptera venom allergies and the potentially life-threatening reactions, it is important for otolaryngologists working in allergology to have an understanding of modern diagnostic and treatment standards for this allergic disease. Molecular diagnosis with recombinant single allergens from bee and wasp venom components improves the diagnostics of insect venom allergies, particularly in patients with double-positive extract-based test results. Detection of specific sensitizations to bee or wasp venom enables double sensitizations to be better distinguished from cross-reactivity. Based on patient history and test results, the patient is initially advised on avoidance strategies and prescribed an emergency medication kit. Then, the indication for allergen-specific immunotherapy (AIT) is evaluated. The dose-increase phase can be performed using conventional, cluster, rush, or ultra-rush schedules, whereby rapid desensitization (rush AIT) performed in the clinic seems to be particularly effective as initial treatment.
NASA Technical Reports Server (NTRS)
Yun, Hee Mann; Titran, Robert H.
1993-01-01
The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.
Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yuan, Hua-Kang
2016-09-01
An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.
Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records
NASA Astrophysics Data System (ADS)
Martínez-Botí, M. A.; Foster, G. L.; Chalk, T. B.; Rohling, E. J.; Sexton, P. F.; Lunt, D. J.; Pancost, R. D.; Badger, M. P. S.; Schmidt, D. N.
2015-02-01
Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.
Development of an in vitro skin sensitization test based on ROS production in THP-1 cells.
Saito, Kazutoshi; Miyazawa, Masaaki; Nukada, Yuko; Sakaguchi, Hitoshi; Nishiyama, Naohiro
2013-03-01
Recently, it has been reported that reactive oxygen species (ROS) produced by contact allergens can affect dendritic cell migration and contact hypersensitivity. The aim of the present study was to develop a new in vitro assay that could predict the skin sensitizing potential of chemicals by measuring ROS production in THP-1 (human monocytic leukemia cell line) cells. THP-1 cells were pre-loaded with a ROS sensitive fluorescent dye, 5-(and 6-)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), for 15min, then incubated with test chemicals for 30min. The fluorescence intensity was measured by flow cytometry. For the skin sensitizers, 25 out of 30 induced over a 2-fold ROS production at more than 90% of cell viability. In contrast, increases were only seen in 4 out of 20 non-sensitizers. The overall accuracy for the local lymph node assay (LLNA) was 82% for 50 chemicals tested. A correlation was found between the estimated concentration showing 2-fold ROS production in the ROS assay and the EC3 values (estimated concentration required to induce positive response) of the LLNA. These results indicated that the THP-1 cell-based ROS assay was a rapid and highly sensitive detection system able to predict skin sensitizing potentials and potency of chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay
NASA Astrophysics Data System (ADS)
Serebrennikova, Kseniya; Samsonova, Jeanne; Osipov, Alexander
2018-06-01
Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang
2017-08-03
Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.
Ultrasonic signal enhancement by resonator techniques
NASA Technical Reports Server (NTRS)
Heyman, J. S.
1973-01-01
Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.
Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin.
Mecklenburg, M; Lindbladh, C; Li, H; Mosbach, K; Danielsson, B
1993-08-01
A flow-injected thermometric enzyme linked immunoassay for human insulin which employs the lactate dehydrogenase/lactate oxidase (LDH/LOD) substrate recycling system for signal amplification is described. The system is composed of two columns, an immunosorbent column containing immobilized anti-insulin antibodies for sensing and a recycling column containing immobilized LDH/LOD/Catalase for detection. The effect of flow rates, conjugate concentrations, and chromatographic support material upon the sensitivity of the assay are investigated. The assay has a detection limit of 0.025 microgram/ml and a linear range from 0.05 to 2 micrograms/ml. This corresponds to a 10-fold increase in sensitivity over the unamplified system. A recombinant human insulin-proinsulin conjugate was also tested. The results show that enzymatic amplification can be employed to increase the sensitivity and reproducibility of flow injection assay-based biosensors. The implications of these results upon on-line analysis are discussed.
Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas
2013-01-01
Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368
Demonstration of SiC Pressure Sensors at 750 C
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender
2014-01-01
We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.
A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.
Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd
2011-01-01
This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.
A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.
Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L
2009-08-30
Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.
Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study.
Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan; Dirksen, Asger; Elberling, Jesper
2011-06-01
Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. The aetiology is unknown, but chemical related respiratory symptoms have been found associated with positive patch test. The purpose of this study was to investigate the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical sensitivity. Associations were controlled for the possible confounding effects of sex, age, asthma, eczema, atopic dermatitis, psychological and social factors, and smoking habits. In unadjusted analyses we found associations between allergic and non-allergic cutaneous reactions on patch testing and the two most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0.006). Our results suggest that individuals with self-reported chemical sensitivity show increased non-allergic cutaneous reactions based on day 2 readings of patch tests. Copyright © 2011 Elsevier GmbH. All rights reserved.
Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza
2016-05-01
Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
MacDonald, Lawrence R.; Hunter, William C. J.; Kinahan, Paul E.; Miyaoka, Robert S.
2013-10-01
We used simulations to investigate the relationship between sensitivity and spatial resolution as a function of crystal thickness in a rectangular PET scanner intended for quantitative assessment of breast cancers. The system had two 20 × 15-cm2 and two 10 × 15-cm2 flat detectors forming a box, with the larger detectors separated by 4 or 8 cm. Depth-of-interaction (DOI) resolution was modeled as a function of crystal thickness based on prior measurements. Spatial resolution was evaluated independent of image reconstruction by deriving and validating a surrogate metric from list-mode data ( dFWHM). When increasing crystal thickness from 5 to 40 mm, and without using DOI information, the dFWHM for a centered point source increased from 0.72 to 1.6 mm. Including DOI information improved dFWHM by 12% and 27% for 5- and 40-mm-thick crystals, respectively. For a point source in the corner of the FOV, use of DOI information improved dFWHM by 20% (5-mm crystal) and 44% (40-mm crystal). Sensitivity was 7.7% for 10-mm-thick crystals (8-cm object). Increasing crystal thickness on the smaller side detectors from 10 to 20 mm (keeping 10-mm crystals on the larger detectors) boosted sensitivity by 24% (relative) and degraded dFWHM by only 3%/8% with/without DOI information. The benefits of measuring DOI must be evaluated in terms of the intended clinical task of assessing tracer uptake in small lesions. Increasing crystal thickness on the smaller side detectors provides substantial sensitivity increase with minimal accompanying loss in resolution.
A study on the sensitivity of self-powered neutron detectors (SPNDs)
NASA Astrophysics Data System (ADS)
Lee, Wanno; Cho, Gyuseong; Kim, Kwanghyun; Kim, Hee Joon; choi, Yuseon; Park, Moon Chu; Kim, Soongpyung
2001-08-01
Self-powered neutron detectors (SPNDs) are widely used in reactors to monitor neutron flux, while they have several advantages such as small size, and relatively simple electronics required in conjunction with those usages, they have some intrinsic problems of the low level of output current-a slow response time and the rapid change of sensitivity-that make it difficult to use for a long term. Monte Carlo simulation was used to calculate the escape probability as a function of the birth position of emitted beta particle for geometry of rhodium-based SPNDs. A simple numerical method calculated the initial generation rate of beta particles and the change of generation rate due to rhodium burnup. Using results of the simulation and the simple numerical method, the burnup profile of rhodium number density and the neutron sensitivity were calculated as a function of burnup time in reactors. This method was verified by the comparison of this and other papers, and data of YGN3.4 (Young Gwang Nuclear plant 3, 4) about the initial sensitivity. In addition, for improvement of some properties of rhodium-based SPNDs, which are currently used, a modified geometry is proposed. The proposed geometry, which is tube-type, is able to increase the initial sensitivity due to increase of the escape probability. The escape probability was calculated by changing the thickness of the insulator and compared solid-type with tube-type about each insulator thickness. The method used here can be applied to the analysis and design of other types of SPNDs.
Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.
2018-01-01
Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116
NASA Astrophysics Data System (ADS)
Hou, Pei; Wu, Shiliang; McCarty, Jessica L.; Gao, Yang
2018-06-01
Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our sensitivity model simulations, through some simplified perturbations to precipitation in the GEOS-Chem model, show that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosol lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequencies in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the changes of precipitation intensity and frequency over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.
Methylation-Sensitive High Resolution Melting (MS-HRM).
Hussmann, Dianna; Hansen, Lise Lotte
2018-01-01
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
Cooking and disgust sensitivity influence preference for attending insect-based food events.
Hamerman, Eric J
2016-01-01
Insects are energy-efficient and sustainable sources of animal protein in a world with insufficient food resources to feed an ever-increasing population. However, much of the western world refuses to eat insects because they perceive them as disgusting. This research finds that both animal reminder disgust and core disgust reduced people's willingness to attend a program called "Bug Appétit" in which insects were served as food. Additionally, people who were low in sensitivity to animal reminder disgust were more willing to attend this program after having been primed to think about cooking. Cooking is a process by which raw ingredients are transformed into finished products, reducing the "animalness" of meat products that renders them disgusting. Sensitivity to core disgust did not interact with cooking to influence willingness to attend the program. While prior research has emphasized that direct education campaigns about the benefits of entomophagy (the consumption of insects) can increase willingness to attend events at which insect-based food is served, this is the first demonstration that indirect priming can have a similar effect among a subset of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.
A quantitative comet infection assay for influenza virus
Lindsay, Stephen M.; Timm, Andrea; Yin, John
2011-01-01
Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578
Recent advances in tuberculosis diagnostics in resource-limited settings.
Seki, Mitsuko; Kim, Chang-Ki; Hayakawa, Satoshi; Mitarai, Satoshi
2018-04-19
Smear-negative and drug-resistant cases of tuberculosis (TB) disease necessitate the development of new diagnostic methods, especially in resource-limited settings. To improve the current TB situations, sensitive and specific TB point-of-care tests (POCTs) should be developed. This review addresses the current status of TB, novel diagnostic methodologies for TB, and the impact of those new diagnostics on TB control in such situations. Moreover, the perspective of TB management based on laboratory examinations is described. Smear microscopy with sputum samples is the only laboratory examination available in many resource-limited settings and is still used globally. Several nucleic acid amplification tests (NATs) have been developed. The World Health Organization (WHO) endorsed novel diagnostics based on NATs and updated their definition of a bacteriologically confirmed case requiring the biological specimen to be positive by smear microscopy, culture, or the WHO-recommended rapid diagnostic protocols. The use of new diagnostics increased the number of bacteriologically confirmed TB cases. Novel diagnostics are now available, but their sensitivity is still lower than that of conventional liquid culture method. To address the increasing incidence of TB, more resources including novel diagnostics as POCTs with higher sensitivity must be allocated to healthcare systems.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
Jahns, Lisa; Roemmich, James N
2016-09-01
In this manuscript, we present the protocol for a study that applies incentive sensitization theory to improve vegetable intake in overweight and obese adults. This 8-week, randomized, controlled, community-based feeding study with an 8-week follow-up seeks to use repeated exposure to amounts of vegetables recommended by federal guidance to increase the primary outcome of the relative reinforcing value of vegetables compared to a snack food. A community-based design is used to give participants autonomy in choosing their method of exposure. Secondary outcomes include: 1) Determine potential moderators of incentive sensitization of vegetables, including genetic polymorphisms associated with food reinforcement and obesity, 6-n-propylthiouracil tasting status, and delay discounting. 2) Determine whether adding vegetables to the diet results in participants substituting low-energy-dense vegetables for energy-dense foods or whether energy-dense food consumption is independent of vegetable consumption. 3) Determine whether reductions in adiposity are associated with substitution of vegetables in the diet. 4) Determine if markers of bone turnover change. 5) Assess changes in self-reported secondary outcomes measured by questionnaire such as self-efficacy to eat vegetables. The results of this study will provide information about the drivers of individual choice to consume recommended amounts of vegetables. The understanding gained will help increase the effectiveness and sustainability of behavior-based interventions focused on improving vegetable intake. This information may also be used to assist in setting dietary guidance targets for the amounts and types of vegetables Americans can, and should, consume. Published by Elsevier Inc.
Calcium sensitivity of residual force enhancement in rabbit skinned fibers.
Joumaa, V; Herzog, W
2014-08-15
Isometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependence of calcium sensitivity. Since one of the mechanisms proposed to explain residual force enhancement is the increase in passive force that results from engagement of titin upon activation and stretch, our aim was to test if calcium sensitivity of residual force enhancement was different from that of its corresponding purely isometric contraction and if such a difference was related to the molecular spring titin. Force-pCa curves were established in rabbit psoas skinned fibers for reference and residual force-enhanced states at a sarcomere length of 3.0 μm 1) in a titin-intact condition, 2) after treatment with trypsin to partially eliminate titin, and 3) after treatment with trypsin and osmotic compression with dextran T-500 to decrease the lattice spacing in the absence of titin. The force-pCa curves of residual force enhancement were shifted to the left compared with their corresponding controls in titin-intact fibers, indicating increased calcium sensitivity. No difference in calcium sensitivity was observed between reference and residual force-enhanced contractions in trypsin-treated and osmotically compressed trypsin-treated fibers. Furthermore, calcium sensitivity after osmotic compression was lower than that observed for residual force enhancement in titin-intact skinned fibers. These results suggest that titin-based passive force regulates the increase in calcium sensitivity of residual force enhancement by a mechanism other than reduction of the myofilament lattice spacing. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Blanchard, C. L.; Hidy, G. M.; Tanenbaum, S.
2014-05-01
A generalized additive model (GAM) is used to examine the influence of meteorological factors, nitrogen oxides (NOx = NO + NO2), and non-methane hydrocarbons (NMOC) on daily peak 8-h ozone (O3) concentrations. Application to 2002-2011 monitoring data from the Southeastern Aerosol Research and Characterization (SEARCH) program showed sensitivity of peak 8-h O3 to morning concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) and to afternoon concentrations of NO2 reaction products (NOz). Peak O3 decreased with increasing NO and increased with increasing NO2 concentrations, consistent with reactions involving O3, NO, and NO2. Ozone production efficiency (OPE), estimated from the modeled relation between peak 8-h O3 and afternoon NOz, was ˜40-100 percent higher at rural compared to urban sites. OPE was nonlinear at all sites, decreasing with increasing NOz concentration. The mean ratio of NOz/NOy showed a two-fold increase from urban to rural sites, associated with chemical aging in stagnant air masses from one day (urban sites) to two or more days (non-urban sites). Peak 8-h O3 concentrations in Atlanta were sensitive to concentrations of both non-biogenic NMOC and NOz. Non-urban Yorkville, Georgia, peak 8-h O3 concentrations were sensitive to NOz but not to non-biogenic NMOC concentrations. The results are consistent with expected NMOC and NOx sensitivity in urban and non-urban locales.
