Lumeij, J T; Meidam, M; Wolfswinkel, J; Van der Hage, M H; Dorrestein, G M
1988-01-01
Changes in plasma variables as a result of liver damage induced by ethylene glycol (group A) or D-galactosamine (group B) and of muscle damage induced by doxycycline were compared. Plasma bile acid concentration was both a specific and a sensitive indicator of liver disease. Another specific, but less sensitive indicator of liver disease was 7-GT. Plasma AS AT activity was the most sensitive indicator of disease of the liver, but was not specific, since increased ASAT activities were also seen during muscle disease. ALAT activity was slightly more sensitive to liver damage than 7-GT, but was also not specific, being increased also after muscle damage. Plasma GLDH activity was increased only as a result of extensive liver necrosis. AP activity was of no value for detecting liver disease in the pigeon. CK activity was specific for muscle injury, though the activities of ALAT, ASAT and LD were also increased. Because of its long elimination half-life, increased ALAT activity persisted for 9 days after muscle damage, whereas CK activity returned to reference values within 3 days. LDH was a poor indicator of damage to liver and muscle, despite its relatively high tissue concentrations in both tissues. The rapid disappearance rate of LDH from plasma probably explains this observation.
THE EFFECT OF IONIZING RADIATION ON ACETYLCHOLINE METABOLISM IN MACACA- RHESUS MONKEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, N.N.; Korneeva, N.V.; Shaternikov, V.A.
1961-11-01
In macaca-rhesus monkeys the normal content of free acetylcholine in the mucosa of the small intestine was higher, as it was in brain and liver, than bound acetyl choline. The total cholinesterase activity and, particularly, the activity of acetylcholinesterase and non-specific cholinesterase in control monkeys is highest in brain, followed by intestinal mucosa and liver. One to three days after gamma -irradiation of the monkey at a dose of 600 r the amount of free and bound acetylcholine in the mucosa of the small intestine increased, while it decreased in liver. The total cholinesterase activity in the mucosa of themore » small intestine during this period increased, in general because of the increase in the activity of non-specific cholinesterase. In the liver the increase in total cholinesterase activity also occurred because of an increase in non-specific cholinesterase activity, but was less clear-cut and occurred later (the third day after irradiation). In animals irradiated 2 to 3 years before the investigation, an increased concentration of free acetylcholine in brain, liver, and mucosa of the small intestine was noted; but there were no ehanges in bound acetylcholine. The total cholinesterase activity increased in liver as a result of acetyl cholinesterase increase and non-specific enzymes, and in mucosa of the small intestine only as a result of acetylcholinesterase activity. In brain the total cholinesterase activity decreased as a consequence of a decrease in acetylcholinesterase activity. (auth)« less
NASA Technical Reports Server (NTRS)
Vandenburgh, H. H.; Shansky, J.; Karlisch, P.; Solerssi, R. L.
1993-01-01
Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F2 alpha which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.
Segregated and integrated coding of reward and punishment in the cingulate cortex.
Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro
2009-06-01
Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.
Salivary hexosaminidase in smoking alcoholics with bad periodontal and dental states.
Waszkiewicz, Napoleon; Chojnowska, Sylwia; Zalewska, Anna; Zwierz, Krzysztof; Szulc, Agata; Szajda, Sławomir Dariusz
2013-04-01
A sensitive alcohol marker, β-hexosaminidase (HEX), in the saliva of alcoholics, is investigated for the first time. The activity, specific-activity and output of total HEX and its isoenzymes HEX A and HEX B were measured in the saliva of healthy controls (C), alcohol-dependent non-smokers (ANS), and alcohol-dependent smokers (AS). We observed a significantly increased activity/specific-activity and output of HEX A in the ANS and AS groups, due to the inflammatory state of the oral-cavity/salivary-glands. Significantly increased activity of HEX A contributed to an increase in the salivary activity of the total HEX in the ANS group. A significant decrease in the activity/specific-activity of HEX B in AS seemed to be due to HEX B inactivation by cigarette smoke. We noticed a tendency for deteriorated dental state (lower decayed-missing-filled-teeth index - DMFT), worse periodontal state (higher gingival index - GI and papilla-bleeding index - PBI) in AS, and worse periodontal state (higher GI) in ANS, as compared to the controls. We found no differences in the salivary protein concentrations between all groups and decreased salivary flow in both alcoholic groups as compared to the controls. In alcoholics, the area under the curve (AUC) for HEX A activity/specific-activity was significantly greater than for HEX and HEX B. The salivary HEX A activity/specific-activity had good/excellent sensitivity and specificity in smoking and non-smoking alcoholics, whereas salivary HEX and HEX B had poor/fair sensitivity and specificity. Salivary HEX A may be helpful in the diagnosis of chronic alcohol intoxication, even in smokers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yun-Long; Wu, Qiao-Wan; Hu, Wei-Hua; Wang, Fan; Zhao, Zhong-Bo; He, Hui; Shao, Wei-Han; Fan, Qi-Xue
2015-12-01
The digestive physiology of Chinese loach (Paramisgurnus dabryanus) was studied by assessing the specific and total activities of different pancreatic (trypsin, chymotrypsin, amylase and lipase), gastric (pepsin) and intestinal (alkaline phosphatase and leucine-aminopeptidase) enzymes from hatching to 40 days after hatching (DAH). Larvae were reared at 24.4 ± 0.4 °C and fed with rotifers from mouth opening (4 DAH) to 15 DAH, from 10 to 35 DAH with Cladocera and from 30 to 40 DAH with compound diet. Enzyme activities for trypsin, chymotrypsin, amylase and lipase were detected before the onset of exogenous feeding, indicating that these enzymes were genetically pre-programmed. Most of the pancreatic enzyme specific activities increased until 20 DAH and decreased thereafter. The pepsin activity of Chinese loach was firstly detected at 30 DAH, indicating the appearance of functional gastric gland. Alkaline phosphatase specific activity was detected from hatching onward, showed marked increase and reached the second peak at 20 DAH, while a gradual increase in specific leucine-aminopeptidase activity was observed until the end of the experiment. Accordingly, the larvae of Chinese loach possess a functional digestive system before the onset of exogenous feeding and the digestive capacity gradually increases as development progresses. The abrupt increase in intestinal enzyme activities between 10 and 20 DAH demonstrates onset of juvenile-like digestive mode in Chinese loach larvae. The increase in pepsin activity after 30 DAH indicates the shift from alkaline to acidic digestion in Chinese loach larvae, which may be considered as the onset of weaning.
Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water.
Zhao, Zhao; Shi, Huijuan; Kang, Xianjiang; Liu, Cunqi; Chen, Lingci; Liang, Xiaofei; Jin, Lei
2017-11-01
The influences of intra- and inter-species competition on ecosystems are poorly understood. Lemna aequinoctialis and Spirodela polyrhiza were used to assess the effects of exposure to different concentrations of multiple heavy metals (copper-cadmium-zinc), when the plants were grown in mixed- or mono-culture. Parameters assessed included relative growth rate (RGR), content of chlorophyll, glutathione (GSH), malondialdehyde (MDA), as well as the activity of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD). Inter-specific competition was affected by metal concentration, with results indicating that inter-specific competition significantly affected duckweed growth and metal uptake in different heavy metal exposure conditions. Inter-specific competition increased growth rate of duckweed under high metal concentrations, although when compared with intra-specific competition, it caused no obvious differences under low metal concentrations. The growth of L. aequinoctialis was further increased in mixed culture when exposed to high metal concentrations, with inter-specific competition increasing the content of cadmium and zinc, while decreasing copper content of L. aequinoctialis compared with under intra-specific conditions. Conversely, inter-specific competition increased the content of copper and cadmium of S. polyrhiza, without causing obvious differences in zinc accumulation under high ambient concentrations. Under high metal conditions, inter-specific competition increased antioxidant enzyme activities in duckweed species, increasing resistance to heavy metals. Results show that inter-specific competition makes duckweed develop mechanisms to increase fitness and survival, such as enhancement of antioxidant enzyme activities, rather than limiting metal uptake when exposed to high concentrations of multiple metals. Copyright © 2017 Elsevier B.V. All rights reserved.
Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark
2008-03-07
Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.
The effect on some enzymes of rat tissue of diets low in fat content.
Bartley, W; Dean, B; Taylor, C B; Bailey, E
1967-05-01
1. Rats of two strains were kept on three different diets; one was a commercial diet of rat pellets, one contained about 80% of sucrose and 20% of casein and was supplemented with corn oil, and the third was a similar diet without the corn oil. 2. On the commercial diet, the specific activities of pyruvate kinase, glucose 6-phosphate dehydrogenase and fructose 1,6-diphosphatase in the livers of one strain of rats (strain A) were 1.5-3 times those in the other strain (strain B). When the diet high in sucrose and supplemented with corn oil was given, there were large increases in the specific activity of pyruvate kinase, glucose 6-phosphate dehydrogenase and fructose 1,6-diphosphatase in the livers of strain A rats. With strain B rats the increases were much smaller. Omission of corn oil from the diet caused a threefold increase in the specific activity of glucose 6-phosphate dehydrogenase in strain B rats, but had little effect on other enzymes. 3. The enzymes of the kidneys and hearts of strain A rats were also more active than those of strain B rats. In strain A rats, the specific activities of pyruvate kinase and fructose 1,6-diphosphatase in the kidney increased when the sucrose content of the diet was high, but in the kidneys of strain B rats there was little change. 4. In strain A rats, the specific activity of pyruvate kinase in the heart more than doubled with the high-sucrose-corn oil diet and increased threefold when corn oil was omitted. No changes were seen in strain B rats. 5. In strain A rats, omission of corn oil from the diet increased the ability of the kidneys to synthesize glucose from lactate. 6. In strain B rats, addition of corn oil to the diet resulted in a decrease in the liver in the specific activity of ATP citrate lyase and in the ability to incorporate acetate into lipid.
NASA Astrophysics Data System (ADS)
Taer, E.; Dewi, P.; Sugianto, Syech, R.; Taslim, R.; Salomo, Susanti, Y.; Purnama, A.; Apriwandi, Agustino, Setiadi, R. N.
2018-02-01
The synthesis of carbon electrode from durian shell based on variations in the activation time has been carried out. Synthesis of carbon electrode was started by a carbonization process at a temperature of 600°C in nitrogen gas and then followed by physical activation process using water vapor at a temperature of 900°C by varying time of 1, 2 and 3 h. All of the variations of the samples were chemically activated using an activator of ZnCl2 with a concentration of 0.4 M. The physical properties such as density, surface morphology, degree of crystallinity and elemental content were analyzed. Moreover, the electrochemical properties such as specific capacitance of supercapacitor cells were studied using Cyclic Voltammetry methods. The density, stack height and carbon content were increased as activation time increases, while the specific capacitance of the supercapacitor cell decreases against the increase of activation time. Specific capacitances for 1, 2 and 3 h activation time are 88.39 F/g, 80.08 F/g and 74.61 F/g, respectively. Based on the surface morphology study it was shown that the increased in activation time causes narrowing of the pores between particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsyi, M.P.; Gaziev, A.I.
An increase in the activity of histone-associated rat thymus nucleus proteinases specific for histones H2A, H2B and H1 was shown after {gamma} irradiation or hydrocortisone treatment of animals. Histone H1-specific proteinase activity is dependent on DNA and increases in the presence of denatured DNA, whereas proteinases specific for core histones are inhibited in the presence of denatured DNA. The increase in the activity of histone-associated proteinases depends on the radiation dose and the time after irradiation or hydrocortisone injection. In the presence of dithiothreitol and sodium dodecyl sulfate, these proteinases dissociate from histones. It was found by gel electrophoresis thatmore » several proteinases of various molecular masses are closely associated with histones obtained from thymus nuclei of irradiated or hydrocortisone-treated rats. 43 refs., 7 figs.« less
Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J
1976-03-01
Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.
Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya
2009-10-15
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Shansky, Janet; Karlisch, Patricia; Solerssi, Rosa Lopez
1991-01-01
Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins E2 and F2(alpha) which regulate protein turnover rates and muscle cell growth. Mechnical stimulation significantly increases the breakdown rate of (3)H-arachidonic acid labelled phospholipids, releasing free (3)H-arachidonic acid, and the rate-limiting precursor of prostaglandin synthesis. Mechanical stimulation also significantly increases (3)H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-2-(3)H inositol labelled phospholipids. Phospholipase A2, phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are activated by stretch. The lipase inhibitors bromophenacylbromide and RHC80267 together reduce stretch-induced prostaglandin production by 73-83 percent. The stretch-induced increases in prostaglandin production, (3)H-arachidonic acid labelled phospholipid breakdown, and (3)H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-2-(3)H inositol labelled phospholipids are dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and prostaglandins through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.
Characterization and effect of light on the plasma membrane H(+) -ATPase of bean leaves
NASA Technical Reports Server (NTRS)
Linnemeyer, P. A.; Van Volkenburgh, E.; Cleland, R. E.
1990-01-01
Proton excretion from bean (Phaseolus vulgaris L.) leaf cells is increased by bright white light. To test whether this could be due, at least in part, to an increase in plasma membrane (PM) ATPase activity, PM vesicles were isolated from primary leaves by phase partitioning and used to characterize PM ATPase activity and changes in response to light. ATPase activity was characterized as magnesium ion dependent, vanadate sensitive, and slightly stimulated by potassium chloride. The pH optimum was 6.5, the Km was approximately 0.30 millimolar ATP, and the activity was about 60% latent. PM vesicles were prepared from leaves of plants grown for 11 days in dim red light (growing slowly) or grown for 10 days in dim red light and then transferred to bright white-light for 1 day (growing rapidly). For both light treatments, ATPase specific activity was approximately 600 to 700 nanomoles per milligram protein per minute, and the latency, Km, and sensitivity to potassium chloride were also similar. PM vesicles from plants grown in complete darkness, however, exhibited a twofold greater specific activity. We conclude that the promotion of leaf growth and proton excretion by bright white light is not due to an increase in ATPase specific activity. Light does influence ATPase activity, however; both dim red light and bright white light decreased the ATPase specific activity by nearly 50% as compared with dark-grown leaves.
Ryals, Anthony J.; Cleary, Anne M.; Seger, Carol A.
2013-01-01
This fMRI study examined recall and familiarity for words and scenes using the novel recognition without cued recall (RWCR) paradigm. Subjects performed a cued recall task in which half of the test cues resembled studied items (and thus were familiar) and half did not. Subjects also judged the familiarity of the cue itself. RWCR is the finding that, among cues for which recall fails, subjects generally rate cues that resemble studied items as more familiar than cues that do not. For words, left and right hippocampal activity increased when recall succeeded relative to when it failed. When recall failed, right hippocampal activity was decreased for familiar relative to unfamiliar cues. In contrast, right Prc activity increased for familiar cues for which recall failed relative to both familiar cues for which recall succeeded and to unfamiliar cues. For scenes, left hippocampal activity increased when recall succeeded relative to when it failed but did not differentiate familiar from unfamiliar cues when recall failed. In contrast, right Prc activity increased for familiar relative to unfamiliar cues when recall failed. Category-specific cortical regions showed effects unique to their respective stimulus types: The visual word form area (VWFA) showed effects for recall vs. familiarity specific to words, and the parahippocampal place area (PPA) showed effects for recall vs. familiarity specific to scenes. In both cases, these effects were such that there was increased activity occurring during recall relative to when recall failed, and decreased activity occurring for familiar relative to unfamiliar cues when recall failed. PMID:23142268
Hege, M A; Stingl, K T; Kullmann, S; Schag, K; Giel, K E; Zipfel, S; Preissl, H
2015-02-01
A subgroup of overweight and obese people is characterized by binge eating disorder (BED). Increased impulsivity has been suggested to cause binge eating and subsequent weight gain. In the current study, neuronal correlates of increased impulsivity in binge eating disorder during behavioral response inhibition were investigated. Magnetic brain activity and behavioral responses of 37 overweight and obese individuals with and without diagnosed BED were recorded while performing a food-related visual go-nogo task. Trait impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11). Specifically, increased attentional impulsiveness (a subscale of the BIS-11) in BED was related to decreased response inhibition performance and hypoactivity in the prefrontal control network, which was activated when response inhibition was required. Furthermore, participants with BED showed a trend for a food-specific inhibition performance decline. This was possibly related to the absence of a food-specific activity increase in the prefrontal control network in BED, as observed in the control group. In addition, an increase in activity related to the actual button press during prepotent responses and alterations in visual processing were observed. Our results suggest an attentional impulsiveness-related attenuation in response inhibition performance in individuals with BED. This might have been related to increased reward responsiveness and limited resources to activate the prefrontal control network involved in response inhibition. Our results substantiate the importance of neuronal markers for investigating prevention and treatment of obesity, especially in specific subgroups at risk such as BED.
Liu, Feng; Wang, Lei; Wang, Hongwei; Yuan, Lin; Li, Jingwen; Brash, John Law; Chen, Hong
2015-02-18
The key property of protein-nanoparticle conjugates is the bioactivity of the protein. The ability to accurately modulate the activity of protein on the nanoparticles at the interfaces is important in many applications. In the work reported here, modulation of the activity of protein-gold nanoparticle (AuNP) conjugates by specifically orienting the protein and by varying the surface density of the protein was investigated. Different orientations were achieved by introducing cysteine (Cys) residues at specific sites for binding to gold. We chose Escherichia coli inorganic pyrophosphatase (PPase) as a model protein and used site-directed mutagenesis to generate two mutant types (MTs) with a single Cys residue on the surface: MT1 with Cys near the active center and MT2 with Cys far from the active center. The relative activities of AuNP conjugates with wild type (WT), MT1, and MT2 were found to be 44.8%, 68.8%, and 91.2% of native PPase in aqueous solution. Site-directed orientation with the binding site far from the active center thus allowed almost complete preservation of the protein activity. The relative activity of WT and MT2 conjugates did not change with the surface density of the protein, while that of MT1 increased significantly with increasing surface density. These results demonstrate that site-directed orientation and surface density can both modulate the activity of proteins conjugated to AuNP and that orientation has a greater effect than density. Furthermore, increasing the surface density of the specifically oriented protein MT2, while having no significant effect on the specific activity of the protein, still allowed increased protein loading on the AuNP and thus increased the total protein activity. This is of great importance in the study on the interface of protein and nanoparticle and the applications for enzyme immobilization, drug delivery, and biocatalysis.
ERIC Educational Resources Information Center
Adamo, Elyse K.; Wu, Jenny; Wolery, Mark; Hemmeter, Mary Louise; Ledford, Jennifer R.; Barton, Erin E.
2015-01-01
Children with Down syndrome may be at increased risk of problems associated with inactivity. Early intervention to increase physical activity may lead to increased participation in typical activities and long-term increases in quality of life (e.g., decreased likelihood of obesity-related illness). A multi-component intervention, including video…
Jessen, Niels; Pold, Rasmus; Buhl, Esben S; Jensen, Lasse S; Schmitz, Ole; Lund, Sten
2003-04-01
Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.
1996-05-15
Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urry, R.L.; Dougherty, K.A.; Frehn, J.L.
The article reviews those factors other than light that affect the activity of the pineal gland. Both testosterone and dihydroterosterone were shown to have tissue-specific inhibitory effects on pineal MAO activity concomitant with an increased activity of the gland. The effect also was tissue-specific. Bilateral and unilateral experimental cryptorchidism also decreased pineal MAO activity 3 to 4 weeks after surgery. Acute stresses appear to increase adrenal catecholamine output (epinephrine and norepinephrine) as well as to stimulate local adrenergic pathways, while chronic stress, such as starvation, appears to act through the adrenal corticosteroids by decreasing pineal MAO activity thereby indirectly increasingmore » melatonin synthesis. Thus, both components of the adrenal gland appear to act in concert to increase effectively melatonin synthesis by the pineal function----the latter specifically inhibits HIOMT activity. These observations indicate that many factors other than light affect pineal morphology and melatonin synthesis. The pineal appears to be a true neuroendocrine organ that is affected by hypophysectomy and is responsive to feedback and control from other organs within the mammalian organism. (auth)« less
Ryals, Anthony J; Cleary, Anne M; Seger, Carol A
2013-01-25
This fMRI study examined recall and familiarity for words and scenes using the novel recognition without cued recall (RWCR) paradigm. Subjects performed a cued recall task in which half of the test cues resembled studied items (and thus were familiar) and half did not. Subjects also judged the familiarity of the cue itself. RWCR is the finding that, among cues for which recall fails, subjects generally rate cues that resemble studied items as more familiar than cues that do not. For words, left and right hippocampal activity increased when recall succeeded relative to when it failed. When recall failed, right hippocampal activity was decreased for familiar relative to unfamiliar cues. In contrast, right Prc activity increased for familiar cues for which recall failed relative to both familiar cues for which recall succeeded and to unfamiliar cues. For scenes, left hippocampal activity increased when recall succeeded relative to when it failed but did not differentiate familiar from unfamiliar cues when recall failed. In contrast, right Prc activity increased for familiar relative to unfamiliar cues when recall failed. Category-specific cortical regions showed effects unique to their respective stimulus types: The visual word form area (VWFA) showed effects for recall vs. familiarity specific to words, and the parahippocampal place area (PPA) showed effects for recall vs. familiarity specific to scenes. In both cases, these effects were such that there was increased activity occurring during recall relative to when recall failed, and decreased activity occurring for familiar relative to unfamiliar cues when recall failed. Copyright © 2012 Elsevier B.V. All rights reserved.
Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B
2016-07-06
AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.
Park, Sung-Jun; Ahmad, Faiyaz; Um, Jee-Hyun; Brown, Alexandra L; Xu, Xihui; Kang, Hyeog; Ke, Hengming; Feng, Xuesong; Ryall, James; Philp, Andrew; Schenk, Simon; Kim, Myung K; Sartorelli, Vittorio; Chung, Jay H
2017-04-01
The specific Sirt1 activator SRT1720 increases mitochondrial function in skeletal muscle, presumably by activating Sirt1. However, Sirt1 gain of function does not increase mitochondrial function, which raises a question about the central role of Sirt1 in SRT1720 action. Moreover, it is believed that the metabolic effects of SRT1720 occur independently of AMP-activated protein kinase (AMPK), an important metabolic regulator that increases mitochondrial function. Here, we show that SRT1720 activates AMPK in a Sirt1-independent manner and SRT1720 activates AMPK by inhibiting a cAMP degrading phosphodiesterase (PDE) in a competitive manner. Inhibiting the cAMP effector protein Epac prevents SRT1720 from activating AMPK or Sirt1 in myotubes. Moreover, SRT1720 does not increase mitochondrial function or improve glucose tolerance in AMPKα2 knockout mice. Interestingly, weight loss induced by SRT1720 is not sufficient to improve glucose tolerance. Therefore, contrary to current belief, the metabolic effects produced by SRT1720 require AMPK, which can be activated independently of Sirt1. Published by Elsevier B.V.
Pardini, Matteo; Samson, Rebecca S.; D'Angelo, Egidio; Friston, Karl J.; Toosy, Ahmed T.; Gandini Wheeler‐Kingshott, Claudia A.M.
2015-01-01
Abstract Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event‐related visually guided dynamic power‐grip paradigm with parametric (three) forces (GF) in healthy right‐handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL‐specific and hemisphere‐specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL‐specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand‐side‐independent activations of nonmotor‐specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori‐motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power‐grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments. Hum Brain Mapp 36:5079–5100, 2015. © 2015 Wiley Periodicals, Inc. PMID:26415818
NASA Astrophysics Data System (ADS)
Huang, Wei; Cao, Liang; Ye, Zhenjiang; Lin, Longshan; Chen, Quanzhen; Dou, Shuozeng
2012-07-01
To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder ( Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 μg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, bone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dosedependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S -transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.
Behaviour and Locomotor Activity of a Migratory Catostomid during Fishway Passage
Silva, Ana T.; Hatry, Charles; Thiem, Jason D.; Gutowsky, Lee F. G.; Hatin, Daniel; Zhu, David Z.; W. Dawson, Jeffery; Katopodis, Christos; J. Cooke, Steven
2015-01-01
Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum) during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration) to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations. PMID:25853245
Stanley, Rebecca M.; Ridley, Kate; Olds, Timothy S.; Dollman, James
2014-01-01
Background The lunchtime and after-school contexts are critical windows in a school day for children to be physically active. While numerous studies have investigated correlates of children’s habitual physical activity, few have explored correlates of physical activity occurring at lunchtime and after-school from a social-ecological perspective. Exploring correlates that influence physical activity occurring in specific contexts can potentially improve the prediction and understanding of physical activity. Using a context-specific approach, this study investigated correlates of children’s lunchtime and after-school physical activity. Methods Cross-sectional data were collected from 423 South Australian children aged 10.0–13.9 years (200 boys; 223 girls) attending 10 different schools. Lunchtime and after-school physical activity was assessed using accelerometers. Correlates were assessed using purposely developed context-specific questionnaires. Correlated Component Regression analysis was conducted to derive correlates of context-specific physical activity and determine the variance explained by prediction equations. Results The model of boys’ lunchtime physical activity contained 6 correlates and explained 25% of the variance. For girls, the model explained 17% variance from 9 correlates. Enjoyment of walking during lunchtime was the strongest correlate for both boys and girls. Boys’ and girls’ after-school physical activity models explained 20% variance from 14 correlates and 7% variance from the single item correlate, “I do an organised sport or activity after-school because it gets you fit”, respectively. Conclusions Increasing specificity of correlate research has enabled the identification of unique features of, and a more in-depth interpretation of, lunchtime and after-school physical activity behaviour and is a potential strategy for advancing the physical activity correlate research field. The findings of this study could be used to inform and tailor gender-specific public health messages and interventions for promoting lunchtime and after-school physical activity in children. PMID:24809440
Neurotrophic factor - Characterization and partial purification
NASA Technical Reports Server (NTRS)
Popiela, H.; Ellis, S.
1981-01-01
Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.
A Situation-specific Theory of Midlife Women's Attitudes toward Physical Activity (MAPA)
Im, Eun-Ok; Stuifbergen, Alexa K.; Walker, Lorraine
2010-01-01
This paper presents a situation specific theory—the Midlife Women's Attitudes toward Physical Activity (MAPA) theory—that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model, a review of the related literature, and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be easily linked to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. PMID:20113755
Panizza, Paola; Cesarini, Silvia; Diaz, Pilar; Rodríguez Giordano, Sonia
2015-01-25
Several Pseudomonas sp. CR611 Lip I.3 mutants with overall increased activity and a shift towards longer chain substrates were constructed. Substitution of residues Y29 and W310 by smaller amino acids provided increased activity on C18-substrates. Residues G152 and S154, modified to study their influence on interfacial activation, displayed a five and eleven fold increased activity.
UML activity diagrams in requirements specification of logic controllers
NASA Astrophysics Data System (ADS)
Grobelna, Iwona; Grobelny, Michał
2015-12-01
Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.
Best Practices and Recommendations for Increasing Physical Activity in Youth
ERIC Educational Resources Information Center
Erwin, Heather; Beets, Michael W.; Centeio, Erin; Morrow, James R., Jr.
2014-01-01
Many efforts to increase the physical activity levels of Americans have been introduced and implemented over the past 20 years. National Physical Activity Guidelines have been established, and the National Physical Activity Plan (NPAP) is now in place, which includes a specific sector dedicated to education. This article addresses the Education…
Chuah, Jo-Ann; Tomizawa, Satoshi; Yamada, Miwa; Tsuge, Takeharu; Doi, Yoshiharu
2013-01-01
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCs for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4 and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases. PMID:23584780
Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects.
Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J
2014-12-01
The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. © 2014 The British Pharmacological Society.
Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects
Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J
2014-01-01
Aim The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. Methods This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. Results All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. Conclusion A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. PMID:25039273
Systemic and Renal-Specific Sympathoinhibition in Obesity Hypertension
Lohmeier, Thomas E.; Iliescu, Radu; Liu, Boshen; Henegar, Jeffrey R.; Maric-Bilkan, Christine; Irwin, Eric D.
2012-01-01
Chronic pressure-mediated baroreflex activation suppresses renal sympathetic nerve activity. Recent observations indicate that chronic electrical activation of the carotid baroreflex produces sustained reductions in global sympathetic activity and arterial pressure. Thus, we investigated the effects of global and renal specific suppression of sympathetic activity in dogs with sympathetically-mediated, obesity-induced hypertension by comparing the cardiovascular, renal, and neurohormonal responses to chronic baroreflex activation and bilateral surgical renal denervation. After control measurements, the diet was supplemented with beef fat while sodium intake was held constant. After 4 weeks on the high-fat, when body weight had increased ~a 50%, fat intake was reduced to a level that maintained this body weight. This weight increase was associated with an increase in mean arterial pressure from 100±2 to 117±3 mm Hg and heart rate from 86±3 to 130±4 bpm. The hypertension was associated with a marked increase in cumulative sodium balance despite ~ a 35% increase in GFR. The importance of increased tubular reabsorption to sodium retention was further reflected by ~ a 35% decrease in fractional sodium excretion. Subsequently, both chronic baroreflex activation (7 days) and renal denervation decreased plasma renin activity and abolished the hypertension. However, baroreflex activation also suppressed systemic sympathetic activity and tachycardia and reduced glomerular hyperfiltration while increasing fractional sodium excretion. In contrast, GFR increased further after renal denervation. Thus, by improving autonomic control of cardiac function and diminishing glomerular hyperfiltration, suppression of global sympathetic activity by baroreflex activation may have beneficial effects in obesity beyond simply attenuating hypertension. PMID:22184321
Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine.
Muta, Yu; Fujita, Yoshihisa; Sumiyama, Kenta; Sakurai, Atsuro; Taketo, M Mark; Chiba, Tsutomu; Seno, Hiroshi; Aoki, Kazuhiro; Matsuda, Michiyuki; Imajo, Masamichi
2018-06-05
Acting downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. Intravital imaging identifies two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activities depend on ErbB2 and EGFR, respectively. Notably, activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augments EGFR signalling and increases the frequency of ERK activity pulses through controlling the expression of EGFR and its regulators, rendering IECs sensitive to EGFR inhibition. Furthermore, the increased pulse frequency is correlated with increased cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations might underlie tumour-specific sensitivity to pharmacological EGFR inhibition.
Stereotypic wheel running decreases cortical activity in mice
Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.
2016-01-01
Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455
A situation-specific theory of Midlife Women's Attitudes Toward Physical Activity (MAPA).
Im, Eun-Ok; Stuifbergen, Alexa K; Walker, Lorraine
2010-01-01
This paper presents a situation specific theory-the Midlife Women's Attitudes Toward Physical Activity (MAPA) theory-that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model; a review of the related literature; and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be linked easily to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. Copyright 2010 Mosby, Inc. All rights reserved.
Shiri, Rahman; Solovieva, Svetlana; Husgafvel-Pursiainen, Kirsti; Telama, Risto; Yang, Xiaolin; Viikari, Jorma; Raitakari, Olli T; Viikari-Juntura, Eira
2013-06-01
To study the effects of obesity, physical activity, and change in physical activity on the incidence of low back pain and explore whether obesity modifies the effects of physical activity. As part of the ongoing Young Finns Study, 1224 subjects aged 24-39 years free from low back pain during the preceding 12 months at baseline in 2001 were included. Obesity was defined based on the body mass index (BMI) and waist circumference, and physical activity was assessed by the metabolic equivalent of task (MET) index in 2001 and 2007. Abdominal obesity, defined by an increased waist circumference, was associated with an increased incidence of radiating low back pain (adjusted odds ratio (OR) = 1.7 and 95% confidence interval (CI) 1.1-2.7), while it had no effect on non-specific low back pain. BMI was associated neither with the incidence of radiating low back pain nor with non-specific low back pain. Compared with subjects who stayed active during follow-up, those with a low level of physical activity (adjusted OR = 2.0 and 95% CI 1.1-3.5) and active subjects who further increased their physical activity during follow-up (OR = 3.1 and 95% CI 1.5-6.7) had a higher incidence of radiating low back pain. Low level of physical activity was associated with an increased incidence of radiating low back pain in obese (OR = 3.3 and 95% 1.1-10.4), but not in non-overweight subjects (OR = 1.1 and 95% CI 0.6-1.9). Physical activity was not associated with non-specific low back pain. Our findings indicate that both obesity and low level of physical activity are independent risk factors of radiating low back pain. The current findings propose a U-shaped relation between physical activity and radiating low back pain. Moderate level of physical activity is recommended for the prevention of low back pain, especially in obese individuals. In all, our findings imply that obese individuals should stay physically active, even if they may not lose weight. Copyright © 2013 Elsevier Inc. All rights reserved.
Dietary Animal Plasma Proteins Improve the Intestinal Immune Response in Senescent Mice.
Miró, Lluïsa; Garcia-Just, Alba; Amat, Concepció; Polo, Javier; Moretó, Miquel; Pérez-Bosque, Anna
2017-12-11
Increased life expectancy has promoted research on healthy aging. Aging is accompanied by increased non-specific immune activation (inflammaging) which favors the appearance of several disorders. Here, we study whether dietary supplementation with spray-dried animal plasma (SDP), which has been shown to reduce the activation of gut-associated lymphoid tissue (GALT) in rodents challenged by S. aureus enterotoxin B (SEB), and can also prevent the effects of aging on immune system homeostasis. We first characterized GALT in a mouse model of accelerated senescence (SAMP8) at different ages (compared to mice resistant to accelerated senescence; SAMR1). Second, we analyzed the SDP effects on GALT response to an SEB challenge in SAMP8 mice. In GALT characterization, aging increased the cell number and the percentage of activated Th lymphocytes in mesenteric lymph nodes and Peyer's patches (all, p < 0.05), as well as the expression of IL-6 and TNF-α in intestinal mucosa (both, p < 0.05). With respect to GALT response to the SEB challenge, young mice showed increased expression of intestinal IL-6 and TNF-α, as well as lymphocyte recruitment and activation (all, p < 0.05). However, the immune response of senescent mice to the SEB challenge was weak, since SEB did not change cell recruitment or the percentage of activated Th lymphocytes. Mice supplemented with SDP showed improved capacity to respond to the SEB challenge, similar to the response of the young mice. These results indicate that senescent mice have an impaired mucosal immune response characterized by unspecific GALT activation and a weak specific immune response. SDP supplementation reduces non-specific basal immune activation, allowing for the generation of specific responses.
Detection of activated basophils using flow cytometry for diagnosis in atopic patients.
Cozon, G; Ferrándiz, J; Peyramond, D; Brunet, J
1999-01-01
human basophils release mediators of allergy after cross-linking of IgE receptors by allergens. Specific activation of basophils is detectable through flow cytometry (FCM) using an anti-CD63 fluorescein-conjugated monoclonal antibody. this study evaluate the detection of activated basophils by FCM in routine diagnosis of atopic diseases as regard to skin prick tests and specific immunoglobulin E antibodies. whole blood from twenty patients suspected of atopy was preincubated with interleukin-3 (IL-3), then incubated with specific allergens. After staining using anti-CD63 antibodies, activated basophils were detected through FCM. IL-3-preincubation increases the spontaneous expression of CD63 even at low concentrations (0.1 ng/ml) on the basophils of 2 patients out of 20. The sensitivity and specificity of FCM were respectively 0.56 +/- 0.17 (m +/- SD) and 1.0 +/- 0.0 for the detection of dust mite-activated basophils without IL-3 preincubation, and 0.73 +/- 0.13 and 1.0 +/- 0.0 for the detention of grass pollen-activated basophils. IL-3-preincubation increased the sensitivity in a dose-dependent manner but decreased the specificity fo FCM for detecting dust mite hypersensitivity. this method allow for rapid and easy detection of activated basophils from whole blood, and could be of interest for detecting allergies to non-conventional allergens such as pharmaceutical drugs.
Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H
2018-01-14
Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.
Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li
2013-01-01
Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378
14C content in vegetation in the vicinities of Brazilian nuclear power reactors.
Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela
2008-07-01
(14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.
Yu, Jiaguo; Qi, Lifang; Cheng, Bei; Zhao, Xiufeng
2008-12-30
Tungsten trioxide hollow microspheres were prepared by immersing SrWO4 microspheres in a concentrated HNO3 solution, and then calcined at different temperatures. The prepared tungsten oxide samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, differential thermal analysis-thermogravimetry, UV-visible spectrophotometry, scanning electron microscopy, N2 adsorption/desorption measurements. The photocatalytic activity of the samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that with increasing calcination temperatures, the average crystallite size and average pore size increased, on the contrary, Brunauer-Emmett-Teller-specific surface areas decreased. However, pore volume and porosity increased firstly, and then decreased. Increasing calcination temperatures resulted in the changes of surface morphology of hollow microspheres. The un-calcined and 300 degrees C-calcined samples showed higher photocatalytic activity than other samples. At 400 degrees C, the photocatalytic activity decreased greatly due to the decrease of specific surface areas. At 500 degrees C, the photocatalytic activity of the samples increased again due to the junction effect of two phases.
Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel
2015-12-15
Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation hadmore » developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.« less
McCrory, Eamon J.; Puetz, Vanessa B.; Maguire, Eleanor A.; Mechelli, Andrea; Palmer, Amy; Gerin, Mattia I.; Kelly, Philip A.; Koutoufa, Iakovina; Viding, Essi
2017-01-01
Background Altered autobiographical memory (ABM) functioning has been implicated in the pathogenesis of depression and post-traumatic stress disorder and may represent one mechanism by which childhood maltreatment elevates psychiatric risk. Aims To investigate the impact of childhood maltreatment on ABM functioning. Method Thirty-four children with documented maltreatment and 33 matched controls recalled specific ABMs in response to emotionally valenced cue words during functional magnetic resonance imaging. Results Children with maltreatment experience showed reduced hippocampal and increased middle temporal and parahippocampal activation during positive ABM recall compared with peers. During negative ABM recall they exhibited increased amygdala activation, and greater amygdala connectivity with the salience network. Conclusions Childhood maltreatment is associated with altered ABM functioning, specifically reduced activation in areas encoding specification of positive memories, and greater activation of the salience network for negative memories. This pattern may confer latent vulnerability to future depression and post-traumatic stress disorder. PMID:28882830
Dependence of renal (Na+ + k+)-adenosine triphosphatase activity on thyroid status.
Lo, S C; August, T R; Liberman, U A; Edelman, I S
1976-12-25
In thyroidectomized rats, a single injection of L-2,,5,2'-triiodothyronine (T3) (50mug/100 g body weight) elicited at 45% increase in (Na+ + k+)-dependent adenosine triphosphatase (NaK-ATPase) activity of the membrane-rich fraction of renal cortex at the optimal time of response, 48 h after injection. Three successive doses of T3 (50 mug/100 g body weight), given on alternate days, increased NaK-ATPase by 67% in the renal cortex but had no significant effect on the outer medulla or the papilla. Moreover, T3 had no effect on Mg2+-dependent adenosine trisphatase (MgATPase) in cortex, cedulla, or papilla. Three doses of T3 (50 mug/100 g body weight) given on alternate days to thyroidectomized rats elecited a 134, 79, and 46% increase in Vmax for ATP, Na4, and K+, respectively. There were no changes in the Km for ATP or the K1/2 values for Na+ and K+. Two methods were used to estimate the effect of T3 on the number of NaK-ATPase units (assumed to represent the number of Na+ pump sites); rat renal plasma membrane fractions were incubated with [gamma-32P]ATP, Mg2+, and Na+; the 32P-labeled membrane protein yeild was quantitatively dependent on Na+ and was hydrolyzed on addition of K+. There was a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of phosphorylated intermediate formed, in renal cortical membrane fractions from thyroidectomized rats given T3 or the diluent. There was also a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of [3H]ouabain specifically bound (Na+-, Mg2+-, APT-dependent) to the NaK-ATPase preparation. Injection of T3 resulted in a 70% increase in NaK-ATPase activity, a 79% increase in formation of the phosphorylated intermediate, and a 65% increase in the [H]ouabain specifically bound to the NaK-ATPase system. The T3-dependent increases in Vmax for ATP, Na+, and K+ and the proportionate increases in the phosphorylated intermediate and in the amount of [3H]ouabain bound indicate that T3 increases the number of NaK-ATPase units and that this increase accounts for the increase in NaK-ATPase activity.
Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.
Hong, Quan; Zhang, Lu; Das, Bhaskar; Li, Zhengzhe; Liu, Bohan; Cai, Guangyan; Chen, Xiangmei; Chuang, Peter Y; He, John Cijiang; Lee, Kyung
2018-06-01
Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. Published by Elsevier Inc.
Dynamic neural activity during stress signals resilient coping
Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju
2016-01-01
Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990
Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine
2012-01-01
Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077
Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine
2012-08-01
Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo
2015-12-01
The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.
ERIC Educational Resources Information Center
Gans, Curtis; And Others
1988-01-01
Discusses several reasons for decreasing voter participation in the United States, specifically focusing on lack of voter participation by youth. Highlights recommendations for increasing young voter turnout. Presents three voting activity lesson plans for middle school students and three activities entitled "Increasing Participation in…
Antonarakis, Emmanuel S; Small, Eric J; Petrylak, Daniel; Quinn, David I; Kibel, Adam S; Chang, Nancy; Dearstyne, Erica; Harmon, Matthew; Campogan, Dwayne; Haynes, Heather; Vu, Tuyen; Sheikh, Nadeem A; Drake, Charles G
2018-06-01
Sipuleucel-T is FDA-approved for the treatment of metastatic castration-resistant prostate cancer (mCRPC) based on the IMPACT trial showing a 4.1-month benefit in median overall survival (OS) for patients receiving sipuleucel-T vs control. Although efficacy of sipuleucel-T is well-established, its mechanism remains incompletely understood. Patient samples from three sipuleucel-T trials were assessed for peripheral cellular immune responses to the immunogen PA2024 and the target antigen prostatic acid phosphatase (PAP). PAP- and PA2024-specific proliferative and cytolytic responses were characterized to delineate sipuleucel-T-induced immune responses. To quantify potential cytotoxic T lymphocyte (CTL) activity, cell-surface CD107a expression on PAP- or PA2024-specific CD8+ T cells was measured in sipuleucel-T-treated patient and healthy volunteer samples. Increased PA2024-specific CD4+ (p=0.030) and CD8+ (p=0.052) T-cell proliferation from baseline to week 6 was observed (N=14) post-sipuleucel-T, with greater magnitude of PA2024-specific responses compared to PAP. PAP- and PA2024-CTL activity (CD107a positivity) significantly increased at weeks 6 and 26 after sipuleucel-T treatment (p<0.0001; N=22). At 26 weeks post-sipuleucel-T, OS correlated with the magnitude of PAP (Pearson's R, 0.52; p=0.013) or PA2024 (Pearson's R, 0.67; p=0.0006) CTL activity. Higher PA2024-CTL activity at week 26 was significantly associated with longer OS using tertile analysis (p=0.0005; N=22), with PA2024 responses correlating with PAP responses at week 26 (R=0.90; p=1.53E -08 ). This study is the first to report PAP-specific CD8+ T-cell responses elicited by sipuleucel-T treatment. Increased and persistent potential PA2024-specific CTL activity correlated with PAP-specific CTL activity and associated with improved OS following sipuleucel-T treatment. Copyright ©2018, American Association for Cancer Research.
Cheng, Jiongjia; Goldstein, Rebecca; Stec, Boguslaw; Gershenson, Anne; Roberts, Mary F.
2012-01-01
Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane. PMID:23038258
Lee, Seung Sik; Jung, Hyun Suk; Park, Soo-Kwon; Lee, Eun Mi; Singh, Sudhir; Lee, Yuno; Lee, Kyun Oh; Lee, Sang Yeol; Chung, Byung Yeoup
2015-11-13
AtTDX, a thioredoxin-like plant-specific protein present in Arabidopsis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW) complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of β-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.
Park, Hee Jo; Lee, Seung Jun; Cho, Joon; Gharbi, Amal; Han, Hee Dong; Kang, Tae Heung; Kim, Yangmee; Lee, Yeongjoon; Park, Won Sun; Jung, In Duk; Park, Yeong-Min
2018-06-22
Sepsis is a systemic inflammatory response to pathogenic infection that currently has no specific pharmaceutical interventions. Instead, antibiotics administration is considered the best available option, despite increasing drug resistance. Alternative strategies are therefore urgently required to prevent sepsis and strengthen the host immune system. One such option is tamarixetin (4'- O-methylquercetin), a naturally occurring flavonoid derivative of quercetin that protects against inflammation. The purpose of this study was to determine whether the anti-inflammatory effects of tamarixetin protect against the specific inflammatory conditions induced in lipopolysaccharide (LPS) or Escherichia coli K1 models of sepsis. Our study showed that tamarixetin reduced the secretion of various inflammatory cytokines by dendritic cells after activation with LPS. It also promoted the secretion of the anti-inflammatory cytokine interleukin (IL)-10 and specifically increased the population of IL-10-secreting immune cells in LPS-activated splenocytes. Tamarixetin showed general anti-inflammatory effects in mouse models of bacterial sepsis and decreased bacteria abundance and endotoxin levels. We therefore conclude that tamarixetin has superior anti-inflammatory properties than quercetin during bacterial sepsis. This effect is associated with an increased population of IL-10-secreting immune cells and suggests that tamarixetin could serve as a specific pharmaceutical option to prevent bacterial sepsis.