Study of the pH-sensitive mechanism of tumor-targeting liposomes.
Fan, Yang; Chen, Cong; Huang, Yiheng; Zhang, Fang; Lin, Guimei
2017-03-01
Currently, the phosphatidylethanolamine-based, pH-sensitive, liposome drug-delivery system has been widely developed for efficient, targeted cancer therapy. However, the mechanism of pH sensitivity was unclear; it is a main obstacle in controlling the preparation of pH-sensitive liposomes (PSLs).Therefore, our research is aimed at clarifying the pH-response mechanism of the various molecules that compose liposomes. We chose the small pH-sensitive molecules oleic acid (OA), linoleic acid (LA) and cholesteryl hemisuccinate (CHEMS) and the fundamental lipids cholesterol and phosphatidylethanolamine (PE) as test molecules. The PSLs were prepared using the thin-film hydration method and characterized in detail at various pH values (pH 5.0, 6.0 and 7.4), including particle size, ζ-potential, drug encapsulation efficiency and drug loading. The surface structure was observed by transmission electron microscopy (TEM), and the electrical conductivity of the liposome dispersion was also tested. The calorimetric analysis was conducted by Nano-differential scanning calorimetry (Nano-DSC). The in vitro drug release profile showed that PSLs exhibit good pH sensitivity. At neutral pH, the particle size was approximately 150nm, and it dramatically increased at pH 5.0. The ζ-potential increased as the pH decreased. The Nano-DSC results showed that cholesterol and CHEMS can both increase the stability and phase transfer temperature of PSLs. Conductivity increased to a maximum at pH 5.0 and was rather low at pH 7.4. In conclusion, results show that the three kinds of liposomes have pH responsive release characteristics in acidic pH. The OA-PSLs have a pH sensitive point of 5. Since CHEMS has a cholesterol-like structure, it can stabilizes the phospholipid bilayer under neutral conditions as shown in the Nano-DSC data, and because it has a special steroidal rigid structure, it exhibits better pH response characteristics under acidic conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Fat and lean tissue accretion in relation to reward motivation in children.
De Decker, Annelies; De Clercq, Bart; Verbeken, Sandra; Wells, Jonathan C K; Braet, Caroline; Michels, Nathalie; De Henauw, Stefaan; Sioen, Isabelle
2017-01-01
'Reward sensitivity' explains inter-individual differences in the motivation to obtain rewards when reward cues are perceived. This psychobiological trait has been linked to higher consumption of palatable food when exposed to palatable food cues. The current study aims to examine if reward sensitivity explains differences in patterns of fat and lean tissue accretion over time in children. A longitudinal observational study with measurement waves in 2011 (baseline), 2012, 2013, and 2015 was conducted. The sample was a population-based Flemish cohort of children (n = 446, 50% boys and 5.5-12 years at baseline; 38.8% of the baseline sample also participated in 2015). Baseline reward sensitivity of the children was assessed by parent ratings on the Drive subscale of the Behavioral Inhibition System/Behavioral Approach System scales. Age- and sex-independent Fat and Lean Mass Index z-scores (zFMI and zLMI respectively) were computed for each study wave based on air-displacement plethysmography. In girls, but not boys, reward sensitivity was positively associated with the baseline zFMI and zLMI (95% confidence intervals of unstandardized estimates: 0.01 to 0.11 and 0.01 to 0.10 respectively, P values 0.01 and 0.02 respectively). Further, reward sensitivity explained 14.8% and 11.6% of the change in girls' zFMI and zLMI respectively over four years: the zFMI and zLMI increased and decreased respectively in high reward sensitive girls (95% confidence intervals of unstandardized estimates: 0.01 to 0.11 and -0.12 to -0.01 respectively, P values 0.01 and 0.02 respectively). Hence, girls high in reward sensitivity had significantly higher adiposity gain over four years parallel with lower increase in lean mass than was expected on the basis of their age and height. These results may help to identify appropriate targets for interventions for obesity prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials.
Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun
2018-03-27
The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.
Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.
Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin
2016-03-02
There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.
Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials
NASA Astrophysics Data System (ADS)
Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun
2018-03-01
The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.
Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites
Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua
2011-01-01
In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667
Cong, Jiayan; Hao, Yan; Boschloo, Gerrit
2014-01-01
Abstract A new TEMPO–Co tandem redox system with TEMPO and Co(bpy)3 2+/3+ has been investigated for the use in dye‐sensitized solar cells (DSSCs). A large open‐circuit voltage (V OC) increase, from 862 mV to 965 mV, was observed in the tandem redox system, while the short‐circuit current density (J SC) was maintained. The conversion efficiency was observed to increase from 7.1 % for cells containing the single Co(bpy)3 2+/3+ redox couple, to 8.4 % for cells containing the TEMPO–Co tandem redox system. The reason for the increase in V OC and overall efficiency is ascribed to the involvement of partial regeneration of the sensitizing dye molecules by TEMPO. This assumption can be verified through the observed much faster regeneration dynamics exhibited in the presence of the tandem system. Using the tandem redox system, the faster recombination problem of the single TEMPO redox couple is resolved and the mass‐transport of the metal‐complex‐based electrolyte is also improved. This TEMPO–Co tandem system is so far the most effienct tandem redox electrolyte reported not involving iodine. The current results show a promising future for tandem system as replacements for single redox systems in electrolytes for DSSCs. PMID:25504818
Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation
Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek
2010-01-01
This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521
Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.
Uttenthaler, E; Schräml, M; Mandel, J; Drost, S
2001-12-01
Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5-20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.
Neuro-genetic system for optimization of GMI samples sensitivity.
Pitta Botelho, A C O; Vellasco, M M B R; Hall Barbosa, C R; Costa Silva, E
2016-03-01
Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alduraywish, Shatha A; Standl, Marie; Lodge, Caroline J; Abramson, Michael J; Allen, Katrina J; Erbas, Bircan; von Berg, Andrea; Heinrich, Joachim; Lowe, Adrian J; Dharmage, Shyamali C
2017-02-01
The march from early aeroallergen sensitization to subsequent respiratory allergy is well established, but it is unclear whether early life food sensitization precedes and further increases risk of allergic airway disease. To assess the association between food sensitization in the first 2 years of life and subsequent asthma and allergic rhinitis by age 10-12 years. We used data from two independent cohorts: the high-risk Melbourne Atopic Cohort Study (MACS) (n = 620) and the population-based LISAplus (n = 3094). Food sensitization was assessed at 6, 12, and 24 months in MACS and 24 months in LISAplus. Multiple logistic regressions were used to estimate associations between sensitization to food only, aeroallergen only, or both and allergic airway disease. When compared to non-sensitized children, sensitization to food only at 12 months in MACS and 24 months in LISAplus was associated with increased risk of current asthma (aOR = 2.2; 95% CI 1.1, 4.6 in MACS and aOR = 4.9; 2.4, 10.1 in LISAplus). Similar results were seen for allergic rhinitis. Additionally, cosensitization to food and aeroallergen in both cohorts at any tested point was a stronger predictor of asthma (at 24 months, aOR = 8.3; 3.7, 18.8 in MACS and aOR = 14.4; 5.0, 41.6 in LISAplus) and allergic rhinitis (at 24 months, aOR = 3.9; 1.9, 8.1 in MACS and aOR = 7.6; 3.0, 19.6 in LISAplus). In both cohorts, food sensitization (with or without aeroallergen sensitization) in the first two years of life increased the risk of subsequent asthma and allergic rhinitis. These findings support the role of early life food sensitization in the atopic march and suggest trials to prevent early onset have the potential to reduce the development of allergic airways disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...
2017-04-03
Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~10 14 atoms/cm 2), large-area (10 000s of μm 2), high-spatialmore » resolution (<;200 nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less
Usefulness of component resolved analysis of cat allergy in routine clinical practice.
Eder, Katharina; Becker, Sven; San Nicoló, Marion; Berghaus, Alexander; Gröger, Moritz
2016-01-01
Cat allergy is of great importance, and its prevalence is increasing worldwide. Cat allergens and house dust mite allergens represent the major indoor allergens; however, they are ubiquitous. Cat sensitization and allergy are known risk factors for rhinitis, bronchial hyperreactivity and asthma. Thus, the diagnosis of sensitization to cats is important for any allergist. 70 patients with positive skin prick tests for cats were retrospectively compared regarding their skin prick test results, as well as their specific immunoglobulin E antibody profiles with regard to their responses to the native cat extract, rFel d 1, nFel d 2 and rFel d 4. 35 patients were allergic to cats, as determined by positive anamnesis and/or nasal provocation with cat allergens, and 35 patients exhibited clinically non-relevant sensitization, as indicated by negative anamnesis and/or a negative nasal allergen challenge. Native cat extract serology testing detected 100% of patients who were allergic to cats but missed eight patients who showed sensitization in the skin prick test and did not have allergic symptoms. The median values of the skin prick test, as well as those of the specific immunoglobulin E antibodies against the native cat extract, were significantly higher for allergic patients than for patients with clinically non-relevant sensitization. Component based diagnostic testing to rFel d 1 was not as reliable. Sensitization to nFel d 2 and rFel d 4 was seen only in individual patients. Extract based diagnostic methods for identifying cat allergy and sensitization, such as the skin prick test and native cat extract serology, remain crucial in routine clinical practice. In our study, component based diagnostic testing could not replace these methods with regard to the detection of sensitization to cats and differentiation between allergy and sensitization without clinical relevance. However, component resolved allergy diagnostic tools have individual implications, and future studies may facilitate a better understanding of its use and subsequently may improve the clinical management of allergic patients.
Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects
NASA Astrophysics Data System (ADS)
Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.
2018-02-01
We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.
National Prevalence and Effects of Multiple Chemical Sensitivities
Steinemann, Anne
2018-01-01
Objective: The aim of this study was to assess the prevalence of multiple chemical sensitivities (MCS), its co-occurrence with asthma and fragrance sensitivity, and effects from exposure to fragranced consumer products. Methods: A nationally representative cross-sectional population-based sample of adult Americans (n = 1137) was surveyed in June 2016. Results: Among the population, 12.8% report medically diagnosed MCS and 25.9% report chemical sensitivity. Of those with MCS, 86.2% experience health problems, such as migraine headaches, when exposed to fragranced consumer products; 71.0% are asthmatic; 70.3% cannot access places that use fragranced products such as air fresheners; and 60.7% lost workdays or a job in the past year due to fragranced products in the workplace. Conclusion: Prevalence of diagnosed MCS has increased over 300%, and self-reported chemical sensitivity over 200%, in the past decade. Reducing exposure to fragranced products could help reduce adverse health and societal effects. PMID:29329146
Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash
2016-12-15
The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen
2018-06-27
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Mallik, Arun Kumar; Farrell, Gerald; Wu, Qiang; Semenova, Yuliya
2017-05-10
In this paper, we investigate both theoretically and experimentally the influence of the agarose hydrogel layer thickness on the sensitivity of a proposed relative humidity (RH) sensor based on a silica microsphere resonator coated with agarose hydrogel. The operating principle of the sensor relies on excitation of whispering gallery modes (WGMs) in the coated silica microsphere using the evanescent field of a tapered fiber. A change in the ambient relative humidity is detected by measuring the wavelength shift of the WGMs in the transmission spectrum of the tapered fiber. Using perturbation theory, we analyze the influence of the agarose coating thickness on the sensitivity of the proposed sensor and compare the results of this analysis with experimental findings for different coating layer thicknesses. We demonstrate that an increase in the coating layer thickness initially leads to an increase in the sensitivity to RH and reaches saturation at higher values of the agarose layer thickness. The results of the study are useful for the design and optimization of microsphere sensor parameters to meet a performance specification.
Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.
Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko D; McCulloch, Iain; Heeney, Martin; Durrant, James R; Bronstein, Hugo
2015-08-19
We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.
Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm
NASA Astrophysics Data System (ADS)
Dhara, P.; Singh, Vinod K.
2015-01-01
A simple photonic crystal fiber (PCF) based Mach-Zehnder interferometric sensor is reported for sensing the refractive index and level of liquid. The sensing head is formed by all-fiber in-line single mode-multi mode-photonic crystal-single mode fiber structure using the fusion splicing method. The interferometric pattern, observed in the PCF interferometer using monochromatic source and temperature sensing arrangement, is novel and reported for the first time to the best of our knowledge. The refractive index sensitivity of the interferometric device is increased by using multimode fiber. The output intensity at the end of lead-out single mode fiber decreases with increase in refractive index of surrounding. The index sensitivities of the interferometric devices are 440.32 μw/RIU, 267.48 μw/RIU and 195.36 μw/RIU with sensing length 2.10 cm, 5.50 cm and 7.20 cm respectively. A 7.20 cm longed PCF sensor exhibits liquid level sensitivities -1.032 μw/cm, -1.197 μw/cm, and -1.489 μw/cm for three different liquid respectively.
Sangwan, Watchara; Petcharoen, Karat; Paradee, Nophawan; Lerdwijitjarud, Wanchai; Sirivat, Anuvat
2016-10-20
The electromechanical properties, namely the storage modulus sensitivity and bending, of sodium alginate (SA) hydrogels and polycarbazole/sodium alginate (PCB/SA) hydrogel blends under applied electric field was investigated. The electromechanical properties of the pristine SA were studied under effects of crosslinking types and SA molecular weights, whereas the PCB/SA hydrogel blends were studied under the effect of PCB concentrations. The storage modulus sensitivity and bending of the pristine SA as crosslinked by the ionic crosslinking agent were found to be higher than those of the covalent crosslinking. The storage modulus sensitivity and deflection of the SA increased monotonically with increasing molecular weight. The highest electromechanical response of the PCB/SA hydrogel blends was obtained from the blend with 0.10% v/v PCB as it provided surprisingly the highest ever storage modulus sensitivity, (G'-G'0)/G'0 where G'0 and G' are the storage modulus without and with applied electric field, respectively, at 18.5 under applied electric field strength of 800V/mm. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Mandek; Sankaranarayanan, Subramanian K. R. S.; Bhethanabotla, Venkat R.
2015-02-01
Reduction in power consumption and improvement in mass sensitivity are important considerations for surface acoustic wave (SAW) devices used in various sensing applications. Detection of minute quantities of a particular species (clinical sensing) and power requirements (wireless sensing) are two key metrics that must be optimized. In this paper, a 3-D finite element model (FEM) was employed to compare insertion loss (IL) and mass sensitivity of SAW sensors having microcavities filled with ZnO and nanocrystalline diamond to a standard two-port SAW design. Initial simulation results show that ZnO filled cavities (depth = 5 mu m) were most effective at reducingmore » power loss Delta IL = (6.03 dB) by increasing particle displacement (acousto-electric to mechanical transduction) at the output transducer. A 100-pg/cm(2) load was applied to the sensing area of each device to evaluate mass sensitivity. Our simulations suggest that ZnO filled cavities with shallow depth (2.5 mu m) have the greatest sensitivity. The FEM simulations are used to understand the acoustic wave propagation in microcavity-based SAW sensors. The observed enhancement in mass sensitivity and power transfer is attributed to waveguiding effects and constructive interference of the scattered acoustic waves from the microcavities. Devices fabricated with microcavities similar to 1 mu m deep decreased IL by 3.306 dB compared with a standard SAW device. Additional simulations were conducted for each device configuration using the same depth in order to make a direct comparison between measured and simulated results. Our findings offer encouraging prospects for designing low IL highly sensitive microcavity-based SAW biosensors.« less
ACOEM practice guidelines: opioids and safety-sensitive work.
Hegmann, Kurt T; Weiss, Michael S; Bowden, Kirk; Branco, Fernando; DuBrueler, Kimberly; Els, Charl; Mandel, Steven; McKinney, David W; Miguel, Rafael; Mueller, Kathryn L; Nadig, Robert J; Schaffer, Michael I; Studt, Larry; Talmage, James B; Travis, Russell L; Winters, Thomas; Thiese, Matthew S; Harris, Jeffrey S
2014-07-01
ACOEM has updated the treatment guidelines concerning opioids. This report highlights the safety-sensitive work recommendation that has been developed. Comprehensive literature reviews were accomplished with article abstraction, critiquing, grading, evidence table compilation, and guideline finalization by a multidisciplinary expert panel to develop evidence-based guidance. A total of 12 moderate-quality studies were identified to address motor vehicle crash risk, and none regarding other work among opioid-using patients. Acute or chronic opioid use is not recommended for patients who perform safety-sensitive jobs. These jobs include operating motor vehicles, other modes of transportation, forklift driving, overhead crane operation, heavy equipment operation and tasks involving high levels of cognitive function and judgment. Quality evidence consistently demonstrates increased risk of vehicle crashes and is recommended as the surrogate for other safety-sensitive work tasks.
ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell
Liu, Huan; Zhang, Gengmin; Sun, Wentao; Shen, Ziyong; Shi, Mingji
2015-01-01
A hierarchical array of ZnO nanocones covered with ZnO nanospikes was hydrothermally fabricated and employed as the photoanode in a CdS quantum dot-sensitized solar cell (QDSSC). This QDSSC outperformed the QDSSC based on a simple ZnO nanocone photoanode in all the four principal photovoltaic parameters. Using the hierarchical photoanode dramatically increased the short circuit current density and also slightly raised the open circuit voltage and the fill factor. As a result, the conversion efficiency of the QDSSC based on the hierarchical photoanode was more than twice that of the QDSSC based on the simple ZnO nanocone photoanode. This improvement is attributable to both the enlarged specific area of the photoanode and the reduction in the recombination of the photoexcited electrons. PMID:26379268
800 C Silicon Carbide (SiC) Pressure Sensors for Engine Ground Testing
NASA Technical Reports Server (NTRS)
Okojie, Robert S.
2016-01-01
MEMS-based 4H-SiC piezoresistive pressure sensors have been demonstrated at 800 C, leading to the discovery of strain sensitivity recovery with increasing temperatures above 400 C, eventually achieving up to, or near, 100 recovery of the room temperature values at 800 C. This result will allow the insertion of highly sensitive pressure sensors closer to jet, rocket, and hypersonic engine combustion chambers to improve the quantification accuracy of combustor dynamics, performance, and increase safety margin. Also, by operating at higher temperature and locating closer to the combustion chamber, reduction of the length (weight) of pressure tubes that are currently used will be achieved. This will result in reduced costlb to access space.
NASA Astrophysics Data System (ADS)
Tain, Rong-Wen; Alperin, Noam
2008-03-01
Intracranial compliance (ICC) determines the ability of the intracranial space to accommodate increase in volume (e.g., brain swelling) without a large increase in intracranial pressure (ICP). Therefore, measurement of ICC is potentially important for diagnosis and guiding treatment of related neurological problems. Modeling based approach uses an assumed lumped-parameter model of the craniospinal system (CSS) (e.g., RCL circuit), with either the arterial or the net transcranial blood flow (arterial inflow minus venous outflow) as input and the cranio-spinal cerebrospinal fluid (CSF) flow as output. The phase difference between the output and input is then often used as a measure of ICC However, it is not clear whether there is a predetermined relationship between ICC and the phase difference between these waveforms. A different approach for estimation of ICC has been recently proposed. This approach estimates ICC from the ratio of the intracranial volume and pressure changes that occur naturally with each heartbeat. The current study evaluates the sensitivity of the phase-based and the direct approach to changes in ICC. An RLC circuit model of the cranio-spinal system is used to simulate the cranio-spinal CSF flow for 3 different ICC states using the transcranial blood flows measured by MRI phase contrast from healthy human subjects. The effect of the increase in the ICC on the magnitude and phase response is calculated from the system's transfer function. We observed that within the heart rate frequency range, changes in ICC predominantly affected the amplitude of CSF pulsation and less so the phases. The compliance is then obtained for the different ICC states using the direct approach. The measures of compliance calculated using the direct approach demonstrated the highest sensitivity for changes in ICC. This work explains why phase shift based measure of ICC is less sensitive than amplitude based measures such as the direct approach method.
Locher, L; Häussler, S; Laubenthal, L; Singh, S P; Winkler, J; Kinoshita, A; Kenéz, Á; Rehage, J; Huber, K; Sauerwein, H; Dänicke, S
2015-02-01
In response to negative energy balance, overconditioned cows mobilize more body fat than thin cows and subsequently are prone to develop metabolic disorders. Changes in adipose tissue (AT) metabolism are barely investigated in overconditioned cows. Therefore, the objective was to investigate the effect of increasing body condition on key regulator proteins of fat metabolism in subcutaneous AT and circulation of dairy cows. Nonlactating, nonpregnant dairy cows (n=8) investigated in the current study served as a model to elucidate the changes in the course of overcondition independent from physiological changes related to gestation, parturition, and lactation. Cows were fed diets with increasing portions of concentrate during the first 6wk of the experiment until 60% were reached, which was maintained for 9wk. Biopsy samples from AT of the subcutaneous tailhead region were collected every 8wk, whereas blood was sampled monthly. Within the experimental period cows had an average BW gain of 243±33.3 kg. Leptin and insulin concentrations were increased until wk 12. Based on serum concentrations of glucose, insulin, and nonesterified fatty acids, the surrogate indices for insulin sensitivity were calculated. High-concentrate feeding led to decreased quantitative insulin sensitivity check index and homeostasis model assessment due to high insulin and glucose concentrations indicating decreased insulin sensitivity. Adiponectin, an adipokine-promoting insulin sensitivity, decreased in subcutaneous AT, but remained unchanged in the circulation. The high-concentrate diet affected key enzymes reflecting AT metabolism such as AMP-activated protein kinase and hormone-sensitive lipase, both represented as the proportion of the phosphorylated protein to total protein, as well as fatty acid synthase. The extent of phosphorylation of AMP-activated protein kinase and the protein expression of fatty acid synthase were inversely regulated throughout the experimental period, whereas the extent of phosphorylation of hormone-sensitive lipase was consistently decreasing by the high-concentrate diet. Overcondition in nonpregnant, nonlactating dairy cows changed the expression of key regulator proteins of AT metabolism and circulation accompanied by impaired insulin sensitivity, which might increase the risk for metabolic disorders. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies
NASA Astrophysics Data System (ADS)
Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu
2016-10-01
Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.
Ecotoxicological responses of three ornamental herb species to cadmium.
Liu, Zhouli; He, Xingyuan; Chen, Wei; Zhao, Mingzhu
2013-08-01
Cadmium is one of the most toxic elements. The ideal vegetal cover should be ensured by the selection of appropriate plant species for successful phytoremediation. In the present study, the ecotoxicological effects of Cd on the following 3 ornamental herbs were investigated: Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.), and alfalfa (Medicago sativa L.). Based on the inhibition rate of seed germination, root and shoot elongation, early seedling growth, median inhibition concentration (IC50) values, and index of tolerance (IT) values, ecotoxicological indicators were determined. The results showed that 10 μM to 50 μM Cd had little effect on seed germination or root and shoot elongation of the 3 ornamental herbs (p > 0.01). With an increase in Cd concentrations, alfalfa (M. sativa) was the most sensitive to Cd toxicity in terms of seed germination and root elongation. Based on the IC50 of root elongation, Italian ryegrass (L. multiflorum) was the least sensitive to Cd. Based on the IC50 of seed germination and shoot elongation, white clover had the least sensitivity to Cd. Among the 3 ornamental herbs, based on the IC50 of seed germination and root and shoot elongation, alfalfa (M. sativa) was all the most sensitive plant. According to the index of tolerance, Italian ryegrass (L. multiflorum) was the most tolerant plant. Copyright © 2013 SETAC.
Sensitivity to bites by the bedbug, Cimex lectularius.
Reinhardt, K; Kempke, D; Naylor, R A; Siva-Jothy, M T
2009-06-01
Bedbugs are a public health problem and can cause significant economic losses, but little is known about the effects of bites on humans. We reviewed case reports and published papers on bedbug bites to assess the empirical basis of the commonly cited figure that only approximately 80% of the population are sensitive to bedbug bites. We found the sensitivity estimate to be based on only one study carried out 80 years ago. However, this study did not account for the now well-established fact that only repeated exposure to external allergens leads to skin reactions. In our sample, 18 of 19 persons showed a skin reaction after bedbug exposure, but in most cases only after repeated controlled exposure. With repeated exposure, the latency between bite and skin reactions decreased from approximately 10 days to a few seconds. Our results are relevant for the hospitality industry, where apparently increasing infestation rates are likely to lead to an increase in the number of tourists and hotel employees exposed to bedbugs. Medical and public health professionals may expect to see an increase in the prevalence of people with bedbug bite sensitivity. The significance of the delayed reaction time of skin to bites may also have implications in litigation cases where people seek compensation.
Optimized Geometry for Superconducting Sensing Coils
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob
2008-01-01
An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.
Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei
2015-03-15
Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.
Hassanzadeh, Javad; Amjadi, Mohammad
2015-06-01
A high-yield chemiluminescence (CL) system based on the alkaline permanganate-Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4 . There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2-300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.
Characterization of Adrenal Adenoma by Gaussian Model-Based Algorithm.
Hsu, Larson D; Wang, Carolyn L; Clark, Toshimasa J
2016-01-01
We confirmed that computed tomography (CT) attenuation values of pixels in an adrenal nodule approximate a Gaussian distribution. Building on this and the previously described histogram analysis method, we created an algorithm that uses mean and standard deviation to estimate the percentage of negative attenuation pixels in an adrenal nodule, thereby allowing differentiation of adenomas and nonadenomas. The institutional review board approved both components of this study in which we developed and then validated our criteria. In the first, we retrospectively assessed CT attenuation values of adrenal nodules for normality using a 2-sample Kolmogorov-Smirnov test. In the second, we evaluated a separate cohort of patients with adrenal nodules using both the conventional 10HU unit mean attenuation method and our Gaussian model-based algorithm. We compared the sensitivities of the 2 methods using McNemar's test. A total of 183 of 185 observations (98.9%) demonstrated a Gaussian distribution in adrenal nodule pixel attenuation values. The sensitivity and specificity of our Gaussian model-based algorithm for identifying adrenal adenoma were 86.1% and 83.3%, respectively. The sensitivity and specificity of the mean attenuation method were 53.2% and 94.4%, respectively. The sensitivities of the 2 methods were significantly different (P value < 0.001). In conclusion, the CT attenuation values within an adrenal nodule follow a Gaussian distribution. Our Gaussian model-based algorithm can characterize adrenal adenomas with higher sensitivity than the conventional mean attenuation method. The use of our algorithm, which does not require additional postprocessing, may increase workflow efficiency and reduce unnecessary workup of benign nodules. Copyright © 2016 Elsevier Inc. All rights reserved.
Maksimkina, T N; Artemova, T Z; Kuznetsova, N A; Sinitsyna, O O; Gipp, E K; Zagaĭnova, A V; Butorina, N N; Iuzhakova, O A; Krasniak, A V
2012-01-01
The possibility of using 12 heterogeneous sensitizers (HS) based on phthalocyanines covalently grafted to aminopropyl silicagel for disinfection of water from bacteria has been studied. For reliable water quality control the technique of performing bacteriological analysis in the presence of HS beads in the sample has been elaborated. The conditions increasing the efficiency of photo disinfection in the presence of HS were studied. Algorithm for estimation of photo disinfectant effect of HS against bacteria was substantiated. Obtained data confirm the perspective of further studies on the substantiation of the possibility of the application of HS for water disinfection.
Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.
Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y
2016-01-01
Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.
Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2
Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C. K.; Ahmad, Harith; Chong, W. Y.