Microbial responses to multi-factor climate change: effects on soil enzymes.
Steinweg, J Megan; Dukes, Jeffrey S; Paul, Eldor A; Wallenstein, Matthew D
2013-01-01
The activities of extracellular enzymes, the proximate agents of decomposition in soils, are known to depend strongly on temperature, but less is known about how they respond to changes in precipitation patterns, and the interaction of these two components of climate change. Both enzyme production and turnover can be affected by changes in temperature and soil moisture, thus it is difficult to predict how enzyme pool size may respond to altered climate. Soils from the Boston-Area Climate Experiment (BACE), which is located in an old field (on abandoned farmland), were used to examine how climate variables affect enzyme activities and microbial biomass carbon (MBC) in different seasons and in soils exposed to a combination of three levels of precipitation treatments (ambient, 150% of ambient during growing season, and 50% of ambient year-round) and four levels of warming treatments (unwarmed to ~4°C above ambient) over the course of a year. Warming, precipitation and season had very little effect on potential enzyme activity. Most models assume that enzyme dynamics follow microbial biomass, because enzyme production should be directly controlled by the size and activity of microbial biomass. We observed differences among seasons and treatments in mass-specific potential enzyme activity, suggesting that this assumption is invalid. In June 2009, mass-specific potential enzyme activity, using chloroform fumigation-extraction MBC, increased with temperature, peaking under medium warming and then declining under the highest warming. This finding suggests that either enzyme production increased with temperature or turnover rates decreased. Increased maintenance costs associated with warming may have resulted in increased mass-specific enzyme activities due to increased nutrient demand. Our research suggests that allocation of resources to enzyme production could be affected by climate-induced changes in microbial efficiency and maintenance costs.
Dotta, Blake T; Murugan, Nirosha J; Karbowski, Lukasz M; Lafrenie, Robert M; Persinger, Michael A
2014-02-01
During the first 24 h after removal from incubation, melanoma cells in culture displayed reliable increases in emissions of photons of specific wavelengths during discrete portions of this interval. Applications of specific filters revealed marked and protracted increases in infrared (950 nm) photons about 7 h after removal followed 3 h later by marked and protracted increases in near ultraviolet (370 nm) photon emissions. Specific wavelengths within the visible (400 to 800 nm) peaked 12 to 24 h later. Specific activators or inhibitors for specific wavelengths based upon Cosic's resonant recognition model elicited either enhancement or diminishment of photons at the specific wavelength as predicted. Inhibitors or activators predicted for other wavelengths, even within 10 nm, were less or not effective. There is now evidence for quantitative coupling between the wavelength of photon emissions and intrinsic cellular chemistry. The results are consistent with initial activation of signaling molecules associated with infrared followed about 3 h later by growth and protein-structural factors associated with ultraviolet. The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad
A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer tomore » produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.« less
Light-regulated protein and mRNA synthesis in root caps of maize
NASA Technical Reports Server (NTRS)
Feldman, L. J.; Piechulla, B.; Sun, P. S.
1988-01-01
Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5-6 fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.
Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1
Iswari, S.; Palta, Jiwan P.
1989-01-01
Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856
Csizmadi, Ilona; Lo Siou, Geraldine; Friedenreich, Christine M; Owen, Neville; Robson, Paula J
2011-10-10
Knowledge of adult activity patterns across domains of physical activity is essential for the planning of population-based strategies that will increase overall energy expenditure and reduce the risk of obesity and related chronic diseases. We describe domain-specific hours of activity and energy expended among participants in a prospective cohort in Alberta, Canada. The Past Year Total Physical Activity Questionnaire was completed by 15,591 Tomorrow Project® participants, between 2001 and 2005 detailing physical activity type, duration, frequency and intensity. Domain-specific hours of activity and activity-related energy expenditure, expressed as a percent of total energy expenditure (TEE) (Mean (SD); Median (IQR)) are reported across inactive (<1.4), low active (1.4 to 1.59), active (1.6 to 1.89) and very active (≥ 1.9) Physical Activity Level (PAL = TEE:REE) categories. In very active women and amongst all men except those classified as inactive, activity-related energy expenditure comprised primarily occupational activity. Amongst inactive men and women in active, low active and inactive groups, activity-related energy expenditure from household activity was comparable to, or exceeded that for occupational activity. Leisure-time activity-related energy expenditure decreased with decreasing PAL categories; however, even amongst the most active men and women it accounted for less than 10 percent of TEE. When stratified by employment status, leisure-time activity-related energy expenditure was greatest for retired men [mean (SD): 10.8 (8.5) percent of TEE], compared with those who were fully employed, employed part-time or not employed. Transportation-related activity was negligible across all categories of PAL and employment status. For the inactive portion of this population, active non-leisure activities, specifically in the transportation and occupational domains, need to be considered for inclusion in daily routines as a means of increasing population-wide activity levels. Environmental and policy changes to promote active transport and workplace initiatives could increase overall daily energy expenditure through reducing prolonged sitting time.
Manjunatha, S S; Raju, P S; Bawa, A S
2014-11-01
Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed.
Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y
2009-10-01
This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.
Novel mechanism and factor for regulation by HIV-1 Tat.
Zhou, Q; Sharp, P A
1995-01-01
Tat regulation of human immunodeficiency virus (HIV) transcription is unique because of its specificity for an RNA target, TAR, and its ability to increase the efficiency of elongation by polymerase. A reconstituted reaction that is Tat-specific and TAR-dependent for activation of HIV transcription has been used to identify and partially purify a cellular activity that is required for trans-activation by Tat, but not by other activators. In the reaction, Tat stimulates the efficiency of elongation by polymerase, whereas Sp1 and other DNA sequence-specific transcription factors activate the rate of initiation. Furthermore, while TATA binding protein (TBP)-associated factors (TAFs) in the TFIID complex are required for activation by transcription factors, they are dispensable for Tat function. Thus, Tat acts through a novel mechanism, which is mediated by a specific host cellular factor, to stimulate HIV-1 gene expression. Images PMID:7835343
da Silva, Marcos V; Massaro Junior, Vladimir J; Machado, Juliana R; Silva, Djalma A A; Castellano, Lúcio R; Alexandre, Patricia B D; Rodrigues, Denise B R; Rodrigues, Virmondes
2015-01-01
Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis.
Frosch, Anne E; Odumade, Oludare A; Taylor, Justin J; Ireland, Kathleen; Ayodo, George; Ondigo, Bartholomew; Narum, David L; Vulule, John; John, Chandy C
2017-06-15
Human immunodeficiency virus type 1 (HIV-1) infection is associated with B cell activation and exhaustion, and hypergammaglobulinemia. How these changes influence B cell responses to coinfections such as malaria is poorly understood. To address this, we compared B cell phenotypes and Abs specific for the Plasmodium falciparum vaccine candidate apical membrane Ag-1 (AMA1) in HIV-infected and uninfected adults living in Kenya. Surprisingly, HIV-1 infection was not associated with a difference in serum AMA1-specific Ab levels. HIV-infected individuals had a higher proportion of total atypical and total activated memory B cells (MBCs). Using an AMA1 tetramer to detect AMA1-specific B cells, HIV-infected individuals were also shown to have a higher proportion of AMA1-specific atypical MBCs. However, this proportional increase resulted in large part from a loss in the number of naive and resting MBCs rather than an increase in the number of atypical and activated cells. The loss of resting MBCs and naive B cells was mirrored in a population of cells specific for an Ag to which these individuals were unlikely to have been chronically exposed. Together, the data show that changes in P. falciparum Ag-specific B cell subsets in HIV-infected individuals mirror those in the overall B cell population, and suggest that the increased proportion of atypical MBC phenotypes found in HIV-1-infected individuals results from the loss of naive and resting MBCs. Copyright © 2017 by The American Association of Immunologists, Inc.
Torres-Russotto, Diego; Perlmutter, Joel S.
2009-01-01
Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127
Hydration heat of alkali activated fine-grained ceramic
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-07-01
Early-age hydration heat of alkali activated ceramic dust is studied as a function of silicate modulus. A mixture of sodium hydroxide and water glass is used as alkali activator. The measurements are carried out using a large-volume isothermal heat flow calorimeter which is capable of detecting even very small values of specific heat power. Experimental results show that the specific hydration heat power of alkali activated fine-ground ceramic is very low and increases with the decreasing silicate modulus of the mix.
Victor, Elizabeth C; Sansosti, Alexandra A; Bowman, Hilary C; Hariri, Ahmad R
2015-06-10
Although the initiation of sexual behavior is common among adolescents and young adults, some individuals express this behavior in a manner that significantly increases their risk for negative outcomes including sexually transmitted infections. Based on accumulating evidence, we have hypothesized that increased sexual risk behavior reflects, in part, an imbalance between neural circuits mediating approach and avoidance in particular as manifest by relatively increased ventral striatum (VS) activity and relatively decreased amygdala activity. Here, we test our hypothesis using data from seventy 18- to 22-year-old university students participating in the Duke Neurogenetics Study. We found a significant three-way interaction between amygdala activation, VS activation, and gender predicting changes in the number of sexual partners over time. Although relatively increased VS activation predicted greater increases in sexual partners for both men and women, the effect in men was contingent on the presence of relatively decreased amygdala activation and the effect in women was contingent on the presence of relatively increased amygdala activation. These findings suggest unique gender differences in how complex interactions between neural circuit function contributing to approach and avoidance may be expressed as sexual risk behavior in young adults. As such, our findings have the potential to inform the development of novel, gender-specific strategies that may be more effective at curtailing sexual risk behavior. Copyright © 2015 the authors 0270-6474/15/358896-05$15.00/0.
Frison, Eline; Eggermont, Steven
2016-10-01
Despite increasing evidence that specific types of Facebook use (i.e., active private, active public, and passive Facebook use) are differently related to adolescents' well-being, little is known how these types function over the course of adolescence and whether gender and Facebook motives may predict the initial level and changes in these types over time. To address these gaps, Flemish adolescents (ages 12-19) were questioned at three different time points, with six months in between (NTime1 = 1866). Latent growth curve models revealed that active private Facebook use increased over the course of adolescence, whereas public Facebook use decreased. Passive Facebook use, however, remained stable. In addition, gender and Facebook motives were related to initial levels of specific types of Facebook use, and predictive of dynamic change in specific types of Facebook use over time. The discussion focuses on the understanding and implications of these findings. Copyright © 2016. Published by Elsevier Ltd.
Li, Zhong-Guang; Nie, Qian; Yang, Cong-Li; Wang, Yue; Zhou, Zhi-Hao
2018-03-01
Methylglyoxal (MG) now is found to be an emerging signaling molecule. It can relieve the toxicity of cadmium (Cd), however its alleviating mechanism still remains unknown. In this study, compared with the Cd-stressed seedlings without MG treatment, MG treatment could stimulate the activities of glutathione reductase (GR) and gamma-glutamylcysteine synthetase (γ-ECS) in Cd-stressed wheat seedlings, which in turn induced an increase of reduced glutathione (GSH). Adversely, the activated enzymes related to GSH biosynthesis and increased GSH were weakened by N-acetyl-L-cysteine (NAC, MG scavenger), 2,4-dihydroxy-benzylamine (DHBA) and 1,3-bischloroethyl-nitrosourea (BCNU, both are specific inhibitors of GR), buthionine sulfoximine (BSO, a specific inhibitors of GSH biosynthesis), and N-ethylmaleimide (NEM, GSH scavenger), respectively. In addition, MG increased the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in Cd-treated seedlings, followed by declining an increase in endogenous MG as comparision to Cd-stressed seedlings alone. On the contrary, the increased glyoxalase activity and decreased endogenous MG level were reversed by NAC and specific inhibitors of Gly I (isoascorbate, IAS; squaric acid, SA). Furthermore, MG alleviated an increase in hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) in Cd-treated wheat seedlings. These results indicated that MG could alleviate Cd toxicity and improve the growth of Cd-stressed wheat seedlings by a coordinated induction of glutathione pool and glyoxalase system. Copyright © 2017 Elsevier Inc. All rights reserved.
Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J
2009-09-01
Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.
Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)
NASA Astrophysics Data System (ADS)
Trabelsi, Wafa; Tlili, Ali
2017-05-01
This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.
Depot-specific Regulation of the Conversion of Cortisone to Cortisol in Human Adipose Tissue
Lee, Mi-Jeong; Fried, Susan K.; Mundt, Steven S.; Wang, Yanxin; Sullivan, Sean; Stefanni, Alice; Daugherty, Bruce L.; Hermanowski-Vosatka, Anne
2015-01-01
Objective Our main objective was to compare the regulation of cortisol production within omental (Om) and abdominal subcutaneous (Abd sc) human adipose tissue. Methods and Procedures Om and Abd sc adipose tissue were obtained at surgery from subjects with a wide range of BMI. Hydroxysteroid dehydrogenase (HSD) activity (3H-cortisone and 3H-cortisol interconversion) and expression were measured before and after organ culture with insulin and/or dexamethasone. Results Type 1 HSD (HSD1) mRNA and reductase activity were mainly expressed within adipocytes and tightly correlated with adipocyte size within both depots. There was no depot difference in HSD1 expression or reductase activity, while cortisol inactivation and HSD2 mRNA expression (expressed in stromal cells) were higher in Om suggesting higher cortisol turnover in this depot. Culture with insulin decreased HSD reductase activity in both depots. Culture with dexamethasone plus insulin compared to insulin alone increased HSD reductase activity only in the Om depot. This depot-specific increase in reductase activity could not be explained by an alteration in HSD1 mRNA or protein, which was paradoxically decreased. However, in Om only, hexose-6-phosphate dehydrogenase (H6PDH) mRNA levels were increased by culture with dexamethasone plus insulin compared to insulin alone, suggesting that higher nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) production within the endoplasmic reticulum (ER) contributed to the higher HSD reductase activity. Discussion We conclude that in the presence of insulin, glucocorticoids cause a depot-specific increase in the activation of cortisone within Om adipose tissue, and that this mechanism may contribute to adipocyte hypertrophy and visceral obesity. PMID:18388900
Danielson, U H; Esterbauer, H; Mannervik, B
1987-01-01
The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism. PMID:3426557
Peripheral Blood Signatures of Lead Exposure
LaBreche, Heather G.; Meadows, Sarah K.; Nevins, Joseph R.; Chute, John P.
2011-01-01
Background Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. Methodology/Principal Finding Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. Conclusions/Significance The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway. PMID:21829687
Barnett, Inka; van Sluijs, Esther; Ogilvie, David; Wareham, Nicholas J
2014-01-01
Background Retirement is associated with an increase in recreational physical activity but its impact on other domains of activity (at home, for transport) and sedentary behaviour, such as time spent watching television (TV) is unknown. We examined the association between retirement and changes in domain-specific and overall activity and TV viewing. Methods Data were derived from the population-based EPIC (European Prospective Investigation into Cancer)–Norfolk cohort. Physical activity and TV viewing time were self-reported at baseline (1997–2000) and follow-up 2 (2006–2007) by 3334 participants employed at baseline, of whom 785 (24%) were retired at follow-up 1 (2002–2006). Multivariable regression models were fitted to estimate the association between retirement and changes in physical activity and weekly TV viewing time. Results Compared with continued employment, retirement was associated with a decline in overall activity (men: non-manual, −40.9 MET h/wk; manual, −49.6 MET h/wk; women: non-manual, −26.9 MET h/wk; manual, −31.6 MET h/wk; all p<0.001 (MET, metabolic equivalent of task)). Domain-specific activity declined for transport and occupational (p<0.001) and increased for recreational (p<0.02) and household (p≤0.002) activity. We observed significant interaction between retirement and social class in respect of overall and domain-specific activity apart from household activity. Retirement was associated with a mean increase in TV viewing time, with the largest increase among manual social classes (men: +3.9 h/wk; women: +2.8 h/wk; both p<0.001). Conclusions Interventions should aim to promote household and transport as well as recreational activity. Further research on the impact of retirement on sedentary behaviour is needed. PMID:24302753
Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M
2007-04-25
Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.
Belevych, Andriy E.; Sansom, Sarah E.; Terentyeva, Radmila; Ho, Hsiang-Ting; Nishijima, Yoshinori; Martin, Mickey M.; Jindal, Hitesh K.; Rochira, Jennifer A.; Kunitomo, Yukiko; Abdellatif, Maha; Carnes, Cynthia A.; Elton, Terry S.; Györke, Sandor; Terentyev, Dmitry
2011-01-01
In heart failure (HF), arrhythmogenic spontaneous sarcoplasmic reticulum (SR) Ca2+ release and afterdepolarizations in cardiac myocytes have been linked to abnormally high activity of ryanodine receptors (RyR2s) associated with enhanced phosphorylation of the channel. However, the specific molecular mechanisms underlying RyR2 hyperphosphorylation in HF remain poorly understood. The objective of the current study was to test the hypothesis that the enhanced expression of muscle-specific microRNAs (miRNAs) underlies the HF-related alterations in RyR2 phosphorylation in ventricular myocytes by targeting phosphatase activity localized to the RyR2. We studied hearts isolated from canines with chronic HF exhibiting increased left ventricular (LV) dimensions and decreased LV contractility. qRT-PCR revealed that the levels of miR-1 and miR-133, the most abundant muscle-specific miRNAs, were significantly increased in HF myocytes compared with controls (2- and 1.6-fold, respectively). Western blot analyses demonstrated that expression levels of the protein phosphatase 2A (PP2A) catalytic and regulatory subunits, which are putative targets of miR-133 and miR-1, were decreased in HF cells. PP2A catalytic subunit mRNAs were validated as targets of miR-133 by using luciferase reporter assays. Pharmacological inhibition of phosphatase activity increased the frequency of diastolic Ca2+ waves and afterdepolarizations in control myocytes. The decreased PP2A activity observed in HF was accompanied by enhanced Ca2+/calmodulin-dependent protein kinase (CaMKII)-mediated phosphorylation of RyR2 at sites Ser-2814 and Ser-2030 and increased frequency of diastolic Ca2+ waves and afterdepolarizations in HF myocytes compared with controls. In HF myocytes, CaMKII inhibitory peptide normalized the frequency of pro-arrhythmic spontaneous diastolic Ca2+ waves. These findings suggest that altered levels of major muscle-specific miRNAs contribute to abnormal RyR2 function in HF by depressing phosphatase activity localized to the channel, which in turn, leads to the excessive phosphorylation of RyR2s, abnormal Ca2+ cycling, and increased propensity to arrhythmogenesis. PMID:22163007
Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton
2013-01-01
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500
Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.
2013-01-01
Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976
Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.
Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo
2004-01-01
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.
Games for increasing physical activity: Mechanisms for change
USDA-ARS?s Scientific Manuscript database
A small conference was held in Houston, TX, in May 2014, to address how to enhance exergames to increase physical activity. Several leading researchers were asked to address specific topics. Attendees came from across the globe. This Games for Health Journal Special Issue is devoted to sharing the a...
Does football cause an increase in degenerative disease of the lumbar spine?
Gerbino, Peter G; d'Hemecourt, Pierre A
2002-02-01
Degenerative disease of the lumbar spine is exceedingly common. Whether any specific activity increases the likelihood of developing degenerative disc disease (DDD) or facet degeneration (FD) has enormous implications. Within the field of occupational medicine there are specific activities, occupations, and morphologic characteristics that have been related to low back pain. Several specific risk factors have been conclusively linked to low back pain, and in particular DDD and FD. Within the sport of American football, there has long been the feeling that many athletes have or will develop low back pain, DDD, and FD. Proving that certain risk factors present in football will predictably lead to an increase in LBP, DDD, and FD is more difficult. At this time, it can be said that football players, in general, increase their risk of developing low back pain, DDD, and FD as their years of involvement with their sport increase. Because specific spine injuries like fracture, disc herniation, and spondylolysis are more frequent in football players, the resulting DDD and FD are greater than that of the general population. The weightlifting and violent hyperextension that are part of American football are independent risk factors for degenerative spine disease.
Gao, Yunfei; Zhang, Dongqing; Sun, Buxiang; Fujii, Hajime; Kosuna, Ken-Ichi; Yin, Zhinan
2006-10-01
Active hexose correlated compound (AHCC) is a mixture of polysaccharides, amino acids, lipids and minerals derived from cocultured mycelia of several species of Basidiomycete mushrooms. AHCC has been implicated to modulate immune functions and plays a protective role against infection. However, the potential role of AHCC in tumor immune surveillance is unknown. In this study, C57BL/6 mice were orally administered AHCC or water, followed by tumor cell inoculation. We showed that compared to pure water-treated mice, AHCC treatment significantly delayed tumor development after inoculation of either melanoma cell line B16F0 or lymphoma cell line EL4. Treatment with AHCC enhanced both Ag-specific activation and proliferation of CD4(+) and CD8(+) T cells, increased the number of tumor Ag-specific CD8(+) T cells, and more importantly, increased the frequency of tumor Ag-specific IFN-gamma producing CD8(+) T cells. Interestingly, AHCC treatment also showed increased cell number of NK and gammadelta T cells, indicating the role of AHCC in activating these innate-like lymphocytes. In summary, our results demonstrate that AHCC can enhance tumor immune surveillance through regulating both innate and adaptive immune responses.
Meta-analysis of functional brain imaging in specific phobia.
Ipser, Jonathan C; Singh, Leesha; Stein, Dan J
2013-07-01
Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.
Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock
NASA Technical Reports Server (NTRS)
Flores, H. E.; Galston, A. W.
1982-01-01
The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.
Potla, Uma; Ni, Jie; Vadaparampil, Justin; Yang, Guozhe; Leventhal, Jeremy S.; Campbell, Kirk N.; Chuang, Peter Y.; Morozov, Alexei; He, John C.; D’Agati, Vivette D.; Klotman, Paul E.; Kaufman, Lewis
2014-01-01
Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin–mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin. PMID:24642466
P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces
Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier
2016-01-01
Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302
NASA Astrophysics Data System (ADS)
Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.
2014-05-01
Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.
Van Ettinger-Veenstra, Helene; McAllister, Anita; Lundberg, Peter; Karlsson, Thomas; Engström, Maria
2016-01-01
This study investigates the relation between individual language ability and neural semantic processing abilities. Our aim was to explore whether high-level language ability would correlate to decreased activation in language-specific regions or rather increased activation in supporting language regions during processing of sentences. Moreover, we were interested if observed neural activation patterns are modulated by semantic incongruency similarly to previously observed changes upon syntactic congruency modulation. We investigated 27 healthy adults with a sentence reading task-which tapped language comprehension and inference, and modulated sentence congruency-employing functional magnetic resonance imaging (fMRI). We assessed the relation between neural activation, congruency modulation, and test performance on a high-level language ability assessment with multiple regression analysis. Our results showed increased activation in the left-hemispheric angular gyrus extending to the temporal lobe related to high language ability. This effect was independent of semantic congruency, and no significant relation between language ability and incongruency modulation was observed. Furthermore, there was a significant increase of activation in the inferior frontal gyrus (IFG) bilaterally when the sentences were incongruent, indicating that processing incongruent sentences was more demanding than processing congruent sentences and required increased activation in language regions. The correlation of high-level language ability with increased rather than decreased activation in the left angular gyrus, a region specific for language processing, is opposed to what the neural efficiency hypothesis would predict. We can conclude that no evidence is found for an interaction between semantic congruency related brain activation and high-level language performance, even though the semantic incongruent condition shows to be more demanding and evoking more neural activation.
Van Ettinger-Veenstra, Helene; McAllister, Anita; Lundberg, Peter; Karlsson, Thomas; Engström, Maria
2016-01-01
This study investigates the relation between individual language ability and neural semantic processing abilities. Our aim was to explore whether high-level language ability would correlate to decreased activation in language-specific regions or rather increased activation in supporting language regions during processing of sentences. Moreover, we were interested if observed neural activation patterns are modulated by semantic incongruency similarly to previously observed changes upon syntactic congruency modulation. We investigated 27 healthy adults with a sentence reading task—which tapped language comprehension and inference, and modulated sentence congruency—employing functional magnetic resonance imaging (fMRI). We assessed the relation between neural activation, congruency modulation, and test performance on a high-level language ability assessment with multiple regression analysis. Our results showed increased activation in the left-hemispheric angular gyrus extending to the temporal lobe related to high language ability. This effect was independent of semantic congruency, and no significant relation between language ability and incongruency modulation was observed. Furthermore, there was a significant increase of activation in the inferior frontal gyrus (IFG) bilaterally when the sentences were incongruent, indicating that processing incongruent sentences was more demanding than processing congruent sentences and required increased activation in language regions. The correlation of high-level language ability with increased rather than decreased activation in the left angular gyrus, a region specific for language processing, is opposed to what the neural efficiency hypothesis would predict. We can conclude that no evidence is found for an interaction between semantic congruency related brain activation and high-level language performance, even though the semantic incongruent condition shows to be more demanding and evoking more neural activation. PMID:27014040
Life review based on remembering specific positive events in active aging.
Latorre, José M; Serrano, Juan P; Ricarte, Jorge; Bonete, Beatriz; Ros, Laura; Sitges, Esther
2015-02-01
The aim of this study is to evaluate the effectiveness of life review (LR) based on specific positive events in non-depressed older adults taking part in an active aging program. Fifty-five older adults were randomly assigned to an experimental group or an active control (AC) group. A six-session individual training of LR based on specific positive events was carried out with the experimental group. The AC group undertook a "media workshop" of six sessions focused on learning journalistic techniques. Pre-test and post-test measures included life satisfaction, depressive symptoms, experiencing the environment as rewarding, and autobiographical memory (AM) scales. LR intervention decreased depressive symptomatology, improved life satisfaction, and increased specific memories. The findings suggest that practice in AM for specific events is an effective component of LR that could be a useful tool in enhancing emotional well-being in active aging programs, thus reducing depressive symptoms. © The Author(s) 2014.
Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O
2011-08-01
The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.
Schwarz, Jaclyn M; Hutchinson, Mark R; Bilbo, Staci D
2011-12-07
A critical component of drug addiction research involves identifying novel biological mechanisms and environmental predictors of risk or resilience to drug addiction and associated relapse. Increasing evidence suggests microglia and astrocytes can profoundly affect the physiological and addictive properties of drugs of abuse, including morphine. We report that glia within the rat nucleus accumbens (NAcc) respond to morphine with an increase in cytokine/chemokine expression, which predicts future reinstatement of morphine conditioned place preference (CPP) following a priming dose of morphine. This glial response to morphine is influenced by early-life experience. A neonatal handling paradigm that increases the quantity and quality of maternal care significantly increases baseline expression of the anti-inflammatory cytokine IL-10 within the NAcc, attenuates morphine-induced glial activation, and prevents the subsequent reinstatement of morphine CPP in adulthood. IL-10 expression within the NAcc and reinstatement of CPP are negatively correlated, suggesting a protective role for this specific cytokine against morphine-induced glial reactivity and drug-induced reinstatement of morphine CPP. Neonatal handling programs the expression of IL-10 within the NAcc early in development, and this is maintained into adulthood via decreased methylation of the IL-10 gene specifically within microglia. The effect of neonatal handling is mimicked by pharmacological modulation of glia in adulthood with ibudilast, which increases IL-10 expression, inhibits morphine-induced glial activation within the NAcc, and prevents reinstatement of morphine CPP. Taken together, we have identified a novel gene × early-life environment interaction on morphine-induced glial activation and a specific role for glial activation in drug-induced reinstatement of drug-seeking behavior.
Schwarz, Jaclyn M.; Hutchinson, Mark R.; Bilbo, Staci D.
2012-01-01
A critical component of drug addiction research involves identifying novel biological mechanisms and environmental predictors of risk or resilience to drug addiction and associated relapse. Increasing evidence suggests microglia and astrocytes can profoundly affect the physiological and addictive properties of drugs of abuse, including morphine. We report that glia within the rat Nucleus Accumbens (NAcc) respond to morphine with an increase in cytokine/chemokine expression, which predicts future reinstatement of morphine conditioned place preference (CPP) following a priming dose of morphine. This glial response to morphine is influenced by early-life experience. A neonatal handling paradigm that increases the quantity and quality of maternal care significantly increases baseline expression of the anti-inflammatory cytokine IL-10 within the NAcc, attenuates morphine-induced glial activation, and prevents the subsequent reinstatement of morphine CPP in adulthood. IL-10 expression within the NAcc and reinstatement of CPP are negatively correlated, suggesting a protective role for this specific cytokine against morphine-induced glial reactivity and drug-induced reinstatement of morphine CPP. Neonatal handling programs the expression of IL-10 within the NAcc early in development, and this is maintained into adulthood via decreased methylation of the IL-10 gene specifically within microglia. The effect of neonatal handling is mimicked by pharmacological modulation of glia in adulthood with Ibudilast, which increases IL-10 expression, inhibits morphine-induced glial activation within the NAcc, and prevents reinstatement of morphine CPP. Taken together, we have identified a novel gene X early-life environment interaction on morphine-induced glial activation, and a specific role for glial activation in drug-induced reinstatement of drug-seeking behavior. PMID:22159099
Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L.; Minassian, Arpi
2016-01-01
Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature. PMID:27138818
Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro
2010-04-01
Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.
RSPOs facilitated HSC activation and promoted hepatic fibrogenesis
Yin, Xinguang; Yi, Huixing; Wang, Linlin; Wu, Wanxin; Wu, Xiaojun; Yu, Linghua
2016-01-01
Roof plate-specific spondin (RSPO) proteins are potent Wnt pathway agonists and involve in a broad range of developmental and physiological processes. This study investigated the activities and mechanisms of RSPOs in liver fibrogenesis, especially in hepatic stellate cell (HSC) activation. HSC activation was assessed by fibrosis biomarker (α-smooth muscle actin and Collagen-I), phenotypic change (accumulation of lipid droplets), and increased proliferation. Similarly, Wnt pathway activity was evaluated by the expression of nuclear β-catenin and T cell-specific transcription factors (TCF) activity. We found RSPOs were overexpressed in human fibrotic liver tissue and the expressions were correlated with liver fibrosis stages. In vitro studies showed RSPOs level increased during HSC activation, and stimuli with RSPOs enhanced Wnt pathway activity and promoted HSC activation subsequently. Furthermore, in vivo experiments demonstrated that the knockdown of RSPOs suppressed both Wnt pathway activity and HSC activation. Interestingly, the inhibitor of the Wnt signaling pathway Dickkopf1 impairs RSPOs effects on HSCs. Taken together, our results revealed that RSPOs facilitated HSC activation and promote liver fibrogenesis by enhancing the Wnt pathway. PMID:27572318
RSPOs facilitated HSC activation and promoted hepatic fibrogenesis.
Yin, Xinguang; Yi, Huixing; Wang, Linlin; Wu, Wanxin; Wu, Xiaojun; Yu, Linghua
2016-09-27
Roof plate-specific spondin (RSPO) proteins are potent Wnt pathway agonists and involve in a broad range of developmental and physiological processes. This study investigated the activities and mechanisms of RSPOs in liver fibrogenesis, especially in hepatic stellate cell (HSC) activation. HSC activation was assessed by fibrosis biomarker (α-smooth muscle actin and Collagen-I), phenotypic change (accumulation of lipid droplets), and increased proliferation. Similarly, Wnt pathway activity was evaluated by the expression of nuclear β-catenin and T cell-specific transcription factors (TCF) activity. We found RSPOs were overexpressed in human fibrotic liver tissue and the expressions were correlated with liver fibrosis stages. In vitro studies showed RSPOs level increased during HSC activation, and stimuli with RSPOs enhanced Wnt pathway activity and promoted HSC activation subsequently. Furthermore, in vivo experiments demonstrated that the knockdown of RSPOs suppressed both Wnt pathway activity and HSC activation. Interestingly, the inhibitor of the Wnt signaling pathway Dickkopf1 impairs RSPOs effects on HSCs. Taken together, our results revealed that RSPOs facilitated HSC activation and promote liver fibrogenesis by enhancing the Wnt pathway.
Cash, Stephanie Whisnant; Duncan, Glen E; Beresford, Shirley A A; McTiernan, Anne; Patrick, Donald L
2013-11-01
Obesity is associated with impaired quality of life (QoL), but less is known about physical activity. We investigated how decreases in body mass index (BMI) and increases in activity affect obesity-specific QoL and potential gender differences in associations. In a large worksite randomized trial of a multilevel intervention on diet and physical activity behaviors, we conducted a cohort analysis at two years of follow-up. Self-reported activity and Obesity and Weight Loss Quality of Life (OWLQOL) were analyzed for individual-level associations using linear mixed models accounting for random worksite effects. Gender modified the BMI-OWLQOL relationship, so analyses were conducted for males and females separately. Adjusting for demographic confounders, baseline OWLQOL, and several worksite-level variables including intervention arm, a 1.9 unit decrease in BMI (the interquartile range) was associated with an OWLQOL increase of 1.7 (95 % CI: 1.2, 2.2) in males and 3.6 (95 % CI: 3.2, 4.0) in females. Similarly, a 23 unit increase in physical activity score was associated with an OWLQOL increase of 0.9 (95 % CI: 0.5, 1.4) in males and 1.6 (95 % CI: 1.0, 2.3) in females. Physical activity associations were attenuated when adjusting for change in BMI, but remained significant for women (mean BMI 27.8 kg/m(2)). This is the first study to demonstrate that increasing physical activity may improve obesity-specific QoL to a greater extent in women, particularly among overweight women, independent of BMI. Results may inform the design of interventions tailored to women targeting well-being through messages of increasing physical activity.
Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe
2015-06-01
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.
Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.
Kim, Min Seok; Park, Jong Hyeok
2011-05-01
The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.
Gooding, Thomas M; Feger, Mark A; Hart, Joseph M; Hertel, Jay
2016-08-01
The intrinsic foot muscles maintain the medial longitudinal arch and aid in force distribution and postural control during gait. Impaired intrinsic foot-muscle function has been linked to various foot conditions. Several rehabilitative exercises have been proposed to improve it; however, literature that identifies which individual muscles are activated during specific intrinsic foot-muscle exercises is lacking. To describe changes in activation of the intrinsic plantar foot muscles after 4 exercises as measured with T2 magnetic resonance imaging (MRI). Descriptive laboratory study. Research laboratory. Eight healthy National Collegiate Athletic Association Division I collegiate cross-country and track athletes (5 men and 3 women: age = 20 ± 0.93 years, height = 180.98 ± 10.84 cm, mass = 70.91 ± 7.82 kg). Participants underwent T2 MRI before and after each exercise. They completed 1 set of 40 repetitions of each exercise (short-foot exercise, toes spread out, first-toe extension, second- to fifth-toes extension). Percentage increases in muscle activation of the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, flexor digiti minimi, adductor hallucis oblique, flexor hallucis brevis, and interossei and lumbricals (analyzed together) after each exercise were assessed using T2 MRI. All muscles showed increased activation after all exercises. The mean percentage increase in activation ranged from 16.7% to 34.9% for the short-foot exercise, 17.3% to 35.2% for toes spread out, 13.1% to 18.1% for first-toe extension, and 8.9% to 22.5% for second- to fifth-toes extension. All increases in activation had associated 95% confidence intervals that did not cross zero. Each of the 4 exercises was associated with increased activation in all of the plantar intrinsic foot muscles evaluated. These results may have clinical implications for the prescription of specific exercises to target individual intrinsic foot muscles.
Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control
Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.
2013-01-01
Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923
Park, Mona; Gutyrchik, Evgeny; Bao, Yan; Zaytseva, Yuliya; Carl, Petra; Welker, Lorenz; Pöppel, Ernst; Reiser, Maximilian; Blautzik, Janusch; Meindl, Thomas
2014-04-30
Music is known to convey and evoke emotional states. Musical training has been argued to lead to changes in neural architecture and enhanced processing of emotions. It is not clear, however, whether musical training is also associated with changes in behavioral and neural responses to musically conveyed discrete emotions. Using functional magnetic resonance imaging, we investigated the responses to three musically conveyed emotions (happiness, sadness, fear) in a group of musicians and a group of non-musicians. We find that musicians rate sadness and fear as significantly more arousing than non-musicians, and that musical training is associated with specific neural activations: In response to sadness expressed in music, musicians show activation increases in the right prefrontal cortex, specifically in the superior and middle frontal gyri. In response to fear, musicians show activation increases in the right parietal cortex, specifically in the supramarginal and inferior parietal gyri. No specific activations were observed in response to happiness. Our results highlight the strong association between musical training and altered processing of "negative" emotions on both the behavioral and on the neural level. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Purification and substrate specificity of Staphylococcus hyicus lipase.
van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F
1989-11-28
The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.
Sooranna, S R; Engineer, N; Liang, Z; Bennett, P R; Johnson, M R
2007-07-01
IL-1beta and stretch increase uterine smooth muscle cell (USMC) prostaglandin H synthase 2 (PGHS-2) and interleukin (IL)-8 mRNA expression in a mitogen-activated protein kinase (MAPK) dependent mechanism. We have tested our hypothesis that stretch and IL-1beta activate different components of the MAPK cascade in USMC and investigated the effects of specific MAPK inhibitors on these components. Further, we have used a Jun N-terminal kinase (JNK) and p38 activator, anisomycin, to compare the effect of differential MAPK activation on the expression of PGHS-2, IL-8 and oxytocin receptor (OTR) mRNA with that seen in response to stretch and IL-1beta. Stretch, IL-1beta and anisomycin activated similar components of the MAPK cascade and specific inhibitors of MAPK altered phosphorylation of MAPK and downstream cascade components as expected. Expression of OTR mRNA was increased by stretch and anisomycin in a MAPK-independent manner. All three stimuli increased PGHS-2 and IL-8 mRNA expression in a MAPK-dependent manner, but while the MAPK inhibitors reduced the IL-1beta-induced activation of activating transcription factor (ATF)-2, liver activating protein (LAP) and c-jun, the stretch-induced increase in LAP was unaffected by MAPK-inhibition and only JNK inhibition appeared to reduce c-jun activation. These observations show that stretch, IL-1beta and anisomycin activate the same components of the MAPK cascade, but differentially activate LAP and liver inhibitory protein (LIP) perhaps accounting for the increase in OTR by stretch and anisomycin but not IL-1beta observed in this study.
An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds.
Fusi, Jonathan; Bianchi, Sara; Daniele, Simona; Pellegrini, Silvia; Martini, Claudia; Galetta, Fabio; Giovannini, Luca; Franzoni, Ferdinando
2018-05-01
Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences. Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase (SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of AMPK. Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by immunoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and peroxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly increased the SIRT1 expression and the activation of AMPK. Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to increase SIRT1 expression and AMPK activation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Dziewiatkowski, Dominic D.
1954-01-01
The administration of vitamin A to vitamin A-deficient rats resulted in a decreased concentration of inorganic sulfate-sulfur in the serum from a value of 2.5 mg. per cent to 1.8 mg. per cent, the latter being close to the value of 2.0 mg. per cent found in normal rats of the same age. The uptake of sulfate and phosphate by femurs and tibiae of vitamin A-deficient rats was less than that in normal rats of the same age. An increased uptake followed the administration of vitamin A: radioautography indicated that in the case of sulfate, its uptake was particularly increased in the epiphyseal cartilage; an increased uptake of phosphate was particularly evident in the diaphysis immediately adjacent to the epiphyseal cartilage plate. The specific activity of the sulfate-sulfur in the chondroitin sulfate samples isolated from the skeletons of vitamin A-deficient rats fell progressively as the deficiency continued. Following administration of vitamin A, the specific activity approached and exceeded the value given by the sample from the skeletons of normal rats of the same age. A substantial increase was found in the value of the specific activity of the sulfate-sulfur of sulfomucopolysaccharides isolated from skins of vitamin A-deficient rats that had been given vitamin A. Following administration of vitamin A to rats deficient in this vitamin, an increased accumulation of some sulfur-containing material was found in regions of active calcification. PMID:13163335
Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian
2015-01-01
Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
Bi, Jianli; Contag, Stephen A; Chen, Kai; Su, Yixin; Figueroa, Jorge P; Chappell, Mark C; Rose, James C
2014-11-01
Prenatal glucocorticoid administration in clinically relevant doses reduces nephron number and renal function in adulthood and is associated with hypertension. Nephron loss in early life may predispose the kidney to other insults later but whether sex influences increases in renal susceptibility is unclear. Therefore, we determined, in male and female adult sheep, whether antenatal glucocorticoid (betamethasone) exposure increased 8-isoprostane (marker of oxidative stress) and protein excretion after acute nephron reduction and intrarenal infusions of angiotensin peptides. We also examined whether renal proximal tubule cells (PTCs) could contribute to alterations in 8-isoprostane excretion in a sex-specific fashion. In vivo, ANG II significantly increased 8-isoprostane excretion by 49% and protein excretion by 44% in male betamethasone- but not in female betamethasone- or vehicle-treated sheep. ANG-(1-7) decreased 8-isoprostane excretion but did not affect protein excretion in either group. In vitro, ANG II stimulated 8-isoprostane release from PTCs of male but not female betamethasone-treated sheep. Male betamethasone-exposed sheep had increased p47 phox abundance in the renal cortex while superoxide dismutase (SOD) activity was increased only in females. We conclude that antenatal glucocorticoid exposure enhances the susceptibility of the kidney to oxidative stress induced by ANG II in a sex-specific fashion and the renal proximal tubule is one target of the sex-specific effects of antenatal steroids. ANG-(1-7) may mitigate the impact of prenatal glucocorticoids on the kidney. P47 phox activation may be responsible for the increased oxidative stress and proteinuria in males. The protection from renal oxidative stress in females is associated with increased SOD activity. Copyright © 2014 the American Physiological Society.
Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki
2017-01-01
Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380
Hecht, K; Wrba, A; Jaenicke, R
1989-07-15
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.
Basset , Gilles; Raymond, Philippe; Malek, Lada; Brouquisse, Renaud
2002-01-01
The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of α3 and β6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations. PMID:11891269
Galvez-Pol, A; Calvo-Merino, B; Capilla, A; Forster, B
2018-07-01
Working memory (WM) supports temporary maintenance of task-relevant information. This process is associated with persistent activity in the sensory cortex processing the information (e.g., visual stimuli activate visual cortex). However, we argue here that more multifaceted stimuli moderate this sensory-locked activity and recruit distinctive cortices. Specifically, perception of bodies recruits somatosensory cortex (SCx) beyond early visual areas (suggesting embodiment processes). Here we explore persistent activation in processing areas beyond the sensory cortex initially relevant to the modality of the stimuli. Using visual and somatosensory evoked-potentials in a visual WM task, we isolated different levels of visual and somatosensory involvement during encoding of body and non-body-related images. Persistent activity increased in SCx only when maintaining body images in WM, whereas visual/posterior regions' activity increased significantly when maintaining non-body images. Our results bridge WM and embodiment frameworks, supporting a dynamic WM process where the nature of the information summons specific processing resources. Copyright © 2018 Elsevier Inc. All rights reserved.
Unfolded protein response regulation in keloid cells.
Butler, Paris D; Wang, Zhen; Ly, Daphne P; Longaker, Michael T; Koong, Albert C; Yang, George P
2011-05-01
Keloids are a common form of pathologic wound healing characterized by excessive production of extracellular matrix. The unfolded protein response (UPR) is a cellular response to hypoxia, a component of the wound microenvironment, capable of protecting cells from the effects of over-accumulation of misfolded proteins. Since keloids have hypersecretion of extracellular matrix, we hypothesized that keloid fibroblasts (KFs) may have enhanced activation of the UPR compared with normal fibroblasts (NFs). KFs and NFs were placed in a hypoxia chamber for 0, 24, and 48h. We also used tunicamycin to specifically up-regulate the UPR. UPR activation was assayed by PCR for xbp-1 splicing and by immunoblotting with specific antibodies for the three UPR transducers. Nuclear localization of XBP-1 protein in KFs was confirmed by immunofluorescence. There is increased activation of XBP-1 protein in KFs compared with NFs following exposure to hypoxia. Pancreatic ER kinase (PERK) and ATF-6, two other pathways activated by the UPR, show comparable activation between KFs and NFs. We confirmed that there is enhanced activation of XBP-1 by demonstrating increased nuclear localization of XBP-1 using immunofluorescence. In contrast to our initial hypothesis that keloids would have broad activation of the UPR, we demonstrate here that there is a specific up-regulation of one facet of the UPR response. This may represent a specific molecular defect in KFs compared with NFs, and also suggests modulation of the UPR can be used in wound healing therapy. Published by Elsevier Inc.