2016-01-01
Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications. PMID:27101247
Liang, Ruoyu; Chen, Juan; Shi, Yajuan; Lu, Yonglong; Sarvajayakesavalu, Suriyanarayanan; Xu, Xiangbo; Zheng, Xiaoqi; Khan, Kifayatullah; Su, Chao
2018-05-15
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1 H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1 H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Havas, Magda; Marrongelle, Jeffrey
2013-06-01
This is a replication of a study that we previously conducted in Colorado with 25 subjects designed to test the effect of electromagnetic radiation generated by the base station of a cordless phone on heart rate variability (HRV). In this study, we analyzed the response of 69 subjects between the ages of 26 and 80 in both Canada and the USA. Subjects were exposed to radiation for 3-min intervals generated by a 2.4-GHz cordless phone base station (3-8 μW/cm²). A few participants had a severe reaction to the radiation with an increase in heart rate and altered HRV indicative of an alarm response to stress. Based on the HRV analyses of the 69 subjects, 7% were classified as being "moderately to very" sensitive, 29% were "little to moderately" sensitive, 30% were "not to little" sensitive and 6% were "unknown". These results are not psychosomatic and are not due to electromagnetic interference. Twenty-five percent of the subjects' self-proclaimed sensitivity corresponded to that based on the HRV analysis, while 32% overestimated their sensitivity and 42% did not know whether or not they were electrically sensitive. Of the 39 participants who claimed to experience some electrical hypersensitivity, 36% claimed they also reacted to a cordless phone and experienced heart symptoms and, of these, 64% were classified as having some degree of electrohypersensitivity (EHS) based on their HRV response. Novel findings include documentation of a delayed response to radiation. Orthostatic HRV testing combined with provocation testing may provide a diagnostic tool for some sufferers of EHS when they are exposed to electromagnetic emitting devices. The protocol used underestimates reaction to electromagnetic radiation for those who have a delayed autonomic nervous system reaction and it may under diagnose those who have adrenal exhaustion as their ability to mount a response to a stressor is diminished.
CHALLENGES IN CONSTRUCTING STATISTICALLY-BASED SAR MODELS FOR DEVELOPMENTAL TOXICITY
Regulatory agencies are increasingly called upon to review large numbers of environmental contaminants that have not been characterized for their potential to pose a health risk. Additionally, there is special interest in protecting potentially sensitive subpopulations and identi...
Nanotechnology in the management of cervical cancer.
Chen, Jiezhong; Gu, Wenyi; Yang, Lei; Chen, Chen; Shao, Renfu; Xu, Kewei; Xu, Zhi Ping
2015-03-01
Cervical cancer is a major disease with high mortality. All cervical cancers are caused by infection with human papillomaviruses (HPV). Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. In this review, we summarize the recent application of nanotechnology to the diagnosis and treatment of cervical cancer as well as the development of HPV vaccines. Early detection of cervical cancer enables tumours to be efficiently removed by surgical procedures, leading to increased survival rate. The current method of detecting cervical cancer by Pap smear can only achieve 50% sensitivity, whereas nanotechnology has been used to detect HPVs with greatly improved sensitivity. In cervical cancer treatment, nanotechnology has been used for the delivery of anticancer drugs to increase treatment efficacy and decrease side effects. Nanodelivery of HPV preventive and therapeutic vaccines has also been investigated to increase vaccine efficacy. Overall, these developments suggest that nanoparticle-based vaccine may become the most effective way to prevent and treat cervical cancer, assisted or combined with some other nanotechnology-based therapy. Copyright © 2015 John Wiley & Sons, Ltd.
Glaciological and hydrological sensitivities in the Hindu Kush - Himalaya
NASA Astrophysics Data System (ADS)
Shea, Joseph; Immerzeel, Walter
2016-04-01
Glacier responses to future climate change will affect hydrology at subbasin-scales. The main goal of this study is to assess glaciological and hydrological sensitivities of sub-basins throughout the Hindu Kush - Himalaya (HKH) region. We use a simple geometrical analysis based on a full glacier inventory and digital elevation model (DEM) to estimate sub-basin equilibrium line altitudes (ELA) from assumptions of steady-state accumulation area ratios (AARs). The ELA response to an increase in temperature is expressed as a function of mean annual precipitation, derived from a range of high-altitude studies. Changes in glacier contributions to streamflow in response to increased temperatures are examined for scenarios of both static and adjusted glacier geometries. On average, glacier contributions to streamflow increase by approximately 50% for a +1K warming based on a static geometry. Large decreases (-60% on average) occur in all basins when glacier geometries are instantaneously adjusted to reflect the new ELA. Finally, we provide estimates of sub-basin glacier response times that suggest a majority of basins will experience declining glacier contributions by the year 2100.
Interactions between creep, fatigue and strain aging in two refractory alloys
NASA Technical Reports Server (NTRS)
Sheffler, K. D.
1972-01-01
The application of low-amplitude, high-frequency fatigue vibrations during creep testing of two strain-aging refractory alloys (molybdenum-base TZC and tantalum-base T-111) significantly reduced the creep strength of these materials. This strength reduction caused dramatic increases in both the first stage creep strain and the second stage creep rate. The magnitude of the creep rate acceleration varied directly with both frequency and A ratio (ratio of alternating to mean stress), and also varied with temperature, being greatest in the range where the strain-aging phenomenon was most prominent. It was concluded that the creep rate acceleration resulted from a negative strain rate sensitivity which is associated with the strain aging phenomenon in these materials. (A negative rate sensitivity causes flow stress to decrease with increasing strain rate, instead of increasing as in normal materials). By combining two analytical expressions which are normally used to describe creep and strain aging behavior, an expression was developed which correctly described the influence of temperature, frequency, and A ratio on the TZC creep rate acceleration.
Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality
Lee, Elvina; Khurana, Maninder S.; Whiteley, Andrew S.; Monis, Paul T.; Bath, Andrew; Gordon, Cameron; Ryan, Una M.; Paparini, Andrea
2017-01-01
Next generation sequencing (NGS) has rapidly become an invaluable tool for the detection, identification and relative quantification of environmental microorganisms. Here, we demonstrate two new 16S rDNA primer sets, which are compatible with NGS approaches and are primarily for use in water quality studies. Compared to 16S rRNA gene based universal primers, in silico and experimental analyses demonstrated that the new primers showed increased specificity for the Cyanobacteria and Proteobacteria phyla, allowing increased sensitivity for the detection, identification and relative quantification of toxic bloom-forming microalgae, microbial water quality bioindicators and common pathogens. Significantly, Cyanobacterial and Proteobacterial sequences accounted for ca. 95% of all sequences obtained within NGS runs (when compared to ca. 50% with standard universal NGS primers), providing higher sensitivity and greater phylogenetic resolution of key water quality microbial groups. The increased selectivity of the new primers allow the parallel sequencing of more samples through reduced sequence retrieval levels required to detect target groups, potentially reducing NGS costs by 50% but still guaranteeing optimal coverage and species discrimination. PMID:28118368
Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R
2003-05-16
In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.
Stoyneva, Veselina; Momekova, Denitsa; Kostova, Bistra; Petrov, Petar
2014-01-01
Original pH sensitive cryogels, based on two biodegradable natural polymers chitosan (CS) and 2-hydroxyethylcellulose (HEC), were obtained via cryogenic treatment of semi-dilute aqueous solutions and UV induced crosslinking in frozen state. H₂O₂ and N,N'-methylenebisacrylamide (BisAAm) were used as photoinitiator and crosslinking agent, respectively. BisAAm facilitated the formation of polymer co-network and increased both the gel fraction yield and mechanical strength of cryogels. The influence of chitosan content on the physico-mechanical properties of HEC-CS cryogels was investigated. In general, the increase of CS fraction in the polymer co-network increased the degree of swelling and enhanced significantly the storage modulus of materials. All HEC-CS cryogels obtained were opalescent sponge-like materials, which quickly release/uptake water due to their open porous structure. The incorporation of CS provided pH dependent swelling and good bioadhesive properties of cryogels. HEC-CS cryogels were further exploited as drug delivery systems of the highly water soluble drug metronidazole belonging to BCS Class l. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.
1999-01-01
In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes that were within the observational estimates of Volk et al. [1997]. However, only scenarios with rather fast transport rates were comparable with the Volk et al. estimates of CFCl3 lifetimes. This is inconsistent with model-measurement comparisons of mean age in which the base model or slightly slower transport rates compared the most favorably with balloon SF6 data. For all comparisons shown, large transport changes away from the base case resulted in simulations that were outside the range of measurements, and in many cases, far outside this range.
Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?
Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie
2011-10-10
Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test. Copyright © 2011 Elsevier B.V. All rights reserved.
Brown, Kathryn E; McGrane, Shawn D; Bolme, Cynthia A; Moore, David S
2014-04-10
Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.
Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis.
Park, Yoon-Joo; Chun, Se-Hak; Kim, Byung-Chun
2011-02-01
The paper studies the new learning technique called cost-sensitive case-based reasoning (CSCBR) incorporating unequal misclassification cost into CBR model. Conventional CBR is now considered as a suitable technique for diagnosis, prognosis and prescription in medicine. However it lacks the ability to reflect asymmetric misclassification and often assumes that the cost of a positive diagnosis (an illness) as a negative one (no illness) is the same with that of the opposite situation. Thus, the objective of this research is to overcome the limitation of conventional CBR and encourage applying CBR to many real world medical cases associated with costs of asymmetric misclassification errors. The main idea involves adjusting the optimal cut-off classification point for classifying the absence or presence of diseases and the cut-off distance point for selecting optimal neighbors within search spaces based on similarity distribution. These steps are dynamically adapted to new target cases using a genetic algorithm. We apply this proposed method to five real medical datasets and compare the results with two other cost-sensitive learning methods-C5.0 and CART. Our finding shows that the total misclassification cost of CSCBR is lower than other cost-sensitive methods in many cases. Even though the genetic algorithm has limitations in terms of unstable results and over-fitting training data, CSCBR results with GA are better overall than those of other methods. Also the paired t-test results indicate that the total misclassification cost of CSCBR is significantly less than C5.0 and CART for several datasets. We have proposed a new CBR method called cost-sensitive case-based reasoning (CSCBR) that can incorporate unequal misclassification costs into CBR and optimize the number of neighbors dynamically using a genetic algorithm. It is meaningful not only for introducing the concept of cost-sensitive learning to CBR, but also for encouraging the use of CBR in the medical area. The result shows that the total misclassification costs of CSCBR do not increase in arithmetic progression as the cost of false absence increases arithmetically, thus it is cost-sensitive. We also show that total misclassification costs of CSCBR are the lowest among all methods in four datasets out of five and the result is statistically significant in many cases. The limitation of our proposed CSCBR is confined to classify binary cases for minimizing misclassification cost because our proposed CSCBR is originally designed to classify binary case. Our future work extends this method for multi-classification which can classify more than two groups. Copyright © 2010 Elsevier B.V. All rights reserved.
Xu, Fang; Dong, Haifeng; Cao, Yu; Lu, Huiting; Meng, Xiangdan; Dai, Wenhao; Zhang, Xueji; Al-Ghanim, Khalid Abdullah; Mahboob, Shahid
2016-12-14
A highly sensitive and multiple microRNA (miRNA) detection method by combining three-dimensional (3D) DNA tetrahedron-structured probes (TSPs) to increase the probe reactivity and accessibility with duplex-specific nuclease (DSN) for signal amplification for sensitive miRNA detection was proposed. Briefly, 3D DNA TSPs labeled with different fluorescent dyes for specific target miRNA recognition were modified on a gold nanoparticle (GNP) surface to increase the reactivity and accessibility. Upon hybridization with a specific target, the TSPs immobilized on the GNP surface hybridized with the corresponding target miRNA to form DNA-RNA heteroduplexes, and the DSN can recognize the formed DNA-RNA heteroduplexes to hydrolyze the DNA in the heteroduplexes to produce a specific fluorescent signal corresponding to a specific miRNA, while the released target miRNA strands can initiate another cycle, resulting in a significant signal amplification for sensitive miRNA detection. Different targets can produce different fluorescent signals, leading to the development of a sensitive detection for multiple miRNAs in a homogeneous solution. Under optimized conditions, the proposed assay can simultaneously detect three different miRNAs in a homogeneous solution with a logarithmic linear range spanning 5 magnitudes (10 -12 -10 -16 ) and achieving a limit of detection down to attomolar concentrations. Meanwhile, the proposed miRNA assay exhibited the capability of discriminating single bases (three bases mismatched miRNAs) and showed good eligibility in the analysis of miRNAs extracted from cell lysates and miRNAs in cell incubation media, which indicates its potential use in biomedical research and clinical analysis.
Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller
2010-01-01
The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...
Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12
Siegel, Eli C.
1973-01-01
An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage λ. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage λ was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920
Bedolla-Barajas, M; Morales-Romero, J; Gaxiola-Arredondo, B Y; Alcalá-Padilla, G; Romero-Velarde, E
2018-05-05
Both breastfeeding and the moment at which introduction to solid food occurs have been associated with food allergy. To evaluate whether prolonged breastfeeding and the delayed introduction of whole cow's milk into an infant's diet are factors that can be associated with egg sensitization. This was a hospital-based case-control study, matched by age and sex: each study group comprised 97 atopic children. Additionally, logistic regression was used to identify the factors associated with egg protein sensitization. The most common type of allergic disease among both groups was allergic rhinitis. After adjusting for possible confounding variables, a delayed introduction to whole cow's milk decreased the odds of egg protein sensitization; OR=0.16 (95% CI: 0.07-0.36, p<0.0001). Notably, breastfeeding during the first six months of life, regardless of whether it was the only milk an infant drank, increased the risk for sensitization to chicken eggs; OR=5.54 (95% CI: 2.41-12.7, p<0.0001). Prolonged breastfeeding, regardless of whether it was the only milk an infant drank, greatly increased the risk of egg sensitization. Interestingly, a delayed introduction to whole cow's milk was associated with a reduced possibility of becoming sensitized to eggs. Further studies are required to elucidate these findings. Copyright © 2018 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
Kim, Jae Hyun; Jun, Sun-Ae; Kwon, Yongchai; Ha, Su; Sang, Byong-In; Kim, Jungbae
2015-02-01
Enzymatic electrodes were fabricated by using three different immobilizations of glucose oxidase (GOx): covalent enzyme attachment (CA), enzyme coating (EC), and enzyme precipitate coating (EPC), here referred to as CA-E, EC-E, and EPC-E, respectively. When additional carbon nanotubes (CNTs) were introduced from 0 to 75wt% for the EPC-E design, its initial biosensor sensitivity was improved from 2.40×10(-3) to 16.26×10(-3) A∙M(-1)∙cm(-2), while its electron charge transfer rate constant was increased from 0.33 to 1.47s(-1). When a fixed ratio of CNTs was added for three different electrode systems, EPC-E showed the best glucose sensitivity and long-term thermal stability. For example, when 75wt% of additional CNTs was added, the initial sensitivity of EPC-E was 16.26×10(-3) A∙M(-1)∙cm(-2), while those of EC-E and CA-E were only 6.42×10(-3) and 1.18×10(-3) A∙M(-1)∙cm(-2), respectively. Furthermore, EPC-E retained 63% of its initial sensitivity after thermal treatment at 40°C over 41days, while EC-E and CA-E showed only 12% and 1% of initial sensitivities, respectively. Consequently, the EPC approach with additional CNTs achieved both high sensitivity and long-term stability, which are required for continuous and accurate glucose monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.
Yan, Yuting; Liu, Qian; Wang, Kun; Jiang, Ling; Yang, Xingwang; Qian, Jing; Dong, Xiaoya; Qiu, Baijing
2013-12-07
This work reports a novel strategy to amplify the electrochemiluminescence (ECL) signal of peroxydisulfate solution based on the Au nanoparticle decorated reduced graphene oxide (Au NP-RGO), and further an ECL biosensor for sensitive and selective detection of dopamine (DA) was constructed. Due to the synergistic amplification of Au NPs and RGO, the ECL signal of peroxydisulfate solution on the Au NP-RGO modified electrode was about 5-fold enhanced compared to that of the bare electrode with the ECL onset potential positively shifted from -1.2 V to -0.9 V. More interestingly, the ECL intensity of peroxydisulfate solution increased with the increase of DA concentration, based on which an ECL biosensor for DA determination was fabricated. The as-prepared solid-state ECL DA sensor showed a wide linear response of 0.02-40 μM with a detection limit of 6.7 nM (S/N = 3). Moreover, we expect this work would open up a new field in the application of peroxydisulfate solution ECL for highly sensitive bioassays.
The influence of local spring temperature variance on temperature sensitivity of spring phenology.
Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe
2014-05-01
The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.
Snowden, Lonnie R; Wallace, Neal; Cordell, Kate; Graaf, Genevieve
2017-09-01
Latino child populations are large and growing, and they present considerable unmet need for mental health treatment. Poverty, lack of health insurance, limited English proficiency, stigma, undocumented status, and inhospitable programming are among many factors that contribute to Latino-White mental health treatment disparities. Lower treatment expenditures serve as an important marker of Latino children's low rates of mental health treatment and limited participation once enrolled in services. We investigated whether total Latino-White expenditure disparities declined when autonomous, county-level mental health plans receive funds free of customary cost-sharing charges, especially when they capitalized on cultural and language-sensitive mental health treatment programs as vehicles to receive and spend treatment funds. Using Whites as benchmark, we considered expenditure pattern disparities favoring Whites over Latinos and, in a smaller number of counties, Latinos over Whites. Using segmented regression for interrupted time series on county level treatment systems observed over 64 quarters, we analyzed Medi-Cal paid claims for per-user total expenditures for mental health services delivered to children and youth (under 18 years of age) during a study period covering July 1, 1991 through June 30, 2007. Settlement-mandated Medicaid's Early Periodic Screening, Diagnosis and Treatment (EPSDT) expenditure increases began in the third quarter of 1995. Terms were introduced to assess immediate and long term inequality reduction as well as the role of culture and language-sensitive community-based programs. Settlement-mandated increased EPSDT treatment funding was associated with more spending on Whites relative to Latinos unless plans arranged for cultural and language-sensitive mental health treatment programs. However, having programs served more to prevent expenditure disparities from growing than to reduce disparities. EPSDT expanded funding increased proportional expenditures for Whites absent cultural and language-sensitive treatment programs. The programs moderate, but do not overcome, entrenched expenditure disparities. These findings use investment in mental health services for Latino populations to indicate treatment access and utilization, but do not explicitly reflect penetration rates or intensity of services for consumers. New funding, along with an expectation that Latino children's well documented mental health treatment disparities will be addressed, holds potential for improved mental health access and reducing utilization inequities for this population, especially when specialized, culturally and linguistically sensitive mental health treatment programs are present to serve as recipients of funding. To further expand knowledge of how federal or state funding for community based mental health services for low income populations can drive down the longstanding and considerable Latino-White mental health treatment disparities, we must develop and test questions targeting policy drivers which can channel funding to programs and organizations aimed at delivering linguistically and culturally sensitive services to Latino children and their families.
U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection
NASA Astrophysics Data System (ADS)
Gowri, A.; Sai, V. V. R.
2017-05-01
This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.
In Hyperthermia Increased ERK and WNT Signaling Suppress Colorectal Cancer Cell Growth
Bordonaro, Michael; Shirasawa, Senji; Lazarova, Darina L.
2016-01-01
Although neoplastic cells exhibit relatively higher sensitivity to hyperthermia than normal cells, hyperthermia has had variable success as an anti-cancer therapy. This variable outcome might be due to the fact that cancer cells themselves have differential degrees of sensitivity to high temperature. We hypothesized that the varying sensitivity of colorectal cancer (CRC) cells to hyperthermia depends upon the differential induction of survival pathways. Screening of such pathways revealed that Extracellular Signal-Regulated Kinase (ERK) signaling is augmented by hyperthermia, and the extent of this modulation correlates with the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Through clonal growth assays, apoptotic analyses and transcription reporter assays of CRC cells that differ only in KRAS mutation status we established that mutant KRAS cells are more sensitive to hyperthermia, as they exhibit sustained ERK signaling hyperactivation and increased Wingless/Integrated (WNT)/beta-catenin signaling. We propose that whereas increased levels of WNT and ERK signaling and a positive feedback between the two pathways is a major obstacle in anti-cancer therapy today, under hyperthermia the hyperinduction of the pathways and their positive crosstalk contribute to CRC cell death. Ascertaining the causative association between types of mutations and hyperthermia sensitivity may allow for a mutation profile-guided application of hyperthermia as an anti-cancer therapy. Since KRAS and WNT signaling mutations are prevalent in CRC, our results suggest that hyperthermia-based therapy might benefit a significant number, but not all, CRC patients. PMID:27187477
Disentangling Greenhouse Warming and Aerosol Cooling to Reveal Earth's Transient Climate Sensitivity
NASA Astrophysics Data System (ADS)
Storelvmo, T.
2015-12-01
Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present an observation-based study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.
NASA Astrophysics Data System (ADS)
Wu, Mianmian; Li, Pan; Zhu, Qingxia; Wu, Meiran; Li, Hao; Lu, Feng
2018-05-01
There has been an increasing demand for rapid and sensitive techniques for the identification of Sudan compounds that emerged as the most often illegally added fat-soluble dyes in herbal medicine. In this report, we have designed and fabricated a functionalized filter paper consisting of gold nanorods (GNRs) and mono-6-thio-cyclodextrin (HS-β-CD) as a surface-enhanced Raman spectroscopy (SERS) substrate, in which the GNR provides sufficient SERS enhancement, and the HS-β-CD with strong chemical affinity toward GNR provides the inclusion compound to capture hydrophobic molecules. Moreover, the CD-GNR were uniformly assembled on filter paper cellulose through the electrostatic adsorption and hydrogen bond, so that the CD-GNR paper-based SERS substrate (CD-GNR-paper) demonstrated higher sensitivity for the determination of Sudan III (0.1 μM) and Sudan IV (0.5 μM) than GNRs paper-based SERS substrate (GNR-paper), with high stability after the storage in the open air for 90 days. Importantly, CD-GNR-paper can effectively collect the Sudan dyes from illegally adulterated onto samples of Resina Draconis with a simple operation, further open up new exciting opportunity for SERS detection of more compounds illegally added with high sensitivity and fast signal responses.
Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi
2017-05-01
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction. © 2016 Society for the Study of Addiction.
Koh, Hyun Yong; Cho, Eunhae; Lee, So-Yeon; Kim, Woo Kyung; Park, Yong Mean; Kim, Jihyun; Ahn, Kangmo; Lee, Seung Won; Kim, Mi Ae; Hahm, Myung-Il; Chae, Yoomi; Lee, Kee-Jae; Kwon, Ho-Jang; Han, Man Yong
2018-04-01
Solar irradiation affects sensitization to aeroallergens and the prevalence of allergic diseases. Little is known, however, about how the time and amount of solar irradiation during pregnancy affects such risks in children. We aimed to find out how solar irradiation during pregnancy affects sensitization to aero-allergens and the prevalence of allergic diseases in children. This population-based cross-sectional study involved 7301 aged 6 years and aged 12 years children. Maternal exposure to solar irradiation during pregnancy was evaluated using data from weather stations closest to each child's birthplace. Monthly average solar irradiation during the second and third trimesters was calculated with rank by quartiles. Risks of allergic sensitization and allergic disease were estimated. Relative to the first (lowest) quartile, the adjusted odds ratio (aOR) for allergic sensitization in the fourth (highest) quartile was lowest within solar irradiation during pregnancy months 5-6 (aOR = 0.823, 95% CI 0.720-0.942, p < 0.05). During months 9-10, the aOR for allergic sensitization for the fourth was higher than the first quartile of solar irradiation (aOR = 1.167, 95% CI 1.022-1.333, p < 0.05). Similar results were observed when solar irradiation was analyzed as a continuous variable during months 5 (aOR = 0.975, 95% CI 0.962-0.989, p < 0.001) and month 9 (aOR = 1.018, 95% CI 1.004-1.031, p = 0.003). Increased solar irradiation during months 7-8 increased the risk of asthma (aOR = 1.309, 95% CI 1.024-1.674, p = 0.032). Maternal exposure to solar irradiation during the second trimester of pregnancy associated with reduced aeroallergen sensitization, whereas solar irradiation during the third trimester was related to increased sensitization to aeroallergens. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?
Fardet, Anthony
2015-12-01
While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thousand-fold fluorescent signal amplification for mHealth diagnostics
Balsam, Joshua; Rasooly, Reuven; Bruck, Hugh Alan; Rasooly, Avraham
2013-01-01
The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes a multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100X increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10 nM. Computational image stacking enables another ~10X increase in signal sensitivity, further reducing the LOD for webcam from 10 nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, Adenovirus DNA labeled with SYBR Green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000X increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals without the need of dedicated laboratories. It has the potential to be used to increase sensitivity of other optically based mHealth technologies, and may increase mHealth’s clinical utility, especially for telemedicine and for resource-poor settings and global health applications. PMID:23928092
Thousand-fold fluorescent signal amplification for mHealth diagnostics.
Balsam, Joshua; Rasooly, Reuven; Bruck, Hugh Alan; Rasooly, Avraham
2014-01-15
The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100× increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10nM. Computational image stacking enables another ~10× increase in signal sensitivity, further reducing the LOD for webcam from 10nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, adenovirus DNA labeled with SYBR green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5 ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000× increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10 ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals without the need of dedicated laboratories. It has the potential to be used to increase sensitivity of other optically based mHealth technologies, and may increase mHealth's clinical utility, especially for telemedicine and for resource-poor settings and global health applications. Published by Elsevier B.V.
SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.
2013-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.
Beaulieu, C F; Jeffrey, R B; Karadi, C; Paik, D S; Napel, S
1999-07-01
To determine the sensitivity of radiologist observers for detecting colonic polyps by using three different data review (display) modes for computed tomographic (CT) colonography, or "virtual colonoscopy." CT colonographic data in a patient with a normal colon were used as base data for insertion of digitally synthesized polyps. Forty such polyps (3.5, 5, 7, and 10 mm in diameter) were randomly inserted in four copies of the base data. Axial CT studies, volume-rendered virtual endoscopic movies, and studies from a three-dimensional mode termed "panoramic endoscopy" were reviewed blindly and independently by two radiologists. Detection improved with increasing polyp size. Trends in sensitivity were dependent on whether all inserted lesions or only visible lesions were considered, because modes differed in how completely the colonic surface was depicted. For both reviewers and all polyps 7 mm or larger, panoramic endoscopy resulted in significantly greater sensitivity (90%) than did virtual endoscopy (68%, P = .014). For visible lesions only, the sensitivities were 85%, 81%, and 60% for one reader and 65%, 62%, and 28% for the other for virtual endoscopy, panoramic endoscopy, and axial CT, respectively. Three-dimensional displays were more sensitive than two-dimensional displays (P < .05). The sensitivity of panoramic endoscopy is higher than that of virtual endoscopy, because the former displays more of the colonic surface. Higher sensitivities for three-dimensional displays may justify the additional computation and review time.
NASA Astrophysics Data System (ADS)
Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.
2017-01-01
We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.
Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum
2014-01-01
Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID:24424052
Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang
2016-01-01
Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048
Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance
NASA Astrophysics Data System (ADS)
Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.
2014-03-01
Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.
Betsch, Cornelia; Böhm, Robert; Airhihenbuwa, Collins O; Butler, Robb; Chapman, Gretchen B; Haase, Niels; Herrmann, Benedikt; Igarashi, Tasuku; Kitayama, Shinobu; Korn, Lars; Nurm, Ülla-Karin; Rohrmann, Bernd; Rothman, Alexander J; Shavitt, Sharon; Updegraff, John A; Uskul, Ayse K
2016-10-01
This review introduces the concept of culture-sensitive health communication. The basic premise is that congruency between the recipient's cultural characteristics and the respective message will increase the communication's effectiveness. Culture-sensitive health communication is therefore defined as the deliberate and evidence-informed adaptation of health communication to the recipients' cultural background in order to increase knowledge and improve preparation for medical decision making and to enhance the persuasiveness of messages in health promotion. To achieve effective health communication in varying cultural contexts, an empirically and theoretically based understanding of culture will be indispensable. We therefore define culture, discuss which evolutionary and structural factors contribute to the development of cultural diversity, and examine how differences are conceptualized as scientific constructs in current models of cultural differences. In addition, we will explicate the implications of cultural differences for psychological theorizing, because common constructs of health behavior theories and decision making, such as attitudes or risk perception, are subject to cultural variation. In terms of communication, we will review both communication strategies and channels that are used to disseminate health messages, and we will discuss the implications of cultural differences for their effectiveness. Finally, we propose an agenda both for science and for practice to advance and apply the evidence base for culture-sensitive health communication. This calls for more interdisciplinary research between science and practice but also between scientific disciplines and between basic and applied research. © The Author(s) 2015.
Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records.
Martínez-Botí, M A; Foster, G L; Chalk, T B; Rohling, E J; Sexton, P F; Lunt, D J; Pancost, R D; Badger, M P S; Schmidt, D N
2015-02-05
Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.