George, M S; Anton, R F; Bloomer, C; Teneback, C; Drobes, D J; Lorberbaum, J P; Nahas, Z; Vincent, D J
2001-04-01
Functional imaging studies have recently demonstrated that specific brain regions become active in cocaine addicts when they are exposed to cocaine stimuli. To test whether there are regional brain activity differences during alcohol cue exposure between alcoholic subjects and social drinkers, we designed a functional magnetic resonance imaging (fMRI) protocol involving alcohol-specific cues. Ten non-treatment-seeking adult alcoholic subjects (2 women) (mean [SD] age, 29.9 [9.9] years) as well as 10 healthy social drinking controls of similar age (2 women) (mean [SD] age, 29.4 [8.9] years) were recruited, screened, and scanned. In the 1.5-T magnetic resonance imaging scanner, subjects were serially rated for alcohol craving before and after a sip of alcohol, and after a 9-minute randomized presentation of pictures of alcoholic beverages, control nonalcoholic beverages, and 2 different visual control tasks. During picture presentation, changes in regional brain activity were measured with the blood oxygen level-dependent technique. Alcoholic subjects, compared with the social drinking subjects, reported higher overall craving ratings for alcohol. After a sip of alcohol, while viewing alcohol cues compared with viewing other beverage cues, only the alcoholic subjects had increased activity in the left dorsolateral prefrontal cortex and the anterior thalamus. The social drinkers exhibited specific activation only while viewing the control beverage pictures. When exposed to alcohol cues, alcoholic subjects have increased brain activity in the prefrontal cortex and anterior thalamus-brain regions associated with emotion regulation, attention, and appetitive behavior.
Gorsline, J.; Holmes, W.N.; Cronshaw, J.
1981-01-01
Hepatic mixed function oxidase activities were estimated in seawater-adapted mallard ducks (Anas platyrhynchos) that had been consuming food contaminated with one of five different types of crude oil. After 50 days of exposure to contaminated food, enzyme activities of liver microsomal preparations were assessed in terms of their naphthalenemetabolizing properties in vitro. Although dose-dependent increases in the total hepatic enzyme activities (nmole naphthalene metabolized per minute per unit mass body weight) were observed in birds consuming food contaminated with each type of crude oil, three patterns of response were apparent. Crude oils from South Louisiana and Kuwait stimulated large and significant increases in the specific activity of the enzyme system (nmole naphthalene metabolized per minute per unit mass microsomal protein), whereas little or no increase in either microsomal protein content or relative liver weight were observed. In contrast, two crude oils from Santa Barbara, Calif., induced only small increases in specific activity but significant increases occurred in hepatic microsomal protein concentration and relative liver weight. The crude oil from Prudhoe Bay, Ala., evoked intermediate patterns of response. The possible significance of these data is discussed in relation to the survival of seabirds consuming petroleum-contaminated food and drinking water.
Supercapacitors from Activated Carbon Derived from Granatum.
Wang, Qiannan; Yang, Lin; Wang, Zhao; Chen, Kexun; Zhang, Lipeng
2015-12-01
Granatum carbon (GC) as electrode materials for supercapacitors is prepared via the chemical activation with different activating agent such as ZnC2 and KOH with an intention to improve the surface area and their electrochemical performance. The structure and electrochemical properties of GC materials are characterized with N2 adsorption/desorption measurements, scanning electron microscope (SEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that the specific surface area of the granatum-based activated carbons increased obviously from 573 m2 x g(-1) to 1341 m2 x g(-1) by ZnC2 activation and to 930 m2 x g(-1) by KOH treatment. Furthermore, GCZ also delivers specific capacitance of 195.1 Fx g(-1) at the current density of 0.1 A x g(-1) in 30 wt.% KOH aqueous electrolyte and low capacitance loss of 28.5% when the current density increased by 10 times.
Bao, Haibo; Shao, Xusheng; Zhang, Yixi; Deng, Yayun; Xu, Xiaoyong; Liu, Zewen; Li, Zhong
2016-06-29
Insecticide synergists are key components to increase the control efficacy and reduce active ingredient use. Here, we describe a novel insecticide synergist with activity specific for insecticidal neonicotinoids. The synergist IPPA08, a cis configuration neonicotinoid compound with a unique oxabridged substructure, could increase the toxicity of most neonicotinoid insecticides belonging to the Insecticide Resistance Action Committee (IRAC) 4A subgroup against a range of insect species, although IPPA08 itself was almost inactive to insects at synergistic concentrations. Unfortunately, similar effects were observed on the honey bee (Apis mellifera) and the brown planthopper (Nilaparvata lugens), resistant to imidacloprid. IPPA08 did not show any effects on toxicity of insecticides with different targets, which made us define it as a neonicotinoid-specific synergist. Unlike most insecticide synergists, by inhibition of activities of detoxification enzymes, IPPA08 showed no effects on enzyme activities. The results revealed that IPPA08 worked as a synergist through a distinct way. Although the modulating insect nicotinic acetylcholine receptors (nAChRs, targets of neonicotinoid insecticides) were supposed as a possible mode of action for IPPA08 as a neonicotinoid-specific synergist, direct evidence is needed in further studies. In insect pest control, IPPA08 acts as a target synergist to increase neonicotinoid toxicity and reduce the amount of neonicotinoid used. Combinations of IPPA08 and insecticidal neonicotinoids may be developed into new insecticide formulations. In summary, combining an active ingredient with a "custom" synergist appears to be a very promising approach for the development of effective new insecticide products.
Subbaiah, Papasani V.; Horvath, Peter; Achar, Srinivasa B.
2006-01-01
Sphingomyelin (SM), the second most abundant phospholipid in plasma lipoproteins, was previously shown to be a physiological inhibitor of the lecithin-cholesterol acyltransferase (LCAT) reaction. In this study, we investigated the effects of its metabolites, ceramide and ceramide phosphate, on the activity and fatty acid specificity of LCAT in vitro. Treatment of SM-containing substrate with SMase C, which hydrolyzes SM to ceramide, abolished the inhibitory effect of SM, whereas treatment with SMase D, which hydrolyzes it to ceramide phosphate, increased the inhibition. Although incorporation of ceramide into the substrate in the absence of SM activated the LCAT reaction only modestly, its co-incorporation with SM neutralized the inhibitory effect of SM. Ceramide phosphate, on the other hand, inhibited the LCAT reaction more strongly than SM. The effects of the sphingolipids were similar on the phospholipase A and cholesterol esterification reactions of the enzyme, indicating that they regulate the binding of phosphatidylcholine (PC) to the active site, rather than the esterification step. Ceramide incorporation into the substrate stimulated the synthesis of unsaturated cholesteryl esters at the expense of saturated esters. However these effects on fatty acid specificity disappeared when the PC substrates were incorporated into an inert diether PC matrix, suggesting that ceramide increases the availability of polyunsaturated PCs to the enzyme by altering the macromolecular structure of the substrate particle. Since the plasma ceramide levels are increased during inflammation, these results indicate that the activity and fatty acid specificity of LCAT may be altered during the inflammatory response. PMID:16605271
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.
Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y
1999-11-01
Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.
2011-01-01
Background Knowledge of adult activity patterns across domains of physical activity is essential for the planning of population-based strategies that will increase overall energy expenditure and reduce the risk of obesity and related chronic diseases. We describe domain-specific hours of activity and energy expended among participants in a prospective cohort in Alberta, Canada. Methods The Past Year Total Physical Activity Questionnaire was completed by 15,591 Tomorrow Project® participants, between 2001 and 2005 detailing physical activity type, duration, frequency and intensity. Domain-specific hours of activity and activity-related energy expenditure, expressed as a percent of total energy expenditure (TEE) (Mean (SD); Median (IQR)) are reported across inactive (<1.4), low active (1.4 to 1.59), active (1.6 to 1.89) and very active (≥ 1.9) Physical Activity Level (PAL = TEE:REE) categories. Results In very active women and amongst all men except those classified as inactive, activity-related energy expenditure comprised primarily occupational activity. Amongst inactive men and women in active, low active and inactive groups, activity-related energy expenditure from household activity was comparable to, or exceeded that for occupational activity. Leisure-time activity-related energy expenditure decreased with decreasing PAL categories; however, even amongst the most active men and women it accounted for less than 10 percent of TEE. When stratified by employment status, leisure-time activity-related energy expenditure was greatest for retired men [mean (SD): 10.8 (8.5) percent of TEE], compared with those who were fully employed, employed part-time or not employed. Transportation-related activity was negligible across all categories of PAL and employment status. Conclusion For the inactive portion of this population, active non-leisure activities, specifically in the transportation and occupational domains, need to be considered for inclusion in daily routines as a means of increasing population-wide activity levels. Environmental and policy changes to promote active transport and workplace initiatives could increase overall daily energy expenditure through reducing prolonged sitting time. PMID:21985559
Activities of Vacuolar Cysteine Proteases in Plant Senescence.
Martínez, Dana E; Costa, Lorenza; Guiamét, Juan José
2018-01-01
Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xuqin; Sun, Tao; Wang, Xiaodong, E-mail: xdwang666@hotmail.com
2013-07-05
Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcriptionmore » of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.« less
Kuvakina, V I; Golovina, L I; Mishina, A I; Skirda, T A; Bobyleva, G V; Mikheeva, N G; Chernyshova, T F; Temper, R M; Ermolenko, Z N
2002-01-01
Immunological activity and safety of group B meningococcal vaccine prepared from a natural complex of specific polysaccharide and outer membrane proteins were under study. The immunological safety of the vaccine was evaluated by the absence of antibodies to denaturated and native DNA (d-DNA and n-DNA). As shown with the use of the enzyme immunoassay (EIA), the administration of the vaccine did not induce antibody formation to d-DNA and n-DNA during the observation period. The titer of bactericidal antibodies in the immune bacteriolysis assay (IBA) to the vaccine strain B:2b:P1.2 after immunization increased four-fold and greater in 80% of the vaccinated persons. The significant increase of bactericidal antibodies to heterologous strains B:2a:P1.2 and B:15:P1.7 was registered in 20-30% of the vaccinees, respectively. A month after the repeated vaccination an increase in specific IgG antibodies to the complex antigen was found to occur according to EIA results. The use of RIB made it possible to evaluate the preventive activity of group B meningococcal vaccine as a whole and to suppose that the vaccine induced mainly type-specific response.
Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian
2012-01-01
Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600
Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.
2009-01-01
Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875
Bagby, Karen; Adams, Susan
2007-06-01
Because of the growing obesity epidemic across all age groups in the United States, interventions to increase physical activity and reduce sedentary behaviors have become a priority. Evidence is growing that interventions to increase physical activity and reduce sedentary behaviors have positive results and are generally inexpensive to implement. National and international health organizations are calling for a comprehensive approach for reducing obesity in children that includes increasing physical activity in the school setting. Although the call to increase activity levels in schools is clear, little guidance has been given to schools on specific methods to accomplish this task. This article provides an overview of an evidence-based guideline developed by a physical education teacher and a school nurse to provide inexpensive, easy-to-implement, effective strategies to increase physical activity in students. Tools are also included in the guideline to measure the effectiveness of the intervention.
UML activity diagram swimlanes in logic controller design
NASA Astrophysics Data System (ADS)
Grobelny, Michał; Grobelna, Iwona
2015-12-01
Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.
Kandasamy, Jeyakumar; Atia-Glikin, Dana; Shulman, Eli; Shapira, Katya; Shavit, Michal; Belakhov, Valery; Baasov, Timor
2012-01-01
Compelling evidence is now available that gentamicin and geneticin (G418) can induce mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, toxicity and relative lack of efficacy at subtoxic doses limit the use of gentamicin for suppression therapy. Although G418 exhibits strongest activity, it is very cytotoxic even at low doses. We describe here the first systematic development of the novel aminoglycoside (S)-11 exhibiting similar in vitro and ex vivo activity to that of G418, while its cell toxicity is significantly lower than those of gentamicin and G418. Using a series of biochemical assays, we provide proof of principle that antibacterial activity and toxicity of aminoglycosides can be dissected from their suppression activity. The data further indicate that the increased specificity towards cytoplasmic ribosome correlates with the increased activity, and that the decreased specificity towards mitochondrial ribosome confers to the lowered cytotoxicity. PMID:23148581
Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François
2016-01-01
Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154
Rueda, Felix; Eich, Christina; Cordobilla, Begoña; Domingo, Pere; Acosta, Gerardo; Albericio, Fernando; Cruz, Luis J; Domingo, Joan C
2017-11-01
Nanoliposomes (NLs) hold promise as new highly specific nanomedicine for anti-tumor vaccines, since they could be targeted to specific receptors on dendritic cell (DC) to induce maturation and activation and increase the anti-tumor immune response. Here we studied a NLs formulation targeted or not to FcR (the receptor for the IgG Fc fragment) for the treatment of androgen-responsive prostate cancer. Luteinizing-hormone-releasing hormone (LHRH) peptide (B- and T-cell epitopes), in tandem with a tetanus toxoid T-helper epitope (830-844 region) and several TLR (Toll-Like Receptor) ligands as adjuvants were co-encapsulated. Specific uptake in vitro of LHRH-TT liposomes targeted to the FcRs of human DCs was enhanced. DC maturation/activation, cytokine production and lymphocyte activation were consistently higher in targeted than non-targeted liposomes. Similar increase was observed as more adjuvants were administrated. Targeting to specific receptor and co-encapsulation of several TLR adjuvants are essential factors for the immune response in peptide based liposome vaccine. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zechner, Dietmar; Thuerauf, Donna J.; Hanford, Deanna S.; McDonough, Patrick M.; Glembotski, Christopher C.
1997-01-01
Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by α1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal–regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the α-skeletal actin (α-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and α-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and α-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy. PMID:9314533
Kovaleva, I G; Ostroumova, M N; Tsyrlina, E V; Bobrov, Iu F; Evtushenko, T V
1982-01-01
Total insulin-like activity (ILA) was evaluated by biological testing blood serum on the basis of stimulation of glycogen synthesis in rat diaphragm in vivo. Glucose loading was followed by an increase in ILA and radioimmune insulin (RII) levels both in patients with breast fibroadenomatosis and healthy controls. However, the patients revealed an increased RII response matched by absence of ILA response, while the basal ILA was three times that in healthy controls. An elevated basal level of ILA was also observed in patients with coronary atherosclerosis and mental depression. Enhanced hyperinsulinism due to RII complementary factors, capable of insulin-like activity, may prove to be a factor in specific age-associated pathology (cancer, atherosclerosis, mental depression).
Salivary exoglycosidases in gestational diabetes .
Zalewska, Anna; Knaś, Małgorzata; Gumiężny, Grzegorz; Niczyporuk, Marek; Waszkiel, Danuta; Przystupa, Adrian Wojciech; Zarzycki, Wiesław
2013-04-19
As exoglycosidases have been described as potential markers of salivary gland pathology, we decided to check the possibility of the use of these enzymes in the detection of salivary gland involvement in gestational diabetes. For this purpose diabetic pregnant women were compared to pregnant and non-pregnant healthy women. The activities of total HEX as well as GLU in the saliva were determined in duplicate according to Marciniak et al. The activities of GAL, FUC, and MAN in the saliva were determined in duplicate according to Zwierz et al. It was found that the specific activities of exoglycosidases in the saliva of diabetic pregnant women significantly increased in comparison to healthy pregnant and non-pregnant women. Increased specific activity of exoglycosidases suggests that gestational diabetes provokes structural/functional alterations in salivary glands and changes in the salivary glycoconjugates metabolism.
Quantification of diphtheria toxin mediated ADP-ribosylation in a solid-phase assay.
Bachran, Christopher; Sutherland, Mark; Bachran, Diana; Fuchs, Hendrik
2007-09-01
Because of reduced vaccination programs, the number of diphtheria infections has increased in the last decade. Diphtheria toxin (DT) is expressed by Corynebacterium diphtheriae and is responsible for the lethality of diphtheria. DT inhibits cellular protein synthesis by ADP-ribosylation of the eukaryotic elongation factor 2 (eEF2). No in vitro system for the quantification of DT enzymatic activity exists. We developed a solid-phase assay for the specific detection of ADP-ribosylation by DT. Solid phase-bound his-tag eEF2 is ADP-ribosylated by toxins using biotinylated NAD(+) as substrate, and the transferred biotinylated ADP-ribose is detected by streptavidin-peroxidase. DT enzymatic activity correlated with absorbance. We measured the amount of ADP-ribosylated eEF2 after precipitation with streptavidin-Sepharose. Quantification was done after Western blotting and detection with anti-his-tag antibody using an LAS-1000 System. The assay detected enzymatically active DT at 30 ng/L, equivalent to 5 mU/L ADP-ribosylating activity. Pseudomonas exotoxin A (PE) activity was also detected at 100 ng/L. We verified the assay with chimeric toxins composed of the catalytic domain of DT or PE and a tumor-specific ligand. These chimeric toxins revealed increased signals at 1000 ng/L. Heat-inactivated DT and cholera toxin that ADP-ribosylates G-proteins did not show any signal increase. The assay may be the basis for the development of a routine diagnostic assay for the detection of DT activity and highly specific inhibitors of DT.
Porous silicon structures with high surface area/specific pore size
Northrup, M.A.; Yu, C.M.; Raley, N.F.
1999-03-16
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.
Porous silicon structures with high surface area/specific pore size
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Breyer, Maria G.; Kilroe-Smith, T. A.; Prinsloo, H.
1964-01-01
Kilroe-Smith and Breyer (1963) reported that in the early stages of silicosis in guinea-pigs exposed to the inhalation of quartz dust, before the formation of collagen, there were increases in the specific activities of the complete succinate oxidase system and succinate dehydrogenase. The effects on these enzymes of quartz dust have now been compared with the effects of the fibrogenically `inert' lampblack. Lampblack causes a slight increase in the specific activities of these enzymes but the effects are small compared to those caused by quartz. Lampblack also causes a much smaller increase in lung weight than quartz, thus the enzyme increases are roughly parallel to the rise in lung weight. It appears that the effects observed on the enzymes are part of the general pattern associated with the early stages of the development of silicosis. PMID:14106132
Singh, Vishal; Sharma, Vikas; Verma, Vikas; Pandey, Deepti; Yadav, Santosh K; Maikhuri, Jagdamba P; Gupta, Gopal
2015-12-01
To investigate apigenin (5,7,4-trihydroxyflavone), a dietary flavonoid with proteasome-inhibitory activity (desired for the management of multiple types of cancers), against FDA-approved anticancer proteasome inhibitor bortezomib in context to its effects on the tumor suppressor estrogen receptor-beta (ER-β) in prostate cancer cells. Prostate cancer (PC-3) cells were treated with either apigenin or bortezomib, and proliferation inhibition was correlated with proteasomal biochemistry, ER-degradation and cell apoptosis. Apigenin specifically inhibited only chymotrypsin-like activity of proteasome without affecting trypsin and caspase-like activities, which was in contrast to the non-specific inhibition of all the three activities by bortezomib. Apigenin selectively increased the protein levels of ER-β at 1.8 and 10.0 µM (without affecting mRNA levels) and preferentially accumulated ubiquitinated ER-β over ER-α in PC-3. Apigenin-treated cells exhibited increased ER-β interactions with ubiquitin-protein ligase E6AP, downregulated PSMA5 (α-5 subunit for assembly of 20S proteasome) without affecting PSMB1 (β-1 subunit), PSMB2 (β-2 subunit) and PSMB5 (β-5 subunit, whose overexpression by bortezomib causes drug resistance) of proteasome at mRNA levels. Caspase-3 activation in PC-3 by apigenin was dependent on caspase-8 activity but independent of mitochondrial membrane depolarization. The deubiquitinase USP14 activity, which antagonizes degradation of proteins via proteasome, was significantly increased by apigenin treatment. Apigenin selectively inhibits proteasomal degradation of tumor suppressor ER-β by specifically inhibiting chymotrypsin-like activity of proteasome, preventing its assembly via PSMA5 and inhibiting USP14 enzyme activity in prostate cancer cells, resulting in cancer cell apoptosis. Unlike bortezomib, apigenin's actions are subtle, precise, mechanistically distinct and capable of abstaining drug resistance.
Jin, Ye; Ni, Di-An; Ruan, Yong-Ling
2009-07-01
Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.
Marrone, Giusi; De Chiara, Francesco; Böttcher, Katrin; Levi, Ana; Dhar, Dipok; Longato, Lisa; Mazza, Giuseppe; Zhang, Zhenzhen; Marrali, Martina; Iglesias, Anabel Fernández-; Hall, Andrew; Luong, Tu Vinh; Viollet, Benoit; Pinzani, Massimo; Rombouts, Krista
2018-04-17
Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSC) which is associated with higher intracellular pH (pHi). The vacuolar H + adenosine-tri-phosphatase (v-ATPase) multi-subunit complex is a key regulator of intracellular pH homeostasis. The present work was aimed at investigating the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific AMPK subunits. Here, we demonstrated that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSC, compared to non-activated hHSC. Specific inhibition of v-ATPase with Bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and a lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with Diflunisal, A769662 and ZLN024, reduced the expression of v-ATPase subunits and pro-fibrogenic markers. V-ATPase expression was differently regulated by AMPKα1 and AMPKα2, as demonstrated in mouse embryo fibroblasts (MEF) specific deficient for AMPKα subunits. In addition, the activation of v-ATPase in hHSC was shown to be AMPKα1 dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSC prevented v-ATPase downregulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from Bile Duct Ligated mice and in human cirrhotic livers. The down-regulation of v-ATPase might represent a new promising target for the development of anti-fibrotic strategies. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Le, Van So; Do, Zoe Phuc-Hien; Le, Minh Khoi; Le, Vicki; Le, Natalie Nha-Truc
2014-06-10
Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of "early elution schedule" was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement certainty with respect to optimising decay/measurement time and product sample activity used for QC quality control. The optimisation ensures a certainty of measurement of the specific impure radionuclide and avoids wasting the useful amount of valuable purified/concentrated daughter nuclide product. This process is important for the spectrometric measurement of very low activity of impure radionuclide contamination in the radioisotope products of much higher activity used in medical imaging and targeted radiotherapy.
Writer's cramp: increased dorsal premotor activity during intended writing.
Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan
2013-03-01
Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing. Copyright © 2011 Wiley Periodicals, Inc.
Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L; Minassian, Arpi
2016-06-30
Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Guerrero, Michelle D.; Hoffmann, Matt D.; Munroe-Chandler, Krista J.; Hall, Craig R.
2016-01-01
Purpose: Much of what we know about pedometer interventions and imagery interventions with children is grounded in quantitative data. The general purpose of the present study was to qualitatively explore the experiences of children who had participated in a 4-week imagery intervention designed to increase active play. Specifically, the current…
Selb, Regina; Eckl-Dorna, Julia; Neunkirchner, Alina; Schmetterer, Klaus; Marth, Katharina; Gamper, Jutta; Jahn-Schmid, Beatrice; Pickl, Winfried F; Valenta, Rudolf; Niederberger, Verena
2017-01-01
Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. In allergic patients the vast majority of CD23 molecules were expressed on naive IgD + B cells. The density of CD23 molecules on B cells but not the number of CD23 + cells correlated with total IgE levels (R S = 0.53, P = .03) and allergen-induced skin reactions (R S = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Lee, Lung-Yi; Köhler, Ulrike A.; Zhang, Li; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey A.; Foley, David P.
2014-01-01
Oxidative stress is implicated in the development of non-alcoholic steatohepatitis (NASH). The Nrf2-antioxidant response element pathway protects cells from oxidative stress. Studies have shown that global Nrf2 deficiency hastens the progression of NASH. The purpose of this study was to determine whether long-term hepatocyte-specific activation of Nrf2 mitigates NASH progression. Transgenic mice expressing a constitutively active Nrf2 construct in hepatocytes (AlbCre+/caNrf2+) and littermate controls were generated. These mice were fed standard or methionine-choline-deficient (MCD) diet, a diet used to induce NASH development in rodents. After 28 days of MCD dietary feeding, mice developed significant increases in steatosis, inflammation, oxidative stress, and HSC activation compared with those mice on standard diet. AlbCre+/caNrf2+ animals had significantly decreased serum transaminases and reduced steatosis when compared with the AlbCre+/caNrf2− animals. This significant reduction in steatosis was associated with increased expression of genes involved in triglyceride export (MTTP) and β-oxidation (CPT2). However, there were no differences in the increased oxidative stress, inflammation, and HSC activation from MCD diet administration between the AlbCre+/caNrf2− and AlbCre+/caNrf2+ animals. We conclude that hepatocyte-specific activation of Nrf2-mediated gene expression decreased hepatocellular damage and steatosis in a dietary model of NASH. However, hepatocyte-specific induction of Nrf2-mediated gene expression alone is insufficient to mitigate inflammation, oxidative stress, and HSC activation in this nutritional NASH model. PMID:25294219
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang
2017-01-01
Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205
Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration.
Creus-Muncunill, Jordi; Rué, Laura; Alcalá-Vida, Rafael; Badillos-Rodríguez, Raquel; Romaní-Aumedes, Joan; Marco, Sonia; Alberch, Jordi; Perez-Otaño, Isabel; Malagelada, Cristina; Pérez-Navarro, Esther
2018-02-19
Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington's disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death. Here, we analyzed whether mTORC2 activity could be altered by the presence of mutant huntingtin. We observed that Rictor levels are specifically increased in the striatum of HD mouse models and in the putamen of HD patients. Rictor-mTOR interaction and the phosphorylation levels of Akt, one of the targets of the mTORC2 complex, were increased in the striatum of the R6/1 mouse model of HD suggesting increased mTORC2 signaling. Interestingly, acute downregulation of Rictor in striatal cells in vitro reduced mTORC2 activity, as shown by reduced levels of phospho-Akt, and increased mutant huntingtin-induced cell death. Accordingly, overexpression of Rictor increased mTORC2 activity counteracting cell death. Furthermore, normalization of endogenous Rictor levels in the striatum of R6/1 mouse worsened motor symptoms suggesting an induction of neuronal dysfunction. In conclusion, our results suggest that increased Rictor striatal levels could counteract neuronal dysfunction induced by mutant huntingtin.
Loginov, S I; Malkov, M N; Nikolayev, A Yu
2017-01-01
Objective of the study was to establish gender-specific characteristics of physical activity (PA) and sedentary behavior in elderly people living in Yugra North. 295 residents of Surgut (102 men aged 62,9±5,3 years, 35%; 193 women aged 61,9±3,8 years, 65%) were subject to a IPAQ-RU questionnaire. The study revealed the gender-specific differences in body length and mass, body mass and body fat indices. It was detected that more energy is spent on the housework and physical activity in the country (moderate-intensity physical activity for women and high-intensity one for men). The study data showed no statistically significant gender-specific differences in general physical activity. Sedentary behavior is more popular among men rather than women (2543 vs 2441 min/week). 47% of low-active men and 56% of women reported the sitting times of 6-9 hours per day, 42% - 9-12 hours per day. Actions need to be taken to increase physical activity which is low at the moment and decrease sedentary behavior which is currently on the high level.
Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.
Datta, Suprama; Annapure, Uday S; Timson, David J
2017-04-30
Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).
Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek
2010-01-01
Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in diminishing the effects of alcohol- and smoking-related oxidative stress.
Endothelial- and Platelet-Derived Microparticles Are Generated During Liver Resection in Humans.
Banz, Yara; Item, Gian-Marco; Vogt, Andreas; Rieben, Robert; Candinas, Daniel; Beldi, Guido
2016-01-01
Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.
ERIC Educational Resources Information Center
Adkins, Megan; Bice, Matt; Bartee, Todd; Heelan, Kate
2015-01-01
Across the nation schools are adopting health and wellness policies, specifically physical activity (PA) initiatives that aid healthy long-term lifestyles. Interest has been generated about the inclusion of physical activity classes to complement existing physical education classes. Furthermore, discussion has evolved as to if additional…
ERIC Educational Resources Information Center
MacFarlane, Kendra; Wharf Higgins, Joan; Naylor, Patti-Jean
2018-01-01
Objective: This study explored factors affecting the implementation of good-quality physical activity provision in after-school childcare delivered in a Canadian jurisdiction without specific policy, standards or active interventions aimed at increasing physical activity underway. Design: Case study design theoretically guided by the…
Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria
1997-01-01
Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302
Martz, Françoise; Sutinen, Marja-Liisa; Kiviniemi, Sari; Palta, Jiwan P
2006-06-01
It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation in an extremely winter hardy tree species under natural conditions, lending support to the hypothesis that FA-regulated PM H+-ATPase activity is involved in the cellular response underlying cold acclimation and de-acclimation.
Analysis of the biological activity of antilymphocyte serum
Perper, R. J.; Monovich, R. E.; Van Gorder, T. J.
1971-01-01
Two IgG subfractions of horse antilymphocyte serum (ALS) were obtained by DEAE Sephadex chromatography. Although the fractions did not differ antigenically, they differed on amino acid and carbohydrate analysis, and in electrophoretic mobility. As demonstrated by binding studies, only the most positively charged population of IgG molecules (fraction 1) obtained from anti-lymphocyte serum had specificity for the small lymphocyte; 50 per cent of the molecules in this population bound specifically to lymphocytes in vitro. As determined by an in vitro correlate of immunosuppressive potency (rosette inhibition), fraction 1 (F1) IgG from ALS contained approximately 4 times the specific activity of fraction 2 (F2). F1 was significantly more effective in prolonging skin graft survival than F2, whereas F2 contained the major component of the non-specific anti-inflammatory activity of serum. The anti-inflammatory effect was mediated by anticomplement activity. F2 was found to be an effective inhibitor of the immunosuppressive activity of F1 both in vivo and in vitro. Quantitative studies indicated that 1 part of F2 could maximally inhibit 4 parts of F1. The percentage of F2 present in serum IgG was inversely related to the skin graft survival elicited by the serum, which indicated that F2 was active as an inhibitor when tested as purified fraction as well as in unfractionated serum. Following immunization when F1 gained immunosuppressive potency, it lost non-specific anti-inflammatory activity. These observations indicated that not only was there a quantitative, as well as a qualitative concentration of immunosuppressive antibodies in F1, but also that this activity was controlled by the concentration of F2. This report, therefore, describes an IgG control mechanism which can limit the expression of antibody induced biological activity. It is suggested that in ALS the immunosuppressive antibody molecules possess a greater net positive charge than the remaining population, and that this is due to the degree of the negative charge on the immunizing antigen. Using DEAE Sephadex chromatography, these populations could be separated into two differently charged populations of molecules, only one of which had significant immunosuppressive capability. This increase in activity resulted from the increase of specific molecules, the loss of non-specific molecules, and was manifest upon the removal of an IgG inhibitor. ImagesFIG. 1FIG. 2 PMID:4943146
Marijuana's acute effects on cognitive bias for affective and marijuana cues.
Metrik, Jane; Aston, Elizabeth R; Kahler, Christopher W; Rohsenow, Damaris J; McGeary, John E; Knopik, Valerie S
2015-10-01
Marijuana produces acute increases in positive subjective effects and decreased reactivity to negative affective stimuli, though may also acutely induce anxiety. Implicit attentional and evaluative processes may explicate marijuana's ability to acutely increase positive and negative emotions. This within-subjects study examined whether smoked marijuana with 2.7-3.0% delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed attentional processing of rewarding and negative affective stimuli as well as marijuana-specific stimuli. On 2 separate days, regular marijuana users (N = 89) smoked placebo or active THC cigarette and completed subjective ratings of mood, intoxication, urge to smoke marijuana, and 2 experimental tasks: pleasantness rating (response latency and perceived pleasantness of affective and marijuana-related stimuli) and emotional Stroop (attentional bias to affective stimuli). On the pleasantness rating task, active marijuana increased response latency to negatively valenced and marijuana-related (vs. neutral) visual stimuli, beyond a general slowing of response. Active marijuana also increased pleasantness ratings of marijuana images, although to a lesser extent than placebo due to reduced marijuana urge after smoking. Overall, active marijuana did not acutely change processing of positive emotional stimuli. There was no evidence of attentional bias to affective word stimuli on the emotional Stroop task with the exception of attentional bias to positive word stimuli in the subgroup of marijuana users with cannabis dependence. Marijuana may increase allocation of attentional resources toward marijuana-specific and negatively valenced visual stimuli without altering processing of positively valenced stimuli. Marijuana-specific cues may be more attractive with higher levels of marijuana craving and less wanted with low craving levels. (c) 2015 APA, all rights reserved).
Marijuana’s Acute Effects on Cognitive Bias for Affective and Marijuana Cues
Metrik, Jane; Aston, Elizabeth R.; Kahler, Christopher W.; Rohsenow, Damaris J.; McGeary, John E.; Knopik, Valerie S.
2015-01-01
Marijuana produces acute increases in positive subjective effects and decreased reactivity to negative affective stimuli, though may also acutely induce anxiety. Implicit attentional and evaluative processes may explicate marijuana’s ability to acutely increase positive and negative emotions. This within-subjects study examined whether smoked marijuana with 2.7–3.0 % delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed attentional processing of rewarding and negative affective stimuli as well as marijuana-specific stimuli. On two separate days, regular marijuana users (N=89) smoked placebo or active THC cigarette and completed subjective ratings of mood, intoxication, urge to smoke marijuana, and two experimental tasks: Pleasantness Rating (response latency and perceived pleasantness of affective and marijuana-related stimuli) and Emotional Stroop (attentional bias to affective stimuli). On the Pleasantness Rating task, active marijuana increased response latency to negatively-valenced and marijuana-related (vs. neutral) visual stimuli, beyond a general slowing of response. Active marijuana also increased pleasantness ratings of marijuana images, although to a lesser extent than placebo due to reduced marijuana urge after smoking. Overall, active marijuana did not acutely change processing of positive emotional stimuli. There was no evidence of attentional bias to affective word stimuli on the Emotional Stroop task with the exception of attentional bias to positive word stimuli in the subgroup of marijuana users with cannabis dependence. Marijuana may increase allocation of attentional resources towards marijuana-specific and negatively-valenced visual stimuli without altering processing of positively-valenced stimuli. Marijuana-specific cues may be more attractive with higher levels of marijuana craving and less wanted with low craving levels. PMID:26167716
Kober, Silvia Erika; Witte, Matthias; Neuper, Christa; Wood, Guilherme
2017-10-01
Neurofeedback (NF) is often criticized because of the lack of empirical evidence of its specificity. Our present study thus focused on the specificity of NF on three levels: band specificity, cognitive specificity, and baseline specificity. Ten healthy middle-aged individuals performed ten sessions of SMR (sensorimotor rhythm, 12-15Hz) NF training. A second group (N=10) received feedback of a narrow gamma band (40-43Hz). Effects of NF on EEG resting measurements (tonic EEG) and cognitive functions (memory, intelligence) were evaluated using a pre-post design. Both training groups were able to linearly increase the target training frequencies (either SMR or gamma), indicating the trainability of these EEG frequencies. Both NF training protocols led to nonspecific changes in other frequency bands during NF training. While SMR NF only led to concomitant changes in slower frequencies, gamma training affected nearly the whole power spectrum. SMR NF specifically improved memory functions. Gamma training showed only marginal effects on cognitive functions. SMR power assessed during resting measurements significantly increased after SMR NF training compared to a pre-assessment, indicating specific effects of SMR NF on baseline/tonic EEG. The gamma group did not show any pre-post changes in their EEG resting activity. In conclusion, SMR NF specifically affects cognitive functions (cognitive specificity) and tonic EEG (baseline specificity), while increasing SMR during NF training nonspecifically affects slower EEG frequencies as well (band non-specificity). Gamma NF was associated with nonspecific effects on the EEG power spectrum during training, which did not lead to considerable changes in cognitive functions or baseline EEG activity. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of the lectin from Cherax quadricarinatus on its granular hemocytes.
Sánchez-Salgado, José Luis; Pereyra, Mohamed Alí; Agundis, Concepción; Vivanco-Rojas, Oscar; Rosales, Carlos; Pascual, Cristina; Alpuche-Osorno, Juan José; Zenteno, Edgar
2018-06-01
In crustaceans, lectins and hemocytes of the innate immune system provide the first line of defense. Although evidence points to the potential role of lectins in regulating hemocyte activity, the processes underlying the lectin activation have not been evaluated. In the present study, the receptor for CqL, a humoral lectin from Cherax quadricarinatus specific for galactose/sialic acid, was identified in a granular subset of hemocytes. The CqL receptor (CqLR) is a 490-kDa glycoprotein, composed of four identical 120-kDa subunits. As shown by immunohistochemistry, CqL at 7.5 μg/mL as optimal dose, after 2 min, induced, specifically on granular hemocytes, increased phosphorylation of serine (152%), threonine (192%), and tyrosine (242%) as compared with non-treated hemocytes; moreover, CqL induced increased generation of reactive oxygen species (ROS). Specific kinase inhibitors showed inhibition (P < 0.001) of ROS production induced by CqL. These results strongly suggest that CqL actively participated in the generation of ROS through kinases induced by a CqLR in a subset of granular hemocytes of the crayfish C. quadricarinatus. The results provide strong evidence that CqL activates, through specific granular hemocytes, receptors that modulate cellular functions in C. quadricarinatus. Copyright © 2018 Elsevier Ltd. All rights reserved.
2017-01-01
network of people and technology to provide sustained, persistent, SOF-specific capabilities and capacities and increased persistent forward- deployed...phase 1 operational activities of forward-deployed SOF personnel and the factors that critically influence the outcomes of their tactical operations can...chronized network of people and technology that provides sustained, persistent, SOF- specific capabilities and capacities and increased persistent
Benya, R V; Fathi, Z; Kusui, T; Pradhan, T; Battey, J F; Jensen, R T
1994-08-01
Stimulation of the gastrin-releasing peptide receptor (GRP-R) in Swiss 3T3 cells resembles that of a number of other recently described G protein-coupled receptors, insofar as both the phospholipase C and adenylyl cyclase signal transduction pathways are activated. GRP-R activation induces numerous alterations in both the cell and the receptor, but because two signal transduction pathways are activated it is difficult to determine the specific contributions of either pathway. We have found that BALB/3T3 fibroblasts transfected with the coding sequence for the GRP-R are pharmacologically indistinguishable from native receptor-expressing cells and activate phospholipase C in a manner similar to that of the native receptor but fail to increase cAMP in response to bombesin; thus, they may be useful cells to explore the role of activation of each pathway in altering cell and receptor function. Swiss 3T3 cells and GRP-R-transfected BALB/3T3 cells expressed identically glycosylated receptors that bound various agonists and antagonists similarly. G protein activation, as determined by evaluation of agonist-induced activation of phospholipase C and by analysis of the effect of guanosine-5'-(beta,gamma-imido)triphosphate on GRP-R binding affinity, was indistinguishable. Agonist stimulation of GRP-R caused similar receptor changes (internalization and down-regulation) and homologous desensitization in both cell types. Bombesin stimulation of Swiss 3T3 cells that had been preincubated with forskolin increased cAMP levels 9-fold, but no bombesin-specific increase in cAMP levels was detected in transfected cells, even though forskolin and cholera toxin increased cAMP levels in these cells. Quiescent Swiss 3T3 cells treated with bombesin rapidly increased c-fos mRNA levels and [3H]thymidine incorporation, whereas both effects were potentiated by forskolin. The specific protein kinase A inhibitor H-89 blocked increases in c-fos levels and [3H]thymidine incorporation induced by low concentrations of bombesin. GRP-R-transfected BALB/3T3 cells increased c-fos mRNA levels and [3H]thymidine incorporation with the addition of serum but not bombesin. These data suggest that bombesin-stimulated increases in cellular levels of cAMP appear not to be an important mediator of GRP-R internalization, down-regulation, or desensitization but do play an important role in bombesin-induced mitogenesis.
Mouton-Liger, F; Rebillat, A-S; Gourmaud, S; Paquet, C; Leguen, A; Dumurgier, J; Bernadelli, P; Taupin, V; Pradier, L; Rooney, T; Hugon, J
2015-01-15
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice).
PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model
Mouton-Liger, F; Rebillat, A-S; Gourmaud, S; Paquet, C; Leguen, A; Dumurgier, J; Bernadelli, P; Taupin, V; Pradier, L; Rooney, T; Hugon, J
2015-01-01
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice). PMID:25590804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Michael G.
The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plantmore » cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.« less
Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes.
Lone, Jameel; Yun, Jong Won
2016-05-15
Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Body-related cognitions, affect and post-event processing in body dysmorphic disorder.
Kollei, Ines; Martin, Alexandra
2014-03-01
Cognitive behavioural models postulate that individuals with BDD engage in negative appearance-related appraisals and affect. External representations of one's appearance are thought to activate a specific mode of processing characterized by increased self-focused attention and an activation of negative appraisals and affect. The present study used a think-aloud approach including an in vivo body exposure to examine body-related cognitions and affect in individuals with BDD (n = 30), as compared to individuals with major depression (n = 30) and healthy controls (n = 30). Participants were instructed to think aloud during baseline, exposure and follow-up trials. Individuals with BDD verbalized more body-related and more negative body-related cognitions during all trials and reported higher degrees of negative affect than both control groups. A weaker increase of positive body-related cognitions during exposure, a stronger increase of sadness and anger after exposure and higher levels of post-event processing, were specific processes in individuals with BDD. Individuals with major depression were not excluded from the BDD group. This is associated with a reduction of internal validity, as the two clinical groups are somewhat interwoven. Key findings need to be replicated. The findings indicate that outcomes such as negative appearance-related cognitions and affect are specific to individuals with BDD. An external representation of one's appearance activates a specific mode of processing in BDD, manifesting itself in the absence of positive body-related cognitions, increased anger and sadness, and high levels of post-event processing. These specific processes may contribute toward maintenance of BDD psychopathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Samarakkody, Ann; Abbas, Ata; Scheidegger, Adam; Warns, Jessica; Nnoli, Oscar; Jokinen, Bradley; Zarns, Kris; Kubat, Brooke; Dhasarathy, Archana; Nechaev, Sergei
2015-01-01
Promoter-proximal RNA polymerase II (Pol II) pausing is implicated in the regulation of gene transcription. However, the mechanisms of pausing including its dynamics during transcriptional responses remain to be fully understood. We performed global analysis of short capped RNAs and Pol II Chromatin Immunoprecipitation sequencing in MCF-7 breast cancer cells to map Pol II pausing across the genome, and used permanganate footprinting to specifically follow pausing during transcriptional activation of several genes involved in the epithelial to mesenchymal transition (EMT). We find that the gene for EMT master regulator Snail (SNAI1), but not Slug (SNAI2), shows evidence of Pol II pausing before activation. Transcriptional activation of the paused SNAI1 gene is accompanied by a further increase in Pol II pausing signal, whereas activation of non-paused SNAI2 gene results in the acquisition of a typical pausing signature. The increase in pausing signal reflects increased transcription initiation without changes in Pol II pausing. Activation of the heat shock HSP70 gene involves pausing release that speeds up Pol II turnover, but does not change pausing location. We suggest that Pol II pausing is retained during transcriptional activation and can further undergo regulated release in a signal-specific manner. PMID:25820424
Graham, Jacob R; Wright, Benjamin S; Rezk, Peter E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P
2006-06-01
Respiratory disturbances play a central role in chemical warfare nerve agent (CWNA) induced toxicity; they are the starting point of mass casualty and the major cause of death. We developed a microinstillation technique of inhalation exposure to nerve agent VX and assessed lung injury by biochemical analysis of the bronchoalveolar lavage fluid (BALF). Here we demonstrate that normal guinea pig BALF has a significant amount of cholinesterase activity. Treatment with Huperzine A, a specific inhibitor of acetylcholinesterase (AChE), showed that a minor fraction of BALF cholinesterase is AChE. Furthermore, treatment with tetraisopropyl pyrophosphoramide (iso-OMPA), a specific inhibitor of butyrylcholinesterase (BChE), inhibited more than 90% of BChE activity, indicating the predominance of BChE in BALF. A predominance of BChE expression in the lung lavage was seen in both genders. Substrate specific inhibition indicated that nearly 30% of the cholinesterase in lung tissue homogenate is AChE. BALF and lung tissue AChE and BChE activities were strongly inhibited in guinea pigs exposed for 5 min to 70.4 and 90.4 microg/m3 VX and allowed to recover for 15 min. In contrast, BALF AChE activity was increased 63% and 128% and BChE activity was increased 77% and 88% after 24 h of recovery following 5 min inhalation exposure to 70.4 microg/m3 and 90.4 mg/m3 VX, respectively. The increase in BALF AChE and BChE activity was dose dependent. Since BChE is synthesized in the liver and present in the plasma, an increase in BALF indicates endothelial barrier injury and leakage of plasma into lung interstitium. Therefore, a measure of increased levels of AChE and BChE in the lung lavage can be used to determine the chronology of barrier damage as well as the extent of lung injury following exposure to chemical warfare nerve agents.