Good, Mary-Jo DelVecchio; Hannah, Seth Donal
2015-04-01
The concept of culture as an analytic concept has increasingly been questioned by social scientists, just as health care institutions and clinicians have increasingly routinized concepts and uses of culture as means for improving the quality of care for racial and ethnic minorities. This paper examines this tension, asking whether it is possible to use cultural categories to develop evidenced-based practice guidelines in mental health services when these categories are challenged by the increasing hyperdiversity of patient populations and newer theories of culture that question direct connection between group-based social identities and cultural characteristics. Anthropologists have grown concerned about essentializing societies, yet unequal treatment on the basis of cultural, racial, or ethnic group membership is present in medicine and mental health care today. We argue that discussions of culture-patients' culture and the "culture of medicine"-should be sensitive to the risk of improper stereotypes, but should also be sensitive to the continuing significance of group-based discrimination and the myriad ways culture shapes clinical presentation, doctor-patient interactions, the illness experience, and the communication of symptoms. We recommend that mental health professionals consider the local contexts, with greater appreciation for the diversity of lived experience found among individual patients. This suggests a nuanced reliance on broad cultural categories of racial, ethnic, and national identities in evidence-based practice guidelines. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Classification of sensitizing and irritative potential in a combined in-vitro assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanner, Reinhard, E-mail: reinhard.wanner@charite.d; Sonnenburg, Anna; Quatchadze, Maria
2010-06-01
We have developed a coculture system which in parallel indicates the sensitizing and irritative potential of xenobiotics. The assay is named loose-fit coculture-based sensitization assay (LCSA) and may be performed within 5 days. The system is composed of human monocytes that differentiate to a kind of dendritic cells by 2-day culturing in the presence of allogenic keratinocytes. The culture medium is enriched by a cocktail of recombinant cytokines. On day 3, concentration series of probes are added. On day 5, cells are harvested and analyzed for expression range of CD86 as a marker of sensitizing potential and for uptake ofmore » the viability stain 7-AAD as a marker of irritative potential. Estimation of the concentration required to cause a half-maximal increase in CD86 expression allowed quantification of sensitizing potential, and estimation of the concentration required to reduce viability to 50% allowed quantification of irritative potential. Examination of substances with known potential resulted in categorization of test scores. To evaluate our data, we have compared results with those of the validated animal-based sensitization test, the murine local lymph node assay (LLNA, OECD TG 429). To a large extent, results from LCSA and from LLNA achieved analogous grouping of allergens into categories like weak-moderate-strong. However, the new assay showed an improved capacity to distinguish sensitizers from non-sensitizers and irritants. In conclusion, the LCSA contains potential to fulfil the requirements of the EU's programme for the safety of chemicals 'Registration, Evaluation, Authorisation and Restriction of chemical substances' (REACH, 2006) to replace animal models.« less
Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt
2007-08-12
The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.
Hamilton, Desmond J; Coffman, Matthew D; Knight, Jefferson D; Reed, Scott M
2017-09-12
Synaptotagmin (Syt) family proteins contain tandem C2 domains, C2A and C2B, which insert into anionic membranes in response to increased cytosolic Ca 2+ concentration and facilitate exocytosis in neuronal and endocrine cells. The C2A domain from Syt7 binds lipid membranes much more tightly than the corresponding domain from Syt1, but the implications of this difference for protein function are not yet clear. In particular, the ability of the isolated Syt7 C2A domain to initiate membrane apposition and/or aggregation has been previously unexplored. Here, we demonstrate that Syt7 C2A induces apposition and aggregation of liposomes using Förster resonance energy transfer (FRET) assays, dynamic light scattering, and spectroscopic techniques involving lipid-coated gold nanoparticles (LCAuNPs). Protein-membrane binding, membrane apposition, and macroscopic aggregation are three separate phenomena with distinct Ca 2+ requirements: the threshold Ca 2+ concentration for membrane binding is lowest, followed by apposition and aggregation. However, aggregation is highly sensitive to protein concentration and can occur even at submicromolar Syt7 C2A; thus, highly sensitive assays are needed for measuring apposition without complications arising from aggregation. Notably, the localized surface plasmon resonance of the LCAuNP is sensitive to ≤10 nM Syt7 C2A concentrations. Furthermore, when the LCAuNPs were added into a FRET-based liposome apposition assay, the resultant energy transfer increased; possible explanations are discussed. Overall, LCAuNP-based methods allow for highly sensitive detection of protein-induced membrane apposition under conditions that miminize large-scale aggregation.
Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.
Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R
2012-09-01
Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
Churchwell, Mona I; Twaddle, Nathan C; Meeker, Larry R; Doerge, Daniel R
2005-10-25
Recent technological advances have made available reverse phase chromatographic media with a 1.7 microm particle size along with a liquid handling system that can operate such columns at much higher pressures. This technology, termed ultra performance liquid chromatography (UPLC), offers significant theoretical advantages in resolution, speed, and sensitivity for analytical determinations, particularly when coupled with mass spectrometers capable of high-speed acquisitions. This paper explores the differences in LC-MS performance by conducting a side-by-side comparison of UPLC for several methods previously optimized for HPLC-based separation and quantification of multiple analytes with maximum throughput. In general, UPLC produced significant improvements in method sensitivity, speed, and resolution. Sensitivity increases with UPLC, which were found to be analyte-dependent, were as large as 10-fold and improvements in method speed were as large as 5-fold under conditions of comparable peak separations. Improvements in chromatographic resolution with UPLC were apparent from generally narrower peak widths and from a separation of diastereomers not possible using HPLC. Overall, the improvements in LC-MS method sensitivity, speed, and resolution provided by UPLC show that further advances can be made in analytical methodology to add significant value to hypothesis-driven research.
Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.
Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung
2018-02-01
The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A blood biomarker for monitoring response to anti-EGFR therapy.
Hughes, Nicholas P; Xu, Lingyun; Nielsen, Carsten H; Chang, Edwin; Hori, Sharon S; Natarajan, Arutselvan; Lee, Samantha; Kjær, Andreas; Kani, Kian; Wang, Shan X; Mallick, Parag; Gambhir, Sanjiv Sam
2018-04-13
To monitor therapies targeted to epidermal growth factor receptors (EGFR) in non-small cell lung cancer (NSCLC), we investigated Peroxiredoxin 6 (PRDX6) as a biomarker of response to anti-EGFR agents. We studied cells that are sensitive (H3255, HCC827) or resistant (H1975, H460) to gefitinib. PRDX6 was examined with either gefitinib or vehicle treatment using enzyme-linked immunosorbent assays. We created xenograft models from one sensitive (HCC827) and one resistant cell line (H1975) and monitored serum PRDX6 levels during treatment. PRDX6 levels in cell media from sensitive cell lines increased significantly after gefitinib treatment vs. vehicle, whereas there was no significant difference for resistant lines. PRDX6 accumulation over time correlated positively with gefitinib sensitivity. Serum PRDX6 levels in gefitinib-sensitive xenograft models increased markedly during the first 24 hours of treatment and then decreased dramatically during the following 48 hours. Differences in serum PRDX6 levels between vehicle and gefitinib-treated animals could not be explained by differences in tumor burden. Our results show that changes in serum PRDX6 during the course of gefitinib treatment of xenograft models provide insight into tumor response and such an approach offers several advantages over imaging-based strategies for monitoring response to anti-EGFR agents.
Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi
2018-03-01
Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Jason S.; Kelly, Ryan T.; Camp, David G.
2008-09-01
Methods. To improve the detection of low abundance protein candidate biomarker discovery and validation, particularly in complex biological fluids such as blood plasma, increased sensitivity is desired using mass spectrometry (MS)-based instrumentation. A key current limitation on the sensitivity of electrospray ionization (ESI) MS is due to the fact that many sample molecules in solution are never ionized, and the vast majority of the ions that are created are lost during transmission from atmospheric pressure to the low pressure region of the mass analyzer. Two key technologies, multi-nanoelectrospray emitters and the electrodynamic ion funnel have recently been developed and refinedmore » at Pacific Northwest National Laboratory (PNNL) to greatly improve the ionization and transmission efficiency of ESI MS based analyses. Multi-emitter based ESI enables the flow from a single source (typically a liquid chromatography [LC] column) to be divided among an array of emitters (Figure 1). The flow rate delivered to each emitter is thus reduced, allowing the well-documented benefits of nanoelectrospray 1 for both sensitivity and quantitation to be realized for higher flow rate separations. To complement the increased ionization efficiency afforded by multi-ESI, tandem electrodynamic ion funnels have also been developed at PNNL, and shown to greatly improve ion transmission efficiency in the ion source interface.2, 3 These technologies have been integrated into a triple quadrupole mass spectrometer for multiple reaction monitoring (MRM) of probable biomarker candidates in blood plasma and show promise for the identification of new species even at low level concentrations.« less
Bernstein, Leslie R.; Trahiotis, Constantine
2009-01-01
This study addressed how manipulating certain aspects of the envelopes of high-frequency stimuli affects sensitivity to envelope-based interaural temporal disparities (ITDs). Listener’s threshold ITDs were measured using an adaptive two-alternative paradigm employing “raised-sine” stimuli [John, M. S., et al. (2002). Ear Hear. 23, 106–117] which permit independent variation in their modulation frequency, modulation depth, and modulation exponent. Threshold ITDs were measured while manipulating modulation exponent for stimuli having modulation frequencies between 32 and 256 Hz. The results indicated that graded increases in the exponent led to graded decreases in envelope-based threshold ITDs. Threshold ITDs were also measured while parametrically varying modulation exponent and modulation depth. Overall, threshold ITDs decreased with increases in the modulation depth. Unexpectedly, increases in the exponent of the raised-sine led to especially large decreases in threshold ITD when the modulation depth was low. An interaural correlation-based model was generally able to capture changes in threshold ITD stemming from changes in the exponent, depth of modulation, and frequency of modulation of the raised-sine stimuli. The model (and several variations of it), however, could not account for the unexpected interaction between the value of raised-sine exponent and its modulation depth. PMID:19425666
Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Ghasemian-Yadegari, Javad; Khorrami, Arash
2014-07-01
pH-sensitive liposomes are designed to undergo acid-triggered destabilization. In the present study, we prepared polymer-modified, plasma stable, pH-sensitive fusogenic mitoxantrone liposomes to increase efficacy and selectivity on cancer cell lines. Conventional liposomes were prepared using cholesterol and dipalmitoyl-sn-glycero-3-phosphatidylethanolamine. Dioleoylphosphatidylethanolamine and a cholesteryl derivative, poly(monomethylitaconate)-co-poly(N,N-dimethylaminoethyl methacrylate) (PMMI-co-PDMAEMA), were used for the preparation of pH-sensitive fusogenic liposomes. Using polyethylene glycol (PEG)-poly(monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymers instead of cholesterol introduced pH-sensitive and plasma stability properties simultaneously in prepared liposomes. All formulations were prepared by thin film hydration method and subsequently, pH-sensitivity and stability in human serum were evaluated. The ability of pH-sensitive fusogenic liposomes to enhance the mitoxantrone cytotoxicity and selectivity in cancerous cell lines was assessed in vitro compared to normal cell line using human breast cancer cell line (MCF-7), human prostate cancer cell line (PC-3), and human umbilical vein endothelial cells line. Results revealed that both PMMI-co-PDMAEMA and PEG-PMMI-CholC6-based formulations showed pH-sensitive property and were found to rapidly release mitoxantrone under mildly acidic conditions. Nevertheless, only the PEG-PMMI-CholC6-based liposomes preserved pH-sensitivity after incubation in plasma. Mitoxantrone loaded-pH-sensitive fusogenic liposomes exhibited a higher cytotoxicity than the control conventional liposomes on MCF-7 and PC-3 cell lines. On the contrary, both pH-sensitive fusogenic liposomes showed lower cytotoxic effect on human umbilical vein endothelial cell line. Plasma stable, pH-sensitive fusogenic liposomes are promising carriers for enhancing the efficiency and selectivity, besides reduction of the side effects of anticancer agents. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Micro-resonator-based electric field sensors with long durations of sensitivity
NASA Astrophysics Data System (ADS)
Ali, Amir R.
2017-05-01
In this paper, we present a new fabrication method for the whispering gallery mode (WGM) micro-sphere based electric field sensor that which allows for longer time periods of sensitivity. Recently, a WGM-based photonic electric field sensor was proposed using a coupled dielectric microsphere-beam. The external electric field imposes an electrtrostriction force on the dielectric beam, deflecting it. The beam, in turn compresses the sphere causing a shift in its WGM. As part of the fabrication process, the PDMS micro-beams and the spheres are curied at high-temperature (100oC) and subsequently poled by exposing to strong external electric field ( 8 MV/m) for two hours. The poling process allows for the deposition of surface charges thereby increasing the electrostriction effect. This methodology is called curing-then-poling (CTP). Although the sensors do become sufficiently sensitive to electric field, they start de-poling after a short period (within 10 minutes) after poling, hence losing sensitivity. In an attempt to mitigate this problem and to lock the polarization for a longer period, we use an alternate methodology whereby the beam is poled and cured simultaneously (curing-while-poling or CWP). The new fabrication method allows for the retention of polarization (and hence, sensitivity to electric field) longer ( 1500 minutes). An analysis is carried out along with preliminary experiments. Results show that electric fields as small as 100 V/m can be detected with a 300 μm diameter sphere sensor a day after poling.
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang
Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).
A Culture-Sensitive Agent in Kirman's Ant Model
NASA Astrophysics Data System (ADS)
Chen, Shu-Heng; Liou, Wen-Ching; Chen, Ting-Yu
The global financial crisis brought a serious collapse involving a "systemic" meltdown. Internet technology and globalization have increased the chances for interaction between countries and people. The global economy has become more complex than ever before. Mark Buchanan [12] indicated that agent-based computer models will prevent another financial crisis and has been particularly influential in contributing insights. There are two reasons why culture-sensitive agent on the financial market has become so important. Therefore, the aim of this article is to establish a culture-sensitive agent and forecast the process of change regarding herding behavior in the financial market. We based our study on the Kirman's Ant Model[4,5] and Hofstede's Natational Culture[11] to establish our culture-sensitive agent based model. Kirman's Ant Model is quite famous and describes financial market herding behavior from the expectations of the future of financial investors. Hofstede's cultural consequence used the staff of IBM in 72 different countries to understand the cultural difference. As a result, this paper focuses on one of the five dimensions of culture from Hofstede: individualism versus collectivism and creates a culture-sensitive agent and predicts the process of change regarding herding behavior in the financial market. To conclude, this study will be of importance in explaining the herding behavior with cultural factors, as well as in providing researchers with a clearer understanding of how herding beliefs of people about different cultures relate to their finance market strategies.
Song, Kaijing; Ding, Chuanmin; Zhang, Bing; Chang, Honghong; Zhao, Zhihuan; Wei, Wenlong; Wang, Junwen
2018-06-01
The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS 2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab 2 -Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl 2 ), the photocurrent increases linearly 10 pg mL -1 to 80 ng mL -1 CEA concentration range, with a 3.2 pg mL -1 detection limit. Graphical abstract Flower-like GO-MoS 2 complex with high efficiency of electron transport was synthesized to construct photoelectrochemical platform. The sandwich-type immunoassay was built on this platform based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected sensitively by using sensitization of rhodamine dye Rh123 as signal amplification strategy.
Sonnenburg, Anna; Schreiner, Maximilian; Stahlmann, Ralf
2015-12-01
Parabens, methylisothiazolinone (MI) and its derivative methylchloroisothiazolinone (MCI), are commonly used as preservatives in personal care products. They can cause hypersensitivity reactions of the human skin. We have tested a set of nine parabens, MI alone and in combination with MCI in the loose-fit coculture-based sensitization assay (LCSA). The coculture of primary human keratinocytes and allogenic dendritic cell-related cells (DC-rc) in this assay emulates the in vivo situation of the human skin. Sensitization potency of the test substances was assessed by flow cytometric analysis of the DC-rc maturation marker CD86. Determination of the concentration required to cause a half-maximal increase in CD86-expression (EC50sens) allowed a quantitative evaluation. The cytotoxicity of test substances as indicator for irritative potency was measured by 7-AAD (7-amino-actinomycin D) staining. Parabens exhibited weak (methyl-, ethyl-, propyl- and isopropylparaben) or strong (butyl-, isobutyl-, pentyl- and benzylparaben) effects, whereas phenylparaben was found to be a moderate sensitizer. Sensitization potencies of parabens correlated with side chain length. Due to a pronounced cytotoxicity, we could not estimate an EC50sens value for MI, whereas MI/MCI was classified as sensitizer and also showed cytotoxic effects. Parabens showed no (methyl- and ethylparaben) or weak irritative potencies (propyl-, isopropyl-, butyl-, isobutyl-, phenyl- and benzylparaben), only pentylparaben was rated to be irritative. Overall, we were able to demonstrate and compare the sensitizing potencies of parabens in this in vitro test. Furthermore, we showed an irritative potency for most of the preservatives. The data further support the usefulness of the LCSA for comparison of the sensitizing potencies of xenobiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avonto, Cristina; Chittiboyina, Amar G.; Rua, Diego
2015-12-01
Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles aftermore » incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction workflow and critical parameters is presented. • The method could provide a useful tool to complement existing chemical assays.« less
Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill
2017-05-16
Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.
SU-8 negative photoresist for optical mask manufacturing
NASA Astrophysics Data System (ADS)
Bogdanov, Alexei L.
2000-06-01
The requirements for better control, linearity, and uniformity of critical dimension (CD) on photomasks in fabrication of 180 and 150 nm generation devices result in increasing demand for thinner, more etching durable, and more sensitive e-beam resists. Novolac based resists with chemical amplification have been a choice for their sensitivity and stability during etching. However, difficult CD control due to the acid catalyzer diffusion and quite narrow post exposure bake (PEB) process window are some of the major drawbacks of these resists. SU-8 is recently introduced to the market negative photoresist. High sensitivity, fairly good adhesion properties, and relatively simple processing of SU-8 make it a good substitution for novolac based chemically amplified negative e-beam resists in optical mask manufacturing. The replacement of traditional chemically amplified resists by SU- 8 can increase the process latitude and reduce resist costs. Among the obvious drawbacks of SU-8 are the use of solvent- based developer and demand of oxygen plasma for resist removal. In this paper the use of SU-8 for optical mask manufacturing is reported. All steps of resist film preparation, exposure and development are paid a share of attention. Possibilities to use reactive ion etching (RIE) with oxygen in order to increase resist mask contrast are discussed. Special exposure strategy (pattern outlining) was employed to further improve the edge definition. The resist PEB temperature and time were studied to estimate their weight in overall CD control performance. Specially designed test patterns with 0.25 micrometer design rule could be firmly transferred into a chromium layer both by wet etching and ion milling. Influence of exposure dose variation on the pattern CD change was studied.
Sensitivity of wildlife habitat models to uncertainties in GIS data
NASA Technical Reports Server (NTRS)
Stoms, David M.; Davis, Frank W.; Cogan, Christopher B.
1992-01-01
Decision makers need to know the reliability of output products from GIS analysis. For many GIS applications, it is not possible to compare these products to an independent measure of 'truth'. Sensitivity analysis offers an alternative means of estimating reliability. In this paper, we present a CIS-based statistical procedure for estimating the sensitivity of wildlife habitat models to uncertainties in input data and model assumptions. The approach is demonstrated in an analysis of habitat associations derived from a GIS database for the endangered California condor. Alternative data sets were generated to compare results over a reasonable range of assumptions about several sources of uncertainty. Sensitivity analysis indicated that condor habitat associations are relatively robust, and the results have increased our confidence in our initial findings. Uncertainties and methods described in the paper have general relevance for many GIS applications.
Spatial and spectral characterization of acid rain stress in Canadian Shield lakes
NASA Technical Reports Server (NTRS)
Marshall, Elizabeth J.; Tanis, Frederick J.
1989-01-01
Results from this study demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis was that seasonal and multiyear changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing, nonscattering material which has the greatest impact at short visible wavelengths, including Thematic Mapper band 1. Acid-sensitive lakes have high concentrations of aluminum which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for observed increases in lake transparency in acid-sensitive lakes. Thus seasonal changes in the optical transparency of lakes should provide an indication of the stress due to acid deposition and loading.
Great prospects for fiber optics sensors
NASA Technical Reports Server (NTRS)
Hansen, T. E.
1983-01-01
Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.;
2010-01-01
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-04-17
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
Tucker, Raymond P; Lengel, Greg J; Smith, Caitlin E; Capron, Dan W; Mullins-Sweatt, Stephanie N; Wingate, LaRicka R
2016-12-30
The current study investigated the relationship between maladaptive Five-Factor Model (FFM) personality traits, anxiety sensitivity cognitive concerns, and suicide ideation in a sample of 131 undergraduate students who were selected based on their scores on a screening questionnaire regarding Borderline Personality Disorder (BPD) symptoms. Those who endorsed elevated BPD symptoms in a pre-screen analyses completed at the beginning of each semester were oversampled in comparison to those with low or moderate symptoms. Indirect effect (mediation) results indicated that the maladaptive personality traits of anxious/uncertainty, dysregulated anger, self-disturbance, behavioral dysregulation, dissociative tendencies, distrust, manipulativeness, oppositional, and rashness had indirect effects on suicide ideation through anxiety sensitivity cognitive concerns. All of these personality traits correlated to suicide ideation as well. The maladaptive personality traits of despondence, affective dysregulation, and fragility were positive correlates of suicide ideation and predicted suicide ideation when all traits were entered in one linear regression model, but were not indirectly related through anxiety sensitivity cognitive concerns. The implication for targeting anxiety sensitivity cognitive concerns in evidence-based practices for reducing suicide risk in those with BPD is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Underwater linear polarization: physical limitations to biological functions
Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M.; Hanlon, Roger T.
2011-01-01
Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range. PMID:21282168
Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.
Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel
2015-03-11
Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.
Whitebird, Robin R; Bliss, Donna Zimmaro; Savik, Kay; Lowry, Ann; Jung, Hans-Joachim G
2010-12-01
Recruitment of participants to clinical trials remains a significant challenge, especially for research addressing topics of a sensitive nature such as fecal incontinence (FI). In the Fiber Study, a randomized controlled trial on symptom management for FI, we successfully enrolled 189 community-living adults through collaborations with specialty-based and community-based settings, each employing methods tailored to the organizational characteristics of their site. Results show that using the two settings increased racial and ethnic diversity of the sample and inclusion of informal caregivers. There were no differential effects on enrollment, final eligibility, or completion of protocol by site. Strategic collaborations with complementary sites can achieve sample recruitment goals for clinical trials on topics that are sensitive or known to be underreported. Copyright © 2010 Wiley Periodicals, Inc.
Mikolka, P; Mokra, D; Drgova, A; Petras, M; Mokry, J
2012-04-01
In allergic asthma, activated cells produce various substances including reactive oxygen species (ROS). As heterogenic pathophysiology of asthma results to different response to the therapy, testing novel interventions continues. Because of water-insolubility of some potentially beneficial drugs, dimethyl sulfoxide (DMSO) is often used as a solvent. Based on its antioxidant properties, this study evaluated effects of DMSO on mobilization of leukocytes into the lungs, and oxidation processes induced by ovalbumin (OVA)-sensitization in a guinea-pig model of allergic asthma. Guinea-pigs were divided into OVA-sensitized and naive animals. One group of OVA-sensitized animals and one group of naive animals were pretreated with 10% DMSO, the other two groups were given saline. After sacrificing animals, blood samples were taken and total antioxidant status (TAS) in the plasma was determined. Left lungs were saline-lavaged and differential leukocyte count in bronchoalveolar lavage fluid (BAL) was made. Right lung tissue was homogenized, TAS and products of lipid and protein oxidation were determined in the lung homogenate and in isolated mitochondria. OVA-sensitization increased total number of cells and percentages of eosinophils and neutrophils in BAL fluid; increased lipid and protein oxidation in the lung homogenate and mitochondria, and decreased TAS in the lungs and plasma compared with naive animals. However, no differences were observed in DMSO-instilled animals compared to controls. In conclusion, OVA-sensitization increased mobilization of leukocytes into the lungs and elevated production of ROS, accompanied by decrease in TAS. 10% DMSO had no effect on lipid and protein oxidation in a guinea-pig model of allergic asthma.
Sensing Structures Inspired by Blind Cave Fish
NASA Astrophysics Data System (ADS)
McConney, Michael E.; Chen, Nannan; Lu, David; Anderson, Kyle D.; Hu, Huan; Liu, Chang; Tsukruk, Vladimir V.
2009-03-01
Blind cave fish, with degenerated non-functioning eyes, have evolved to ``see'' their hydrodynamic environment by using the flow receptors of the lateral line system. The hair-cell receptors are encapsulated in a hydrogel-like material, called a cupula, which increases the sensitivity of the hair-cell receptors by coupling their motion to the surrounding flowing media. We characterized the viscoelastic properties and of blind cave fish cupulae by using colloidal-probe spectroscopy in fluid. A photo-patternable hydrogel with similar properties was developed to mimic the fish receptor coupling structure. Flow-based measurements indicated that the hydrogels enhance drag through increased surface area, but also inherent material properties. These bio-inspired structures endowed micro-fabricated flow sensors with sensitivities rivaling that of fish.
Hennessy, Michael B.; Deak, Terrence; Schiml-Webb, Patricia A.
2009-01-01
Early maternal separation and other disruptions of attachment relations are known to increase risk for the later onset of depressive illness in vulnerable individuals. It is suggested here that sensitization involving proinflammatory processes may contribute to this effect. This argument is based on: (1) current notions of the role of proinflammatory cytokines in depressive illness; (2) evidence that proinflammatory cytokines mediate depressive-like behavior during separation in a rodent model of infant attachment; and (3) comparisons of the effects of early proinflammatory activation versus maternal separation on later proinflammatory activity and biobehavioral processes related to depression. The possible interaction of proinflammatory processes and corticotropin-releasing factor in the sensitization process is discussed. PMID:20359585
Armstrong, Thomas; Olatunji, Bunmi O.
2017-01-01
Pavlovian fear conditioning provides a model for anxiety-related disorders, including obsessive-compulsive disorder (OCD). However, disgust is the predominant emotional response to contamination, which is a common theme in OCD. The present study sought to identify disgust conditioning abnormalities that may underlie excessive contamination concerns relevant to OCD. Individuals high and low in contamination concern (HCC, n = 32; LCC, n = 30) completed an associative learning task in which one neutral face (conditioned stimulus; CS+) was followed by a disgusting image (unconditioned stimulus; US) and another neutral face (CS−) was unreinforced. Following this acquisition procedure, there was an extinction procedure in which both CSs were presented unreinforced. The groups did not show significant differences in discriminant responding to the CSs following acquisition. However, following extinction, the HCC group reported less reduction in their expectancy of the US following the CS+, and also reported greater disgust to the CS+, compared to the LCC group. Increased disgust to the CS+ following both acquisition and extinction was correlated with increased symptoms of contamination-based OCD and increased disgust sensitivity. Additionally, disgust sensitivity mediated group differences in disgust responding to the CS+ at acquisition and extinction. Also, failure to adjust US expectancy in response to extinction partially mediated group differences in disgust to the CS+ following extinction. Together, these findings suggest that excessive contamination concerns observed in OCD may be related to difficulty inhibiting acquired disgust, possibly due to elevated disgust sensitivity that characterizes the disorder. PMID:28391115
Loibner, Martina; Buzina, Walter; Viertler, Christian; Groelz, Daniel; Hausleitner, Anja; Siaulyte, Gintare; Kufferath, Iris; Kölli, Bettina; Zatloukal, Kurt
2016-01-01
Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.
Absorbance enhancement in microplate wells for improved-sensitivity biosensors.
Suárez, Guillaume; Santschi, Christian; Plateel, Gregory; Martin, Olivier J F; Riediker, Michael
2014-06-15
A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Eng, Lars; Nygren-Babol, Linnéa; Hanning, Anders
2016-10-01
Surface plasmon resonance (SPR) is a well-established method for studying interactions between small molecules and biomolecules. In particular, SPR is being increasingly applied within fragment-based drug discovery; however, within this application area, the limited sensitivity of SPR may constitute a problem. This problem can be circumvented by the use of label-enhanced SPR that shows a 100-fold higher sensitivity as compared with conventional SPR. Truly label-free interaction data for small molecules can be obtained by applying label-enhanced SPR in a surface competition assay format. The enhanced sensitivity is accompanied by an increased specificity and inertness toward disturbances (e.g., bulk refractive index disturbances). Label-enhanced SPR can be used for fragment screening in a competitive assay format; the competitive format has the added advantage of confirming the specificity of the molecular interaction. In addition, label-enhanced SPR extends the accessible kinetic regime of SPR to the analysis of very fast fragment binding kinetics. In this article, we demonstrate the working principles and benchmark the performance of label-enhanced SPR in a model system-the interaction between carbonic anhydrase II and a number of small-molecule sulfonamide-based inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi
2015-08-04
It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.