Angelini, Daniela F.; Serafini, Barbara; Piras, Eleonora; Severa, Martina; Coccia, Eliana M.; Rosicarelli, Barbara; Ruggieri, Serena; Gasperini, Claudio; Buttari, Fabio; Centonze, Diego; Mechelli, Rosella; Salvetti, Marco; Borsellino, Giovanna; Aloisi, Francesca; Battistini, Luca
2013-01-01
It has long been known that multiple sclerosis (MS) is associated with an increased Epstein-Barr virus (EBV) seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A) and lytic (BZLF-1, BMLF-1) antigens in relapsing-remitting MS patients (n = 113) and healthy donors (HD) (n = 43) and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse. PMID:23592979
Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje
2010-01-25
Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.
Solleti, Siva Kumar; Simon, Dawn M; Srisuma, Sorachai; Arikan, Meltem C; Bhattacharya, Soumyaroop; Rangasamy, Tirumalai; Bijli, Kaiser M; Rahman, Arshad; Crossno, Joseph T; Shapiro, Steven D; Mariani, Thomas J
2015-08-01
Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.
Cleland, J P; Willis, E F; Bartlett, P F; Vukovic, J
2017-09-29
Activated neurons express immediate-early genes, such as Arc. Expression of Arc in the hippocampal granule cell layer, an area crucial for spatial learning and memory, is increased during acquisition of spatial learning; however, it is unclear whether this effect is related to the task-specific learning process or to nonspecific aspects of the testing procedure (e.g. exposure to the testing apparatus and exploration of the environment). Herein, we show that Arc-positive cells numbers are increased to the same extent in the granule cell layer after both acquisition of a single spatial learning event in the active place avoidance task and exploration of the testing environment, as compared to naïve (i.e. caged) mice. Repeated exposure the testing apparatus and environment did not reduce Arc expression. Furthermore, Arc expression did not correlate with performance in both adult and aged animals, suggesting that exploration of the testing environment, rather than the specific acquisition of the active place avoidance task, induces Arc expression in the dentate granule cell layer. These findings thus suggest that Arc is an experience-induced immediate-early gene.
Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel
2017-01-01
Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1979-01-01
The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.
NASA Astrophysics Data System (ADS)
Taer, E.; Susanti, Y.; Awitdrus, Sugianto, Taslim, R.; Setiadi, R. N.; Bahri, S.; Agustino, Dewi, P.; Kurniasih, B.
2018-02-01
The effect of CO2 activation on the synthesis of activated carbon monolith from banana stem waste has been studied. Physical characteristics such as density, degree of crystallinity, surface morphology and elemental content has been analyzed, supporting the finding of an excellent electrochemical properties for the supercapacitor. The synthesis of activated carbon electrode began with pre-carbonization process at temperature of 250°C for 2.5 h. Then the process was continued by chemical activation using KOH as activating agent with a concentration of 0.4 M. The pellets were formed with 8 ton hydrolic pressure. All the samples were carbonized at a temperature of 600°C, followed by physical activation using CO2 gas at a various temperatures ranging from 800°C, 850°C, 900°C and 950°C for 2 h. The carbon content was increased with increasing temperature and the optimum temperature was 900°C. The specific capacitance depends on the activation temperature with the highest specific capacitance of 104.2 F/g at the activation temperature of 900°C.
Ahituv, Nadav; Chaudhry, Shehla N.; Schackwitz, Wendy S.; Dent, Robert; Pennacchio, Len A.
2007-01-01
Background AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory γ3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations [1]–[3]. Here we report the first gain-of-function mutation in the muscle-specific regulatory γ3 subunit in humans. Methods and Findings We sequenced the exons and splice junctions of the AMPK γ3 gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The γ3 R225W mutation is homologous in location to the γ2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the γ3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a ∼90% increase of skeletal muscle glycogen content and a ∼30% decrease in intramuscular triglyceride (IMTG). Conclusions We have identified for the first time a mutation in the skeletal muscle-specific regulatory γ3 subunit of AMPK in humans. The γ3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK γ3 in human muscle energy metabolism. PMID:17878938
Neuroinflammatory Pathobiology in Gulf War Illness: Characterization with an Animal Model
2014-06-01
astrocyte activation can be seen in the CA1 region of the hippocampus (Figure 4). Neither IBA1 nor GFAP showed obvious increases in any other brain...0 4 8 IL6 DFP CORT DFP * * * 14 Chronic CORT pretreatment exacerbated the DFP-induced increase in activation of astrocytes specific to the CA1...may have caused a mild activation of astrocytes (Figure 18), there was no quantitative change in GFAP protein concentration in the hippocampus (data
Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin
NASA Astrophysics Data System (ADS)
Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.
2015-03-01
The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.
Effects-based monitoring and surveillance is increasingly being utilized in conjunction with chemical monitoring to determine potential biological activity associated with environmental contaminants. Supervised approaches targeting specific chemical activity or molecular pathways...
Lukic, Sasa; Menze, Jasper; Weide, Philipp; Busser, G Wilma; Winterer, Markus; Muhler, Martin
2017-09-11
Chemical vapor synthesis (CVS) is a unique method to prepare well-defined photocatalyst materials with both large specific surface area and a high degree of crystallinity. The obtained β-Ga 2 O 3 nanoparticles were optimized for photocatalysis by reductive photodeposition of the Rh/CrO x co-catalyst system. The influence of the degree of crystallinity and the specific surface area on photocatalytic aqueous methanol reforming and overall water splitting (OWS) was investigated by synthesizing β-Ga 2 O 3 samples in the temperature range from 1000 °C to 1500 °C. With increasing temperature, the specific surface area and the microstrain were found to decrease, whereas the degree of crystallinity and the crystallite size increased. Whereas the photocatalyst with the highest specific surface area showed the highest aqueous methanol reforming activity, the highest OWS activity was that for the sample with an optimum ratio between high degree of crystallinity and specific surface area. Thus, it was possible to show that the facile aqueous methanol reforming and the demanding OWS have different requirements for high photocatalytic activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salinity dependent Na+-K+ATPase activity in gills of the euryhaline crab Chasmagnathus granulata.
Schleich, C E; Goldemberg, L A; López Mañanes, A A
2001-09-01
The occurrence and response of Na+-K+ATPase specific activity to environmental salinity changes were studied in gill extracts of all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). All of the gills exhibited a salinity dependent Na+-K+ATPase activity, although the pattern of response to environmental salinity was different among gills. As described in other euryhaline crabs highest Na+-K+ATPase specific activity was found in posterior gills (6 to 8), which, with exception of gill 6, increased upon acclimation to reduced salinity. However, a high increase of activity also occurred in anterior gills (1 to 5) in diluted media. Furthermore, both short and long term differential changes of Na+-K+ATPase activity occurred among the gills after the transfer of crabs to reduced salinity. The fact that variations of Na+-K+ATPase activity in the gills were concomitant with the transition from osmoconformity to ionoregulation suggests that this enzyme is a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab.
Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro
2018-05-09
Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Technical Reports Server (NTRS)
Kaur-Sawhney, R.; Dai, Y. R.; Galston, A. W.
1986-01-01
When gibberellic acid (GA3) is sprayed on 9-day-old light-brown dwarf Progress pea (Pisum sativum) seedlings, arginine decarboxylase (ADC; EC 4.1.1.9) activity increases within 3 h and peaks at about 9 h after GA3 application. This is followed by a second lower peak at about 30 h; both peaks were higher than the corresponding peaks in the controls. In contrast, no appreciable effect of GA3 on internode length was observed until about 12 h, after which time a dramatic increase in growth rate occurred and persisted for about 12 h. Specific (DL-alpha-difluoromethylarginine) and non-specific (D-arginine and L-canavanine) inhibitors of ADC strongly inhibited ADC activity and to a lesser extent internode growth. The inhibition was reversed only slightly by the addition of polyamines. Actinomycin D and cycloheximide inhibited the rise in ADC activity induced by GA3. The half-life of the enzyme was increased by GA3 treatment. The results suggest that part of the GA3-induced increase in internode growth may result from enhanced polyamine biosynthesis through the ADC pathway. Furthermore, the GA3 induced increase in ADC activity probably requires de novo synthesis of both RNA and protein.
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
Resting and field metabolic rates of adult male yellow-bellied marmots, Marmota flaviventris.
Salsbury, C M; Armitage, K B
1994-08-01
Resting metabolic rate (RMR) and field metabolic rate (FMR) of wild-caught males were estimated from oxygen consumption and the doubly-labeled water method, respectively. The average FMR:RMR ratio of 6.9 was much greater than ratios reported for other mammals. Total FMR (kJ/day) increased and specific RMR (kJ/kg/day) decreased with time. Neither total RMR nor specific FMR were significantly related to time. The decrease in specific RMR may result from a circannual decrease in maintenance expenditure and a seasonal increase in body mass. Total FMR may increase through the season as conditions for male activity become more favorable.
Hettenhausen, Christian; Heinrich, Maria; Baldwin, Ian T; Wu, Jianqiang
2014-11-28
Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.
Norman, Luke J; Carlisi, Christina O; Christakou, Anastasia; Cubillo, Ana; Murphy, Clodagh M; Chantiluke, Kaylita; Simmons, Andrew; Giampietro, Vincent; Brammer, Michael; Mataix-Cols, David; Rubia, Katya
2017-01-01
Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) and obsessive/compulsive disorder (OCD) share problems with sustained attention, and are proposed to share deficits in switching between default mode and task positive networks. The aim of this study was to investigate shared and disorder-specific brain activation abnormalities during sustained attention in the two disorders. Twenty boys with ADHD, 20 boys with OCD and 20 age-matched healthy controls aged between 12 and 18 years completed a functional magnetic resonance imaging (fMRI) version of a parametrically modulated sustained attention task with a progressively increasing sustained attention load. Performance and brain activation were compared between groups. Only ADHD patients were impaired in performance. Group by sustained attention load interaction effects showed that OCD patients had disorder-specific middle anterior cingulate underactivation relative to controls and ADHD patients, while ADHD patients showed disorder-specific underactivation in left dorsolateral prefrontal cortex/dorsal inferior frontal gyrus (IFG). ADHD and OCD patients shared left insula/ventral IFG underactivation and increased activation in posterior default mode network relative to controls, but had disorder-specific overactivation in anterior default mode regions, in dorsal anterior cingulate for ADHD and in anterior ventromedial prefrontal cortex for OCD. In sum, ADHD and OCD patients showed mostly disorder-specific patterns of brain abnormalities in both task positive salience/ventral attention networks with lateral frontal deficits in ADHD and middle ACC deficits in OCD, as well as in their deactivation patterns in medial frontal DMN regions. The findings suggest that attention performance in the two disorders is underpinned by disorder-specific activation patterns.
Katic, Masa; Kennedy, Adam R.; Leykin, Igor; Norris, Andrew; McGettrick, Aileen; Gesta, Stephane; Russell, Steven J.; Bluher, Matthias; Maratos-Flier, Eleftheria; Kahn, C. Ronald
2009-01-01
Summary Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, β-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and PGC-1β, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse. PMID:18001293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Irmaileh, B.E.; Jordan, L.S.; Kumamoto, J.
1979-01-01
The effect of glyphosate (N-(phosphonomethyl)glycine) on carbon dioxide. (CO/sub 2/) levels, ethylene production, and cellulase activity was investigated. Production of ethylene increased within 12 h and CO/sub 2/ increased within 24 h when 12-day-old bean plants (Phaseolus vulgaris L. Red Kidney) were treated with 20 mM isopropylamine salt of glyphosate. The CO/sub 2/ cycled for 3 days and then increased around treated plants. Specific activity of cellulase was increased in debladed bean seedlings that had been retreated with 20 mM isopropylamine salt of glyphosate. Cellulase enhancement was detected 2 days after the pretreated plants were debladed. Glyphosate-enhanced ethylene production maymore » have increased the cellulase activity. 24 references, 3 figures.« less
Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M
2013-03-01
The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.
Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing
2008-01-01
AIM: To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. METHODS: In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 × 105 cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-γ production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, γδ T and NK cells. RESULTS: Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer -bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and γδT cells, indicating the role of ACML-55 in activation of innate lymphocytes. CONCLUSION: Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses. PMID:18785279
Gordon, Rebecca; Bloxham, Saul
2016-01-01
Back pain is a major health issue in Western countries and 60%–80% of adults are likely to experience low back pain. This paper explores the impact of back pain on society and the role of physical activity for treatment of non-specific low back pain. A review of the literature was carried out using the databases SPORTDiscuss, Medline and Google Scholar. A general exercise programme that combines muscular strength, flexibility and aerobic fitness is beneficial for rehabilitation of non-specific chronic low back pain. Increasing core muscular strength can assist in supporting the lumbar spine. Improving the flexibility of the muscle-tendons and ligaments in the back increases the range of motion and assists with the patient’s functional movement. Aerobic exercise increases the blood flow and nutrients to the soft tissues in the back, improving the healing process and reducing stiffness that can result in back pain. PMID:27417610
Jost, John T; Kay, Aaron C
2005-03-01
Many have suggested that complementary gender stereotypes of men as agentic (but not communal) and women as communal (but not agentic) serve to increase system justification, but direct experimental support has been lacking. The authors exposed people to specific types of gender-related beliefs and subsequently asked them to complete measures of gender-specific or diffuse system justification. In Studies 1 and 2, activating (a) communal or complementary (communal + agentic) gender stereotypes or (b) benevolent or complementary (benevolent + hostile) sexist items increased support for the status quo among women. In Study 3, activating stereotypes of men as agentic also increased system justification among men and women, but only when women's characteristics were associated with higher status. Results suggest that complementary stereotypes psychologically offset the one-sided advantage of any single group and contribute to an image of society in which everyone benefits through a balanced dispersion of benefits. ((c) 2005 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
ERIC Educational Resources Information Center
Ling-yee, Esther Li
2011-01-01
Although the internationalization of curricula has increased steadily over the past 30 years, most universities and business schools have concentrated their efforts on program assessment activities, leaving course-level assessment as a gap in most international business assessment portfolios. To address the gap in aligning course-specific designs…
Brinkley, Tina E.; Halverstadt, Amy; Phares, Dana A.; Ferrell, Robert E.; Prigeon, Ronald L.; Goldberg, Andrew P.
2011-01-01
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene (LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50–75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL2-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (−22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL3-C with significant genotype×sex interactions for the changes in HDL-C and HDL3-C (P values = 0.01–0.02). There were also genotype-specific changes in LPL (+23 vs. −6%; P < 0.05) and HL (+7 vs. −24%; P < 0.01) activities, with LPL increasing only in CC subjects (P < 0.006) and HL decreasing only in CT subjects (P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL3-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk. PMID:21960661
The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb
Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.
2013-01-01
SUMMARY The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find that 13% of promoters and 11% of enhancers have gained activity on the human lineage since the human-rhesus divergence. These gains largely arose by modification of ancestral regulatory activities in the limb or potential co-option from other tissues and are likely to have heterogeneous genetic causes. Most enhancers that exhibit gain of activity in humans originated in mammals. Gains at promoters and enhancers in the human limb are associated with increased gene expression, suggesting they include molecular drivers of human morphological evolution. PMID:23827682
Amyloid-β oligomer Aβ*56 induces specific alterations of tau phosphorylation and neuronal signaling
Amar, Fatou; Sherman, Mathew A.; Rush, Travis; Larson, Megan; Boyle, Gabriel; Chang, Liu; Götz, Jürgen; Buisson, Alain; Lesné, Sylvain E.
2018-01-01
Oligomeric forms of amyloid-forming proteins are believed to be the principal initiating bioactive species in many neurodegenerative disorders, including Alzheimer’s disease (AD). Amyloid-β (Aβ) oligomers are implicated in pathological modification and aggregation of the microtubule-associated protein tau. To investigate the specific molecular pathways activated by different assemblies, we isolated various forms of Aβ from Tg2576 mice. We found that the Aβ*56, which is linked with preclinical AD, interacted with NMDA receptors (NMDARs) in primary cortical neurons, increased NMDAR-dependent Ca2+ influx and, consequently, increased intracellular calcium concentrations and the activation of Ca2+-dependent calmodulin kinase IIα (CaMKIIα). In neurons in mice and in culture, activated CaMKIIα induced increased phosphorylation and missorting of tau, which is associated with AD pathology. In contrast, exposure of cultured primary cortical neurons to other oligomeric Aβ forms (dimers and trimers) did not trigger these effects. Our results indicate that distinct Aβ assemblies activate neuronal signaling pathways in a selective manner, and that dissecting the molecular events caused by each may inform more effective therapeutic strategies. PMID:28487416
MacDonald, Logan C; Berger, Bryan W
2014-06-27
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
The PreS2 activator MHBst of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice
Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans
2002-01-01
The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBst) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBst activators are paradigmatic for this class of activators. Here we report that MHBst is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBst triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBst-dependent activation of AP-1 and NF-κB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBst specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBst exert a tumor promoter-like function by activation of key enzymes of proliferation control. PMID:11847101
Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans
2002-02-15
The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBs(t)) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBs(t) activators are paradigmatic for this class of activators. Here we report that MHBs(t) is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBs(t) triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBs(t)-dependent activation of AP-1 and NF-kappaB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBs(t) specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBs(t) exert a tumor promoter-like function by activation of key enzymes of proliferation control.
Effects of emotional valence and arousal on the voice perception network
Kotz, Sonja A.; Belin, Pascal
2017-01-01
Abstract Several theories conceptualise emotions along two main dimensions: valence (a continuum from negative to positive) and arousal (a continuum that varies from low to high). These dimensions are typically treated as independent in many neuroimaging experiments, yet recent behavioural findings suggest that they are actually interdependent. This result has impact on neuroimaging design, analysis and theoretical development. We were interested in determining the extent of this interdependence both behaviourally and neuroanatomically, as well as teasing apart any activation that is specific to each dimension. While we found extensive overlap in activation for each dimension in traditional emotion areas (bilateral insulae, orbitofrontal cortex, amygdalae), we also found activation specific to each dimension with characteristic relationships between modulations of these dimensions and BOLD signal change. Increases in arousal ratings were related to increased activations predominantly in voice-sensitive cortices after variance explained by valence had been removed. In contrast, emotions of extreme valence were related to increased activations in bilateral voice-sensitive cortices, hippocampi, anterior and midcingulum and medial orbito- and superior frontal regions after variance explained by arousal had been accounted for. Our results therefore do not support a complete segregation of brain structures underpinning the processing of affective dimensions. PMID:28449127
French, David P; Olander, Ellinor K; Chisholm, Anna; Mc Sharry, Jennifer
2014-10-01
Increasing self-efficacy is an effective mechanism for increasing physical activity, especially for older people. The aim of this review was to identify behaviour change techniques (BCTs) that increase self-efficacy and physical activity behaviour in non-clinical community-dwelling adults 60 years or over. A systematic search identified 24 eligible studies reporting change in self-efficacy for physical activity following an intervention. Moderator analyses examined whether the inclusion of specific BCTs (as defined by CALO-RE taxonomy) was associated with changes in self-efficacy and physical activity behaviour. Overall, interventions increased self-efficacy (d = 0.37) and physical activity (d = 0.14). Self-regulatory techniques such as setting behavioural goals, prompting self-monitoring of behaviour, planning for relapses, providing normative information and providing feedback on performance were associated with lower levels of both self-efficacy and physical activity. Many commonly used self-regulation intervention techniques that are effective for younger adults may not be effective for older adults.
Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.
Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio
2010-08-19
Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.
Glucokinase activity in the arcuate nucleus regulates glucose intake
Hussain, Syed; Richardson, Errol; Ma, Yue; Holton, Christopher; De Backer, Ivan; Buckley, Niki; Dhillo, Waljit; Bewick, Gavin; Zhang, Shuai; Carling, David; Bloom, Steve; Gardiner, James
2014-01-01
The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the “sweet tooth” and carbohydrate craving. PMID:25485685
Kardum, Dusko; Fabijanić, Damir; Lukić, Anita; Romić, Zeljko; Petrovecki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crncević, Marija; Banić, Marko
2012-06-01
Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0-1, n =20), medium fibrosis (Ishak score 2-5, n=20) and cirrhosis (Ishak score 6, n=30). SACE activity and ET-1 concentration were determined using commercial ELISA kits. SACE activity and ET-1 concentrations were proportional to the severity of disease, the highest being in patients with liver cirrhosis. Maximal increase in SACE activity was found between minimal and medium fibrosis while maximal increase in ET-1 concentration was revealed between medium fibrosis and cirrhosis. The analysis of the Receiver Operating Characteristic (ROC) curve for SACE activity suggested a cut-off value to separate minimal from medium fibrosis at 59.00 U/L (sensitivity 100%, specificity 64.7%). The cut-off value for serum ET-1 concentration to separate medium fibrosis from cirrhosis was 12.4 pg/mL (sensitivity 96.8%, specificity 94.4%). A positive correlation between SACE activity and ET-1 concentration was registered (Spearman's ñ = 0.438, p = 0.004). Both SACE activity and ET-1 concentration were increased in all stages of liver fibrosis. Cut-off points for SACE activity and ET-1 concentration could be a biochemical marker for the progression of fibrosis. Positive correlation between SACE activity and ET-1 concentration might indicate their interaction in the development of liver cirrhosis.
Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running
NASA Technical Reports Server (NTRS)
Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.
2000-01-01
Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.
Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva
2015-07-15
Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.
Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore
2008-03-01
Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.
[Changes in proline-specific peptidase activity in experimental model of retrograde amnesia].
Nazarova, G A; Zolotov, N N; Krupina, N A; Kraĭneva, V A; Garibova, T L; Voronina, T A
2007-01-01
Changes in proline-specific peptidase activity in the frontal cortex and hippocampus were studied using the experimental model of retrograde amnesia in rats. In one group, the amnesia was produced by a single injection of M-cholinergic antagonist scopolamine and the other group received the maximal electroconvulsive stimulation (MES). The amnesic effect was evaluated in passive avoidance test. In the amnesia models under consideration, the activity of prolylendopeptidase was significantly increased in both frontal cortex and hippocampus. The activity of dipeptidyl peptidase IV was significantly decreased in the cortex, whereas in the hippocampus it remained unchanged. Pyracetam inhibited prolylendopeptidase in the cortex and hippocampus, whereas dipeptidyl peptidase IV activity remained unchanged.
Arnold, John B; Mackintosh, Shylie; Olds, Timothy S; Jones, Sara; Thewlis, Dominic
2015-12-01
Total knee arthroplasty (TKA) in people with knee osteoarthritis increases knee-specific and general physical function, but it has not been established if there is a relationship between changes in these elements of functional ability. This study investigated changes and relationships between knee biomechanics during walking, physical activity, and use of time after TKA. Fifteen people awaiting TKA underwent 3D gait analysis before and six months after surgery. Physical activity and use of time were determined in free-living conditions from a high resolution 24-h activity recall. After surgery, participants displayed significant improvements in sagittal plane knee biomechanics and improved their physical activity profiles, standing for 105 more minutes (p=0.001) and performing 64 min more inside chores on average per day (p=0.008). Changes in sagittal plane knee range of motion (ROM) and peak knee flexion positively correlated with changes in total daily energy expenditure, time spent undertaking moderate to vigorous physical activity, inside chores and passive transport (r=0.52-0.66, p=0.005-0.047). Restoration of knee function occurs in parallel and is associated with improvements in physical activity and use of time after TKA. Increased functional knee ROM is required to support improvements in total and context specific physical activity. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.
2018-03-01
Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).
Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng
2015-01-01
In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.
Larson, Janet L; Covey, Margaret K; Kapella, Mary C; Alex, Charles G; McAuley, Edward
2014-01-01
People with chronic obstructive pulmonary disease lead sedentary lives and could benefit from increasing their physical activity. The purpose of this study was to determine if an exercise-specific self-efficacy enhancing intervention could increase physical activity and functional performance when delivered in the context of 4 months of upper body resistance training with a 12-month follow-up. IN THIS RANDOMIZED CONTROLLED TRIAL, SUBJECTS WERE ASSIGNED TO: exercise-specific self-efficacy enhancing intervention with upper body resistance training (SE-UBR), health education with upper body resistance training (ED-UBR), or health education with gentle chair exercises (ED-Chair). Physical activity was measured with an accelerometer and functional performance was measured with the Functional Performance Inventory. Forty-nine people with moderate to severe chronic obstructive pulmonary disease completed 4 months of training and provided valid accelerometry data, and 34 also provided accelerometry data at 12 months of follow-up. The self-efficacy enhancing intervention emphasized meeting physical activity guidelines and increasing moderate-to-vigorous physical activity. Differences were observed in light physical activity (LPA) after 4 months of training, time by group interaction effect (P=0.045). The SE-UBR group increased time spent in LPA by +20.68±29.30 minutes/day and the other groups decreased time spent in LPA by -22.43±47.88 minutes/day and -25.73±51.76 minutes/day. Changes in LPA were not sustained at 12-month follow-up. There were no significant changes in moderate-to-vigorous physical activity, sedentary time, or functional performance. Subjects spent most of their waking hours sedentary: 72%±9% for SE-UBR, 68%±10% for ED-UBR, and 74%±9% for ED-Chair. The self-efficacy enhancing intervention produced a modest short-term increase in LPA. Further work is needed to increase the magnitude and duration of effect, possibly by targeting LPA.
The Cellular and Molecular Mechanisms for Neutropenia in Barth Syndrome
Makaryan, Vahagn; Kulik, Willem; Vaz, Frederic M.; Allen, Christopher; Dror, Yigal; Dale, David C.; Aprikyan, Andranik A.
2015-01-01
Barth syndrome (BTHS), a rare, X-linked, recessive disease characterized by neutropenia and cardiomyopathy. BTHS is caused by loss-of-function mutations of the tafazzin (TAZ) gene. We developed a model of BTHS by transfecting human HL60 myeloid progenitor cells with TAZ-specific shRNAs. Results demonstrate a significant down-regulation in TAZ expression, mimicking the effects of naturally-occurring truncation mutations in TAZ. Flow cytometry analyses of cells with TAZ-specific, but not scrambled, shRNAs demonstrate nearly two-fold increase in proportion of annexin-V positive cells and significantly increased dissipation of mitochondrial membrane potential as determined by DIOC6-staining. Transfection of TAZ specific shRNA had similar effects in U937 myeloid cells but not in lymphoid cell lines. Further studies in HL60 myeloid progenitor cells revealed aberrant release of cytochrome c from mitochondria and significantly elevated levels of activated caspase-3 in response to TAZ knock-down. Treatment with caspase-specific inhibitor zVAD-fmk resulted in substantially reduced apoptosis to near-normal levels. These data suggest that neutropenia in BTHS is attributable to increased dissipation of mitochondrial membrane potential, aberrant release of cytochrome c, activation of caspase-3 and accelerated apoptosis of myeloid progenitor cells, and that this defect can be partially restored in vitro by treatment with caspase-specific inhibitors. PMID:22023389
Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia.
Harper, David G; Stopa, Edward G; Kuo-Leblanc, Victoria; McKee, Ann C; Asayama, Kentaro; Volicer, Ladislav; Kowall, Neil; Satlin, Andrew
2008-06-01
The suprachiasmatic nuclei (SCN) are necessary and sufficient for the maintenance of circadian rhythms in primate and other mammalian species. The human dorsomedial SCN contains populations of non-species-specific vasopressin and species-specific neurotensin neurons. We made time-series recordings of core body temperature and locomotor activity in 19 elderly, male, end-stage dementia patients and 8 normal elderly controls. Following the death of the dementia patients, neuropathological diagnostic information and tissue samples from the hypothalamus were obtained. Hypothalamic tissue was also obtained from eight normal control cases that had not had activity or core temperature recordings previously. Core temperature was analysed for parametric, circadian features, and activity was analysed for non-parametric and parametric circadian features. These indices were then correlated with the degree of degeneration seen in the SCN (glia/neuron ratio) and neuronal counts from the dorsomedial SCN (vasopressin, neurotensin). Specific loss of SCN neurotensin neurons was associated with loss of activity and temperature amplitude without increase in activity fragmentation. Loss of SCN vasopressin neurons was associated with increased activity fragmentation but not loss of amplitude. Evidence for a circadian rhythm of vasopressinergic activity was seen in the dementia cases but no evidence was seen for a circadian rhythm in neurotensinergic activity. These results provide evidence that the SCN is necessary for the maintenance of the circadian rhythm in humans, information on the role of neuronal subpopulations in subserving this function and the utility of dementia in elaborating brain-behaviour relationships in the human.
Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.
2014-01-01
In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774
Wallin, Jeffrey J; Bendell, Johanna C; Funke, Roel; Sznol, Mario; Korski, Konstanty; Jones, Suzanne; Hernandez, Genevive; Mier, James; He, Xian; Hodi, F Stephen; Denker, Mitchell; Leveque, Vincent; Cañamero, Marta; Babitski, Galina; Koeppen, Hartmut; Ziai, James; Sharma, Neeraj; Gaire, Fabien; Chen, Daniel S; Waterkamp, Daniel; Hegde, Priti S; McDermott, David F
2016-08-30
Anti-tumour immune activation by checkpoint inhibitors leads to durable responses in a variety of cancers, but combination approaches are required to extend this benefit beyond a subset of patients. In preclinical models tumour-derived VEGF limits immune cell activity while anti-VEGF augments intra-tumoral T-cell infiltration, potentially through vascular normalization and endothelial cell activation. This study investigates how VEGF blockade with bevacizumab could potentiate PD-L1 checkpoint inhibition with atezolizumab in mRCC. Tissue collections are before treatment, after bevacizumab and after the addition of atezolizumab. We discover that intra-tumoral CD8(+) T cells increase following combination treatment. A related increase is found in intra-tumoral MHC-I, Th1 and T-effector markers, and chemokines, most notably CX3CL1 (fractalkine). We also discover that the fractalkine receptor increases on peripheral CD8(+) T cells with treatment. Furthermore, trafficking lymphocyte increases are observed in tumors following bevacizumab and combination treatment. These data suggest that the anti-VEGF and anti-PD-L1 combination improves antigen-specific T-cell migration.
Wallin, Jeffrey J.; Bendell, Johanna C.; Funke, Roel; Sznol, Mario; Korski, Konstanty; Jones, Suzanne; Hernandez, Genevive; Mier, James; He, Xian; Hodi, F. Stephen; Denker, Mitchell; Leveque, Vincent; Cañamero, Marta; Babitski, Galina; Koeppen, Hartmut; Ziai, James; Sharma, Neeraj; Gaire, Fabien; Chen, Daniel S.; Waterkamp, Daniel; Hegde, Priti S.; McDermott, David F.
2016-01-01
Anti-tumour immune activation by checkpoint inhibitors leads to durable responses in a variety of cancers, but combination approaches are required to extend this benefit beyond a subset of patients. In preclinical models tumour-derived VEGF limits immune cell activity while anti-VEGF augments intra-tumoral T-cell infiltration, potentially through vascular normalization and endothelial cell activation. This study investigates how VEGF blockade with bevacizumab could potentiate PD-L1 checkpoint inhibition with atezolizumab in mRCC. Tissue collections are before treatment, after bevacizumab and after the addition of atezolizumab. We discover that intra-tumoral CD8+ T cells increase following combination treatment. A related increase is found in intra-tumoral MHC-I, Th1 and T-effector markers, and chemokines, most notably CX3CL1 (fractalkine). We also discover that the fractalkine receptor increases on peripheral CD8+ T cells with treatment. Furthermore, trafficking lymphocyte increases are observed in tumors following bevacizumab and combination treatment. These data suggest that the anti-VEGF and anti-PD-L1 combination improves antigen-specific T-cell migration. PMID:27571927
Joint Use Policies: Are they related to adolescent behavior?
Chriqui, Jamie; Chaloupka, Frank J.; Johnston, Lloyd
2014-01-01
Objective Joint use policies (JUP) encourage shared facility use, usually between schools and a city or private organization, for both physical activity-related and non-physical activity-related programs. Little is known about JUP’s impact on physical activity (PA). This study examined whether more specific JUPs were associated with increased PA and decreased sedentary behavior (SB) in adolescents. Methods Data on PA, sports participation, and SB were taken from annual cross-sectional nationally representative samples of 51,269 8th, 10th and 12th grade public school students nested in 461 school districts in the US from 2009–2011. JUP measures were constructed using information obtained from corresponding school district JU policies. Multivariable analyses were conducted, controlling for individual demographic and socioeconomic characteristics and clustering at the district level. Results Results showed small associations between more specific JUPs and increased PA (IRR 1.01, 95% CI: 1.00, 1.02). Closer examination of specific JUP provisions indicates that specifying what times facilities are available for use was associated with vigorous exercise and prioritizing school or affiliated organizations’ use and which spaces were available for use were associated with vigorous exercise and more frequent PA participation, which includes participation in sports or athletics. No associations were found between more specific JUPs and SB. Conclusions JUPS may have small influences on adolescent physical activity behavior. Future longitudinal studies should be conducted to examine the impact of JUPs in conjunction with other physical activity-related policies and environmental changes to determine what impact they have on overall adolescent physical activity and sedentary behavior. PMID:25199731
In vitro autoradiographic localization of angiotensin-converting enzyme in sarcoid lymph nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.K.; Chai, S.Y.; Dunbar, M.S.
1986-09-01
Angiotensin-converting enzyme (ACE) was localized in sarcoid lymph nodes by an in vitro autoradiographic technique using a synthetic ACE inhibitor of high affinity, /sup 125/I-labelled 351A. The lymph nodes were from seven patients with active sarcoidosis who underwent mediastinoscopy and from six control subjects who had nodes resected at either mediastinoscopy or laparotomy. Angiotensin-converting enzyme was localized in the epithelioid cells of sarcoid granulomata in markedly increased amounts compared with control nodes, where it was restricted to vessels and some histiocytes. In sarcoid lymph nodes, there was little ACE present in lymphocytes or fibrous tissue. Sarcoid nodes with considerable fibrosismore » had much less intense ACE activity than the nonfibrotic nodes. The specific activity of ACE measured by an enzymatic assay in both the control and sarcoid lymph nodes closely reflected the ACE activity demonstrated by autoradiography. Sarcoid lymph nodes with fibrosis had an ACE specific activity of half that of nonfibrotic nodes (p less than 0.05). There was a 15-fold increase in specific ACE activity in sarcoid nodes (p less than 0.05) compared to normal. Serum ACE was significantly higher in those sarcoid patients whose lymph nodes were not fibrosed compared with those with fibrosis (p less than 0.01). This technique offers many advantages over the use of polyclonal antibodies. The 351A is a highly specific ACE inhibitor, chemically defined and in limitless supply. This method enables the quantitation of results, and autoradiographs may be stored indefinitely for later comparison.« less
Su, Yu; Wang, Weidong; Wu, Di; Huang, Wei; Wang, Mengzi; Zhu, Guibing
2018-05-15
An integrated approach to document high ammonium oxidation rate in Guanjinggang constructed wetland (GJG-CW) was performed and the results showed that the substantial ammonium oxidation rate could be obtained by enhancing Ammonia Oxidizing Bacteria (AOB) activity rather than Ammonia Oxidizing Archaea (AOA) activity. In the plant-bed/ditch system, ditch center and plant-bed fringe were two active zones for NH 4 + -N removal with ammonium oxidation rate peaking at 2.98±0.04 and 2.15±0.02mgNkg -1 d -1 , respectively. The enhanced AOB activity were achieved by increasing water level fluctuations, extending hydraulic retention time (HRT) and stimulating substrate availability, which subsequently enhanced NH 4 + -N removal by 34.06% in GJG-CW. However, the high AOB activity was not correlated with high AOB abundance, but was instead mostly determined by specific AOB taxa, particularly Nitrosomonas, which dominated in the active AOB. The increased cell-specific AOA activity and high AOA diversity were also achieved using those engineering measures. Although the AOA activity decreased overall with extended HRT and increased NH 4 + -N contents in GJG-CW, AOA still played a major role on ammonium oxidation in plant-bed soil. The study illustrated that artificially enhancing AOB activity and certain species in anthropogenically polluted water ecosystems would be an effective strategy to improve NH 4 + -N removal. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Nanoparticle Size on Multilayer Formation and Kinetics of Tethered Enzymes.
Lata, James P; Gao, Lizeng; Mukai, Chinatsu; Cohen, Roy; Nelson, Jacquelyn L; Anguish, Lynne; Coonrod, Scott; Travis, Alexander J
2015-09-16
Despite numerous applications, we lack fundamental understanding of how variables such as nanoparticle (NP) size influence the activity of tethered enzymes. Previously, we showed that biomimetic oriented immobilization yielded higher specific activities versus nonoriented adsorption or carboxyl-amine binding. Here, we standardize NP attachment strategy (oriented immobilization via hexahistidine tags) and composition (Ni-NTA coated gold NPs), to test the impact of NP size (⌀5, 10, 20, and 50 nm) on multilayer formation, activity, and kinetic parameters (kcat, KM, kcat/KM) of enzymes representing three different classes: glucose-6-phosphate isomerase (GPI), an isomerase; Glyceraldehyde-3-phosphate dehydrogenase S (GAPDHS), an oxidoreductase; and pyruvate kinase (PK), a transferase. Contrary to other reports, we observed no trend in kinetic parameters for individual enzymes when found in monolayers (<100% enzyme coverage), suggesting an advantage for oriented immobilization versus other attachment strategies. Saturating the NPs to maximize activity per NP resulted in enzyme multilayer formation. Under these conditions, total activity per NP increased with increasing NP size. Conversely, specific activity for all three enzymes was highest when tethered to the smallest NPs, retaining a remarkable 73-94% of the activity of free/untethered enzymes. Multilayer formations caused a clear trend of kcat decreasing with increasing NP size, yet negligible change in KM. Understanding the fundamental relationships between NP size and tethered enzyme activity enables optimized design of various applications, maximizing activity per NP or activity per enzyme molecule.
Slart, R; Jager, P; Poot, L; Piers, D; Cohen, T; Stegeman, C
2003-01-01
Background: Diagnosis of active pulmonary and paranasal involvement in patients with Wegener's granulomatosis (WG) can be difficult. The diagnostic value of gallium-67 scintigraphy in WG is unclear. Objective: To evaluate the added diagnostic value of gallium-67 scintigraphy in patients with WG with suspected granulomatous inflammation in the paranasal and chest regions. Methods: Retrospectively, the diagnostic contribution of chest and head planar gallium scans in 40 episodes of suspected vasculitis disease activity in 28 patients with WG was evaluated. Scans were grouped into normal or increased uptake for each region. Histological proof or response to treatment was the "gold standard" for the presence of WG activity. Results: WG activity was confirmed in 8 (20%) episodes, with pulmonary locations in three, paranasal in four, and both in one (n=7 patients); all these gallium scans showed increased gallium uptake (sensitivity 100%). Gallium scans were negative for the pulmonary area in 23/36 scans (specificity 64%), and negative for paranasal activity in 13/16 scans (specificity 81%) in episodes without WG activity. Positive predictive value of WG activity for lungs and paranasal region was 24% and 63%, respectively, negative predictive value was 100% for both regions. False positive findings were caused by bacterial or viral infections. Conclusion: Gallium scans are clinically helpful as a negative scan virtually excludes active WG. Gallium scintigraphy of chest and nasal region has a high sensitivity for the detection of disease activity in WG. However, because of positive scans in cases of bacterial or viral infections, specificity was lower. PMID:12810430
Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich
2014-01-01
von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415
Luine, V N
1985-08-01
Administration of estradiol to gonadectomized female, but not male rats, is associated with increased activity of choline acetyltransferase in the medial aspect of the horizontal diagonal band nucleus, the frontal cortex, and CA1 of the dorsal hippocampus. Four other basal forebrain cholinergic nuclei did not show changes in choline acetyltransferase activity after estradiol. These data have implications for possible benefits of estradiol administration to patients with senile dementia of the Alzheimer's type.
Body image dissatisfaction, physical activity and screen-time in Spanish adolescents.
Añez, Elizabeth; Fornieles-Deu, Albert; Fauquet-Ars, Jordi; López-Guimerà, Gemma; Puntí-Vidal, Joaquim; Sánchez-Carracedo, David
2018-01-01
This cross-sectional study contributes to the literature on whether body dissatisfaction is a barrier/facilitator to engaging in physical activity and to investigate the impact of mass-media messages via computer-time on body dissatisfaction. High-school students ( N = 1501) reported their physical activity, computer-time (homework/leisure) and body dissatisfaction. Researchers measured students' weight and height. Analyses revealed that body dissatisfaction was negatively associated with physical activity on both genders, whereas computer-time was associated only with girls' body dissatisfaction. Specifically, as computer-homework increased, body dissatisfaction decreased; as computer-leisure increased, body dissatisfaction increased. Weight-related interventions should improve body image and physical activity simultaneously, while critical consumption of mass-media interventions should include a computer component.
Bacterial quorum sensing and nitrogen cycling in rhizosphere soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.
2008-10-01
Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizospheremore » colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.« less
Oxidation of platinum nickel nanowires to improve durability of oxygen-reducing electrocatalysts
Alia, Shaun M.; Pylypenko, Svitlana; Dameron, Arrelaine; ...
2016-01-12
In this study, the impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealedmore » Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200°C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution.« less
Spetter, Maartje S; Feld, Gordon B; Thienel, Matthias; Preissl, Hubert; Hege, Maike A; Hallschmid, Manfred
2018-02-09
The hypothalamic neurohormone oxytocin decreases food intake via largely unexplored mechanisms. We investigated the central nervous mediation of oxytocin's hypophagic effect in comparison to its impact on the processing of generalized rewards. Fifteen fasted normal-weight, young men received intranasal oxytocin (24 IU) or placebo before functional magnetic resonance imaging (fMRI) measurements of brain activity during exposure to food stimuli and a monetary incentive delay task (MID). Subsequently, ad-libitum breakfast intake was assessed. Oxytocin compared to placebo increased activity in the ventromedial prefrontal cortex, supplementary motor area, anterior cingulate, and ventrolateral prefrontal cortices in response to high- vs. low-calorie food images in the fasted state, and reduced calorie intake by 12%. During anticipation of monetary rewards, oxytocin compared to placebo augmented striatal, orbitofrontal and insular activity without altering MID performance. We conclude that during the anticipation of generalized rewards, oxytocin stimulates dopaminergic reward-processing circuits. In contrast, oxytocin restrains food intake by enhancing the activity of brain regions that exert cognitive control, while concomitantly increasing the activity of structures that process food reward value. This pattern points towards a specific role of oxytocin in the regulation of eating behaviour in humans that might be of relevance for potential clinical applications.
Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.
2016-01-01
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296
The protease-activated receptor-2 upregulates keratinocyte phagocytosis.
Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M
2000-09-01
The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.
Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne
2006-01-01
Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324
Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D; Boettcher, Shannon W
2015-08-04
Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg(-1) based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30-50 Wh kg(-1) is possible with optimization.
Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D.; Boettcher, Shannon W.
2015-01-01
Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg−1 based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30–50 Wh kg−1 is possible with optimization. PMID:26239891
Lack of thyroid hormone effect on activation energy of NaK-ATPase.
Rahimifar, M; Ismail-Beigi
1977-02-01
In order to differentiate whether activation of NaK-ATPase in thyroid thermogenesis is due to increased numbers of active 'sodium pump' units or due to a change in the kinetics of the enzyme, the effect of T3 on activation energy (Ea) of NaK-ATPase was determined in rat liver, kidney and brain. Injection of T3 produced significant increases in the specific activity of NaK-ATPase in liver and kidney but not in brain homogenates. T3 injections produced no significant change in the Ea of NaK-ATPase in any of the three tissues. The data are compatible with the hypothesis that thyroid stimulation of the sodium pump is brought about by an increase in the number of active pump units.