The panic disorder screener (PADIS): Development of an accurate and brief population screening tool.
Batterham, Philip J; Mackinnon, Andrew J; Christensen, Helen
2015-07-30
The Panic Disorder Screener (PADIS) was developed as a new screener to identify panic disorder in the community and to assess severity of symptoms. The PADIS was developed to fill a gap in existing screening measures, as there are no brief panic screeners available that assess severity. The current study aimed to test the performance of the screener relative to the Patient Health Questionnaire-panic scale (PHQ-panic). The 4-item PADIS was administered to 12,336 young Australian adults, together with the PHQ-panic. A subsample of 1674 participants also completed a phone-based clinical interview to determine whether they met DSM-IV criteria for panic disorder. The PADIS (77% sensitivity, 84% specificity) had higher sensitivity for identifying panic disorder based on clinical criteria than the PHQ-panic (57% sensitivity, 91% specificity), although with reduced specificity. Administration of the PADIS required a mean of 1.9 items, compared to 4.7 items for the PHQ-panic. Each one-point increase in PADIS score was associated with 69% increased odds of meeting clinical criteria for panic disorder. The PADIS was found to be a valid, reliable and brief panic screener that is freely available for use in research and clinical settings. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Evaluation of the Diagnostic Utility of the Traditional and Revised WHO Dengue Case Definitions
Gutiérrez, Gamaliel; Gresh, Lionel; Pérez, María Ángeles; Elizondo, Douglas; Avilés, William; Kuan, Guillermina; Balmaseda, Ángel; Harris, Eva
2013-01-01
Dengue, a mosquito-borne viral illness, is a major public health problem worldwide, and its incidence continues to increase. In 2009, the World Health Organization published guidelines that included a revision of the dengue case definition. Compared to the traditional definition, the revised case definition relies more on signs than on symptoms, making it more applicable to young children. We evaluated the diagnostic utility of both case definitions in two studies of pediatric dengue in Managua, Nicaragua. In a community-based cohort study, we included data from 3,407 suspected dengue cases, of which 476 were laboratory-confirmed. In the second study, we collected information from 1,160 participants recruited at the national pediatric reference hospital (723 laboratory-confirmed). In the cohort study, the traditional definition had 89.3% sensitivity and 43.1% specificity, while the revised definition yielded similar sensitivity (86.6%) and higher specificity (55.2%, p<0.001). In the hospital study, the traditional case definition yielded 96.7% sensitivity and 22.0% specificity, whereas the revised case definition had higher sensitivity (99.3%, p<0.001) but lower specificity (8.5%, p<0.001). We then evaluated the performance of two diagnostic models based on the signs/symptoms included in each definition by analyzing the effect of increasing numbers of signs/symptoms on the sensitivity and specificity of case capture. Receiver operating characteristic analysis showed a slightly better performance for the revised model in both studies. Interestingly, despite containing less symptoms that cannot be readily expressed by children aged less than 4 years, the revised definition did not perform better in this age group. Overall, our results indicate that both case definitions have similar capacity to diagnose dengue. Owing to their high sensitivity and low specificity, they should be primarily used for screening purposes. However, in a primary care setting, neither of the case definitions performed well as a screening test in younger children. PMID:23991237
Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Domanski, Dominik; Borchers, Christoph H
2012-09-01
The analytical performance of a standard-flow ultra-high-performance liquid chromatography (UHPLC) and a nano-flow high-performance liquid chromatography (HPLC) system, interfaced to the same state-of-the-art triple-quadrupole mass spectrometer, were compared for the multiple reaction monitoring (MRM)-mass spectrometry (MS)-based quantitation of a panel of 48 high-to-moderate-abundance cardiovascular disease-related plasma proteins. After optimization of the MRM transitions for sensitivity and testing for chemical interference, the optimum sensitivity, loading capacity, gradient, and retention-time reproducibilities were determined. We previously demonstrated the increased robustness of the standard-flow platform, but we expected that the standard-flow platform would have an overall lower sensitivity. This study was designed to determine if this decreased sensitivity could be compensated for by increased sample loading. Significantly fewer interferences with the MRM transitions were found for the standard-flow platform than for the nano-flow platform (2 out of 103 transitions compared with 42 out of 103 transitions, respectively), which demonstrates the importance of interference-testing when nano-flow systems are used. Using only interference-free transitions, 36 replicate LC/MRM-MS analyses resulted in equal signal reproducibilities between the two platforms (9.3 % coefficient of variation (CV) for 88 peptide targets), with superior retention-time precision for the standard-flow platform (0.13 vs. 6.1 % CV). Surprisingly, for 41 of the 81 proteotypic peptides in the final assay, the standard-flow platform was more sensitive while for 9 of 81 the nano-flow platform was more sensitive. For these 81 peptides, there was a good correlation between the two sets of results (R(2) = 0.98, slope = 0.97). Overall, the standard-flow platform had superior performance metrics for most peptides, and is a good choice if sufficient sample is available.
Bronselaer, Guy; Callens, Nina; De Sutter, Petra; De Cuypere, Griet; T'Sjoen, Guy; Cools, Martine; Hoebeke, Piet
2013-12-01
Data on self-perceived genital anatomy and sensitivity should be part of the long-term follow-up of genitoplasty procedures. However, no normative data, based on a large sample, exist to date. Validation of the Self-Assessment of Genital Anatomy and Sexual Function, Female version (SAGAS-F) questionnaire within a Belgian, Dutch-speaking female population. Seven hundred forty-nine women with no history of genital surgery (aged 18-69 years, median 25 years) completed an Internet-based survey of whom 21 women underwent a gynecological examination as to correlate self-reported genital sensitivity assessed in an experimental setting. The SAGAS-F enables women to rate the sexual pleasure, discomfort, intensity of orgasm, and effort required for achieving orgasm in specified areas around the clitoris and within the vagina, as well as genital appearance. The latter was similarly evaluated by an experienced gynecologist, and women were asked to functionally rate the anatomical areas pointed out with a vaginal swab. Sexual pleasure and orgasm were strongest, and effort to attain orgasm and discomfort was lowest when stimulating the clitoris and sides of the clitoris (P < 0.05). Vaginal sensitivity increased with increasing vaginal depth, but overall orgasmic sensitivity was lower as compared with the clitoris. Functional scores on the SAGAS-F and during gynecological examination corresponded highly on most anatomical areas (P < 0.05). Gynecologist's ratings corresponded highly with the women's ratings for vaginal size (90%) but not for clitoral size (48%). Replication of the original pilot study results support the validity of the questionnaire. The SAGAS-F discriminates reasonably well between various genital areas in terms of erotic sensitivity. The clitoris itself appeared to be the most sensitive, consistent with maximum nerve density in this area. Surgery to the clitoris could disrupt neurological pathways and compromise erotic sensation and pleasure. © 2013 International Society for Sexual Medicine.
Sensitivity and uncertainty of input sensor accuracy for grass-based reference evapotranspiration
USDA-ARS?s Scientific Manuscript database
Quantification of evapotranspiration (ET) in agricultural environments is becoming of increasing importance throughout the world, thus understanding input variability of relevant sensors is of paramount importance as well. The Colorado Agricultural and Meteorological Network (CoAgMet) and the Florid...
Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity
NASA Astrophysics Data System (ADS)
Rashidi, Arezou; Namdar, Abdolrahman
2018-04-01
Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.
Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing
2016-12-01
Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.
Characterisation and Modification of Thermally Stable High Explosives for Laser Flyer Applications
NASA Astrophysics Data System (ADS)
Parker, A.; Claridge, R. P.; Proud, W. G.; Johnson, N. A.
2007-12-01
Laser initiation offers improved weapon survivability, versatility and greater Insensitive Munitions (IM) compliance. Detonators based on laser-driven flyers are less vulnerable to electrical initiation and can be based on insensitive secondary explosives. Additionally, this technology will offer advantages in terms of improved flexibility and reliability. Hexanitrostilbene (HNS) and nonanitro-m-terphenyl (NONA) were selected for investigation at QinetiQ as their increased thermal stability over conventional explosives makes them ideal candidates for use in insensitive munition compliant applications. The response of these materials to short duration high-amplitude shock impulses provided by exploding foil initiators (EFI), the electrical equivalent of a laser-driven flyer system, was investigated. Preparation techniques including sonication and the incorporation of additives were used to sensitize the materials to flyer impact, yet maintain their insensitivity to external hazards. Sonication significantly reduced the particle size of both HNS and NONA. The reduced-size explosives exhibited increased sensitivity to EFI impact than the starting materials.
Symmetric and Asymmetric Split Ring Resonators for Biosensing at Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Naranjo, Guillermo; Peralta, Xomalin
2015-03-01
Food allergies have become a major health concern around the world. Peanut allergies are particularly important because they affect over 5 million people in the United States. We are proposing to develop a metamaterial-based sensor for peanut allergens. The detection mechanism we will tap into is the change in a metamaterial's resonant response due to the presence of a biomolecule in the gap region. Using a commercial-grade simulator based on the finite-difference time-domain method, we have simulated the terahertz transmission and reflection spectra of three different split-ring resonator designs with and without a biomolecule present. By modifying the overall symmetry of the resonator and the geometry of the gap region, we have modified the resonant response and increased its sensitivity. The increased sensitivity is demonstrated by repeating the simulations with a layer of peroxidase conjugated immunoglobulin G (PX-IgG) in the gap region and quantifying the resulting resonant shift. These results are the basis for the proposed allergen sensors. UTSA MBRS-RISE Research Training Program.
NASA Astrophysics Data System (ADS)
Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.
2008-03-01
Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.
Shokrani, Mohammad Reza; Hamidon, Mohd Nizar B.; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin
2014-01-01
This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680
Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin
2014-01-01
This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.
IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auffenberg, Jan; Collaboration: IceCube Collaboration
IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is themore » concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ν{sub μ} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.« less
Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz
2018-04-01
Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.
Voltage-induced ferromagnetic resonance in magnetic tunnel junctions.
Zhu, Jian; Katine, J A; Rowlands, Graham E; Chen, Yu-Jin; Duan, Zheng; Alzate, Juan G; Upadhyaya, Pramey; Langer, Juergen; Amiri, Pedram Khalili; Wang, Kang L; Krivorotov, Ilya N
2012-05-11
We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.
Orbiting passive microwave sensor simulation applied to soil moisture estimation
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.
1979-01-01
A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.
Franko, Jennifer; Jackson, Laurel G.; Meade, B. Jean; Anderson, Stacey E.
2011-01-01
The purpose of the studies in this paper was to evaluate the allergic potential, immunotoxicity, and irritancy of the occupationally relevant chemical, 1-chloro-4-(trifluoromethyl)benzene, also known as parachlorobenzotrifluoride (PCBTF), following dermal exposure in a murine model. Evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50% to 100%, identified a dose-dependent increase in lymphocyte proliferation with a calculated EC3 value of 53.1%. While no elevations in total or specific IgE were observed after exposure to any concentration of the chemical, significant increases in IFN-γ protein production by stimulated draining lymphoid cells were observed, indicating a T-cell-mediated response. Dermal exposure to PCBTF was not found to alter the immune response to a T-cell-dependant antigen. These results demonstrate that PCBTF has the potential to induce allergic sensitization following dermal exposure and based on LLNA results would be classified as a weak sensitizer. PMID:21747864
Sensitivity analysis and calibration of a dynamic physically based slope stability model
NASA Astrophysics Data System (ADS)
Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens
2017-06-01
Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs
with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that precipitation intensities during the investigated landslide-triggering rainfall events were already close to or above the soil's infiltration capacity.
Blom, Johannes; Törnberg, Sven
2017-09-01
Objective To evaluate interval cancers in the population-based colorectal cancer screening programme of Stockholm/Gotland, Sweden. Methods From 2008, individuals aged 60-69 were invited to colorectal cancer screening using biennial guaiac-based faecal occult blood test (Hemoccult®). Interval cancers, defined as colorectal cancer among participants not diagnosed by the screening programme but registered in the Swedish cancer register, were evaluated by cross-checking the screening histories for all cancers in the region 2008-2012. Results Of 203,848 individuals from nine different birth cohorts who participated (∼60%), 4530 (2.2%) tested positive. All invited individuals were followed up for 24 months after invitation. The cancer register reported 557 colorectal cancer, 219 (39.3%) screen-detected cancers and 338 (60.7%) interval cancers, generating both test- and episode sensitivities of approximately 40% and an interval cancer-rate of 17.1/10,000 tests. Among individuals with positive tests without colorectal cancer diagnosed at work-up colonoscopy, 37 interval cancers (10.9%) occurred. There was statistically significant lower sensitivity in women, ranging 22.4-32.2%, compared with 43.2-52.0% in men. Age-group and tumour location were not strongly correlated to screen-detected cancer rates. The programme sensitivity increased by year (20.3-25.0%), with successively more colorectal cancers diagnosed within the expanding programme (11.6-16.2%). Conclusion Interval cancer is a quality indicator of a screening programme. As the interval cancer-rate determined in a well-organized population-based screening programme was actually higher than the screen-detected cancer rate, a change to a more sensitive screening test is indicated. The lower screen-detected cancers among women, and compliance and quality of work-up colonoscopies also need attention.
van Leth, Frank; den Heijer, Casper; Beerepoot, Mariëlle; Stobberingh, Ellen; Geerlings, Suzanne; Schultsz, Constance
2017-04-01
Increasing antimicrobial resistance (AMR) requires rapid surveillance tools, such as Lot Quality Assurance Sampling (LQAS). LQAS classifies AMR as high or low based on set parameters. We compared classifications with the underlying true AMR prevalence using data on 1335 Escherichia coli isolates from surveys of community-acquired urinary tract infection in women, by assessing operating curves, sensitivity and specificity. Sensitivity and specificity of any set of LQAS parameters was above 99% and between 79 and 90%, respectively. Operating curves showed high concordance of the LQAS classification with true AMR prevalence estimates. LQAS-based AMR surveillance is a feasible approach that provides timely and locally relevant estimates, and the necessary information to formulate and evaluate guidelines for empirical treatment.