El-Sharaky, A S; Wahby, M M; Bader El-Dein, M M; Fawzy, R A; El-Shahawy, I N
2009-11-01
Gossypol displays anticancer behavior and anti-fertility in males. Male rats were treated with either gossypol acetic acid (GAA) or gossypol-iron complex (GIC). Serum alanine transaminase (ALT) activity elevated of GAA. However, GIC-treated animals showed a decrease in hepatic glutathione (GSH) content with increased malondialdehyde (MDA) content. Whereas, GSH-Px specific activity increased in GAA group. GAA and GIC induce significant increases in the hepatic NEFA with remarkable decrease in the total saturated fatty acids with a significant increase of PUFA. Lipid peroxidation is inhibited by gossypol, which shield lipids against oxidative damage. Phenols are oxidized to phenoxy radicals, which do not permit anti-oxidation due to resonance stabilization. GAA stimulate hydroxyl radicals (()OH) generation and DNA damage. GAA and GIC produce increase in lipid peroxidation as proved by a steep rise in thiobarbituric acid reactive species (TBARS). Controversy of specificity of TBARS towards compounds other than MDA was reported. If TBARS increased, more specific assay to be employed. Assay of lipid classes and fatty acids pattern, reveled the significance of the technique in assessment of lipid peroxidation in tissues. GAA and GIC were powerful inhibitors of lipid peroxidation and exhibit pro- and antioxidant behavior, with less toxicity of GIC.
Caron-Beaudoin, Élyse; Viau, Rachel; Sanderson, J Thomas
2018-04-26
Aromatase (CYP19) is a key enzyme in estrogens biosynthesis. In the mammary gland, CYP19 gene is expressed at low levels under the regulation of its I.4 promoter. In hormone-dependent breast cancer, fibroblast cells surrounding the tumor express increased levels of CYP19 mRNA due to a decrease of I.4 promoter activity and an increase of PII, I.3, and I.7 promoter activity. Little is known about the effects of environmental chemicals on the promoter-specific CYP19 expression. We aimed to determine the effects of two neonicotinoids (thiacloprid and imidacloprid) on promoter-specific CYP19 expression in Hs578t breast cancer cells and understand the signaling pathways involved. Hs578t cells were exposed to various signaling pathway stimulants or neonicotinoids for 24 h. Promoter-specific expression of CYP19 was determined by real-time quantitative polymerase chain reaction and catalytic activity of aromatase by tritiated water release assay. To our knowledge, we are the first to demonstrate that the normal I.4 promoter and the breast cancer-relevant PII, I.3, and I.7 promoters of CYP19 are active in these cells. We found that the expression of CYP19 via promoters PII, I.3, and I.7 in Hs578t cells was, in part, dependent on the activation of two VEGF signaling pathways: mitogen-activated protein kinase (MAPK) 1/3 and phospholipase C (PLC). Exposure of Hs578t cells to environmental concentrations of imidacloprid and thiacloprid resulted in a switch in CYP19 promoter usage, involving inhibition of I.4 promoter activity and an increase of PII, I.3, and I.7 promoter-mediated CYP19 expression and aromatase catalytic activity. Greater effects were seen at lower concentrations. Our results suggest that thiacloprid and imidacloprid exert their effects at least partially by inducing the MAPK 1/3 and/or PLC pathways. We demonstrated in vitro that neonicotinoids may stimulate a change in CYP19 promoter usage similar to that observed in patients with hormone-dependent breast cancer. https://doi.org/10.1289/EHP2698.
Richards, Justin; Jiang, Xiaoxiao; Kelly, Paul; Chau, Josephine; Bauman, Adrian; Ding, Ding
2015-01-31
Mental health disorders are major contributors to the global burden of disease and their inverse relationship with physical activity is widely accepted. However, research on the association between physical activity and positive mental health outcomes is limited. Happiness is an example of a positive construct of mental health that may be promoted by physical activity and could increase resilience to emotional perturbations. The aim of this study is to use a large multi-country dataset to assess the association of happiness with physical activity volume and its specificity to intensity and/or activity domain. We analysed Eurobarometer 2002 data from 15 countries (n = 11,637). This comprised one question assessing self-reported happiness on a six point scale (dichotomised: happy/unhappy) and physical activity data collected using the IPAQ-short (i.e. walking, moderate, vigorous) and four domain specific items (i.e. domestic, leisure, transport, vocation). Logistic regression was used to examine the association between happiness and physical activity volume adjusted for sex, age, country, general health, relationship status, employment and education. Analyses of intensity and domain specificity were assessed by logistic regression adjusted for the same covariates and physical activity volume. When compared to inactive people, there was a positive dose-response association between physical activity volume and happiness (highly active: OR = 1.52 [1.28-1.80]; sufficiently active: OR = 1.29 [1.11-1.49]; insufficiently active: OR = 1.20 [1.03-1.39]). There were small positive associations with happiness for walking (OR = 1.02 [1.00-1.03]) and vigorous-intensity physical activity (OR = 1.03 [1.01-1.05). Moderate-intensity physical activity was not associated with happiness (OR = 1.01 [0.99-1.03]). The strongest domain specific associations with happiness were found for "a lot" of domestic (OR = 1.42 [1.20-1.68]) and "some" vocational (OR = 1.33 [1.08-1.64]) physical activity. Happiness was also associated with "a lot" of leisure physical activity (OR = 1.15 [1.02-1.30]), but there were no significant associations for the transport domain. Increasing physical activity volume was associated with higher levels of happiness. Although the influence of physical activity intensity appeared minimal, the association with happiness was domain specific and was strongest for "a lot" of domestic and/or "some" vocational physical activity. Future studies to establish causation are indicated and may prompt changes in how physical activity for improving mental health is promoted.
Brigham, Lindy A.; Michaels, Paula J.; Flores, Hector E.
1999-01-01
Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere. PMID:9952436
Morkaew, Tirut; Pinyakong, Onruthai; Tachaboonyakiat, Wanpen
2017-08-01
The effect of the quaternary ammonium chitin structure on the bactericidal activity and specificity against Escherichia coli and Staphylococcus aureus was investigated. Quaternary ammonium chitins were synthesized by the separate acylation of chitin (CT) with carboxymethyl trimethylammonium chloride (CMA), 3-carboxypropyl trimethylammonium chloride (CPA) and N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB). The successful acylation was confirmed by newly formed ester linkage. All three derivatives had a higher surface charge than chitin due to the additional positively charged quaternary ammonium groups. The N-short alkyl substituent (methyl) of CTCMA and CTCPA increased the hydrophilicity whilst the N-long alkyl substituent (dodecyl) of CTDDMAB increased the hydrophobicity compared to chitin. Chitin did not exhibit any bactericidal activity, while CTCMA and CTCPA completely killed E. coli and S. aureus in 30 and 60min, respectively, and CTDDMAB completely killed S. aureus in 10min but did not kill E. coli after a 2-h exposure. Therefore, the N-short alkyl substituent was more effective for killing E. coli and the N-long alkyl substituent conferred specific bactericidal activity against S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.
Are, C; Caniglia, A; Malik, Mohammed; Smith, L; Cummings, Charmaine; Lecoq, Carine; Berman, R; Audisio, R; Wyld, L
2018-01-01
The aim of this study was to analyze global variations in the level of cancer-related research activity and correlate this with cancer-specific mortality. The SCOPUS database was explored to obtain data relating to the number of cancer-related publications per country. Cancer-specific mortality rates were obtained from the World Health Organization. Global variations in the level of scholarly activity were analyzed and correlated with variations in cancer-specific mortality. Data for 142 countries were obtained and significant variations in the level of research activity was noted. The level of research activity increased with rising socio-economic status. The United States was the most prolific country with 222,300 publications followed by Japan and Germany. Several countries in different regions of the world had a low level of research activity. An inverse relationship between the level of research activity and cancer-specific mortality was noted. This relationship persisted even in countries with a low level of research activity. The socioeconomic status of a nation and geographic location (continent) had a mixed influence with an overall apparent correlation with cancer-related research activity. This study demonstrates significant global variation in the level of cancer-related research activity and a correlation with cancer-specific mortality. The presence of a minimum set of standards for research literacy, as proposed by the European Society of Surgical Oncology and the Society of Surgical Oncology may contribute to enhanced research activity and improve outcomes for cancer patients worldwide. Copyright © 2017 Society of Surgical Oncology, European Society of Surgical Oncology. Published by Elsevier Ltd.. All rights reserved.
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos
2007-08-01
The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.
Resonant infrared detector with substantially unit quantum efficiency
NASA Technical Reports Server (NTRS)
Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)
1994-01-01
A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.
Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua
2014-01-01
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.
All "Trashed" Out: An Activity Guide to Solid Waste Management for Grades K-6.
ERIC Educational Resources Information Center
Illinois Univ., Springfield. Center for Solid Waste Management and Research, Springfield.
This activity guide, specifically designed for Illinois classrooms but adaptable for other states, seeks to encourage primary students to make their own personal statement and responses to the environment through increased awareness of reducing, reusing, recycling, and composting of solid waste materials. The activities incorporate environmental…
Substrate specificity effects of lipoxygenase products and inhibitors on soybean lipoxygenase-1.
Wecksler, Aaron T; Garcia, Natalie K; Holman, Theodore R
2009-09-15
Recently, it has been shown that lipoxygenase (LO) products affect the substrate specificity of human 15-LO. In the current paper, we demonstrate that soybean LO-1 (sLO-1) is not affected by its own products, however, inhibitors which bind the allosteric site, oleyl sulfate (OS) and palmitoleyl sulfate (PS), not only lower catalytic activity, but also change the substrate specificity, by increasing the arachidonic acid (AA)/linoleic acid (LA) ratio to 4.8 and 4.0, respectively. The fact that LO inhibitors can lower activity and also change the LO product ratio is a new concept in lipoxygenase inhibition, where the goal is to not only reduce the catalytic activity but also alter substrate selectivity towards a physiologically beneficial product.
Montero, B; García-Morales, J L; Sales, D; Solera, R
2009-03-01
Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x)+2.667] (R(2) 0.8866). The total methanogenic activity increased from 0.04x10(-8) mLCH(4) cell(-1)day(-1) to 0.38x10(-8) mLCH(4) cell(-1)day(-1) while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H(2)-utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64x10(-8) mLCH(4) cell(-1)day(-1) and 0.33x10(-8) mLCH(4) cell(-1)day(-1), respectively. The methanogenic activity of H(2)-utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process.
Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu
2018-03-13
Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly decreased the expression of Tribbles homolog 3 ( TRIB3), a repressor of adipogenic differentiation. Y15, a specific inhibitor of FAK activity, was used to inhibit the activity of FAK under normal gravity; Y15 decreased protein expression of TRIB3. Therefore, it appears that space microgravity decreased FAK activity and thereby reduced TRIB3 expression and derepressed AKT activity. Under space microgravity, the increase in p38 MAPK activity and the derepression of AKT activity seem to synchronously lead to the activation of the signaling pathway specifically promoting adipogenesis.-Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., Wang, J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.
GAD-specific T cells are induced by GAD-alum treatment in Type-1 diabetes patients.
Pihl, Mikael; Barcenilla, Hugo; Axelsson, Stina; Chéramy, Mikael; Åkerman, Linda; Johansson, Ingela; Ludvigsson, Johnny; Casas, Rosaura
2017-03-01
Administration of Glutamic Acid Decarboxylase (GAD) 65 formulated in aluminium hydroxide preserved insulin secretion in a phase II trial in recent onset Type 1 Diabetes. A subsequent European phase III trial was closed at 15months after failing to reach primary endpoint, but the majority of the Swedish patients completed the 21months follow-up. We studied the frequencies and phenotype of T cells, suppressive capacity of Tregs, GAD 65 -induced proliferation, and frequencies of T cells with a GAD 65 -specific TCR in Swedes participating in the trial. Stimulation with GAD 65 induced activated T cells and also cells with a suppressive phenotype. Activated GAD 65 -specific effector T cells were detected by tetramer staining while the frequency of GAD 65 -specific Treg was not affected by the treatment. Additional doses of GAD-alum increased frequencies of CD25 + CD127 + , but had no effect on CD25 hi CD127 lo . Our findings indicate that GAD-alum treatment primarily induced activated T cells. GAD 65 -specific cells were mainly of activated phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
The Brain Circuitry Underlying the Temporal Evolution of Nausea in Humans
Sheehan, James D.; Kim, Jieun; LaCount, Lauren T.; Park, Kyungmo; Kaptchuk, Ted J.; Rosen, Bruce R.; Kuo, Braden
2013-01-01
Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus–associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom. PMID:22473843
The brain circuitry underlying the temporal evolution of nausea in humans.
Napadow, Vitaly; Sheehan, James D; Kim, Jieun; Lacount, Lauren T; Park, Kyungmo; Kaptchuk, Ted J; Rosen, Bruce R; Kuo, Braden
2013-04-01
Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus-associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom.
SPAK-mediated NCC regulation in response to low-K+ diet.
Wade, James B; Liu, Jie; Coleman, Richard; Grimm, P Richard; Delpire, Eric; Welling, Paul A
2015-04-15
The NaCl cotransporter (NCC) of the renal distal convoluted tubule is stimulated by low-K(+) diet by an unknown mechanism. Since recent work has shown that the STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) can function to stimulate NCC by phosphorylation of specific N-terminal sites, we investigated whether the NCC response to low-K(+) diet is mediated by SPAK. Using phospho-specific antibodies in Western blot and immunolocalization studies of wild-type and SPAK knockout (SPAK(-/-)) mice fed a low-K(+) or control diet for 4 days, we found that low-K(+) diet strongly increased total NCC expression and phosphorylation of NCC. This was associated with an increase in total SPAK expression in cortical homogenates and an increase in phosphorylation of SPAK at the S383 activation site. The increased pNCC in response to low-K(+) diet was blunted but not completely inhibited in SPAK(-/-) mice. These findings reveal that SPAK is an important mediator of the increased NCC activation by phosphorylation that occurs in the distal convoluted tubule in response to a low-K(+) diet, but other low-potassium-activated kinases are likely to be involved. Copyright © 2015 the American Physiological Society.
Repurposing Ospemifene for Potentiating an Antigen-Specific Immune Response
Kao, Chiao-Jung; Wurz, Gregory T.; Lin, Yi-Chen; Vang, Daniel P.; Phong, Brian; DeGregorio, Michael W.
2016-01-01
Objective Ospemifene, an estrogen receptor agonist/antagonist approved for treatment of dyspareunia and vaginal dryness in postmenopausal women, has potential new indications as an immune modulator. The overall objective of the present series of preclinical studies was to evaluate the immunomodulatory activity of ospemifene in combination with a peptide cancer vaccine. Methods Immune regulating effects, mechanism of action and structure activity relationships of ospemifene and related compounds were evaluated by examining expression of T cell activating cytokines in vitro, and antigen-specific immune response and cytotoxic T-lymphocyte activity in vivo. The effects of ospemifene (OSP) on the immune response to a peptide cancer vaccine (PV) were evaluated following chronic [control (n=22); OSP 50 mg/kg (n=16); PV (n=6); OSP+PV (n=11)], intermittent [control (n=10); OSP 10 and 50 mg/kg (n=11); PV (n=11); combination treatment (n=11 each dose)] and pretreatment [control; OSP 100 mg/kg; PV 100 µg; combination treatment (n=8 all groups)] ospemifene oral dosing schedules in a total of 317 mixed-sex tumor-bearing and non-tumor-bearing mice. Results The results showed that ospemifene induced expression of the key TH1 cytokines interferon gamma and interleukin-2 in vitro, which may be mediated by stimulating T cells through phosphoinositide 3-kinase and calmodulin signaling pathways. In combination with an antigen-specific peptide cancer vaccine, ospemifene increased antigen-specific immune response and increased cytotoxic T-lymphocyte activity in tumor-bearing and non-tumor-bearing mice. The pretreatment, intermittent, and chronic dosing schedules of ospemifene activate naïve T cells, modulate antigen-induced tolerance and reduce tumor-associated, pro-inflammatory cytokines, respectively. Conclusions Taken together, ospemifene’s dose response and schedule-dependent immune modulating activity offers a method of tailoring and augmenting the efficacy of previously failed antigen-specific cancer vaccines for a wide range of malignancies. PMID:27922937
ERIC Educational Resources Information Center
Williams, S. L.; French, D. P.
2011-01-01
There is convincing evidence that targeting self-efficacy is an effective means of increasing physical activity. However, evidence concerning which are the most effective techniques for changing self-efficacy and thereby physical activity is lacking. The present review aims to estimate the association between specific intervention techniques used…
Functional role of AMP-activated protein kinase in the heart during exercise.
Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J
2005-04-11
AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.
Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.
Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika
2016-03-04
Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.
Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov
2010-05-01
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum
Bulla, O; Poncet, A; Alberio, L; Asmis, L M; Gähler, A; Graf, L; Nagler, M; Studt, J-D; Tsakiris, D A; Fontana, P
2017-07-01
Measuring factor VIII (FVIII) activity can be challenging when it has been modified, such as when FVIII is pegylated to increase its circulating half-life. Use of a product-specific reference standard may help avoid this issue. Evaluate the impact of using a product-specific reference standard for measuring the FVIII activity of BAX 855 - a pegylated FVIII - in eight of Switzerland's main laboratories. Factor VIII-deficient plasma, spiked with five different concentrations of BAX 855, plus a control FVIII sample, was sent to the participating laboratories. They measured FVIII activity by using either with a one-stage (OSA) or the chromogenic assay (CA) against their local or a product-specific reference standard. When using a local reference standard, there was an overestimation of BAX 855 activity compared to the target concentrations, both with the OSA and CA. The use of a product-specific reference standard reduced this effect: mean recovery ranged from 127.7% to 213.5% using the OSA with local reference standards, compared to 110% to 183.8% with a product-specific reference standard, and from 146.3% to 182.4% using the CA with local reference standards compared to 72.7% to 103.7% with a product-specific reference standard. In this in vitro study, the type of reference standard had a major impact on the measurement of BAX 855 activity. Evaluation was more accurate and precise when using a product-specific reference standard. © 2017 John Wiley & Sons Ltd.
Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D
2018-02-01
Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.
The human brain representation of odor identification.
Kjelvik, Grete; Evensmoen, Hallvard R; Brezova, Veronika; Håberg, Asta K
2012-07-01
Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.
Slashcheva, G A; Rykov, V A; Lobanov, A V; Murashev, A N; Kim, Yu A; Arutyunyan, T V; Korystova, A F; Kublik, L N; Levitman, M Kh; Shaposhnikona, V V; Korystov, Yu N
2016-09-01
We analyzed changes in angiotensin-converting enzyme activity in the aorta of hypertensive SHR rats against the background of age-related BP increase (from week 7 to 14) and the effect of dihydroquercetin on BP rise and angiotensin-converting enzyme activity. Normotensive WKY rats of the same age were used as the control. BP and activity of angiotensin-converting enzyme in the aorta of SHR rats increased with age. Dihydroquercetin in doses of 100 and 300 μg/kg per day had no effect on the increase of these parameters; dihydroquercetin administered to 14-week-old WKY rats in a dose of 300 μg/kg reduced activity of the angiotensin-converting enzyme. Thus, the early (7-14 weeks) increase in BP and angiotensin-converting enzyme activity in the aorta of SHR rats was not modified by flavonoids (dihydroquercetin) in contrast to other rat strains and humans, which is indicative of specificity of hypertension mechanism in SHR rats.
Movement Activation and Inhibition in Parkinson’s Disease: a Functional Imaging Study
Disbrow, E. A.; Sigvardt, K. A.; Franz, E. A.; Turner, R. S.; Russo, K. A.; Hinkley, L.B.; Herron, T. J.; Ventura, M. I.; Zhang, L.; Malhado-Chang, N.
2015-01-01
Background Parkinson’s disease (PD), traditionally considered a movement disorder, has been shown to affect executive function such as the ability to adapt behavior in response to new environmental situations. Objective to identify the impact of PD on neural substrates subserving two specific components of normal movement which we refer to as activation (initiating an un-cued response) and inhibition (suppressing a cued response). Methods We used fMRI to measure pre-movement processes associated with activating an un-cued response and inhibiting a cued response plan in 13 PD (ON anti-parkinsonian medications) and 13 control subjects. Subjects were shown a visual arrow cue followed by a matched or mismatched response target that instructed them to respond with a right, left, or bilateral button press. In mismatched trials, an un-cued (new) response was initiated, or the previously cued response was suppressed. Results We were able to isolate pre-movement responses in dorsolateral prefrontal cortex, specifically in the right hemisphere. During the activation of an un-cued movement, PD subjects showed decreased activity in the putamen and increased cortical activity in bilateral DLPFC, SMA, subcentral gyrus and inferior frontal operculum. During inhibition of a previously cued movement, the PD group showed increased activation in SMA, S1/M1, premotor and superior parietal areas. Conclusion Right DLPFC plays a role in pre-movement processes, and DLPFC activity is abnormal in PD. Decreased specificity of responses was observed in multiple ROI’s. The basal ganglia are involved in circuits that coordinate activation and inhibition involved in action selection as well as execution. PMID:23938347
Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua
2015-03-01
Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.
Sominsky, Luba; Ong, Lin Kooi; Ziko, Ilvana; Dickson, Phillip W; Spencer, Sarah J
2018-07-15
A poor nutritional environment during early development has long been known to increase disease susceptibility later in life. We have previously shown that rats that are overfed as neonates (i.e. suckled in small litters (4 pups) relative to control conditions (12 pups)) show dysregulated hypothalamic-pituitary-adrenal axis responses to immune stress in adulthood, particularly due to an altered capacity of the adrenal to respond to an immune challenge. Here we hypothesised that neonatal overfeeding similarly affects the sympathomedullary system, testing this by investigating the biochemical function of tyrosine hydroxylase (TH), the first rate-limiting enzyme in the catecholamine synthesis. We also examined changes in adrenal expression of the leptin receptor and in mitogen-activated protein kinase (MAPK) signalling. During the neonatal period, we saw age-dependent changes in TH activity and phosphorylation, with neonatal overfeeding stimulating increased adrenal TH specific activity at postnatal days 7 and 14, along with a compensatory reduction in total TH protein levels. This increased TH activity was maintained into adulthood where neonatally overfed rats exhibited increased adrenal responsiveness 30 min after an immune challenge with lipopolysaccharide, evident in a concomitant increase in TH protein levels and specific activity. Neonatal overfeeding significantly reduced the expression of the leptin receptor in neonatal adrenals at postnatal day 7 and in adult adrenals, but did not affect MAPK signalling. These data suggest neonatal overfeeding alters the capacity of the adrenal to synthesise catecholamines, both acutely and long term, and these effects may be independent of leptin signalling. Copyright © 2017 Elsevier B.V. All rights reserved.
Deng, Junming; Kang, Bin; Tao, Linli; Rong, Hua; Zhang, Xi
2013-01-01
This study evaluated the effects of dietary cholesterol on antioxidant capacity, non-specific immune response and resistance to Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets. Fish were fed diets supplemented with graded cholesterol levels (0 [control], 0.3, 0.6, 0.9, 1.2, and 1.5%) for nine weeks. The fish were then challenged by A. hydrophila and their survival rate recorded for the next week. Dietary cholesterol supplementation generally increased the serum and hepatic superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (TAC) activities, but decreased the serum and hepatic malondialdehyde (MDA) contents. Further, the hepatic CAT and serum SOD, CAT, and TAC activities were significantly higher in fish fed diets supplemented with 0.9 or 1.2% cholesterol compared to those fed the control diet, whereas the serum and hepatic MDA contents were significantly lower. The respiratory burst activity, alternative complement activity, and hepatic lysozyme activity increased steadily when the supplemental cholesterol was increased by up to 1.2% and then declined with further addition. The serum lysozyme activity and phagocytic activity increased steadily with increasing dietary supplemental cholesterol level up to 0.9% and then declined with further addition. Dietary cholesterol supplementation generally enhanced the protection against A. hydrophila infection, and fish fed diets supplemented with 0.9 or 1.2% cholesterol exhibited the highest post-challenge survival rate. The results indicated that cholesterol may be under-supplied in rainbow trout fed soybean meal-based diets, and dietary cholesterol supplementation (0.9-1.2%) contributed to improved immune response and disease resistance of rainbow trout against A. hydrophila. Published by Elsevier Ltd.
Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.
Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D
2016-12-01
The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.
Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K
2014-01-01
Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic diseases associated with increased energy combustion in liver.
Watson, Kathleen Bachtel; Dai, Shifan; Paul, Prabasaj; Carlson, Susan A; Carroll, Dianna D; Fulton, Janet
2016-11-01
Previous studies have examined participation in specific leisure-time physical activities (PA) among US adults. The purpose of this study was to identify specific activities that contribute substantially to total volume of leisure-time PA in US adults. Proportion of total volume of leisure-time PA moderate-equivalent minutes attributable to 9 specific types of activities was estimated using self-reported data from 21,685 adult participants (≥ 18 years) in the National Health and Nutrition Examination Survey 1999-2006. Overall, walking (28%), sports (22%), and dancing (9%) contributed most to PA volume. Attributable proportion was higher among men than women for sports (30% vs. 11%) and higher among women than men for walking (36% vs. 23%), dancing (16% vs. 4%), and conditioning exercises (10% vs. 5%). The proportion was lower for walking, but higher for sports, among active adults than those insufficiently active and increased with age for walking. Compared with other racial/ethnic groups, the proportion was lower for sports among non-Hispanic white men and for dancing among non-Hispanic white women. Walking, sports, and dance account for the most activity time among US adults overall, yet some demographic variations exist. Strategies for PA promotion should be tailored to differences across population subgroups.
Kobayashi, Hideki; Butler, Jason M.; O'Donnell, Rebekah; Kobayashi, Mariko; Ding, Bi-Sen; Bonner, Bryant; Chiu, Vi K.; Nolan, Daniel J.; Shido, Koji; Benjamin, Laura; Rafii, Shahin
2010-01-01
Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34−Flt3− KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34−Flt3− KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the upregulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs. PMID:20972423
Perceived correlates of domain-specific physical activity in rural adults in the Midwest.
Chrisman, Matthew; Nothwehr, Faryle; Yang, Jingzen; Oleson, Jacob
2014-01-01
In response to calls for more specificity when measuring physical activity, this study examined perceived correlates of this behavior in rural adults separately by the domain in which this behavior occurs (ie, home care, work, active living, and sport). A cross-sectional survey was completed by 407 adults from 2 rural towns in the Midwest. The questionnaire assessed the perceived social and physical environment, including neighborhood characteristics, as well as barriers to being active. The Kaiser Physical Activity Survey captured domain-specific activity levels. The response rate was 25%. Multiple regression analyses were conducted to examine the associations between social and physical environment factors and domain-specific physical activity. Having a favorable attitude toward using government funds for exercise and activity-friendly neighborhood characteristic were positively associated with active living. Friends encouraging exercise was positively associated with participation in sport. Barriers were inversely associated with active living and sport. Total physical activity was positively associated with workplace incentives for exercise, favorable policy attitudes toward supporting physical education in schools and supporting the use of government funds for biking trails, and it was inversely associated with barriers. There were no factors associated with physical activity in the domains of work or home care. Correlates of physical activity are unique to the domain in which this behavior occurs. Programs to increase physical activity in rural adults should target policy attitudes, neighborhood characteristics, and social support from friends while also working to decrease personal barriers to exercise. © 2014 National Rural Health Association.
Huang, Jiansheng; Barr, Emily; Rudnick, David A.
2013-01-01
The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC mRNA and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA-treatment suppressed the effects of PH on histone deacetylation and hepatocellular BrdU incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. Conclusion The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. PMID:23258575
Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo
2015-11-01
The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.
Process for forming a porous silicon member in a crystalline silicon member
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja
2016-01-01
Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors. PMID:27171412
Marsili, Alessandro; Ramadan, Waile; Harney, John W; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J Enrique; Larsen, P Reed
2010-12-01
Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.
Marsili, Alessandro; Ramadan, Waile; Harney, John W.; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A.; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J. Enrique; Larsen, P. Reed
2010-01-01
Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T4 to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T3 in skeletal muscle physiology than previously assumed. PMID:20881246
Differential neural correlates of autobiographical memory recall in bipolar and unipolar depression.
Young, Kymberly D; Bodurka, Jerzy; Drevets, Wayne C
2016-11-01
Autobiographical memory (AM) recall is impaired in both bipolar depression (BD) and major depressive disorder (MDD). The current study used functional magnetic resonance imaging (fMRI) to investigate differences between healthy controls (HCs) and depressed participants with either BD or MDD as they recalled AMs that varied in emotional valence. Unmedicated adults in a current major depressive episode who met criteria for either MDD or BD and HCs (n=16/group) underwent fMRI while recalling AMs in response to emotionally valenced cue words. Control tasks involved generating examples from a given category and counting the number of risers in a letter string. Both participants with BD and those with MDD recalled fewer specific and more categorical memories than HC participants. During specific AM recall of positive memories, participants with BD showed increased hemodynamic activity in the ventrolateral prefrontal cortex, posterior cingulate cortex, anterior insula, middle temporal gyrus, parahippocampus, and amygdala relative to MDD and HC participants, as well as decreased dorsolateral prefrontal (DLPFC) activity relative to MDD participants. During specific AM recall of negative memories, participants with BD manifested decreased activity in the precuneus, amygdala, anterior cingulate, and DLPFC along with increased activity in the dorsomedial PFC relative to MDD participants. While depressed participants with BD and MDD exhibited similar depression ratings and memory deficits, the brain regions underlying successful AM recall significantly differentiated these patient groups. Differential amygdala activity during emotional memory recall (particularly increased activity in participants with BD for positive AMs) may prove useful in the differentiation of individuals with MDD and BD experiencing a depressive episode. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein
2011-12-01
All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.
Moldobaeva, Aigul; Baek, Amy; Wagner, Elizabeth M.
2008-01-01
Previously, we have shown that endothelial cell chemotaxis to the proangiogenic chemokine MIP-2 (macrophage inflammatory protein-2), is much greater in mouse aortic endothelial cells (EC) than pulmonary arterial endothelial cells (PA EC). This was true despite the observation that both cell types display comparable levels of the ligand receptor, CXCR2 (8). Since the systemic arterial circulation is proangiogenic in the adult lung and the pulmonary circulation is relatively resistant to neovascularization, we questioned whether the observed functional heterogeneity is related to inherent differences in cell signaling cascades of the two EC subtypes. Specifically, we measured activation of Rac1 and RhoA, both thought to be involved in EC cell migration. Rac1 showed inconsistent and minimal changes in both cell types after MIP-2 treatment (p>0.05). However, activated RhoA was increased upon exposure to MIP-2 only in aortic EC (61% increase; p<0.05). Decreased RhoA activation after treatment of aortic EC with specific siRNA for RhoA resulted in a functional decrease in EC chemotaxis to MIP-2 (17% increase; p<0.05). Additionally, increased RhoA activation in PA EC with adenoviral infection of RhoA caused an increase in PA EC chemotaxis to MIP-2 (46% increase; p<0.05). Inhibition of RhoA activity with the Rho kinase inhibitor, Y27632 blocked aortic EC chemotaxis and stress fiber formation. Thus, RhoA activation is increased after MIP-2 treatment in mouse aortic endothelial cells but not in pulmonary artery endothelial cells. We conclude that RhoA is part of a signaling pathway essential for aortic cell migration after CXCR2 ligation. This result provides one explanation for the difference in chemotaxis observed in these two endothelial subtypes that express similar levels of CXCR2. PMID:17662312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadan, M.J.
/sup 125/I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized /sup 125/I-lysergic acid diethylamide (/sup 125/I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of /sup 125/I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT/sub 2/ receptors in rat cortex. The high specific activity of /sup 125/I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotoninmore » receptor distribution. We have found that /sup 125/I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica.« less
NASA Astrophysics Data System (ADS)
Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.
2015-12-01
Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.
LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma
2016-02-01
The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.
Structure-activity relationship of tryptamine analogues on the heart of venus mercenaria
Greenberg, M. J.
1960-01-01
A number of tryptamine analogues and other exciter agents have been tested on the heart of Venus mercenaria. The method of estimation of potency, especially for irreversibly acting compounds, is discussed. Specificity of action with respect to the site of action of 5-hydroxytryptamine is defined experimentally. The specific activity of tyramine and phenethylamine and the non-specific excitatory action of indole and skatole indicate that the indole ring is neither necessary nor sufficient for 5-hydroxytryptamine-like activity. Tryptamine analogues differ in mode of action as well as potency. Congeners without a 5-hydroxyl group tend to act more slowly and irreversibly as well as less strongly than 5-hydroxytryptamine. Methyl substitution also increases the time of action and difficulty of reversal. However, the potency of such compounds may be increased or decreased depending upon the position of substitution and the presence of the 5-hydroxyl group. The relations between structure and potency and mode of action are discussed. Suggestions are made concerning the effective conformation of the 5-hydroxytryptamine molecule and the nature of its receptor. ImagesFIG. 7 PMID:13708259
Endothelial ERK signaling controls lymphatic fate specification
Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael
2013-01-01
Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722
Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed
2009-07-15
Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less
Chen, J.; Goldsbrough, P. B.
1994-09-01
Two cell lines of tomato (Lycopersicon esculentum Mill cv VFNT-Cherry) were systematically compared for their capacity to tolerate cadmium. Unselected CdS cells died in the presence of 0.3 mM CdCl2. CdR6-0 cells, which were selected from CdS, survived and grew in medium supplemented with 0.3 mM CdCl2. Growth of CdR6-0 cells under this condition was accompanied by synthesis of cadmium-binding phytochelatins and maintenance of cellular glutathione (GSH) levels. CdR6-0 cells also exhibited increased tolerance to buthionine sulfoximine, in both the presence and absence of 0.1 mM CdCl2. The specific activity of [gamma]-glutamylcysteine synthetase (EC 6.3.2.2) was approximately 2-fold higher in CdR6-0 cells than in CdS cells, whereas there was no difference between cell lines in specific activity of GSH synthetase (EC 6.3.2.3). Increased activity of the first enzyme of GSH biosynthesis in CdR6-0 cells, presumably a result of selection for increased cadmium tolerance, provides an enhanced capacity to synthesize GSH and to maintain the production of phytochelatins in response to cadmium. This adaptation may contribute to the enhanced cadmium tolerance of CdR6-0 cells.
Yeh, Shu-Hui; Lai, Hsiu-Ling; Hsiao, Chiu-Yueh; Lin, Li-Wei; Chuang, Yu-Kuan; Yang, Yu-Yeng; Yang, Kuender D
2014-09-01
Moderate physical activity has been shown to promote immunity. Different moderate physical activities may have different effects on immunity. This study investigated the impacts of a 12-week regular music aerobic exercise (MAE) program on leukocyte distribution, lymphocyte subsets, and lymphocyte polarization. The study used a case-control design with pretest and posttest. Forty-seven middle-age women were recruited for this study. Three participants dropped out, 22 completed the 12-week MAE program, and the other 22 participants who had heat-intolerance or limited schedule eligibility were enrolled as the control group without the MAE exercise. Results showed that the MAE exercise for 12 weeks didn't change red blood cells or total leukocytes but increased lymphocyte counts. The women in MAE group revealed significant increases (P ≤ 0.01) of CD3CD4, CD3CD8, and CD4CD25 cells, associated with Treg polarization showing enhanced FoxP3 but not T-bet, Gata-3, or RORγT expression (P < .01). The control group without exercise revealed insignificant change of lymphocyte subsets or lymphocyte polarization. This study shows that MAE increases specific lymphocyte subsets and enhances Treg cell differentiation. It is suggested to encourage moderate physical activity of music aerobic exercise to enhance lymphocyte function of middle-aged women.
The contribution of working memory to divided attention.
Santangelo, Valerio; Macaluso, Emiliano
2013-01-01
Previous studies have indicated that increasing working memory (WM) load can affect the attentional selection of signals originating from one object/location. Here we assessed whether WM load affects also the selection of multiple objects/locations (divided attention). Participants monitored either two object-categories (vs. one category; object-based divided attention) or two locations (vs. one location; space-based divided attention) while maintaining in WM either a variable number of objects (object-based WM load) or locations (space-based WM load). Behavioural results showed that WM load affected attentional performance irrespective of divided or focused attention. However, fMRI results showed that the activity associated with object-based divided attention increased linearly with increasing object-based WM load in the left and right intraparietal sulcus (IPS); while, in the same areas, activity associated with space-based divided attention was not affected by any type of WM load. These findings support the hypothesis that WM contributes to the maintenance of resource-demanding attentional sets in a domain-specific manner. Moreover, the dissociable impact of WM load on performance and brain activity suggests that increased IPS activation reflects a recruitment of additional, domain-specific processing resources that enable dual-task performance under conditions of high WM load and high attentional demand. Copyright © 2011 Wiley Periodicals, Inc.
Effects of yoga on brain waves and structural activation: A review.
Desai, Radhika; Tailor, Anisha; Bhatt, Tanvi
2015-05-01
Previous research has shown the vast mental and physical health benefits associated with yoga. Yoga practice can be divided into subcategories that include posture-holding exercise (asana), breathing (pranayama, Kriya), and meditation (Sahaj) practice. Studies measuring mental health outcomes have shown decreases in anxiety, and increases in cognitive performance after yoga interventions. Similar studies have also shown cognitive advantages amongst yoga practitioners versus non-practitioners. The mental health and cognitive benefits of yoga are evident, but the physiological and structural changes in the brain that lead to this remain a topic that lacks consensus. Therefore, the purpose of this study was to examine and review existing literature on the effects of yoga on brain waves and structural changes and activation. After a narrowed search through a set of specific inclusion and exclusion criteria, 15 articles were used in this review. It was concluded that breathing, meditation, and posture-based yoga increased overall brain wave activity. Increases in graygray matter along with increases in amygdala and frontal cortex activation were evident after a yoga intervention. Yoga practice may be an effective adjunctive treatment for a clinical and healthy aging population. Further research can examine the effects of specific branches of yoga on a designated clinical population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.
Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.
1994-01-01
Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728
Physical activity as a metabolic stressor.
Coyle, E F
2000-08-01
Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.
Application of Oxygen-Enriched Aeration in the Production of Bacitracin by Bacillus licheniformis
Flickinger, M. C.; Perlman, D.
1979-01-01
The physiological effects of controlling the dissolved oxygen tension at 0.01, 0.02, and 0.05 atm by the use of oxygen-enriched aeration were investigated during growth and bacitracin production by Bacillus licheniformis ATCC 10716. Up to a 2.35-fold increase in the final antibiotic yield and a 4-fold increase in the rate of bacitracin synthesis were observed in response to O2-enriched aeration. The increase in antibiotic production was accompanied by increased respiratory activity and an increase in the specific productivity of the culture from 1.3 to 3.6 g of antibiotic per g of cell mass produced. Oxygen enrichment of the aeration decreased medium carbohydrate uptake and the maximum specific growth rate of B. licheniformis from 0.6 h−1 to as low as 0.15 h−1, depending upon the level of enrichment and the conditions of oxygen transfer rate (impeller speed). The response of this culture to O2 enrichment suggests that this method of controlling the dissolved oxygen tension for antibiotic-producing cultures may simulate conditions that would occur if the carbon source were fed slowly, as is often employed to optimize antibiotic production. Analysis of the biologically active bacitracins produced by B. licheniformis ATCC 10716 suggested that the ratio of biologically active peptides was not changed by O2 enrichment, nor were any new biologically active compounds formed. Images PMID:34361
Steele, Michael M; Daratha, Kenn B; Bindler, Ruth C; Power, Thomas G
2011-12-01
Examine the relationship between self-efficacy and various measures of adiposity in a sample of teens. A total of 132 teens were selected from schools participating in an existing research study titled Teen Eating and Activity Mentoring in Schools (TEAMS). Teens completed demographic questionnaires and healthy eating-specific and physical activity-specific measures of self-efficacy. Waist circumference (WC), triceps skinfold thickness (TSF), and body mass index (BMI) percentile scores were also obtained. Regression analyses indicated that healthy eating-specific and physical activity-specific measures of self-efficacy predicted WC and TSF. ANOVA revealed significant differences in healthy eating-specific self-efficacy levels between students of recommended weight and overweight/obese status. Supplemental analyses showed significant negative relationships between a student's ideal BMI ratio and self-efficacy. Because self-efficacy may be amenable to change, these findings could inform future efforts aimed at increasing behaviors that promote healthy weight status among early adolescents.
LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.
Clayton, R N; Shakespear, R A; Marshall, J C
1978-06-01
Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.
A study on pore-opening behaviors of graphite nanofibers by a chemical activation process.
Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin
2007-02-15
In this work, porous graphite nanofibers (GNFs) were prepared by a KOH activation method in order to manufacture porous carbon nanofibers. The process was conducted in the activation temperature range of 900-1100 degrees C, and the KOH:GNFs ratio was fixed at 3.5:1. The textural properties of the porous carbons were analyzed using N2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micro- and mesopore structures, respectively. From the results, it was found that the textural properties, including the specific surface area and the pore volumes, were proportionally enhanced with increasing activation temperatures. However, the activation mechanisms showed quite significant differences between the samples activated at low and high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Hardip, E-mail: sandhu.hardip@gmail.co; Xu, Cang Bao; Edvinsson, Lars
2010-11-15
Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSPmore » with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET{sub B} receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie
A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CMmore » treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.« less
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.; ...
2017-02-08
The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.
The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less
Crews, Ryan T.; Schneider, Kristin L.; Yalla, Sai V.; Reeves, Neil D.; Vileikyte, Loretta
2017-01-01
Obesity and a sedentary lifestyle are common challenges among individuals at risk of diabetic foot ulcers (DFUs). While substantial research exists on physical activity interventions in adults with diabetes, those at greatest risk for foot ulceration were often excluded or not well-represented. Both at-risk patients and their clinicians may be hesitant to increase physical activity due to their perception of DFU risks. Physical activity is not contraindicated for those at risk of DFU, yet patients at risk present with unique barriers to initiating increases in physical activity. This review focuses upon the physiological and psychological challenges of increasing physical activity and exercise in patients at risk of DFUs. Offloading, diabetic peripheral neuropathy, depression, pain, self-efficacy and social support, DFU risk-specific beliefs and emotions, and research to date on exercise interventions in this population are all discussed. Additionally, recommendations for implementing and researching physical activity interventions for individuals at risk for DFU are provided. PMID:27155091
ERIC Educational Resources Information Center
Spizman, Robyn Freedman; Garber, Marianne Daniels
Linking home and school, this book presents over 100 activities for grades K-3 that utilize things at parents' fingertips which will enhance their children's learning. Each low-maintenance, high-interest activity in the book teaches a specific skill and integrates math, science, social studies, and language arts so that learning is purposeful and…
Chapter 14: Effects of fire suppression and postfire management activities on plant invasions
Matthew L. Brooks
2008-01-01
This chapter explains how various fire suppression and postfire management activities can increase or decrease the potential for plant invasions following fire. A conceptual model is used to summarize the basic processes associated with plant invasions and show how specific fire management activities can be designed to minimize the potential for invasion. The...
ERIC Educational Resources Information Center
Jaakkola, Timo; Washington, Tracy
2013-01-01
Background: Previous studies have shown that fundamental movement skills (FMS) and physical activity are related. Specifically, earlier studies have demonstrated that the ability to perform a variety of FMS increases the likelihood of children participating in a range of physical activities throughout their lives. To date, however, there have not…
Gao, Qianhua; Walmsley, A Damien; Cooper, Paul R; Scheven, Ben A
2016-03-01
Mesenchymal stem cells (MSCs) from dental tissues may respond to low-intensity pulsed ultrasound (LIPUS) treatment, potentially providing a therapeutic approach to promoting dental tissue regeneration. This work aimed to compare LIPUS effects on the proliferation and MAPK signaling in MSCs from rodent dental pulp stem cells (DPSCs) compared with MSCs from periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). Isolated MSCs were treated with 1-MHz LIPUS at an intensity of 250 or 750 mW/cm2 for 5 or 20 minutes. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) staining after 24 hours of culture following a single LIPUS treatment. Specific ELISAs were used to determine the total and activated p38, ERK1/2, and JNK MAPK signaling proteins up to 4 hours after treatment. Selective MAPK inhibitors PD98059 (ERK1/2), SB203580 (p38), and SP600125 (JNK) were used to determine the role of activation of the particular MAPK pathways. The proliferation of all MSC types was significantly increased after LIPUS treatment. LIPUS at a 750-mW/cm2 dose induced the greatest effects on DPSCs. BMSC proliferation was stimulated in equal measures by both intensities, whereas 250 mW/cm2 LIPUS exposure exerted maximum effects on PDLSCs. ERK1/2 was activated immediately in DPSCs after treatment. Concomitantly, DPSC proliferation was specifically modulated by ERK1/2 inhibition, whereas p38 and JNK inhibition exerted no effects. In BMSCs, JNK MAPK signaling was LIPUS activated, and the increase in proliferation was blocked by specific inhibition of the JNK pathway. In PDLSCs, JNK MAPK signaling was activated immediately after LIPUS, whereas p-p38 MAPK increased significantly in these cells 4 hours after exposure. Correspondingly, JNK and p38 inhibition modulated LIPUS-stimulated PDLSC proliferation. LIPUS promoted MSC proliferation in an intensity and cell-specific dependent manner via activation of distinct MAPK pathways. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Critique in Academic Disciplines and Active Learning of Academic Content
ERIC Educational Resources Information Center
Ford, Michael J.
2010-01-01
This article argues for increased theoretical specificity in the active learning process. Whereas constructivist learning emphasizes construction of meaning, the process articulated here complements meaning construction with disciplinary critique. This process is an implication of how disciplinary communities generate new knowledge claims, which…
Roles of unphosphorylated STATs in signaling.
Yang, Jinbo; Stark, George R
2008-04-01
The seven members of the signal transducer and activator of transcription (STAT) family of transcription factors are activated in response to many different cytokines and growth factors by phosphorylation of specific tyrosine residues. The STAT1 and STAT3 genes are specific targets of activated STATs 1 and 3, respectively, resulting in large increases in the levels of these unphosphorylated STATs (U-STATs) in response to the interferons (STAT1) or ligands that active gp130, such as IL-6 (STAT3). U-STATs drive gene expression by novel mechanisms distinct from those used by phosphorylated STAT (P-STAT) dimers. In this review, we discuss the roles of U-STATs in transcription and regulation of gene expression.
Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition.
Sadeghi, Amin; Van Damme, Els J M; Peumans, Willy J; Smagghe, Guy
2006-09-01
A set of 14 plant lectins was screened in a binary choice bioassay for inhibitory activity on cowpea weevil Callosobruchus maculatus (F.) oviposition. Coating of chickpea seeds (Cicer arietinum L.) with a 0.05% (w/v) solution of plant lectins caused a significant reduction in egg laying. Control experiments with heat inactivated lectin and BSA indicated that the observed deterrent effects are specific and require carbohydrate-binding activity. However, no clear correlation could be established between deterrent activity and sugar-binding specificity/molecular structure of the lectins. Increasing the insect density reduced the inhibitory effect of the lectins confirming that female insects are capable of adjusting their oviposition rates as a function of host availability.
An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
Li, Pengfei; Wang, Yu; Tian, Yu; Zhou, Tian-Shu; Li, Jing-Song
2017-03-01
In recent years, an increasing number of people have become concerned about their health. Most chronic diseases are related to lifestyle, and daily activity records can be used as an important indicator of health. Specifically, using advanced technology to automatically monitor actual activities can effectively prevent and manage chronic diseases. The data used in this paper were obtained from acceleration sensors and gyroscopes integrated in smartphones. We designed an efficient Adaboost-Stump running on a smartphone to classify five common activities: cycling, running, sitting, standing, and walking and achieved a satisfactory classification accuracy of 98%. We designed an online learning method, and the classification model requires continuous training with actual data. The parameters in the model then become increasingly fitted to the specific user, which allows the classification accuracy to reach 95% under different use environments. In addition, this paper also utilized the OpenCL framework to design the program in parallel. This process can enhance the computing efficiency approximately ninefold.
Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease
Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.
2000-01-01
Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609
Michałowski, Jarosław M; Matuszewski, Jacek; Droździel, Dawid; Koziejowski, Wojciech; Rynkiewicz, Andrzej; Jednoróg, Katarzyna; Marchewka, Artur
2017-06-01
In the present simultaneous EEG/ECG-fMRI study we compared the temporal and spatial characteristics of the brain responses and the cardiac activity during fear picture processing between spider, blood-injection-injury (BII) and social fearful as well as healthy (non-fearful) volunteers. All participants were presented with two neutral and six fear-related blocks of pictures: two social, two spider and two blood/injection fear blocks. In a social fear block neutral images were occasionally interspersed with photographs of angry faces and social exposure scenes. In spider and blood/injection fear blocks neutral pictures were interspersed with spider fear-relevant and blood/injection pictures, respectively. When compared to healthy controls the social fear group responded with increased activations in the anterior orbital, middle/anterior cingulate and middle/superior temporal areas for pictures depicting angry faces and with a few elevated superior frontal activations for social exposure scenes. In the blood/injection fear group, heart rate was decreased and the activity in the middle/inferior frontal and visual processing regions was increased for blood/injection pictures. The HR decrease for blood/injection pictures correlated with increased frontal responses. In the spider fear group, spider fear-relevant pictures triggered increased activations within a broad subcortical and cortical neural fear network. The HR response for spider fear-relevant stimuli was increased and correlated with an increased insula and hippocampus activity. When compared to healthy controls, all fear groups showed higher LPP amplitudes for their feared cues and an overall greater P1 hypervigilance effect. Contrasts against the fear control groups showed that the increased responses for fear-specific stimuli are mostly related to specific fears and not to general anxiety proneness. The results suggest different engagement of cognitive evaluation and down-regulation strategies and an overall increased sensitization of the fear system in the three fear groups.
Kurz, Jonathan E; Rana, Annu; Parsons, J Travis; Churn, Severn B
2003-12-01
This study was performed to determine the effect of prolonged status epilepticus on the activity and subcellular location of a neuronally enriched, calcium-regulated enzyme, calcineurin. Brain fractions isolated from control animals and rats subjected to pilocarpine-induced status epilepticus were subjected to differential centrifugation. Specific subcellular fractions were tested for both calcineurin activity and enzyme content. Significant, status epilepticus-induced increases in calcineurin activity were found in homogenates, nuclear fractions, and crude synaptic membrane-enriched fractions isolated from both cortex and hippocampus. Additionally, significant increases in enzyme levels were observed in crude synaptic fractions as measured by Western analysis. Immunohistochemical studies revealed a status epilepticus-induced increase in calcineurin immunoreactivity in dendritic structures of pyramidal neurons of the hippocampus. The data demonstrate a status epilepticus-induced increase in calcineurin activity and concentration in the postsynaptic region of forebrain pyramidal neurons.
Pate, Russell R; Brown, William H; Pfeiffer, Karin A; Howie, Erin K; Saunders, Ruth P; Addy, Cheryl L; Dowda, Marsha
2016-07-01
A majority of preschool-aged children spend a significant portion of every weekday in a preschool or child care setting, where they typically participate in limited physical activity. This study determined if an ecologic physical activity intervention in preschools increases children's moderate- to vigorous-intensity physical activity (MVPA). RCT, with preschool as the unit of randomization and analysis. Child physical activity was measured by accelerometry. Mixed model analysis of covariance with preschool as a random variable was used to test the effects of the intervention on physical activity in the total group and in sex-specific subgroups. Data were collected in 2008-2010 and analyzed in 2012-2014. Children in 4-year-olds' classrooms in 16 preschools, pair matched and assigned to intervention or control groups. The intervention focused on increasing children's physical activity by changing instructional practices. Researchers trained preschool teachers to engage children in physical activity during (1) structured, teacher-led physical activity opportunities in the classroom; (2) structured and unstructured physical activity opportunities at recess; and (3) physical activity integrated into pre-academic lessons. Research staff encouraged teachers to adapt the intervention to their classrooms. Minutes/hour of MVPA during the preschool day. In an analytic sample of 379 children (188 intervention, 191 control), those in the intervention schools engaged in significantly more MVPA than children in control schools (7.4 and 6.6 minutes/hour, respectively). This difference remained significant after adjusting for parent education and length of the school day (half versus full day). In the sex-specific analyses, the difference was significant for girls (6.8 vs 6.1 minutes/hour of MVPA, respectively) but not for boys (7.9 vs 7.2 minutes/hour, respectively). A flexible ecologic physical activity intervention that trains teachers to provide children with opportunities to be active throughout the school day increased MVPA in preschool children. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
A biosensor generated via high throughput screening quantifies cell edge Src dynamics
Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.
2011-01-01
Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688
Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.
Acharjee, B K; Mahanta, R
2009-04-01
Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.
Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P
2016-06-01
The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.
Jealousy increased by induced relative left frontal cortical activity.
Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J
2015-10-01
Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).
Divided versus selective attention: evidence for common processing mechanisms
Hahn, Britta; Wolkenberg, Frank A.; Ross, Thomas J.; Myers, Carol S.; Heishman, Stephen J.; Stein, Dan J.; Kurup, Pradeep K.; Stein, Elliot A.
2008-01-01
The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks’ processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants’ BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention. PMID:18479670
Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A
2016-06-21
In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.
Divided versus selective attention: evidence for common processing mechanisms.
Hahn, Britta; Wolkenberg, Frank A; Ross, Thomas J; Myers, Carol S; Heishman, Stephen J; Stein, Dan J; Kurup, Pradeep K; Stein, Elliot A
2008-06-18
The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks' processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants' BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention.
Cytoskeletal role in protection of the failing heart by β-adrenergic blockade
Cheng, Guangmao; Kasiganesan, Harinath; Baicu, Catalin F.; Wallenborn, J. Grace; Kuppuswamy, Dhandapani
2012-01-01
Formation of a dense microtubule network that impedes cardiac contraction and intracellular transport occurs in severe pressure overload hypertrophy. This process is highly dynamic, since microtubule depolymerization causes striking improvement in contractile function. A molecular etiology for this cytoskeletal alteration has been defined in terms of type 1 and type 2A phosphatase-dependent site-specific dephosphorylation of the predominant myocardial microtubule-associated protein (MAP)4, which then decorates and stabilizes microtubules. This persistent phosphatase activation is dependent upon ongoing upstream activity of p21-activated kinase-1, or Pak1. Because cardiac β-adrenergic activity is markedly and continuously increased in decompensated hypertrophy, and because β-adrenergic activation of cardiac Pak1 and phosphatases has been demonstrated, we asked here whether the highly maladaptive cardiac microtubule phenotype seen in pathological hypertrophy is based on β-adrenergic overdrive and thus could be reversed by β-adrenergic blockade. The data in this study, which were designed to answer this question, show that such is the case; that is, β1- (but not β2-) adrenergic input activates this pathway, which consists of Pak1 activation, increased phosphatase activity, MAP4 dephosphorylation, and thus the stabilization of a dense microtubule network. These data were gathered in a feline model of severe right ventricular (RV) pressure overload hypertrophy in response to tight pulmonary artery banding (PAB) in which a stable, twofold increase in RV mass is reached by 2 wk after pressure overloading. After 2 wk of hypertrophy induction, these PAB cats during the following 2 wk either had no further treatment or had β-adrenergic blockade. The pathological microtubule phenotype and the severe RV cellular contractile dysfunction otherwise seen in this model of RV hypertrophy (PAB No Treatment) was reversed in the treated (PAB β-Blockade) cats. Thus these data provide both a specific etiology and a specific remedy for the abnormal microtubule network found in some forms of pathological cardiac hypertrophy. PMID:22081703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Tianyong; Olson, Daniel G.; Tian, Liang
Clostridium thermocellum and Thermoanaerobacterium saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains ofC. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains ofC. thermocellumandT. saccharolyticumwere cloned and expressed inEscherichia coli, the enzymesmore » produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains ofT. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain ofC. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced intoC. thermocellumandT. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. This work describes the characterization of the AdhE enzyme from different strains ofC. thermocellumandT. saccharolyticum.C. thermocellumandT. saccharolyticumare thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production byC. thermocellumandT. saccharolyticum.« less
Production of activated carbon from rice husk Vietnam
NASA Astrophysics Data System (ADS)
Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.
2016-09-01
This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.
Cancer incidence attributable to inadequate physical activity in Alberta in 2012
Brenner, Darren R.; Poirier, Abbey E.; Grundy, Anne; Khandwala, Farah; McFadden, Alison; Friedenreich, Christine M.
2017-01-01
Background: Physical inactivity has been consistently associated with increased risk of colorectal, endometrial, breast (in postmenopausal women), prostate, lung and ovarian cancers. The objective of the current analysis was to estimate the proportion and absolute number of site-specific cancer cases attributable to inadequate physical activity in Alberta in 2012. Methods: We used population attributable risks to estimate the proportion of each site-specific cancer attributable to inactivity. Relative risk estimates were obtained from the epidemiological literature, and prevalence estimates were calculated with the use of data from the Canadian Community Health Survey cycle 2.1 (2003). Respondents who acquired 1.5-2.9 kcal/kg per day and less than 1.5 kcal/kg per day of physical activity were classified as moderately active and inactive, respectively, and both levels were considered inadequate for mitigating cancer risks. We obtained age-, sex- and site-specific cancer incidence data from the Alberta Cancer Registry for 2012. Results: About 59%-75% of men and 69%-78% of women did not engage in adequate physical activity. Overall, 13.8% of cancers across all associated cancers were estimated to be attributable to inadequate physical activity, representing 7.2% of all cancers diagnosed in Alberta in 2012. Suboptimal levels of physical activity had a greater impact among women: the proportion of all associated cancers attributable to inadequate physical activity was 18.3% for women and 9.9% for men. Interpretation: A substantial proportion of cancer cases diagnosed in Alberta were estimated to be attributable to inadequate physical activity. With the high prevalence of physical inactivity among adults in the province, developing strategies to increase physical activity levels could have a notable impact on reducing future cancer burden in Alberta. PMID:28468830
Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuyama, Yoshiko; Tokuhara, Daisuke; Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639
Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FLmore » activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.« less
Robertson, Neil M; Hizir, Mustafa Salih; Balcioglu, Mustafa; Wang, Rui; Yavuz, Mustafa Selman; Yumak, Hasan; Ozturk, Birol; Sheng, Jia; Yigit, Mehmet V
2015-09-15
In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.
Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.
Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi
2014-09-05
BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M
2012-02-01
Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.
Wirth, Eva K.; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich
2015-01-01
Background The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). Objective: To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). Methods We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Results Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Conclusions Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated. PMID:26601078
Wirth, Eva K; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich
2015-09-01
The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated.
Biodesulfurization of refractory organic sulfur compounds in fossil fuels.
Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios
2007-01-01
The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.
Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.
Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku
2006-08-15
We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.
Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism.
Carneiro-Ramos, M S; Silva, V B; Santos, R A S; Barreto-Chaves, M L M
2006-11-01
We have previously demonstrated the interaction between the RAS and thyroid hormones (TH). The present study was designed to determine the role of TH in the local regulation of ACE activity and expression in different tissues. Adult male Wistar rats were randomized into three groups: T4-25 and T4-100 (0.025 and 0.100mg/kg of body weight/day of l-thyroxine for 14 days, respectively) and control. Hemodynamic parameters as well as cardiac and renal hypertrophy were evaluated. ACE activity and mRNA levels were determined by Fluorimetric and Northern blot assays, respectively. Both doses increased SBP and HR, as well as inducing cardiac and renal hypertrophy. Pulmonary and serum ACE levels were comparable among the groups. Both doses promoted increased renal ACE activity and expression but surprisingly ACE was diminished in the heart in both hyperthyroid groups. This change was mediated by a tissue-specific transcription mechanism.
Aziz, Moammir H; Shen, Hong; Maki, Carl G
2012-08-24
Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.
Transfer after Dual n-Back Training Depends on Striatal Activation Change.
Salminen, Tiina; Kühn, Simone; Frensch, Peter A; Schubert, Torsten
2016-09-28
The dual n-back working memory (WM) training paradigm (comprising auditory and visual stimuli) has gained much attention since studies have shown widespread transfer effects. By including a multimodal dual-task component, the task is demanding to the human cognitive system. We investigated whether dual n-back training improves general cognitive resources or a task-specific WM updating process in participants. We expected: (1) widespread transfer effects and the recruitment of a common neuronal network by the training and the transfer tasks and (2) narrower transfer results and that a common activation network alone would not produce transfer, but instead an activation focus on the striatum, which is associated with WM updating processes. The training group showed transfer to an untrained dual-modality WM updating task, but not to single-task versions of the training or the transfer task. They also showed diminished neuronal overlap between the training and the transfer task from pretest to posttest and an increase in striatal activation in both tasks. Furthermore, we found an association between the striatal activation increase and behavioral improvement. The control groups showed no transfer and no change in the amount of activation overlap or in striatal activation from pretest to posttest. We conclude that, instead of improving general cognitive resources (which would have required a transfer effect to all transfer tasks and that a frontal activation overlap between the tasks produced transfer), dual n-back training improved a task-specific process: WM updating of stimuli from two modalities. The current study allows for a better understanding of the cognitive and neural effects of working memory (WM) training and transfer. It shows that dual n-back training mainly improves specific processes of WM updating, and this improvement leads to narrow transfer effects to tasks involving the same processes. On a neuronal level this is accompanied by increased neural activation in the striatum that is related to WM updating. The current findings challenge the view that dual n-back training provokes a general boosting of the WM system and of its neural underpinnings located in frontoparietal brain regions. Instead, the findings imply the relevance of task-specific brain regions which are involved in important cognitive processes during training and transfer tasks. Copyright © 2016 the authors 0270-6474/16/3610198-16$15.00/0.
Lhoste, E F; Catala, I; Fiszlewicz, M; Gueugneau, A M; Popot, F; Vaissade, P; Corring, T; Szylit, O
1996-03-01
Dietary proteins are degraded by both endogenous enzymes and the caecal microflora. In conventional rats the enzyme content of the pancreas depends on the amount of dietary protein. The influence of the caecal microflora on this process is unknown. We report here the effect of the caecal microflora on pancreatic enzymes (proteases, amylase (EC 3.2.1.1), lipase (EC 3.1.1.3)) and on colonic metabolites (NH3, urea, short-chain fatty acids). Germ-free and conventional male Fischer rats were fed for 3 weeks with a diet containing 220 or 450 g protein/kg provided as a mixture of fish concentrate and soyabean isolate. The excretion of NH3 and the pH were specifically increased by the high-protein diet in the germ-free rats. The higher production of isobutyrate, valerate and isovalerate in conventional rats fed on the high-protein diet reflected a high bacterial proteolytic activity since these short-chain fatty acids are specific indicators of this activity. The microflora hydrolysed urea to NH3 and maintained the pH at neutrality whatever the amount of protein in the diet since there were changes in germ-free rats but not in conventional ones. In germ-free rats, amylase, trypsin (EC 3.4.21.4), elastase (EC 3.4.21.36) and carboxypeptidase A (EC 3.4.17.1) specific activities were significantly lower than in conventional rats. The adaptation of the pancreas to the 450 g protein/kg diet was not impaired by the bacterial status except for the specific activity of chymotrypsin (EC 3.4.21.1) which was more increased by this diet in germ-free than in conventional rats. Moreover, the specific activity of lipase increased only in conventional rats fed on the 450 g protein/kg diet. In conclusion, we observed a relationship between the enzyme content of the pancreas and the presence or absence of the caecal microflora suggesting that bacterial fermentation influences pancreatic function.
Role of Proteases in Extra-Oral Digestion of a Predatory Bug, Andrallus spinidens
Zibaee, Arash; Hoda, Hassan; Mahmoud, Fazeli-Dinan
2012-01-01
Roles of salivary proteases in the extra-oral digestion of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) were studied by using 2% azocasein as a general substrate and specific protease substrates, as well as synthetic and endogenous inhibitors. It was found that salivary glands of A. spinidens have two anterior, two lateral, and two posterior lobes. Azocasein was used to measure the activity of general proteases in the salivary glands using different buffer solutions. The enzyme had the highest activity at pH 8. General protease activity was highest at 40 °C and was stable for 6–16 hours. The use of specific substrates showed that trypsin-like, chymotrypsin-like, aminopeptidase, and carboxypeptidase are the active proteases present in salivary glands, by the maximum activity of trypsin-like protease in addition to their optimal pH between 8–9. Ca2+ and Mg2+ increased proteolytic activity about 216%, while other ions decreased it. Specific inhibitors including SBTI, PMSF, TLCK, and TPCK significantly decreased enzyme activity, as well as the specific inhibitors of methalloproteases including phenanthroline, EGTA, and TTHA. Extracted endogenous trypsin inhibitors extracted from potential prey, Chilo suppressalis, Naranga aenescens, Pieris brassicae, Hyphantria cunea, and Ephestia kuhniella, had different effects on trypsin-like protease activity of A. spinidens salivary glands. With the exception of C. suppressalis, the endogenous inhibitors significantly decreased enzyme activity in A. spinidens. PMID:22954419
Coagulation parameters in senior athletes practicing endurance sporting activity.
Cerneca, E; Simeone, R; Bruno, G; Gombacci, A
2005-12-01
Physical activity is practiced more and more by middle-aged people. We studied the behavior of the coagulation system before and after near-maximum, specific and standardized exercise tests in 2 groups of senior athletes. The subjects of the study were 2 groups of athletes over 40 years of age (ranging 41 to 60 years): 10 rowers and 10 marathon runners. The data were compared with 10 controls (ranging in age from 40 to 71 years) tested on the cycle ergometer. The first group (rowers) was tested on a rowing machine; the second group (marathon runners) performed a maximal exercise on the treadmill. All subjects were tested to a maximal level of cardiovascular and muscular exertion and cardiac and respiratory parameters were monitored. The following coagulation tests were performed before and after maximal exercise: prothrombin time (PT), partial activated thromboplastin time (PTT), fibrinogen (FBG), antithrombin III (ATIII), protein C (PC), protein S (PS), prothrombin fragment 1+2 (F1+2), tissue activator of plasminogen (t-PA) and its inhibitor (PAI). All subjects performed a complete maximal specific test. The results showed all individuals produced a significant increase of FBG, PT and PTT activities and a lowering trend for PC and PS inhibitors after maximal exercise testing. ATIII levels increased significantly in trained subjects. After the test, data regarding fibrinolysis showed higher t-PA levels in athletes as compared with controls. PAI levels indicated a more marked decrease in athletes. The F1+2 showed a moderate but significant increase in the control group. Coagulative tests showed an increase in procoagulant and fibrinolysis parameters in all the groups but the increased fibrinolytic activity in trained athletes indicates a protective factor and greater vascular efficiency. The results demonstrate that sporting activity practiced by middle-aged people accelerates fibrinolytic activity in conditioned subjects. In conclusion, physical activity benefits the coagulation system particularly as regards fibrinolysis.
Wielandt, Alex Green; Pedersen, Jesper Torbøl; Falhof, Janus; Kemmer, Gerdi Christine; Lund, Anette; Ekberg, Kira; Fuglsang, Anja Thoe; Pomorski, Thomas Günther; Buch-Pedersen, Morten Jeppe; Palmgren, Michael
2015-06-26
Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
An Evaluation of Strengthening Precursors to Increase Preschooler Compliance
ERIC Educational Resources Information Center
Kraus, Aaron J.; Hanley, Gregory P.; Cesana, Lori L.; Eisenberg, Danielle; Jarvie, Adam C.
2012-01-01
We evaluated the strategy of increasing precursors to compliance on the compliance of 2 preschool boys. Modeling and differential reinforcement were used to increase specific responses to his name being called prior to the opportunity to comply with an instruction. The precursors were stopping the ongoing activity and orienting to, making eye…
Gender-specific increase of bone mass by CART peptide treatment is ovary-dependent.
Gerrits, Han; Bakker, Nicole Ec; van de Ven-de Laat, Cindy Jm; Bourgondien, Freek Gm; Peddemors, Carolien; Litjens, Ralph Hgm; Kok, Han J; Vogel, Gerard Mt; Krajnc-Franken, Magda Am; Gossen, Jan A
2011-12-01
Cocaine- and amphetamine-regulated transcript (CART) has emerged as a neurotransmitter and hormone that has been implicated in many processes including food intake, maintenance of body weight, and reward, but also in the regulation of bone mass. CART-deficient mice are characterized by an osteoporotic phenotype, whereas female transgenic mice overexpressing CART display an increase in bone mass. Here we describe experiments that show that peripheral subcutaneous sustained release of different CART peptide isoforms for a period up to 60 days increased bone mass by 80% in intact mice. CART peptides increased trabecular bone mass, but not cortical bone mass, and the increase was caused by reduced osteoclast activity in combination with normal osteoblast activity. The observed effect on bone was gender-specific, because male mice did not respond to treatment with CART peptides. In addition, male transgenic CART overexpressing mice did not display increased bone mass. Ovariectomy (OVX) completely abolished the increase of bone mass by CART peptides, both in CART peptide-treated wild-type mice and in CART transgenic mice. The effect of CART peptide treatment on trabecular bone was not mediated by 17β-estradiol (E(2)) because supplementation of OVX mice with E(2) could not rescue the effect of CART peptides on bone. Together, these results indicate that sustained release of CART peptides increases bone mass in a gender-specific way via a yet unknown mechanism that requires the presence of the ovary. Copyright © 2011 American Society for Bone and Mineral Research.
Jasmonate signaling in plant stress responses and development - active and inactive compounds.
Wasternack, Claus; Strnad, Miroslav
2016-09-25
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Boekhoudt, Linde; Wijbrans, Ellen C; Man, Jodie H K; Luijendijk, Mieneke C M; de Jong, Johannes W; van der Plasse, Geoffrey; Vanderschuren, Louk J M J; Adan, Roger A H
2018-01-01
Motivational deficits are a key symptom in multiple psychiatric disorders, including major depressive disorder, schizophrenia and addiction. A likely neural substrate for these motivational deficits is the brain dopamine (DA) system. In particular, DA signalling in the nucleus accumbens, which originates from DA neurons in the ventral tegmental area (VTA), has been identified as a crucial substrate for effort-related and activational aspects of motivation. Unravelling how VTA DA neuronal activity relates to motivational behaviours is required to understand how motivational deficits in psychiatry can be specifically targeted. In this study, we therefore used designer receptors exclusively activated by designer drugs (DREADD) in TH:Cre rats, in order to determine the effects of chemogenetic DA neuron activation on different aspects of motivational behaviour. We found that chemogenetic activation of DA neurons in the VTA, but not substantia nigra, significantly increased responding for sucrose under a progressive ratio schedule of reinforcement. More specifically, high effort exertion was characterized by increased initiations of reward-seeking actions. This effect was dependent on effort requirements and instrumental contingencies, but was not affected by sucrose pre-feeding. Together, these findings indicate that VTA DA neuronal activation drives motivational behaviour by facilitating action initiation. With this study, we show that enhancing excitability of VTA DA neurons is a viable strategy to improve motivational behaviour. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Evaluating Community Engagement in an Academic Medical Center
Shone, Laura P.; Dozier, Ann M.; Newton, Gail L.; Green, Theresa; Bennett, Nancy M.
2014-01-01
From the perspective of academic medical centers (AMCs), community engagement is a collaborative process of working toward mutually defined goals to improve the community’s health, and involves partnerships between AMCs, individuals, and entities representing the surrounding community. AMCs increasingly recognize the importance of community engagement, and recent programs such as Prevention Research Centers and Clinical and Translational Science Awards have highlighted community engagement activities. However, there is no standard or accepted metric for evaluating AMCs’ performance and impact of community engagement activities. In this article, the authors present a framework for evaluating AMCs’ community engagement activities. The framework includes broad goals and specific activities within each goal, wherein goals and activities are evaluated using a health services research framework consisting of structure, process, and outcome criteria. To illustrate how to use this community engagement evaluation framework, the authors present specific community engagement goals and activities of the University of Rochester Medical Center to (1) improve the health of the community served by the AMC; (2) increase the AMC’s capacity for community engagement; and (3) increase generalizable knowledge and practices in community engagement and public health. Using a structure-process-outcomes framework, a multidisciplinary team should regularly evaluate an AMC’s community engagement program with the purpose of measurably improving the performance of the AMC and the health of its surrounding community. PMID:24556768
Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα
Jensen-Urstad, Anne P. L.; Song, Haowei; Lodhi, Irfan J.; Funai, Katsuhiko; Yin, Li; Coleman, Trey; Semenkovich, Clay F.
2013-01-01
Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status. PMID:23585690
van der Cruijsen, R; Peters, S; van der Aar, L P E; Crone, E A
2017-11-22
Neuroimaging studies in adults showed that cortical midline regions including medial prefrontal cortex (mPFC) and posterior parietal cortex (PPC) are important in self-evaluations. The goals of this study were to investigate the contribution of these regions to self-evaluations in late childhood, adolescence, and early adulthood, and to examine whether these differed per domain (academic, physical and prosocial) and valence (positive versus negative). Also, we tested whether this activation changes across adolescence. For this purpose, participants between ages 11-21-years (N = 150) evaluated themselves on trait sentences in an fMRI session. Behaviorally, adolescents rated their academic traits less positively than children and young adults. The neural analyses showed that evaluating self-traits versus a control condition was associated with increased activity in mPFC (domain-general effect), and positive traits were associated with increased activity in ventral mPFC (valence effect). Self-related mPFC activation increased linearly with age, but only for evaluating physical traits. Furthermore, an adolescent-specific decrease in striatum activation for positive self traits was found. Finally, we found domain-specific neural activity for evaluating traits in physical (dorsolateral PFC, dorsal mPFC) and academic (PPC) domains. Together, these results highlight the importance of domain distinctions when studying self-concept development in late childhood, adolescence, and early adulthood. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
van Ettinger-Veenstra, Helene; Widén, Carin; Engström, Maria; Karlsson, Thomas; Leijon, Ingemar; Nelson, Nina
2017-01-01
In preterm children with very low birth weight (VLBW ≤ 1500 g), reading problems are often observed. Reading comprehension is dependent on word decoding and language comprehension. We investigated neural activation-within brain regions important for reading-related to components of reading comprehension in young VLBW adolescents in direct comparison to normal birth weight (NBW) term-born peers, with the use of functional magnetic resonance imaging (fMRI). We hypothesized that the decoding mechanisms will be affected by VLBW, and expect to see increased neural activity for VLBW which may be modulated by task performance and cognitive ability. The study investigated 13 (11 included in fMRI) young adolescents (ages 12 to 14 years) born preterm with VLBW and in 13 NBW controls (ages 12-14 years) for performance on the Block Design and Vocabulary subtests of the Wechsler Intelligence Scale for Children; and for semantic, orthographic, and phonological processing during an fMRI paradigm. The VLBW group showed increased phonological activation in left inferior frontal gyrus, decreased orthographic activation in right supramarginal gyrus, and decreased semantic activation in left inferior frontal gyrus. Block Design was related to altered right-hemispheric activation, and VLBW showed lower WISC Block Design scores. Left angular gyrus showed activation increase specific for VLBW with high accuracy on the semantic test. Young VLBW adolescents showed no accuracy and reaction time performance differences on our fMRI language tasks, but they did exhibit altered neural activation during these tasks. This altered activation for VLBW was observed as increased activation during phonological decoding, and as mainly decreased activation during orthographic and semantic processing. Correlations of neural activation with accuracy on the semantic fMRI task and with decreased WISC Block Design performance were specific for the VLBW group. Together, results suggest compensatory mechanisms by recruiting additional brain regions upon altered neural development of decoding for VLBW.
Promoting Active Learning: Student-Led Data Gathering in Undergraduate Statistics
ERIC Educational Resources Information Center
Strangfeld, Jennifer A.
2013-01-01
Scholarship on teaching undergraduates increasingly emphasizes the benefits of providing students with an active role in their education whereby instructors are more aptly described as facilitators of knowledge rather than merely providers of it. Additionally, recommendations from the American Sociological Association aimed specifically at the…
Kutys, Matthew L; Yamada, Kenneth M
2014-09-01
Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.
Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors
NASA Astrophysics Data System (ADS)
Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.
1994-09-01
The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.
Scorpiniti, A; Lorusso, A; L'Abbate, N
2007-01-01
Here we describe a workplace intervention aimed at reducing the risk of low back pain in nursing personnel. The intervention we carried out included a specific ergonomic training and an exercise program according to the Feldenkrais Method. After the intervention, we evaluated its effect on the execution of manual handling activities in nurses. We found an increased rate of correct manual handling in the post-intervention period.
Activation of Sphingolipid Pathway in the Livers of Lipodystrophic Agpat2−/− Mice
Sankella, Shireesha; Garg, Abhimanyu
2017-01-01
A several fold increase in triacylglycerol is observed in the livers of lipodystrophic Agpat2−/− mice. We have previously reported an unexpected increase in the phosphatidic acid (PA) levels in the livers of these mice and that a few specific molecular species of PA were able to transcriptionally upregulate hepatic gluconeogenesis. In the current study, we measured the metabolites and expression of associated enzymes of the sphingolipid synthesis pathway. The entire sphingolipid pathway was activated both at the gene expression and the metabolite level. The levels of some ceramides were increased by as much as ~eightfold in the livers of Agpat2−/− mice. Furthermore, several molecular species of ceramides were increased in the plasma of Agpat2−/− mice, specifically ceramide C16:0, which was threefold elevated in the plasma of both the sexes. However, the ceramides failed to increase glucose production in mouse primary hepatocytes obtained from wild-type and Agpat2−/− mice, further establishing the specificity of PA in the induction of hepatic gluconeogenesis. This study shows elevated levels of sphingolipids in the steatotic livers of Agpat2−/− mice and increased expression of associated enzymes for the sphingolipid pathway. Therefore, this study and those in the literature suggest that ceramide C16:0 could be used as a biomarker for insulin resistance/type 2 diabetes mellitus. PMID:29264548
Schorkopf, Dirk Louis P; de Sá Filho, Geovan Figueirêdo; Maia-Silva, Camila; Schorkopf, Martina; Hrncir, Michael; Barth, Friedrich G
2016-10-01
In stingless bees (Meliponini) like in many other eusocial insect colonies food hoarding plays an important role in colony survival. However, very little is known on how Meliponini, a taxon restricted to tropical and subtropical regions, respond to different store conditions. We studied the impact of honey removal on nectar foraging activity and recruitment behaviour in Melipona scutellaris and compared our results with studies of the honey bee Apis mellifera. As expected, foraging activity increased significantly during abundance of artificial nectar and when increasing its profitability. Foraging activity on colony level could thereby frequently increase by an order of magnitude. Intriguingly, however, poor honey store conditions did not induce increased nectar foraging or recruitment activity. We discuss possible reasons explaining why increasing recruitment and foraging activity are not used by meliponines to compensate for poor food conditions in the nest. Among these are meliponine specific adaptations to climatic and environmental conditions, as well as physiology and brood rearing, such as mass provisioning of the brood.
Al-Babili, Salim; Hoa, Tran Thi Cuc; Schaub, Patrick
2006-01-01
To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.
Biomass of active microorganisms is not limited only by available carbon in the rhizosphere
NASA Astrophysics Data System (ADS)
Gilmullina, Aliia
2017-04-01
Microbial activity is generally limited by carbon (C) availability. The easily available substrate release by roots creates so called "hotspots" in the rhizosphere that drives microbial activity removing C limitation. We simulated a gradient of root exudates by glucose addition at different concentrations to stimulate the activation of microbial biomass (MB). Glucose was added at the rates lower than MB (5, 10, 25 and 50%) and at the rates similar or higher than MB (100, 150, 200, 250, 300 and 400%). During incubation CO2 efflux was measured by conductometry, the size of active MB and specific growth rate were estimated by substrate-induced growth response method. We tested a hypothesis that glucose addition exceeding 100% MB is able to activate major fraction of soil microbial community. Addition of glucose at concentrations higher than 5% decreased specific growth rate, demonstrating the shift of microbial community from r-strategy to K-strategy. The percentage of active MB grew up by the increase of glucose concentration. The treatment with glucose at 100% presented a dramatic shift in the activation of MB up to 14%. Contrary to our hypothesis, further increase in glucose rate caused moderate stimulation of active MB up to 22% of total MB. Furthermore, glucose addition above 200% did not increase the fraction of active biomass indicating glucose oversaturation and possible limitation by other nutrients. The results suggest that despite the fact that C is the most important limitation factor, limitless C supply is not able to activate MB up to 100%. Thus, if the rhizosphere is limited by nutrients, the fraction of active biomass remains at low level despite an excess of available C.
Wear, Martin A; Nowicki, Matthew W; Blackburn, Elizabeth A; McNae, Iain W; Walkinshaw, Malcolm D
2017-04-01
We have established a refined methodology for generating surface plasmon resonance sensor surfaces of recombinant his-tagged human cyclophilin-A. Our orientation-specific stabilisation approach captures his-tagged protein under 'physiological conditions' (150 mm NaCl, pH 7.5) and covalently stabilises it on Ni 2+ -nitrilotriacetic acid surfaces, very briefly activated for primary amine-coupling reactions, producing very stable and active surfaces (≥ 95% specific activity) of cyclophilin-A. Variation in protein concentration with the same contact time allows straightforward generation of variable density surfaces, with essentially no loss of activity, making the protocol easily adaptable for studying numerous interactions; from very small fragments, ~ 100 Da, to large protein ligands. This new method results in an increased stability and activity of the immobilised protein and allowed us to expand the thermo-kinetic analysis space, and to determine accurate and robust thermodynamic parameters for the cyclophilin-A-cyclosporin-A interaction. Furthermore, the increased sensitivity of the surface allowed identification of a new nonpeptide inhibitor of cyclophilin-A, from a screen of a fragment library. This fragment, 2,3-diaminopyridine, bound specifically with a mean affinity of 248 ± 60 μm. The X-ray structure of this 109-Da fragment bound in the active site of cyclophilin-A was solved to a resolution of 1.25 Å (PDB: 5LUD), providing new insight into the molecular details for a potential new series of nonpeptide cyclophilin-A inhibitors.
Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna
We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to anmore » increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.« less
Li, Tiandao; Roer, Robert; Vana, Matthew; Pate, Susan; Check, Jennifer
2006-03-01
Juvenile blue crabs, Callinectes sapidus, extensively utilize oligohaline and freshwater regions of the estuary. With a presumptively larger surface-area-to-body weight ratio, juvenile crabs could experience osmo- and ionoregulatory costs well in excess of that of adults. To test this hypothesis, crabs ranging over three orders of magnitude in body weight were acclimated to either sea water (1,000 mOsm) or dilute sea water (150 mOsm), and gill surface area, water and sodium permeabilities (calculated from the passive efflux of 3H2O and 22Na+), gill Na+, K+ -ATPase activity and expression were measured. Juveniles had a relatively larger gill surface area; weight-specific gill surface area decreased with body weight. Weight-specific water and sodium fluxes also decreased with weight, but not to the same extent as gill surface area; thus juveniles were able to decrease gill permeability slightly more than adults upon acclimation to dilute media. Crabs < 5 g in body weight had markedly higher activities of gill Na+ ,K+ -ATPase than crabs > 5 g in both posterior and anterior gills. Acclimation to dilute medium induced increased expression of Na+, K+ -ATPase and enzyme activity, but the increase was not as great in juveniles as in larger crabs. The increased weight-specific surface area for water gain and salt loss for small crabs in dilute media presents a challenge that is incompletely compensated by reduced permeability and increased affinity of gill Na+, K+ -ATPase for Na+. Juveniles maintain osmotic and ionic homeostasis by the expression and utilization of extremely high levels of gill Na+, K+ -ATPase, in posterior, as well as in anterior, gills. Copyright 2006 Wiley-Liss, Inc.
Bracey, James M; Kurz, Jonathan E; Low, Brian; Churn, Severn B
2009-08-04
Status epilepticus is a life-threatening form of seizure activity that represents a major medical emergency associated with significant morbidity and mortality. Protein Kinase A is an important regulator of synaptic strength that may play an important role in the development of status epilepticus-induced neuronal pathology. This study demonstrated an increase in PKA activity against exogenous and endogenous substrates during later stages of SE. As SE progressed, a significant increase in PKA-mediated phosphorylation of an exogenous peptide substrate was demonstrated in cortical structures. The increased activity was not due to altered expression of either regulatory or catalytic subunits of the enzyme. Through the use of phospho-specific antibodies, this study also investigated the effects of SE on the phosphorylation of the GluR1 subunit of the AMPA subtype of glutamate receptor. After the onset of continuous seizure activity, an increase in phosphorylation of the PKA site on the GluR1 subunit of the AMPA receptor was observed. These data suggest a potential mechanism by which SE may increase neuronal excitability in the cortex, potentially leading to maintenance of seizure activity or long-term neuronal pathology.
van Zutphen, Linda; Siep, Nicolette; Jacob, Gitta A.; Domes, Gregor; Sprenger, Andreas; Willenborg, Bastian; Goebel, Rainer; Arntz, Arnoud
2018-01-01
Background Borderline personality disorder (BPD) is characterized by emotion dysregulation; however, it is unclear whether this is restricted to negative emotional stimuli or to what degree this is specific to BPD. We investigated neural correlates of hypothesized increased emotional sensitivity and impaired emotion regulation in patients with BPD. Methods During functional MRI (fMRI) scanning, patients with BPD, non-patient controls and patients with cluster-C personality disorder completed an emotion regulation task, including negative, positive and erotic social pictures. Results We included 55 patients with BPD, 42 nonpatient controls and 24 patients with cluster-C personality disorder in our analyses. Passive viewing of negative stimuli resulted in greater activity in the anterior insula, temporoparietal junction and dorsolateral prefrontal cortex in patients with BPD than in nonpatient controls. The increased activity in the anterior insula and temporoparietal junction was also present when patients with BPD viewed positive stimuli. During regulation of negative stimuli compared with passive viewing, nonpatient controls showed greater activity in the dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and bilateral inferior parietal lobule. Patients with BPD did not show this increase in activity. Limitations Findings cannot be generalized to men, and patients represented a heterogeneous group regarding comorbid diagnoses and medication. Conclusion When looking at emotional stimuli, patients with BPD showed a unique pattern of activity, suggesting an increase in brain activity involved in emotion generation. In the case of negative stimuli this is accompanied by increased activity in regulation areas. In contrast, increase of regulation processes seems absent when patients with BPD are explicitly instructed to regulate. Results of diagnosis specificity support a dimensional rather than a dichotomous differentiation between BPD and cluster-C personality disorder regarding emotional sensitivity and emotional regulation of social stimuli. PMID:29252164
Lecendreux, Michel; Churlaud, Guillaume; Pitoiset, Fabien; Regnault, Armelle; Tran, Tu Anh; Liblau, Roland; Klatzmann, David; Rosenzwajg, Michelle
2017-01-01
Narcolepsy is a rare neurologic disorder characterized by excessive daytime sleepiness, cataplexy and disturbed nocturnal sleep patterns. Narcolepsy type 1 (NT1) has been shown to result from a selective loss of hypothalamic hypocretin-secreting neurons with patients typically showing low CSF-hypocretin levels (<110 pg/ml). This specific loss of hypocretin and the strong association with the HLA-DQB1*06:02 allele led to the hypothesis that NT1 could be an immune-mediated pathology. Moreover, susceptibility to NT1 has recently been associated with several pathogens, particularly with influenza A H1N1 virus either through infection or vaccination. The goal of this study was to compare peripheral blood immune cell populations in recent onset pediatric NT1 subjects (post or non-post 2009-influenza A H1N1 vaccination) to healthy donors. We demonstrated an increased number of central memory CD4+ T cells (CD62L+ CD45RA-) associated to an activated phenotype (increase in CD69 and CD25 expression) in NT1 patients. Percentage and absolute count of regulatory T cells (Tregs) in NT1 patients were increased associated with an activated phenotype (increase in GITR and LAP expression), and of activated memory phenotype. Cytokine production by CD4+ and CD8+ T cells after activation was not modified in NT1 patients. In H1N1 vaccinated NT1 patients, absolute counts of CD3+, CD8+ T cells, and B cells were increased compared to non-vaccinated NT1 patients. These results support a global T cell activation in NT1 patients and thus support a T cell-mediated autoimmune origin of NT1, but do not demonstrate the pathological role of H1N1 prophylactic vaccination. They should prompt further studies of T cells, particularly of Tregs (such as suppression and proliferation antigen specific assays, and also T-cell receptor sequencing), in NT1.
Silveira, Jenniffer; Silva, Carlos Peres; Cargnin-Ferreira, Eduardo; Alexandre, Daniel; Elias, Mariele Abádia; Fracalossi, Débora Machado
2013-12-01
This study assessed the morphological development of jundiá larvae's digestive system and digestive proteolytic activity. Specific serine proteinases activities varied over time, with the highest peak at 12 h after hatching (AH), which corresponded to 296.38 ± 84.20 mU mg⁻¹ for trypsin and 315.45 ± 42.16 mU mg⁻¹ for chymotrypsin. Specific aspartic proteinases activities increased up to the start of weaning, oscillated during that phase, but showed a consistent increase after that, resulting in the highest specific activity at 252 h AH (7.88 ± 0.68 mU mg⁻¹). Gel assays showed different molecular forms, especially of serine proteinases. Histology showed the gastrointestinal tract development onset at 0 h AH and open mouth at 4 h AH. At 16 h AH, the following differentiation of the digestive tract was evident: oropharyngeal cavity, esophagus, liver, pancreas, stomach, and intestine. At 40 h AH, zymogen granules in the pancreas were observed, and at 48 h AH, mucus in the digestive tract and gastric glands in the stomach. Findings indicate that jundiá has a functional stomach before the end of vitelline reserves. Therefore, jundiá larvae are probably capable to digest inert feed at the exogenous feeding onset.
Kostopoulos, Penelope; Petrides, Michael
2016-02-16
There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.
Paths to Expertise in Portuguese National Team Athletes
Leite, Nuno; Baker, Joseph; Sampaio, Jaime
2009-01-01
The purpose of this study was to identify the quantity and type of sporting activities undertaken by expert team sport athletes in the earlier stages of the long- term athlete development. Experts in roller-hockey (n = 19), volleyball (n = 14), soccer (n = 42) and basketball (n = 37) provided detailed information about the sporting activities they undertook throughout their careers. Results showed considerable variation between and within sports; however, generally, athletes began participating in sports between 6 and 10 years of age. The pattern of participation in specific and non-specific (team, individual and combat) sports for each stage of involvement demonstrated an increase in the number of activities participated in until early adolescence. Our results suggest that involvement in multiple sports during early stages of development is an alternative to early specialization and add further evidence of the complexity of skill acquisition in sport. Key points Although most athletes began sport participation between 6 and 10 years of age, there was significant variation across groups suggesting considerable flexibility in the pathways to expertise. The path to expertise in volleyball was clearly distinct from the paths of basketball, soccer and roller-hockey. There is a considerable involvement in sports other than the athlete’s primary sport, suggesting early specialization is not required for these sports. The pattern of participation in specific and non-specific sports for each stage of involvement demonstrated an increase in the number of activities participated in until early adolescence. PMID:24149598
A diet high in fat stimulates adipocyte proliferation in older (22 month) rats.
Ellis, J R; McDonald, R B; Stern, J S
1990-01-01
The effect of a high fat diet in stimulating adipocyte proliferation, as measured by the incorporation of [3H]-thymidine into fat cell DNA, was studied in 22-month-old female Sprague-Dawley rats. Rats were fed a low fat (n = 10) or a high fat diet (n = 9) for a total of six days. On days 4 and 5 of dietary manipulation, rats were injected with 80 microCi/100 g body weight of [3H]-thymidine. Rats were continued on their respective diets for one more day, starved for 72 h and then refed a stock diet for three weeks in order to increase turnover of stroma cells, thus diluting the specific activity of stromal DNA with minimal effect on specific activity of fat cell DNA. The diet groups did not differ significantly with respect to body masses, food intake, parametrial (PARA) and retroperitoneal (RP) depot masses, cell number or cell size. The specific activity of DNA in both PARA and RP depots was greater in the adipocyte than in the stromavascular fraction. Specific activity of fat cells was significantly greater from rats fed the high fat than the low fat diet in both PARA and RP depots. Radioautography of adipose tissue confirmed that there was a greater percentage of adipocyte nuclei labeled in the rats fed the high fat diet. Also, there were few labeled nuclei found in stroma cells. In conclusion, older female rats increased adipocyte proliferation when fed a high fat diet.
Metz, Philippe; Chiramel, Abhilash; Chatel-Chaix, Laurent; Alvisi, Gualtiero; Bankhead, Peter; Mora-Rodríguez, Rodrigo; Long, Gang; Hamacher-Brady, Anne
2015-01-01
ABSTRACT Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV. IMPORTANCE Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we used high-content, imaging-based flow cytometry to quantify autophagic flux and endolysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endolysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a proviral to an antiviral cellular process, which is counteracted by the virus. PMID:26018155
Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo
2017-01-01
The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate-buffered saline; SD: standard deviation; ARE: androgenresponsive element; KLK: kallikrein.
Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study.
Simonyan, Kristina; Ludlow, Christy L
2010-11-01
Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD.
Abnormal Activation of the Primary Somatosensory Cortex in Spasmodic Dysphonia: An fMRI Study
Ludlow, Christy L.
2010-01-01
Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD. PMID:20194686
Suchara, I; Rulík, P; Hůlka, J; Pilátová, H
2011-04-15
The (137)Cs specific activities (mean 32Bq kg(-1)) were determined in spruce bark samples that had been collected at 192 sampling plots throughout the Czech Republic in 1995, and were related to the sampling year. The (137)Cs specific activities in spruce bark correlated significantly with the (137)Cs depositions in areas affected by different precipitation sums operating at the time of the Chernobyl fallout in 1986. The ratio of the (137)Cs specific activities in bark and of the (137)Cs deposition levels yielded bark aggregated transfer factor T(ag) about 10.5×10(-3)m(-2)kg(-1). Taking into account the residual specific activities of (137)Cs in bark 20Bq kg(-1) and the available pre-Chernobyl data on the (137)Cs deposition loads on the soil surface in the Czech Republic, the real aggregated transfer factor after and before the Chernobyl fallout proved to be T*(ag)=3.3×10(-3)m(-2)kg(-1) and T**(ag)=4.0×10(-3)m(-2)kg(-1), respectively. The aggregated transfer factors T*(ag) for (137)Cs and spruce bark did not differ significantly in areas unequally affected by the (137)Cs fallout in the Czech Republic in 1986, and the figures for these aggregated transfer factors were very similar to the mean bark T(ag) values published from the extensively affected areas near Chernobyl. The magnitude of the (137)Cs aggregated transfer factors for spruce bark for the pre-Chernobyl and post-Chernobyl period in the Czech Republic was also very similar. The variability in spruce bark acidity caused by the operation of local anthropogenic air pollution sources did not significantly influence the accumulation and retention of (137)Cs in spruce bark. Increasing elevation of the bark sampling plots had a significant effect on raising the remaining (137)Cs specific activities in bark in areas affected by precipitation at the time when the plumes crossed, because the sums of this precipitation increased with elevation (covariable). Copyright © 2011 Elsevier B.V. All rights reserved.
Gao, Le; Gao, Feng; Wang, Lushan; Geng, Cunliang; Chi, Lianli; Zhao, Jian; Qu, Yinbo
2012-01-01
Four cellobiohydrolase I (CBHI) glycoforms, namely, CBHI-A, CBHI-B, CBHI-C, and CBHI-D, were purified from the cultured broth of Penicillium decumbens JU-A10. All glycoforms had the same amino acid sequence but displayed different characteristics and biological functions. The effects of the N-glycans of the glycoforms on CBH activity were analyzed using mass spectrum data. Longer N-glycan chains at the Asn-137 of CBHI increased CBH activity. After the N-glycans were removed using site-directed mutagenesis and homologous expression in P. decumbens, the specific CBH activity of the recombinant CBHI without N-glycosylation increased by 65% compared with the wild-type CBHI with the highest specific activity. However, the activity was not stable. Only the N-glycosylation at Asn-137 can improve CBH activity by 40%. rCBHI with N-glycosylation only at Asn-470 exhibited no enzymatic activity. CBH activity was affected whether or not the protein was glycosylated, together with the N-glycosylation site and N-glycan structure. N-Glycosylation not only affects CBH activity but may also bring a new feature to a nonhydrolytic CBHI glycoform (CBHI-A). By supplementing CBHI-A to different commercial cellulase preparations, the glucose yield of lignocellulose hydrolysis increased by >20%. After treatment with a low dose (5 mg/g substrate) of CBHI-A at 50 °C for 7 days, the hydrogen-bond intensity and crystalline degree of cotton fibers decreased by 17 and 34%, respectively. These results may provide new guidelines for cellulase engineering. PMID:22427663
Sternberg, R A; Pondenis, H C; Yang, X; Mitchell, M A; O'Brien, R T; Garrett, L D; Helferich, W G; Hoffmann, W E; Fan, T M
2013-01-01
In dogs with appendicular osteosarcoma (OSA), increased pretreatment serum bone-specific alkaline phosphatase (BALP) activity is a negative prognostic factor, associated with shorter disease-free intervals and survival times, but a biologic basis for observed differential serum BALP activities in canine OSA patients remains incompletely defined. Serum BALP activity will correlate with absolute tumor burden in dogs with OSA. This study included 96 client-owned dogs with appendicular OSA. In canine OSA cell lines, the expression and membranous release of BALP was evaluated in vitro. The correlation between serum BALP activity and radiographic primary tumor size was evaluated in OSA-bearing dogs. In dogs developing visceral OSA metastases, serial changes in serum BALP activities were evaluated in relation to progression of macroscopic metastases, and visceral metastatic OSA cells were evaluated for BALP expression. In vitro, BALP expression was not associated with either tumorigenic or metastatic phenotype, rather the quantity of membranous BALP released was proportional with cell density. In dogs devoid of macroscopic metastases, there was a positive correlation between serum BALP activity and absolute primary tumor size. In dogs with progressive OSA metastases, serum BALP activity increased and coincided with the development of macroscopic metastases. OSA cells derived from visceral metastatic lesions retained BALP expression. Tumor burden is a determinant of serum BALP activity in dogs with appendicular OSA. The association between increased pretreatment BALP activity and negative clinical prognosis may simply be attributed to greater initial tumor burden, and consequently more advanced tumor stage. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Hypermutation in derepressed operons of Escherichia coli K12
Wright, Barbara E.; Longacre, Angelika; Reimers, Jacqueline M.
1999-01-01
This article presents evidence that starvation for leucine in an Escherichia coli auxotroph triggers metabolic activities that specifically target the leu operon for derepression, increased rates of transcription, and mutation. Derepression of the leu operon was a prerequisite for its activation by the signal nucleotide, guanosine tetraphosphate, which accumulates in response to nutritional stress (the stringent response). A quantitative correlation was established between leuB mRNA abundance and leuB− reversion rates. To further demonstrate that derepression increased mutation rates, the chromosomal leu operon was placed under the control of the inducible tac promoter. When the leu operon was induced by isopropyl-d-thiogalactoside, both leuB mRNA abundance and leuB− reversion rates increased. These investigations suggest that guanosine tetraphosphate may contribute as much as attenuation in regulating leu operon expression and that higher rates of mutation are specifically associated with the derepressed leu operon. PMID:10220423
PKMζ is necessary and sufficient for synaptic clustering of PSD-95.
Shao, Charles Y; Sondhi, Rachna; van de Nes, Paula S; Sacktor, Todd Charlton
2012-07-01
The persistent activity of protein kinase Mzeta (PKMζ), a brain-specific, constitutively active protein kinase C isoform, maintains synaptic long-term potentiation (LTP). Structural remodeling of the postsynaptic density is believed to contribute to the expression of LTP. We therefore examined the role of PKMζ in reconfiguring PSD-95, the major postsynaptic scaffolding protein at excitatory synapses. In primary cultures of hippocampal neurons, PKMζ activity was critical for increasing the size of PSD-95 clusters during chemical LTP (cLTP). Increasing PKMζ activity by overexpressing the kinase in hippocampal neurons was sufficient to increase PSD-95 cluster size, spine size, and postsynaptic AMPAR subunit GluA2. Overexpression of an inactive mutant of PKMζ did not increase PSD-95 clustering, and applications of the ζ-pseudosubstrate inhibitor ZIP reversed the PKMζ-mediated increases in PSD-95 clustering, indicating that the activity of PKMζ is necessary to induce and maintain the increased size of PSD-95 clusters. Thus the persistent activity of PKMζ is both necessary and sufficient for maintaining increases of PSD-95 clusters, providing a unified mechanism for long-term functional and structural modifications of synapses. Copyright © 2011 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Desimone, Laura M.; Porter, Andrew C.; Garet, Michael S.; Yoon, Kwang Suk; Birman, Beatrice F.
2002-01-01
Examined the effects of professional development on teachers' instruction using a purposeful sample of about 207 teachers across 5 states for 1996-1999. Professional development focused on specific instructional practices increased teachers' use of those practices in the classroom, and specific features, such as active learning opportunities,…
Zaman, Tariq; Zhou, Xun; Pandey, Nihar R; Qin, Zhaohong; Keyhanian, Kianoosh; Wen, Kendall; Courtney, Ryan D; Stewart, Alexandre F R; Chen, Hsiao-Huei
2014-01-01
The dramatic increase in the prevalence of obesity reflects a lack of progress in combating one of the most serious health problems of this century. Recent studies have improved our understanding of the appetitive network by focusing on the paraventricular hypothalamus (PVH), a key region responsible for the homeostatic balance of food intake. Here we show that mice with PVH-specific ablation of LIM domain only 4 (Lmo4) become rapidly obese when fed regular chow due to hyperphagia rather than to reduced energy expenditure. Brain slice recording of LMO4-deficient PVH neurons showed reduced basal cellular excitability together with reduced voltage-activated Ca(2+) currents. Real-time PCR quantification revealed that LMO4 regulates the expression of Ca(2+) channels (Cacna1h, Cacna1e) that underlie neuronal excitability. By increasing neuronal activity using designer receptors exclusively activated by designer drugs technology, we could suppress food intake of PVH-specific LMO4-deficient mice. Together, these results demonstrate that reduced neural activity in LMO4-deficient PVH neurons accounts for hyperphagia. Thus, maintaining PVH activity is important to prevent hyperphagia-induced obesity.
In vitro selection of high temperature Zn(2+)-dependent DNAzymes.
Nelson, Kevin E; Bruesehoff, Peter J; Lu, Yi
2005-08-01
In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.
The roles of ERAS during cell lineage specification of mouse early embryonic development.
Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei
2015-08-01
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.
Increasing the Accessibility of Science for All Students
ERIC Educational Resources Information Center
Langley-Turnbaugh, S. J.; Wilson, G.; Lovewell, L.
2009-01-01
This paper evaluates the accessibility of selected field and laboratory high school science activities, and provides suggestions for increasing accessibility for students with disabilities. We focused on GLOBE (Global Learning Observations to Benefit the Environment) protocols, specifically the new Seasons and Biomes investigation currently being…
Respiratory Deposition of Fine and Coarse Particles during Moderate Exercise
During exercise breathing patterns change by increasing ventilation rate and this has a direct impact on risk to exposure to ambient pollutants. Although the number of people increases participating in more active life styles, specific data for lung deposition of particulate matt...
Factors affecting the activity of guanylate cyclase in lysates of human blood platelets.
Adams, A F; Haslam, R J
1978-01-01
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors. PMID:29607
Factors affecting the activity of guanylate cyclase in lysates of human blood platelets.
Adams, A F; Haslam, R J
1978-07-15
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.
Rudolf, Emil; Cervinka, Miroslav
2009-08-10
In this study we examined interactions between human dermal fibroblasts and chromium acetate hydroxide originating from environmental waste sediments. We show that initially exposure of fibroblasts to Cr (III) induced membrane-dependent signaling including activation of Rac1 GTPase, Src and apoptosis signal-regulating kinase 1 (ASK-1) kinases leading to increased activities of p38 and particularly Jun N-terminal kinase (JNK) and subsequent activation of caspase-3. At later treatment intervals (48-96 h), caspase-3 activity became suppressed and markedly increased lactate dehydrogenase (LDH) release was observed. Further experiments demonstrated that LDH release occurred in the presence of increased oxidative stress, extensive DNA damage, overactivation of poly(ADP-ribose)polymerase-1 (PARP-1) and depletion of ATP. Using specific inhibitors it was demonstrated that oxidative stress along with PARP-1 activity are responsible for cell death mode switch and upon their inhibition caspase-3 activity could be restored. In conclusion, Cr (III) seems to induce a biphasic response in dermal fibroblasts, with initial apoptosis switched to necrosis via increased DNA damage and resulting PARP-1 activity.
Roberts, Lee D.; Boström, Pontus; O’Sullivan, John F.; Schinzel, Robert T.; Lewis, Gregory D.; Dejam, Andre; Lee, Youn-Kyoung; Palma, Melinda J.; Calhoun, Sondra; Georgiadi, Anastasia; Chen, Ming-Huei; Ramachandran, Vasan S.; Larson, Martin G.; Bouchard, Claude; Rankinen, Tuomo; Souza, Amanda L.; Clish, Clary B.; Wang, Thomas J.; Estall, Jennifer L.; Soukas, Alexander A.; Cowan, Chad A.; Spiegelman, Bruce M.; Gerszten, Robert E.
2014-01-01
Summary The transcriptional co-activator peroxisome proliferator-activated receptor-gamma co-activator-1 α (PGC-1α) regulates metabolic genes in skeletal muscle, and contributes substantially to the response of muscle to exercise. Muscle specific PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolic profiling approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a novel small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipose tissue and fatty acid β-oxidation in hepatocytes both in vitro and in vivo through a PPARα mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases. PMID:24411942
Postsynaptic Regulation of Long-Term Facilitation in Aplysia
Cai, Diancai; Chen, Shanping; Glanzman, David L.
2009-01-01
Summary Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia [1–3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia [5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin due to 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals. PMID:18571411
Neumann, Patricio; González, Zenón; Vidal, Gladys
2017-06-01
The influence of sequential ultrasound and low-temperature (55°C) thermal pretreatment on sewage sludge solubilization, enzyme activity and anaerobic digestion was assessed. The pretreatment led to significant increases of 427-1030% and 230-674% in the soluble concentrations of carbohydrates and proteins, respectively, and 1.6-4.3 times higher enzymatic activities in the soluble phase of the sludge. Optimal conditions for chemical oxygen demand solubilization were determined at 59.3kg/L total solids (TS) concentration, 30,500kJ/kg TS specific energy and 13h thermal treatment time using response surface methodology. The methane yield after pretreatment increased up to 50% compared with the raw sewage sludge, whereas the maximum methane production rate was 1.3-1.8 times higher. An energy assessment showed that the increased methane yield compensated for energy consumption only under conditions where 500kJ/kg TS specific energy was used for ultrasound, with up to 24% higher electricity recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Watson, Kathleen B.; Dai, Shifan; Paul, Prabasaj; Carlson, Susan A.; Carroll, Dianna D.; Fulton, Janet E.
2017-01-01
Background Previous studies have examined participation in specific leisure-time physical activities (PA) among US adults. The purpose of this study was to identify specific activities that contribute substantially to total volume of leisure-time PA in US adults. Methods Proportion of total volume of leisure-time PA moderate-equivalent minutes attributable to 9 specific types of activities was estimated using self-reported data from 21,685 adult participants (≥ 18 years) in the National Health and Nutrition Examination Survey 1999–2006. Results Overall, walking (28%), sports (22%), and dancing (9%) contributed most to PA volume. Attributable proportion was higher among men than women for sports (30% vs. 11%) and higher among women than men for walking (36% vs. 23%), dancing (16% vs. 4%), and conditioning exercises (10% vs. 5%). The proportion was lower for walking, but higher for sports, among active adults than those insufficiently active and increased with age for walking. Compared with other racial/ethnic groups, the proportion was lower for sports among non-Hispanic white men and for dancing among non-Hispanic white women. Conclusions Walking, sports, and dance account for the most activity time among US adults overall, yet some demographic variations exist. Strategies for PA promotion should be tailored to differences across population subgroups. PMID:27335226
Coal mining is a major resource extraction activity on the Appalachian Mountains. The increased size and frequency of a specific type of surface mining, known as mountain top removal-valley fill, has in recent years raised various environmental concerns. During mountainto...
Shrimpton, J M; Patterson, D A; Richards, J G; Cooke, S J; Schulte, P M; Hinch, S G; Farrell, A P
2005-11-01
We present the first data on changes in ionoregulatory physiology of maturing, migratory adult sockeye salmon Oncorhynchus nerka. Fraser River sockeye were intercepted in the ocean as far away as the Queen Charlotte Islands (approximately 850 km from the Fraser River) and during freshwater migration to the spawning grounds; for some populations this was a distance of over 700 km. Sockeye migrating in seawater toward the mouth of the Fraser River and upriver to spawning grounds showed a decline in gill Na+,K+-ATPase activity. As a result, gill Na+,K+-ATPase activity of fish arriving at the spawning grounds was significantly lower than values obtained from fish captured before entry into freshwater. Plasma osmolality and chloride levels also showed significant decreases from seawater values during the freshwater migration to spawning areas. Movement from seawater to freshwater increased mRNA expression of a freshwater-specific Na+,K+-ATPase isoform (alpha1a) while having no effect on the seawater-specific isoform (alpha1b). In addition, gill Na+,K+-ATPase activity generally increased in active spawners compared with unspawned fish on the spawning grounds and this was associated with a marked increase in Na+,K+-ATPase alpha1b mRNA. Increases in gill Na+,K+-ATPase activities observed in spawners suggests that the fish may be attempting to compensate for the osmotic perturbation associated with the decline in plasma chloride concentration and osmolality.
Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A
2008-12-02
A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.
Marks, Laura R; Clementi, Emily A; Hakansson, Anders P
2013-01-01
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus.
Shao, Beili; Bayraktutan, Ulvi
2014-01-01
Blood-brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2 (•-) generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2 (•-) by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2 (•-) production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase.
Huang, Jiansheng; Barr, Emily; Rudnick, David A
2013-05-01
The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. Copyright © 2012 American Association for the Study of Liver Diseases.
Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur
2014-01-07
Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.
Drew, Rachel C
2017-12-01
Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.
Regulation of the activity of the promoter of RNA-induced silencing, C3PO.
Sahu, Shriya; Williams, Leo; Perez, Alberto; Philip, Finly; Caso, Giuseppe; Zurawsky, Walter; Scarlata, Suzanne
2017-09-01
RNA-induced silencing is a process which allows cells to regulate the synthesis of specific proteins. RNA silencing is promoted by the protein C3PO (component 3 of RISC). We have previously found that phospholipase Cβ, which increases intracellular calcium levels in response to specific G protein signals, inhibits C3PO activity towards certain genes. Understanding the parameters that control C3PO activity and which genes are impacted by G protein activation would help predict which genes are more vulnerable to downregulation. Here, using a library of 10 18 oligonucleotides, we show that C3PO binds oligonucleotides with structural specificity but little sequence specificity. Alternately, C3PO hydrolyzes oligonucleotides with a rate that is sensitive to substrate stability. Importantly, we find that oligonucleotides with higher Tm values are inhibited by bound PLCβ. This finding is supported by microarray analysis in cells over-expressing PLCβ1. Taken together, this study allows predictions of the genes whose post-transcriptional regulation is responsive to the G protein/phospholipase Cβ/calcium signaling pathway. © 2017 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan
Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 andmore » mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.« less
Porous carbon from local coconut shell char by CO2 and H2O activation in the presence of K2CO3
NASA Astrophysics Data System (ADS)
Vi, Nguyen Ngoc Thuy; Truyen, Dang Hai; Trung, Bien Cong; An, Ngo Thanh; Van Dung, Nguyen; Long, Nguyen Quang
2017-09-01
Vietnamese coconut shell char was activated by steam and carbon dioxide at low temperatures with the presence of K2CO3 as a catalyst. The effects of process parameters on adsorption capability of the product including different ratio of impregnation of activation agents, activation temperature, activation time were investigated in this study. Iodine number, methylene blue adsorption capacity, specific surface area and pore size distribution were measured to assess the properties of the activated carbon. Accordingly, the porous carbon was applied for toluene removal by adsorption technology. Significant increases in specific surface area and the toluene adsorption capacity were observed when the coconut shell char was activated in CO2 flow at 720 °C for 150 minutes and the K2CO3/char weight ratio of 0.5.
In vivo Detection of Phospholipase C by Enzyme-Activated Near-infrared Probes
Mawn, Theresa M.; Popov, Anatoliy V.; Beardsley, Nancy J.; Stefflova, Klara; Milkevitch, Matthew; Zheng, Gang; Delikatny, E. James
2011-01-01
In this paper the characterization of the first near-infrared (NIR) phospholipase-activated molecular beacon is reported and its utility for in vivo cancer imaging is demonstrated. The probe consists of three elements: a phospholipid (PL) backbone to which the NIR fluorophore, pyropheophorbide a (Pyro), and the NIR Black Hole Quencher 3 (BHQ) were conjugated. Due to the close proximity of BHQ to Pyro, the Pyro-PtdEtn-BHQ probe is self-quenched until enzyme hydrolysis releases the fluorophore. The Pyro-PtdEtn-BHQ probe is highly specific to one isoform of phospholipase C, phosphatidylcholine-specific phospholipase C (PC-PLC), responsible for catabolizing phosphatidylcholine directly to phosphocholine. Incubation of Pyro-PtdEtn-BHQ in vitro with PC-PLC demonstrated a 150-fold increase in fluorescence that could be inhibited by the specific PC-PLC inhibitor tricyclodecan-9-yl xanthogenate (D609) with an IC50 of 34±8 µM. Since elevations in phosphocholine have been consistently observed by magnetic resonance spectroscopy in a wide array of cancer cells and solid tumors, we assessed the utility of Pyro-PtdEtn-BHQ as a probe for targeted tumor imaging. Injection of Pyro-PtdEtn-BHQ into mice bearing DU145 human prostate tumor xenografts followed by in vivo NIR imaging resulted in a 4-fold increase in tumor radiance over background and a 2 fold increase in the tumor:muscle ratio. Tumor fluorescence enhancement was inhibited with administration of D609. The ability to image PC-PLC activity in vivo provides a unique and sensitive method of monitoring one of the critical phospholipase signaling pathways activated in cancer, as well as the phospholipase activities that are altered in response to cancer treatment. PMID:22034913
Chaiyawat, Parunya; Chokchaichamnankit, Daranee; Lirdprapamongkol, Kriengsak; Srisomsap, Chantragan; Svasti, Jisnuson; Champattanachai, Voraratt
2015-10-01
O-GlcNAcylation is a dynamic post-translational modification that has extensive crosstalk with phosphorylation either at the same or adjacent sites of various proteins. We have previously reported that O-GlcNAcylation level was increased in primary breast and colorectal cancer, but the interplay of the two modifications remains unclear. Therefore, we explored crosstalk of the modifications by RNA interference against O-GlcNAc transferase (OGT) in colorectal cancer cells. Two-dimensional immunoblotting and mass spectrometric analysis showed that the levels of O-GlcNAc and serine phosphorylation of many proteins including serine hydroxymethyltransferase, cytokeratin-8, pyruvate kinase M2 (PKM2), heterogeneous nuclear ribonucleoprotein L, and lamin-B1, were reduced in siOGT cells compared to siScramble cells. In HT29 cells, immunoprecipitated PKM2 revealed decreased O-GlcNAc and serine phosphorylation levels after siOGT knockdown, but increased levels after treatment with Thiamet-G, an inhibitor of O-GlcNAcase (OGA). In addition, when global O-GlcNAcylation was enhanced by treating cells with Thiamet-G, PKM2 expression level was upregulated, but PKM2-specific activity was decreased. On the other hand, in OGT knockdown cells, PKM2 expression level was downregulated, but PKM2-specific activity was increased. Moreover, the metastatic colorectal cancer cells, SW620, had more O-GlcNAc-PKM2 and showed lower PKM2-specific activity compared to the non-metastatic colorectal cancer SW480 cells. These results suggested roles of O-GlcNAcylation in modulating serine phosphorylation, as well as in regulating PKM2 activity and expression. Interfering levels of O-GlcNAcylation of PKM2 may be a novel target in controlling cancer metabolism and tumorigenesis of colorectal cancer.
Anserine induced advantage effects on the antitumor activity of doxorubicin.
Sadzuka, Yasuyuki; Sonobe, Takashi
2007-06-01
It is hoped that the strategy for the increase of antitumor activity by the combination of foods or their components will take quality of life into consideration. We examined whether anserine, is a dipeptide in foods, has beneficial effects on the doxorubicin (DOX) induced antitumor activity in vitro and in vivo. Anserine increased the DOX induced antitumor activity by the maintained DOX concentration in the tumor in vivo. On the other hand, anserine has no effect on the DOX concentration in normal tissues. Namely, it is expected that anserine will not increase the DOX induced adverse reaction. Thus, anserine appeared to increase the antitumor activity of DOX with an increased DOX concentration in the tumor by specific action on the tumor. Furthermore, anserine significantly induced DOX influx compared to that of the DOX alone group in vitro. It is speculated that the anserine induced increase in the antitumor activity of DOX in vivo was affected by the promotion of DOX influx into the tumor cells in vitro. Anserine was considered to take into tumor cells via a dipeptide transporter, and it resulted in an increase of the DOX influx. Anserine did not affect on the activity of the CYP3A subtype as a DOX metabolizing enzyme. Namely, it was expected that anserine increased the antitumor activity of DOX by the change of the DOX concentration without the changing metabolism of DOX.
Di Giorgio, Carole; Shimi, Kamal; Boyer, Gérard; Delmas, Florence; Galy, Jean-Pierre
2007-10-01
Two new series of diaminoacridinic derivatives obtained from proflavine and N-(6-amino-3-acridinyl)acetamide were synthesised and assessed for their cytotoxic and antileishmanial activities. Two compounds, N-[6-(acetylamino)-3-acridinyl]acetamide and N-[6-(benzoylamino)-3-acridinyl]benzamide demonstrated highly specific antileishmanial properties against the intracellular amastigote form of the parasite. Structure-activity relationships established that the antiproliferative activity against human cells was greatly enhanced by the presence of a benzoylamino group in 6-mono-substituted acridines, while the presence of two acetylamino or benzoylamino groups in 3,6-di-substituted acridines strongly increased the specificity of the molecules for Leishmania parasite, suggesting that symmetric conformations could preferentially interfere with Leishmania metabolism.
Net superoxide levels: steeper increase with activity in cooler female and hotter male lizards.
Ballen, Cissy; Healey, Mo; Wilson, Mark; Tobler, Michael; Wapstra, Erik; Olsson, Mats
2012-03-01
Ectotherms increase their body temperature in response to ambient heat, thereby elevating their metabolic rate. An often inferred consequence of this is an overall upregulation of gene expression and energetic expenditure, and a concomitant increased production of reactive oxygen species (e.g. superoxide) and, perhaps, a shortened lifespan. However, recent work shows that this may be a superficial interpretation. For example, sometimes a reduced temperature may in fact trigger up-regulation of gene expression. We studied temperature and associated activity effects in male and female Australian painted dragon lizards (Ctenophorus pictus) by allowing the lizards to bask for 4 h versus 12 h, and scoring their associated activity (inactive versus active basking and foraging). As predicted, long-basking lizards (hereafter 'hot') showed heightened activity in both sexes, with a more pronounced effect in females. We then tested for sex-specific effects of basking treatment and activity levels on the increase in net levels of superoxide. In males, short-baskers (hereafter 'cold') had significantly more rapidly decreasing levels of superoxide per unit increasing activity than hot males. In females, however, superoxide levels increased faster with increasing activity in the cold than in the hot basking treatment, and females earlier in the ovarian cycle had lower superoxide levels than females closer to ovulation. In short, males and females differ in how their levels of reactive oxygen species change with temperature-triggered activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.
2010-05-01
Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca{sup 2+} increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibitedmore » the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC{sub 50} values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca{sup 2+} release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca{sup 2+} levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca{sup 2+}-dependent enzymes such as protein kinase C and nitric oxide synthase, which are involved in the generation of ROS and the blockade of the dopamine transporter. This, together with caspase 3 activation, must play a role in MDMA-induced cytotoxicity.« less
Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.
2009-01-01
Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299
Acquired hearing loss and brain plasticity.
Eggermont, Jos J
2017-01-01
Acquired hearing loss results in an imbalance of the cochlear output across frequency. Central auditory system homeostatic processes responding to this result in frequency specific gain changes consequent to the emerging imbalance between excitation and inhibition. Several consequences thereof are increased spontaneous firing rates, increased neural synchrony, and (in adults) potentially restricted to the auditory thalamus and cortex a reorganization of tonotopic areas. It does not seem to matter much whether the hearing loss is acquired neonatally or in adulthood. In humans, no clear evidence of tonotopic map changes with hearing loss has so far been provided, but frequency specific gain changes are well documented. Unilateral hearing loss in addition makes brain activity across hemispheres more symmetrical and more synchronous. Molecular studies indicate that in the brainstem, after 2-5 days post trauma, the glutamatergic activity is reduced, whereas glycinergic and GABAergic activity is largely unchanged. At 2 months post trauma, excitatory activity remains decreased but the inhibitory one is significantly increased. In contrast protein assays related to inhibitory transmission are all decreased or unchanged in the brainstem, midbrain and auditory cortex. Comparison of neurophysiological data with the molecular findings during a time-line of changes following noise trauma suggests that increases in spontaneous firing rates are related to decreases in inhibition, and not to increases in excitation. Because noise-induced hearing loss in cats resulted in a loss of cortical temporal processing capabilities, this may also underlie speech understanding in humans. Copyright © 2016 Elsevier B.V. All rights reserved.
Kirk, Ulrich; Gu, Xiaosi; Sharp, Carla; Hula, Andreas; Fonagy, Peter; Montague, P Read
2016-09-01
Emotions have been shown to exert influences on decision making during economic exchanges. Here we investigate the underlying neural mechanisms of a training regimen which is hypothesized to promote emotional awareness, specifically mindfulness training (MT). We test the hypothesis that MT increases cooperative economic decision making using fMRI in a randomized longitudinal design involving 8weeks of either MT or active control training (CT). We find that MT results in an increased willingness to cooperate indexed by higher acceptance rates to unfair monetary offers in the Ultimatum Game. While controlling for acceptance rates of monetary offers between intervention groups, subjects in the MT and CT groups show differential brain activation patterns. Specifically, a subset of more cooperative MT subjects displays increased activation in the septal region, an area linked to social attachment, which may drive the increased willingness to express cooperative behavior in the MT cohort. Furthermore, MT resulted in attenuated activity in anterior insula compared with the CT group in response to unfair monetary offers post-training, which may suggest that MT enables greater ability to effectively regulate the anterior insula and thereby promotes social cooperation. Finally, functional connectivity analyses show a coupling between the septal region and posterior insula in the MT group, suggesting an integration of interoceptive inputs. Together, these results highlight that MT may be employed in contexts where emotional regulation is required to promote social cooperation. Copyright © 2016 Elsevier Inc. All rights reserved.
Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben
2013-03-01
Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Vorobyev, Victor; Kwon, Myoung Soo; Moe, Dagfinn; Parkkola, Riitta; Hämäläinen, Heikki
2015-01-01
Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI) to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18-19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections) and outcome (pass or crash) phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition) and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC) significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens), midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral) PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass) during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.
Getter, Nir; Kaplan, Zeev; Todder, Doron
2015-10-01
Electroencephalography source localization neurofeedback, i.e Standardized low-resolution tomography (sLORETA) neurofeedback are non-invasive method for altering region specific brain activity. This is an improvement over traditional neurofeedback which were based on recordings from a single scalp-electrode. We proposed three criteria clusters as a methodological framework to evaluate electroencephalography source localization neurofeedback and present relevant data. Our objective was to evaluate standardized low resolution EEG tomography neurofeedback by examining how training one neuroanatomical area effects the mental rotation task (which is related to the activity of bilateral Parietal regions) and the stop-signal test (which is related to frontal structures). Twelve healthy participants were enrolled in a single session sLORETA neurofeedback protocol. The participants completed both the mental rotation task and the stop-signal test before and after one sLORETA neurofeedback session. During sLORETA neurofeedback sessions participants watched one sitcom episode while the picture quality co-varied with activity in the superior parietal lobule. Participants were rewarded for increasing activity in this region only. Results showed a significant reaction time decrease and an increase in accuracy after sLORETA neurofeedback on the mental rotation task but not after stop signal task. Together with behavioral changes a significant activity increase was found at the left parietal brain after sLORETA neurofeedback compared with baseline. We concluded that activity increase in the parietal region had a specific effect on the mental rotation task. Tasks unrelated to parietal brain activity were unaffected. Therefore, sLORETA neurofeedback could be used as a research, or clinical tool for cognitive disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Rondaan, C; van Leer, C C; van Assen, S; Bootsma, H; de Leeuw, K; Arends, S; Bos, N A; Westra, J
2018-07-01
Systemic lupus erythematosus (SLE) patients are at high risk of herpes zoster. Previously, we found increased immunoglobulin (Ig)G levels against varicella-zoster virus (VZV) in SLE patients compared to controls, while antibody levels against diphtheria and cellular immunity to VZV were decreased. We aimed to test our hypothesis that increased VZV-IgG levels in SLE result from subclinical VZV reactivations, caused by stress because of lupus disease activity or immunosuppressive drug use. Methods Antibody levels to VZV (IgG, IgA, IgM), total IgG and VZV-DNA were longitudinally determined in the serum of 34 SLE patients, using enzyme-linked immunosorbent assay and polymerase chain reaction. Clinical data were retrieved from medical records. Reactivation of VZV was defined as an at least fivefold rise in VZV-IgG or presence of VZV-IgM or VZV-DNA. Generalized estimating equations (GEE) were used to longitudinally analyse associations between antibody levels, lupus disease activity and medication use. Systemic Lupus Erythematosus Disease Activity Index, anti-double-stranded DNA and complement levels were used as indicators of lupus disease activity. Results A VZV reactivation was determined in 11 patients (33%). In at least five of them, herpes zoster was clinically overt. No association between SLE disease activity or medication use and VZV-specific antibody levels was found. There was a weak association between total IgG and VZV-IgG. Conclusions Our results indicate that increased VZV-IgG levels in SLE do not result from frequent subclinical VZV reactivations, and are not associated with lupus disease activity. Increased VZV-IgG can only partially be explained by hypergammaglobulinaemia.
Larsen, Brian Roland; Assentoft, Mette; Cotrina, Maria L.; Hua, Susan Z.; Nedergaard, Maiken; Kaila, Kai; Voipio, Juha; MacAulay, Nanna
2015-01-01
Bursts of network activity in the brain are associated with a transient increase in extracellular K+ concentration. The excess K+ is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na+/K+/2Cl− cotransporter (NKCC1), and/or Na+/K+-ATPase activity. Their individual contribution to [K+]o management has been of extended controversy. The present study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na+/K+-ATPase and to resolve their involvement in clearance of extracellular K+ transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K+]o increases above basal levels. Increased [K+]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K+ clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K+ removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K+]o increase. In contrast, inhibition of the different isoforms of Na+/K+-ATPase reduced post-stimulusclearance of K+ transients. The glia-specific α2/β2 subunit composition of Na+/K+-ATPase, when expressed in Xenopus oocytes, displayed a K+ affinity and voltage-sensitivity that would render this astrocyte-specific subunit composition specifically geared for controlling [K+]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na+/K+-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K+ recovery in native hippocampal tissue while Kir4.1 and Na+/K+-ATPase serve temporally distinct roles. PMID:24482245
2012-01-01
Background Somatostatin (SST) via five Gi coupled receptors namely SSTR1-5 is known to inhibit cell proliferation by cytostatic and cytotoxic mechanisms. Heterodimerization plays a crucial role in modulating the signal transduction pathways of SSTR subtypes. In the present study, we investigated human SSTR2/SSTR3 heterodimerization, internalization, MAPK signaling, cell proliferation and apoptosis in HEK-293 cells in response to SST and specific agonists for SSTR2 and SSTR3. Results Although in basal conditions, SSTR2 and SSTR3 colocalize at the plasma membrane and exhibit heterodimerization, the cell surface distribution of both receptors decreased upon agonist activation and was accompanied by a parallel increase in intracellular colocalization. Receptors activation by SST and specific agonists significantly decreased cAMP levels in cotransfected cells in comparison to control. Agonist-mediated modulation of pERK1/2 was time and concentration-dependent, and pronounced in serum-deprived conditions. pERK1/2 was inhibited in response to SST; conversely receptor-specific agonist treatment caused inhibition at lower concentration and activation at higher concentration. Strikingly, ERK1/2 phosphorylation was sustained upon prolonged treatment with SST but not with receptor-specific agonists. On the other hand, SST and receptor-specific agonists modulated p38 phosphorylation time-dependently. The receptor activation in cotransfected cells exhibits Gi-dependent inhibition of cell proliferation attributed to increased PARP-1 expression and TUNEL staining, whereas induction of p21 and p27Kip1 suggests a cytostatic effect. Conclusion Our study provides new insights in SSTR2/SSTR3 mediated signaling which might help in better understanding of the molecular interactions involving SSTRs in tumor biology. PMID:22651821
Yeung, A T; Bascomb, N F; Turner, K J; Schmidt, R R
1981-05-01
By use of a rocket immunoelectrophoresis-activity stain procedure, it was shown that catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) was accompanied by a coincident increase in enzyme antigen during the cell cycle of preinduced synchronous Chlorella sorokiniana cells growing in the continuous presence of ammonia. Between the fourth and fifth hours of the G-1 phase of the cell cycle, a three- to fourfold increase in linear accumulation of enzyme antigen was observed. Pulse-chase studies with [35S]sulfate, coupled with a specific indirect immunoadsorption procedure for enzyme antigen, showed that NADP-GDH antigen undergoes continuous degradation (i.e., a half-life of 88 to 110 min) during its linear pattern of accumulation during the cell cycle. The apparent half-life of the enzyme increased by approximately 23% of the 4.5-h positive rate change in antigen accumulation during the cell cycle. This increase in half-life is insufficient in itself to account for the large change in rate of NADP-GDH antigen accumulation. The data from immunoelectrophoresis, pulse-chase, and initial 35S incorporation rate experiments taken together support the inference that changes in the rate of NADP-GDH synthesis are primarily responsible for the accumulation patterns of NADP-GDH activity during the C. sorokiniana cell cycle.
Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...
Chen, Guang; Rasch, Malte J.; Wang, Ran; Zhang, Xiao-hui
2015-01-01
Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits. PMID:26648548
Phillips, Siobhan M; McAuley, Edward
2015-01-01
Decreased physical activity and weight gain post-breast cancer diagnosis are associated with negative psychosocial, health, and disease outcomes, but little is known about how these factors interact. The purpose of the present study was to conduct a preliminary examination of the association between post-diagnosis physical activity changes, weight changes, and psychosocial well-being in breast cancer survivors. We examined the association between retrospectively collected, self-reported post-diagnosis changes in physical activity and body weight and post-diagnosis fatigue, anxiety, depression, stress, self-esteem, and health-related quality of life (HRQOL) in breast cancer survivors (N = 1,348) using univariate analyses of covariance with Bonferroni's adjustment. After adjusting for covariates, maintaining and/or increasing physical activity post-diagnosis was significantly (p < 0.05 for all), independently associated with lower fatigue, anxiety, depression and stress and higher physical self-worth, physical, social, emotional, functional and breast cancer specific well-being and overall HRQOL (effect sizes = 0.23 to 0.60). Maintaining and/or losing weight was significantly (p < 0.05), independently associated with lower fatigue and higher physical self-worth, physical and breast cancer-specific well-being, and overall HRQOL (effect sizes = .28 to 0.87). There were no significant interaction effects between physical activity and body weight changes. This study provides preliminary data to suggest that maintaining or increasing physical activity and controlling weight post-diagnosis may be independently, positively associated with psychosocial well-being and HRQOL in breast cancer survivors. In addition, weight management effects may be larger and more outcome-specific while physical activity effects may be more general. Future research is warranted to replicate and confirm these findings.
Holm, I; Tveter, A T; Moseng, T; Dagfinrud, H
2015-09-01
To evaluate any change in self-reported level of physical activity in patients receiving a general physical exercise programme in addition to disease-specific physiotherapy treatment. Pre-post-intervention study. Outpatient physiotherapy clinics. One hundred and ninety patients with long-term musculoskeletal conditions attending outpatient physiotherapy were recruited from seven physiotherapy clinics. Physiotherapy including disease-specific modalities and a general individually tailored exercise programme. Patients were evaluated at baseline and at the end of the programme. International Physical Activity Questionnaire short form (IPAQ-sf) and COOP WONCA functional assessment charts. Forty-two patients were excluded from the analysis because they did not complete the IPAQ-sf correctly or dropped out during the treatment period. There was a significant increase in the number of metabolic equivalent task (MET)-min/week for vigorous and moderate-intensity activities, walking and total physical activity. The number of exercise sessions per week increased from 1.8 [standard deviation (SD) 0.9] to 2.2 (SD 1.2) (P=0.001). The proportion of patients with a low level of physical activity decreased by 12%, and the proportion of the participants who did not/could not exercise decreased from 26% to 8%. The COOP WONCA charts showed significant improvements in the physical fitness, feelings, daily activities and social activities items. A significant increase was found in the number of MET-min/week for all activity levels. Therefore, a general physical exercise programme initiated by a physiotherapist led to a positive change in level of physical activity. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Simultaneous and Dose Dependent Melanoma Cytotoxic and Immune Stimulatory Activity of Betulin
Arlt, Olga; Neske, Christina; Dehelean, Cristina; Pfeilschifter, Josef M.; Radeke, Heinfried H.
2015-01-01
Conventional cytostatic cancer treatments rarely result in the complete eradication of tumor cells. Therefore, new therapeutic strategies focus on antagonizing the immunosuppressive activity of established tumors. In particular, recent studies of antigen-loaded dendritic cells (DCs) eliciting a specific antitumor immune response has raised the hopes of achieving the complete elimination of tumor tissue. Genistein, fingolimod and betulin have already been described as active compounds in different types of cancer. Herein, we applied an integrated screening approach to characterize both their cytostatic and their immune-modulating properties side-by-side. As will be described in detail, our data confirmed that all three compounds exerted proapoptotic and antiproliferative activity in different B16 melanoma cell lines to a given extent, as revealed by an MTT assay, CFSE and DAPI staining. However, while genistein and fingolimod also affected the survival of primary bone marrow (BM) derived DCs of C57BL/6 mice, betulin exhibited a lower cytotoxicity for BMDCs in comparison to the melanoma cells. Moreover, we could show for the first time, that only betulin caused a simultaneous, highly specific immune-stimulating activity, as measured by the IL-12p70 release of Toll-like receptor 4-stimulated BMDCs by ELISA, which was due to increased IL-12p35 mRNA expression. Interestingly, the activation of DCs resulted in enhanced T lymphocyte stimulation, indicated by increased IL-2 and IFN-γ production of cytotoxic T cells in spleen cell co-culture assays which led to a decreased viability of B16 cells in an antigen specific model system. This may overcome the immunosuppressive environment of a tumor and destroy tumor cells more effectively in vivo if the immune response is specific targeted against the tumor tissue by antigen-loaded dendritic cells. In summary, cytostatic agents, such as betulin, that simultaneously exhibit immune stimulatory activity may serve as lead compounds and hold great promise as a novel approach for an integrated cancer therapy. PMID:25756279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dannemann, B.R.; Morris, V.A.; Araujo, F.G.
1989-10-15
Because previous work has suggested that NK cells may be important in host resistance against the intracellular parasite Toxoplasma gondii we examined whether human NK cells and lymphokine-activated killer (LAK) cells have activity against trophozoites and cysts of this organism in vitro. A method to radiolabel Toxoplasma trophozoites with 51Cr was developed and direct cytotoxic activity was determined by using modifications of the standard 51Cr release assay. Viability of 51Cr-labeled trophozoites assessed by both methylene blue staining and trypan blue exclusion was greater than 90%. Significantly more 51Cr was released by anti-Toxoplasma antibody and C than by antibody in themore » absence of C. Incubation of trophozoites with freshly isolated human NK cells or NK cells activated with either rIL-2 or rIFN-alpha did not result in significant release of 51Cr (specific lysis was 0 to 2.3%). In contrast, the average specific lysis of radiolabeled trophozoites by LAK cells was significant. In a series of separate experiments, preincubation of radiolabeled trophozoites with heat-inactivated normal or Toxoplasma antibody-positive human serum increased the cytotoxicity of LAK cells from a mean specific lysis of 15% +/- 4.5 to 39% +/- 8.5, respectively, as assessed by 51Cr release. Because previous work has shown that radioisotope release from parasites may be nonspecific, separate experiments were performed to determine the cytotoxicity of LAK cells against antibody-coated trophozoites by using ethidium bromide-acridine orange staining to assess effector cell damage. LAK cells had a mean specific lysis of 51% against antibody-coated trophozoites by ethidium bromide-acridine orange staining. Preincubation with heat-inactivated Toxoplasma-antibody positive human serum did not increase activity of rIL-2-activated NK cells against 51CR-labeled trophozoites.« less
[Interaction of free fatty acids with mitochondria during uncoupling of oxidative phosphorylation].
Samartsev, V N; Rybakova, S R; Dubinin, M V
2013-01-01
The activity of free saturated fatty acids (caprylic, capric, lauric, myristic, palmitic and stearic) as inducers and regulators of uncoupling of oxidative phosphorylation with participation of ADP/ATP antiporter, aspartate/glutamate antiporter and cyclosporin A-sensitive structure was investigated in experiments on rat liver mitochondria. It is established that at equal uncoupling activity of fatty acids the regulatory effect is minimal for caprylic acid and raised with increasing the hydrophobicity of fatty acids reaching the maximum value for stearic acid. There exists the linear dependence of the regulatory effect value of fatty acids on fatty acids content in the hydrophobic region of the inner membrane. The model that describes the interaction of fatty acids with the hydrophobic region of the mitochondrial inner membrane preserving functional activity of organelles is developed. It is established that if molecules of various fatty acids being in the hydrophobic region of the membrane are equally effective as uncoupling regulators, their specific uncoupling activity is different. Caprylic acid, a short-chain fatty acid, possesses the highest uncoupling activity. As the acyl chain length increases, the specific uncoupling activity of fatty acids reduces exponentially. Under these conditions components of the uncoupling activity sensitive to glutamate and carboxyatractylate and glutamate and insensitive to these reagents (but sensitive to cyclosporin A) change approximately equally.
Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.
Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng
2016-04-01
To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.
Protease-mediated drug delivery
NASA Astrophysics Data System (ADS)
Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.
2003-12-01
Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.
The Plasma Concentration of the B Cell Activating Factor Is Increased in Children With Acute Malaria
Nduati, Eunice; Gwela, Agnes; Karanja, Henry; Mugyenyi, Cleopatra; Langhorne, Jean; Marsh, Kevin
2011-01-01
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells. PMID:21849293
Sedentary behavior and residual-specific mortality
Loprinzi, Paul D.; Edwards, Meghan K.; Sng, Eveleen; Addoh, Ovuokerie
2016-01-01
Background: The purpose of this study was to examine the association of accelerometer-assessed sedentary behavior and residual-specific mortality. Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used (N = 5536), with follow-up through 2011. Sedentary behavior was objectively measured over 7 days via accelerometry. Results: When expressing sedentary behavior as a 60 min/day increase, the hazard ratio across the models ranged from 1.07-1.40 (P < 0.05). There was evidence of an interaction effect between sedentary behavior and total physical activity on residual-specific mortality (Hazard ratiointeraction [HR] = 0.9989; 95% CI: 0.9982-0.9997; P = 0.008). Conclusion: Sedentary behavior was independently associated with residual-specific mortality. However, there was evidence to suggest that residual-specific mortality risk was a function of sedentary behavior and total physical activity. These findings highlight the need for future work to not only examine the association between sedentary behavior and health independent of total physical activity, but evaluate whether there is a joint effect of these two parameters on health. PMID:27766237
Richards, Jim; Thewlis, Dominic; Selfe, James; Cunningham, Andrew; Hayes, Colin
2008-01-01
Context: Single-limb squats on a decline angle have been suggested as a rehabilitative intervention to target the knee extensors. Investigators, however, have presented very little empirical research in which they have documented the biomechanics of these exercises or have determined the optimum angle of decline used. Objective: To determine the involvement of the gastrocnemius and rectus femoris muscles and the external ankle and knee joint moments at 60° of knee flexion while performing a single-limb squat at different decline angles. Design: Participants acted as their own controls in a repeated-measures design. Patients or Other Participants: We recruited 10 participants who had no pain, injury, or neurologic disorder. Intervention(s): Participants performed single-limb squats at different decline angles. Main Outcome Measure(s): Angle-specific knee and ankle moments were calculated at 60° of knee flexion. Angle-specific electromyography (EMG) activity was calculated at 60° of knee flexion. Integrated EMG also was calculated to determine the level of muscle activity over the entire squat. Results: An increase was seen in the knee moments (P < .05) and integrated EMG in the rectus femoris (P < .001) as the decline angle increased. A decrease was seen in the ankle moments as the decline angle increased (P = .001), but EMG activity in the gastrocnemius increased between 16° and 24° (P = .018). Conclusions: As the decline angle increased, the knee extensor moment and EMG activity increased. As the decline angle increased, the ankle plantar-flexor moments decreased; however, an increase in the EMG activity was seen with the 24° decline angle compared with the 16° decline angle. This indicates that decline squats at an angle greater than 16° may not reduce passive calf tension, as was suggested previously, and may provide no mechanical advantage for the knee. PMID:18833310
Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail
2012-11-01
The plasticity and vulnerability of the rat spinal cord (SC) during postnatal development has been less investigated compared to other CNS structures. In this study, we determined the effects of thyroid hormonal (TH) deficiency and excess on postnatal growth and neurochemical development of the rat SC. The growth as well as the specific and total activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes of the SC were determined in hypo- and hyperthyroid rat pups at postnatal (P) days P1, P5, P10 and P21 (weaning), and were compared to age-matched untreated normal controls. AChE is a cholinergic synaptic enzyme while BuChE is a metabolic enzyme mainly found in glial cells and neurovascular cells. The SC is rich in somatic motor, autonomic cholinergic neurons and associated interneurons. Daily subcutaneous injection of pups with thyroxine (T4) and administration of antithyroid goitrogen propylthiouracil (PTU) in the litter's drinking water were used to induce hyper- and hypothyroidism, respectively. Enzyme assays were carried out spectrophotometrically at the above-mentioned ages, using SC homogenates with acetylthiocholine-chloride as the substrate, together with specific cholinesterase inhibitors, which specifically target AChE and BuChE. SC weights were significantly lower at P10 and P21 in hypothyroid pups but unchanged in the hyperthyroid ones. Hypothyroidism significantly reduced both specific and total AChE activity in SC of P10 and P21 rat pups, while having no effects on the BuChE activity, although total BuChE activity was decreased due to reduced total tissue weight. In contrast both specific and total AChE activities were markedly and significantly increased (>100%) in the P10 and P21 hyperthyroid pups. However, BuChE specific activity was unaffected by this treatment. The results indicate that hypothyroid condition significantly reduces, while hyperthyroidism increases, the postnatal development of cholinergic synapses, thereby influencing the functional development of this major sensory and motor structure. However, the neurochemical development of glia and other non-neuronal cells, where BuChE is mainly localized, is comparatively unaffected in these abnormal developmental conditions. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Functional neuroimaging insights into the physiology of human sleep.
Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre
2010-12-01
Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.
Liu, Qiang; Su, Shifeng; Blackwelder, Amanda J.; Minges, John T.; Wilson, Elizabeth M.
2011-01-01
Male sex development and growth occur in response to high affinity androgen binding to the androgen receptor (AR). In contrast to complete amino acid sequence conservation in the AR DNA and ligand binding domains among mammals, a primate-specific difference in the AR NH2-terminal region that regulates the NH2- and carboxyl-terminal (N/C) interaction enables direct binding to melanoma antigen-A11 (MAGE-11), an AR coregulator that is also primate-specific. Human, mouse, and rat AR share the same NH2-terminal 23FQNLF27 sequence that mediates the androgen-dependent N/C interaction. However, the mouse and rat AR FXXLF motif is flanked by Ala33 that evolved to Val33 in primates. Human AR Val33 was required to interact directly with MAGE-11 and for the inhibitory effect of the AR N/C interaction on activation function 2 that was relieved by MAGE-11. The functional importance of MAGE-11 was indicated by decreased human AR regulation of an androgen-dependent endogenous gene using lentivirus short hairpin RNAs and by the greater transcriptional strength of human compared with mouse AR. MAGE-11 increased progesterone and glucocorticoid receptor activity independently of binding an FXXLF motif by interacting with p300 and p160 coactivators. We conclude that the coevolution of the AR NH2-terminal sequence and MAGE-11 expression among primates provides increased regulatory control over activation domain dominance. Primate-specific expression of MAGE-11 results in greater steroid receptor transcriptional activity through direct interactions with the human AR FXXLF motif region and indirectly through steroid receptor-associated p300 and p160 coactivators. PMID:21730049
Teaching Audience Adaptation Using Connected Presentations and Teamwork
ERIC Educational Resources Information Center
Opt, Susan K.
2017-01-01
Courses: Introduction to Communication, Public Speaking, Persuasion, Business Communication. Objective: This activity increases students' understanding of audience adaptation and improves their ability to adapt presentations to specific audiences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, K.R.; Worley, P.F.; Huganir, R.L.
The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipidmore » system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.« less
Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash
2017-02-01
The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strategies for Correcting Very Long Chain Acyl-CoA Dehydrogenase Deficiency*
Tenopoulou, Margarita; Chen, Jie; Bastin, Jean; Bennett, Michael J.; Ischiropoulos, Harry; Doulias, Paschalis-Thomas
2015-01-01
Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. PMID:25737446
76 FR 56053 - 2011-2012 Refuge-Specific Hunting and Sport Fishing Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
...(j). We sometimes grant new shot types conditional approvals until we complete all necessary studies... adds one refuge to the list of areas open for hunting and/or sport fishing and increases the activities... specific management plans for each refuge prior to opening it to hunting or sport fishing. In many cases...
Chen, Justin L; Walton, Kelly L; Hagg, Adam; Colgan, Timothy D; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A
2017-06-27
The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.
Chen, Justin L.; Walton, Kelly L.; Hagg, Adam; Colgan, Timothy D.; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A.
2017-01-01
The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle. PMID:28607086
Qian, Hui; Diao, Hele; Shirshova, Natasha; Greenhalgh, Emile S; Steinke, Joachim G H; Shaffer, Milo S P; Bismarck, Alexander
2013-04-01
The feasibility of modifying conventional structural carbon fibres via activation has been studied to create fibres, which can be used simultaneously as electrode and reinforcement in structural composite supercapacitors. Both physical and chemical activation, including using steam, carbon dioxide, acid and potassium hydroxide, were conducted and the resulting fibre properties compared. It was proven that the chemical activation using potassium hydroxide is an effective method to prepare activated structural carbon fibres that possess both good electrochemical and mechanical properties. The optimal activation conditions, such as the loading of activating agent and the burn-off of carbon fibres, was identified and delivered a 100-fold increase in specific surface area and 50-fold improvement in specific electrochemical capacitance without any degradation of the fibre mechanical properties. The activation process was successfully scaled-up, showing good uniformity and reproducibility. These activated structural carbon fibres are promising candidates as reinforcement/electrodes for multifunctional structural energy storage devices. Copyright © 2012 Elsevier Inc. All rights reserved.
Han, Yuedong; Haun, Yi; Deng, Jinlan; Gao, Feng; Pan, Bifeng; Cui, Daxiang
2006-01-01
Fabricating a single-chain variable fragment specific for human seminoprotein is very important in antibody-directed enzyme prodrug therapy and NMR imaging for prostate cancer. Here a single-chain Fv specific for gamma-seminoprotein was expressed by RTS. Its activity and the efficiency of entry into prostate cancer cells are investigated by immunoprecipitation and Western blotting and immunofluorescent staining, as well as entry of conjugated magnetic beads into cells. Results showed that ScFv peptides specific for gamma-seminoprotein were successfully prepared, which can bind with the prostate cells specifically and can bring magnetic beads into prostate cancer cells within 15 min, the amount of magnetic beads inside prostate cancer cells increased as the culture time prolonged. ScFv-conjugated magnetic beads did not enter into control cells. In conclusion, the ScFv peptide against human gamma-seminoprotein with biological activity was successfully fabricated, which can take magnetic beads to prostate cancer cells specifically and not to the control cells. This ScFv peptide against human gamma-seminoprotein should be useful in improving the detection and therapy of prostate cancer at early stages and NMR imaging.
Muscle Activation During ACL Injury Risk Movements in Young Female Athletes: A Narrative Review.
Bencke, Jesper; Aagaard, Per; Zebis, Mette K
2018-01-01
Young, adolescent female athletes are at particular high risk of sustaining a non-contact anterior cruciate ligament (ACL) injury during sport. Through the last decades much attention has been directed toward various anatomical and biomechanical risk factors for non-contact ACL injury, and important information have been retrieved about the influence of external loading factors on ACL injury risk during given sports-specific movements. However, much less attention has been given to the aspect of neuromuscular control during such movements and only sparse knowledge exists on the specific muscle activation patterns involved during specific risk conditions. Therefore, the aim of this narrative review was (1) to describe anatomical aspects, strength aspects and biomechanical aspects relevant for the understanding of ACL non-contact injury mechanisms in young female athletes, and (2) to review the existing literature on lower limb muscle activation in relation to risk of non-contact ACL-injury and prevention of ACL injury in young female athletes. Studies investigating muscle activity patterns associated with sports-specific risk situations were identified, comprising cohort studies, intervention studies and prospective studies. Based on the retrieved studies, clear gender-specific differences in muscle activation and coordination were identified demonstrating elevated quadriceps activity and reduced hamstring activity in young female athletes compared to their male counterparts, and suggesting young female athletes to be at elevated risk of non-contact ACL injury. Only few studies ( n = 6) examined the effect of preventive exercise-based intervention protocols on lower limb muscle activation during sports-specific movements. A general trend toward enhanced hamstring activation was observed during selected injury risk situations (e.g., sidecutting and drop landings). Only a single study examined the association between muscle activation deficits and ACL injury risk, reporting that low medial hamstring activation and high vastus lateralis activation prior to landing was associated with an elevated incidence of ACL-injury. A majority of studies were performed in adult female athletes. The striking paucity of studies in adolescent female athletes emphasizes the need for increased research activities to examine of lower limb muscle activity in relation to non-contact ACL injury in this high-risk athlete population.
Mechanisms of activation of mouse and human enteroendocrine cells by nutrients
Symonds, Erin L; Peiris, Madusha; Page, Amanda J; Chia, Bridgette; Dogra, Harween; Masding, Abigail; Galanakis, Vasileios; Atiba, Michael; Bulmer, David; Young, Richard L; Blackshaw, L Ashley
2015-01-01
Objective Inhibition of food intake and glucose homeostasis are both promoted when nutrients stimulate enteroendocrine cells (EEC) to release gut hormones. Several specific nutrient receptors may be located on EEC that respond to dietary sugars, amino acids and fatty acids. Bypass surgery for obesity and type II diabetes works by shunting nutrients to the distal gut, where it increases activation of nutrient receptors and mediator release, but cellular mechanisms of activation are largely unknown. We determined which nutrient receptors are expressed in which gut regions and in which cells in mouse and human, how they are associated with different types of EEC, how they are activated leading to hormone and 5-HT release. Design and results mRNA expression of 17 nutrient receptors and EEC mediators was assessed by quantitative PCR and found throughout mouse and human gut epithelium. Many species similarities emerged, in particular the dense expression of several receptors in the distal gut. Immunolabelling showed specific colocalisation of receptors with EEC mediators PYY and GLP-1 (L-cells) or 5-HT (enterochromaffin cells). We exposed isolated proximal colonic mucosa to specific nutrients, which recruited signalling pathways within specific EEC extracellular receptor-regulated kinase (p-ERK) and calmodulin kinase II (pCAMKII), as shown by subsequent immunolabelling, and activated release of these mediators. Aromatic amino acids activated both pathways in mouse, but in humans they induced only pCAMKII, which was colocalised mainly with 5-HT expression. Activation was pertussis toxin-sensitive. Fatty acid (C12) potently activated p-ERK in human in all EEC types and evoked potent release of all three mediators. Conclusions Specific nutrient receptors associate with distinct activation pathways within EEC. These may provide discrete, complementary pharmacological targets for intervention in obesity and type II diabetes. PMID:25015642
ERIC Educational Resources Information Center
Thapa, Brijesh
2010-01-01
Outdoor recreation participation has increased over the past decades and is projected for further growth. Given the increase, it is important to assess recreationists' environmental values, activity style, general, and site-specific attitudes and behaviors to promote environmental stewardship, and to develop effective strategies in natural…
Scalability Assessments for the Malicious Activity Simulation Tool (MAST)
2012-09-01
the scalability characteristics of MAST. Specifically, we show that an exponential increase in clients using the MAST software does not impact...an exponential increase in clients using the MAST software does not impact network and system resources significantly. Additionally, we...31 1. Hardware .....................................31 2. Software .....................................32 3. Common PC
Lorenz, Tierney Ahrold; Harte, Christopher B; Hamilton, Lisa Dawn; Meston, Cindy M
2012-01-01
There is increasing evidence that women's physiological sexual arousal is facilitated by moderate sympathetic nervous system (SNS) activation. Literature also suggests that the level of SNS activation may play a role in the degree to which SNS activity affects sexual arousal. We provide the first empirical examination of a possible curvilinear relationship between SNS activity and women's genital arousal using a direct measure of SNS activation in 52 sexually functional women. The relationship between heart rate variability (HRV), a specific and sensitive marker of SNS activation, and vaginal pulse amplitude (VPA), a measure of genital arousal, was analyzed. Moderate increases in SNS activity were associated with higher genital arousal, while very low or very high SNS activation was associated with lower genital arousal. These findings imply that there is an optimal level of SNS activation for women's physiological sexual arousal. Copyright © 2011 Society for Psychophysiological Research.
Sawitzky, Mandy; Zeissler, Anja; Langhammer, Martina; Bielohuby, Maximilian; Stock, Peggy; Hammon, Harald M; Görs, Solvig; Metges, Cornelia C; Stoehr, Barbara J M; Bidlingmaier, Martin; Fromm-Dornieden, Carolin; Baumgartner, Bernhard G; Christ, Bruno; Brenig, Bertram; Binder, Gerhard; Metzger, Friedrich; Renne, Ulla; Hoeflich, Andreas
2012-01-01
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.
Sawitzky, Mandy; Zeissler, Anja; Langhammer, Martina; Bielohuby, Maximilian; Stock, Peggy; Hammon, Harald M.; Görs, Solvig; Metges, Cornelia C.; Stoehr, Barbara J. M.; Bidlingmaier, Martin; Fromm-Dornieden, Carolin; Baumgartner, Bernhard G.; Christ, Bruno; Brenig, Bertram; Binder, Gerhard; Metzger, Friedrich; Renne, Ulla; Hoeflich, Andreas
2012-01-01
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice. PMID:22768110
The activity of nitrifying microorganisms in a high-altitude Andean wetland.
Molina, Verónica; Dorador, Cristina; Fernández, Camila; Bristow, Laura; Eissler, Yoanna; Hengst, Martha; Hernandez, Klaudia; Olsen, Lasse Mork; Harrod, Chris; Marchant, Francisca; Anguita, Cristobal; Cornejo, Marcela
2018-06-01
High-altitude wetland holds freshwater springs, evaporitic ponds and lagoon with variable salinity and nutrients, potentially influencing the ecology of nitrifying communities. In this study, nitrifying microorganisms in Salar de Huasco (Chile) were surveyed to determine bacterial and archaeal contribution to ammonium (AO), nitrite oxidation (NO), ammonium uptake (AU) during wet and dry seasons. The activity signals from these groups were assessed by specific amoA-qPCR transcription, 15N tracer studies and addition of group specific inhibitor experiments for nitrifying microorganisms (N1-guanyl-1, 7-diaminoheptane [GC7]-archaeal specific and allylthiourea [ATU]-bacterial specific). Nitrifying communities, i.e. Nitrosopumilus, Nitrosospira, Nitrosomonas, Kuenenia and Nitrospira, were more frequent (∼0.25% of 16S rRNA sequences) at low salinity sites. Bacterial amoA-qPCR transcripts also increased at low salinity and along in situ ammonium increase observed between wet/dry seasons. Nutrient changes through time and 15N tracer experiments results showed that AO and NO were detected and peaked mainly at low salinity-high ammonium sites (<37 000 μS cm-1 and >0.3 μM), whereas AU was predominant at evaporitic sites. Our results indicate that salinity and ammonium affect the nitrifying communities that are potentially more active at low-salinity sites but persistent at saltier evaporitic areas of the wetland when ammonium is available.
2015-01-01
The adenylation (A) domain acts as the first “gate-keeper” to ensure the activation and thioesterification of the correct monomer to nonribosomal peptide synthetases (NRPSs). Our understanding of the specificity-conferring code and our ability to engineer A domains are critical for increasing the chemical diversity of nonribosomal peptides (NRPs). We recently discovered a novel NRPS-like protein (ATEG_03630) that can activate 5-methyl orsellinic acid (5-MOA) and reduce it to 2,4-dihydroxy-5,6-dimethyl benzaldehyde. A NRPS-like protein is much smaller than multidomain NRPSs, but it still represents the thioesterification half-reaction, which is otherwise missed from a stand-alone A domain. Therefore, a NRPS-like protein may serve as a better model system for A domain engineering. Here, we characterize the substrate specificity of ATEG_03630 and conclude that the hydrogen-bond donor at the 4-position is crucial for substrate recognition. Next, we show that the substrate specificity of ATEG_03630 can be engineered toward our target substrate anthranilate via bioinformatics analysis and mutagenesis. The resultant mutant H358A increased its activity toward anthranilate by 10.9-fold, which led to a 26-fold improvement in specificity. Finally, we demonstrate one-pot chemoenzymatic synthesis of 4-hydroxybenzaldoxime from 4-hydroxybenzoic acid with high yield. PMID:24804152
Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos
2009-11-01
Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.
Dissociating motivation from reward in human striatal activity.
Miller, Eric M; Shankar, Maya U; Knutson, Brian; McClure, Samuel M
2014-05-01
Neural activity in the striatum has consistently been shown to scale with the value of anticipated rewards. As a result, it is common across a number of neuroscientific subdiscliplines to associate activation in the striatum with anticipation of a rewarding outcome or a positive emotional state. However, most studies have failed to dissociate expected value from the motivation associated with seeking a reward. Although motivation generally scales positively with increases in potential reward, there are circumstances in which this linkage does not apply. The current study dissociates value-related activation from that induced by motivation alone by employing a task in which motivation increased as anticipated reward decreased. This design reverses the typical relationship between motivation and reward, allowing us to differentially investigate fMRI BOLD responses that scale with each. We report that activity scaled differently with value and motivation across the striatum. Specifically, responses in the caudate and putamen increased with motivation, whereas nucleus accumbens activity increased with expected reward. Consistent with this, self-report ratings indicated a positive association between caudate and putamen activity and arousal, whereas activity in the nucleus accumbens was more associated with liking. We conclude that there exist regional limits on inferring reward expectation from striatal activation.
Dissociating Motivation from Reward in Human Striatal Activity
Miller, Eric M.; Shankar, Maya U.; Knutson, Brian; McClure, Samuel M.
2018-01-01
Neural activity in the striatum has consistently been shown to scale with the value of anticipated rewards. As a result, it is common across a number of neuroscientific subdiscliplines to associate activation in the striatum with anticipation of a rewarding outcome or a positive emotional state. However, most studies have failed to dissociate expected value from the motivation associated with seeking a reward. Although motivation generally scales positively with increases in potential reward, there are circumstances in which this linkage does not apply. The current study dissociates value-related activation from that induced by motivation alone by employing a task in which motivation increased as anticipated reward decreased. This design reverses the typical relationship between motivation and reward, allowing us to differentially investigate fMRI BOLD responses that scale with each. We report that activity scaled differently with value and motivation across the striatum. Specifically, responses in the caudate and putamen increased with motivation, whereas nucleus accumbens activity increased with expected reward. Consistent with this, self-report ratings indicated a positive association between caudate and putamen activity and arousal, whereas activity in the nucleus accumbens was more associated with liking. We conclude that there exist regional limits on inferring reward expectation from striatal activation. PMID:24345173
Differential Role of Glutamate Dehydrogenase in Nitrogen Metabolism of Maize Tissues 1
Loyola-Vargas, Victor Manuel; de Jimenez, Estela Sanchez
1984-01-01
Both calli and plantlets of maize (Zea mays L. var Tuxpeño 1) were exposed to specific nitrogen sources, and the aminative (NADH) and deaminative (NAD+) glutamate dehydrogenase activities were measured at various periods of time in homogenates of calli, roots, and leaves. A differential effect of the nitrogen sources on the tissues tested was observed. In callus tissue, glutamate, ammonium, and urea inhibited glutamate dehydrogenase (GDH) activity. The amination and deamination reactions also showed different ratios of activity under different nitrogen sources. In roots, ammonium and glutamine produced an increase in GDH-NADH activity whereas the same metabolites were inhibitory of this activity in leaves. These data suggest the presence of isoenzymes or conformers of GDH, specific for each tissue, whose activities vary depending on the nutritional requirements of the tissue and the state of differentiation. PMID:16663876
2012-01-01
Background Radiolabelled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumours, in which BN2/gastrin-releasing peptide receptors are overexpressed. We describe the influence of the specific activity of a 177Lu-DOTA-PEG5k-Lys-B analogue on its therapeutic efficacy and compare it with its non-PEGylated counterpart. Methods Derivatisation of a stabilised DOTA-BN(7–14)[Cha13,Nle14] analogue with a linear PEG molecule of 5 kDa (PEG5k) was performed by PEGylation of the ϵ-amino group of a β3hLys-βAla-βAla spacer between the BN sequence and the DOTA chelator. The non-PEGylated and the PEGylated analogues were radiolabelled with 177Lu. In vitro evaluation was performed in human prostate carcinoma PC-3 cells, and in vivo studies were carried out in nude mice bearing PC-3 tumour xenografts. Different specific activities of the PEGylated BN analogue and various dose regimens were evaluated concerning their therapeutic efficacy. Results The specificity and the binding affinity of the BN analogue for BN2/GRP receptors were only slightly reduced by PEGylation. In vitro binding kinetics of the PEGylated analogue was slower since steady-state condition was reached after 4 h. PEGylation improved the stability of BN conjugate in vitro in human plasma by a factor of 5.6. The non-PEGylated BN analogue showed favourable pharmacokinetics already, i.e. fast blood clearance and renal excretion, but PEGylation improved the in vivo behaviour further. One hour after injection, the tumour uptake of the PEG5k-BN derivative was higher compared with that of the non-PEGylated analogue (3.43 ± 0.63% vs. 1.88 ± 0.4% ID/g). Moreover, the increased tumour retention resulted in a twofold higher tumour accumulation at 24 h p.i., and increased tumour-to-non-target ratios (tumour-to-kidney, 0.6 vs. 0.4; tumour-to-liver, 8.8 vs. 5.9, 24 h p.i.). In the therapy study, both 177Lu-labelled BN analogues significantly inhibited tumour growth. The therapeutic efficacy was highest for the PEGylated derivative of high specific activity administered in two fractions (2 × 20 MBq = 40 MBq) at day 0 and day 7 (73% tumour growth inhibition, 3 weeks after therapy). Conclusions PEGylation and increasing the specific activity enhance the pharmacokinetic properties of a 177Lu-labelled BN-based radiopharmaceutical and provide a protocol for targeted radionuclide therapy with a beneficial anti-tumour effectiveness and a favourable risk-profile at the same time. PMID:22681935
Yoon, Kyoung Jin P; Krull, Erik J; Morton, Christopher L; Bornmann, William G; Lee, Richard E; Potter, Philip M; Danks, Mary K
2003-11-01
7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (irinotecan, CPT-11) is a camptothecin prodrug that is metabolized by carboxylesterases (CE) to the active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38), a topoisomerase I inhibitor. CPT-11 has shown encouraging antitumor activity against a broad spectrum of tumor types in early clinical trials, but hematopoietic and gastrointestinal toxicity limit its administration. To increase the therapeutic index of CPT-11 and to develop other prodrug analogues for enzyme/prodrug gene therapy applications, our laboratories propose to develop camptothecin prodrugs that will be activated by specific CEs. Specific analogues might then be predicted to be activated, for example, predominantly by human liver CE(hCE1), by human intestinal CE (hiCE), or in gene therapy approaches using a rabbit liver CE (rCE). This study describes a molecular modeling approach to relate the structure of rCE-activated camptothecin prodrugs with their biological activation. Comparative molecular field analysis, comparative molecular similarity index analysis, and docking studies were used to predict the biological activity of a 4-benzylpiperazine derivative of CPT-11 [7-ethyl-10-[4-(1-benzyl)-1-piperazino]carbonyloxycamptothecin (BP-CPT)] in U373MG glioma cell lines transfected with plasmids encoding rCE or hiCE. BP-CPT has been reported to be activated more efficiently than CPT-11 by a rat serum esterase activity; however, three-dimensional quantitative structure-activity relationship studies predicted that rCE would activate BP-CPT less efficiently than CPT-11. This was confirmed by both growth inhibition experiments and kinetic studies. The method is being used to design camptothecin prodrugs predicted to be activated by specific CEs.
Piacenza, Francesco; Malavolta, Marco; Cipriano, Catia; Costarelli, Laura; Giacconi, Robertina; Muti, Elisa; Tesei, Silvia; Pierpaoli, Sara; Basso, Andrea; Bracci, Massimo; Bonacucina, Viviana; Santarelli, Lory; Mocchegiani, Eugenio
2009-09-28
Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.
Oikawa, Shino; Mano, Asuka; Takahashi, Rina; Kakinuma, Yoshihiko
2015-11-01
Ischemic preconditioning (IPC) renders the targeted organ resistant to prolonged ischemic insults, leading to organoprotection. Among several means to achieve IPC, we reported that remote ischemic preconditioning (RIPC) activates the non-neuronal cardiac cholinergic system (NNCCS) to accelerate de novo ACh synthesis in cardiomyocytes. In the current study, we aimed to optimize a specific protocol to most efficiently activate NNCCS using RIPC. In this study, we elucidated that the protocol with 3 min of ischemia repeated three times increased cardiac ChAT expression (139.2 ± 0.4%; P < 0.05) as well as ACh (14.2 ± 2.0× 10(-8) M; P< 0.05) and ATP content (2.13 ± 0.19 μmol/g tissue; P < 0.05) in the heart. Moreover, in the specific protocol, several characteristic responses against energy starvation and for obtaining adequate energy were observed; therefore, it is suggested that RIPC evokes a robust response by the heart to activate NNCCS through the modification of energy metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wanag, Agnieszka; Kusiak-Nejman, Ewelina; Kowalczyk, Łukasz; Kapica-Kozar, Joanna; Ohtani, Bunsho; Morawski, Antoni W.
2018-04-01
In this paper titanium dioxide carbon modification with benzene as a carbon source is presented. A TiO2/graphitic carbon nanocomposites were synthesized by thermal modification in the presence of benzene vapours at different temperature (300-700 °C). The new materials were characterized by a various techniques, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV-vis/DR), surface-enhanced Raman spectroscopy. BET specific surface area was also measured. The photocatalytic activity of obtained nanocomposites was measured by the decomposition of acetic acid and methylene blue under UV-vis irradiation. The results show that photocatalytic activity increasing with increase in carbon concentration and temperature of modification. It can be noted that adsorption degree has a very high impact on methylene blue decomposition. The highest photocatalytic activity was found for the photocatalyst modified at 600 °C contains 1.13 wt% of carbon. It should be noted that, the influence of crystallite size, crystal structure changes and specific surface area for photocatalytic activity are presented.
Dynamic Organization of Hierarchical Memories
Kurikawa, Tomoki; Kaneko, Kunihiko
2016-01-01
In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a “dynamic categorization”; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity. PMID:27618549
Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M
2008-02-01
Delirium in the elderly results in increased morbidity, mortality and functional decline. Delirium is underdiagnosed, particularly in dementia. To increase diagnostic accuracy, we investigated whether maintenance of activation assessed by EEG discriminates delirium in association with dementia (D+D) from dementia without delirium (DP) and cognitively unimpaired elderly subjects (CU). Routine and quantitative EEG (rEEG/qEEG) with additional prolonged activation (3 min eyes open period) were evaluated in hospitalised elderly patients with acute geriatric disease. Patients were assigned post hoc to three comparable groups (D+D/DP/CU) by expert consensus based on DSM-IV criteria. Dementia diagnosis was confirmed using cognitive and functional tests and caregiver rating (IQCODE, Informed Questionnaire of Cognitive Decline in the Elderly). While rEEG at rest showed low accuracy for a diagnosis of delirium, qEEG in DP and CU revealed a specific activation pattern of high significance found to be absent in the D+D group. Stepwise logistic regression confirmed that differentiation of D+D from DP was best resolved using activated upper alpha and delta power density which, compared with rEEG, enabled an 11% increase in diagnostic correctness to 83%, resulting in 67% sensitivity and 91% specificity. Among frail CU and D+D subjects, almost 90% were correctly classified. Dementia associated with delirium can be discriminated reliably from dementia alone in a meaningful clinical setting. Thus EEG evaluation in chronic encephalopathy should be optimised by a simple activation task and spectral analysis, particularly in the elderly with dementia.
Gender specific changes in cortical activation patterns during exposure to artificial gravity
NASA Astrophysics Data System (ADS)
Schneider, Stefan; Robinson, Ryan; Smith, Craig; von der Wiesche, Melanie; Goswami, Nandu
2014-11-01
Keeping astronauts healthy during long duration spaceflight remains a challenge. Artificial gravity (AG) generated by a short arm human centrifuges (SAHC) is proposed as the next generation of integrated countermeasure devices that will allow human beings to safely spend extended durations in space, although comparatively little is known about any psychological side effects of AG on brain function. 16 participants (8 male and 8 female, GENDER) were exposed to 10 min at a baseline gravitational load (G-Load) of +.03 Gz, then 10 min at +.6 Gz for females and +.8 Gz for males, before being exposed to increasing levels of AG in a stepped manner by increasing the acceleration by +.1 Gz every 3 min until showing signs of pre-syncope. EEG recordings were taken of brain activity during 2 min time periods at each AG level. Analysing the results of the mixed total population of participants by two way ANOVA, a significant effect of centrifugation on alpha and beta activity was found (p<.01). Furthermore results revealed a significant interaction between G-LOAD and GENDER alpha-activity (p<.01), but not for beta-activity. Although the increase in alpha and beta activity with G-LOAD does not reflect a general model of cortical arousal and therefore cannot support previous findings reporting that AG may be a cognitively arousing environment, the gender specific responses identified in this study may have wider implications for EEG and AG research.
What Are Strength Training Activities?
Strength training is any practice or exercise specifically designed to increase muscle tone, strength, and fitness. Concerned that strength training will make you bulky and too muscle-y? You are not alone.
Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.
2011-01-01
Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed. PMID:21600227
Tie, Lu; Li, Xue-Jun; Wang, Xian; Channon, Keith M.; Chen, Alex F.
2009-01-01
Refractory wound is a severe complication that leads to limb amputation in diabetes. Endothelial nitric oxide synthase (eNOS) plays a key role in normal wound repair but is uncoupled in streptozotocin (STZ)-induced type 1 diabetes because of reduced cofactor tetrahydrobiopterin (BH4). We tested the hypothesis that overexpression of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for de novo BH4 synthesis, retards NOS uncoupling and accelerates wound healing in STZ mice. Blood glucose levels were significantly increased in both male endothelium-specific GTPCH I transgenic mice (Tg-GCH; via a tie-2 promoter) and wild-type (WT) littermates 5 days after STZ regimen. A full-thickness excisional wound was created on mouse dorsal skin by a 4-mm punch biopsy. Wound closure was delayed in STZ mice, which was rescued in STZ Tg-GCH mice. Cutaneous BH4 level was significantly reduced in STZ mice vs. WT mice, which was maintained in STZ Tg-GCH mice. In STZ mice, constitutive NOS (cNOS) activity and nitrite levels were decreased compared with WT mice, paralleled by increased superoxide anion (O2−) level and inducible NOS (iNOS) activity. In STZ Tg-GCH mice, nitrite level and cNOS activity were potentiated and O2− level and iNOS activity were suppressed compared with STZ mice. Thus endothelium-specific BH4 overexpression accelerates wound healing in type 1 diabetic mice by enhancing cNOS activity and suppressing oxidative stress. PMID:19336662
Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner.
Mitew, Stanislaw; Gobius, Ilan; Fenlon, Laura R; McDougall, Stuart J; Hawkes, David; Xing, Yao Lulu; Bujalka, Helena; Gundlach, Andrew L; Richards, Linda J; Kilpatrick, Trevor J; Merson, Tobias D; Emery, Ben
2018-01-22
Mounting evidence suggests that neuronal activity influences myelination, potentially allowing for experience-driven modulation of neural circuitry. The degree to which neuronal activity is capable of regulating myelination at the individual axon level is unclear. Here we demonstrate that stimulation of somatosensory axons in the mouse brain increases proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) within the underlying white matter. Stimulated axons display an increased probability of being myelinated compared to neighboring non-stimulated axons, in addition to being ensheathed with thicker myelin. Conversely, attenuating neuronal firing reduces axonal myelination in a selective activity-dependent manner. Our findings reveal that the process of selecting axons for myelination is strongly influenced by the relative activity of individual axons within a population. These observed cellular changes are consistent with the emerging concept that adaptive myelination is a key mechanism for the fine-tuning of neuronal circuitry in the mammalian CNS.
Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando
2016-11-11
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Functional analysis of HPV-like particle-activated Langerhans cells in vitro.
Yan, Lisa; Woodham, Andrew W; Da Silva, Diane M; Kast, W Martin
2015-01-01
Langerhans cells (LCs) are antigen-presenting cells responsible for initiating an immune response against human papillomaviruses (HPVs) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LCs become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LCs are then capable of migrating to the lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen-specific T cells is hindered. While many methods exist to monitor the activity of LCs in vitro, the migration and induction of cytotoxic T cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen-specific T cells after stimulation of LCs with HPV virus-like particles in vitro are described.
Overland, Aaron C; Insel, Paul A
2015-04-17
Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated "shedding" of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5'-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5'-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein βγ subunits was shown by using the Gβγ inhibitor gallein and the direct activation of recombinant MMP14 by purified βγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Agirbasli, Mehmet; Eren, Mesut; Eren, Fatih; Murphy, Sheila B; Serdar, Zehra A; Seckin, Dilek; Zara, Tuba; Cem Mat, M; Demirkesen, Cuyan; Vaughan, Douglas E
2011-07-01
Livedoid vasculopathy (LV) is a chronic, recurrent, painful cutaneous disease with distinctive clinical features and an uncertain etiology. The skin lesions are recognizable by focal purpura, depigmentation and shallow ulcers. Thrombophilic conditions occur frequently in patients with LV. While no definitive treatment exists for LV, smoking cessation, antiplatelet therapy, immunosuppressive treatment, and anabolic steroids are often included in the therapeutic ladder. Recently, a possible link between LV and impaired fibrinolysis was established as cutaneous LV lesions responded to tissue plasminogen activator (t-PA) infusion suggesting that inhibition of the fibrinolysis through plasminogen activator inhibitor-1 (PAI-1) activity may determine the disease course in patients with LV. In this study, we investigated PAI-1 antigen (Ag) and activity levels in 20 patients with biopsy proven LV (mean age 26 ± 11, M/F = 7/13, median disease duration 3.5 years). All patients received antiplatelet treatment with aspirin and/or dipyrimadole and 14 patients received anabolic steroids or immunosuppressive treatment. Fasting PAI-1 Ag and activity levels were measured at 9 AM in all patients. Both Ag (34 (26) ng/ml) (median (interquartile range)) and specific activity (17 (23) IU/fmole) levels of PAI-1 were moderately elevated in LV patients compared to the controls, however, PAI-1 kinetic studies demonstrated markedly enhanced stability of PAI-1 activity in plasma from patients with LV. Specific activity at 16 h was significantly higher than expected specific activity levels (7 (11) vs. 0.07 (0.09) IU/fmole, P < 0.01). While the exact mechanism of increased stability of PAI-1 activity is not known, it may be due to post-translational modifications or increased binding affinity for a stabilizing cofactor. In conclusion, enhanced stability of PAI-1 may contribute to the pathophysiology of LV, and systemic or local treatment with PAI-1 inhibitors may offer a potential treatment alternative in patients with LV.
Deppe, Michael; Schwindt, Wolfram; Kugel, Harald; Plassmann, Hilke; Kenning, Peter
2005-04-01
The authors used functional magnetic resonance imaging (fMRI) to investigate how individual economic decisions are influenced by implicit memory contributions. Twenty-two participants were asked to make binary decisions between different brands of sensorily nearly undistinguishable consumer goods. Changes of brain activity comparing decisions in the presence or absence of a specific target brand were detected by fMRI. Only when the tar get brand was the participant's favorite one did the authors find reduced activation in the dorsolateral prefrontal, posterior parietal, and occipital cortices and the left premotor area (Brodmann areas [BA] 9, 46, 7/19, and 6). Simultaneously, activity was increased in the inferior precuneus and posterior cingulate (BA 7), right superior frontal gyrus (BA 10), right supramarginal gyrus (BA 40), and, most pronounced, in the ventromedial prefrontal cortex (BA 10). For products mainly distinguishable by brand information, the authors revealed a nonlinear winner-take-all effect for a participant's favorite brand characterized, on one hand, by reduced activation in brain areas associated with working memory and reasoning and, on the other hand, increased activation in areas involved in processing of emotions and self-reflections during decision making.
[Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].
Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B
2014-01-01
Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,
Collado, Paloma; Guillamón, Antonio; Pinos, Helena; Pérez-Izquierdo, M Angeles; García-Falgueras, Alicia; Carrillo, Beatriz; Rodríguez, Cilia; Panzica, GianCarlo
2003-09-05
We investigated the presence of nitric oxide in the bed nucleus of the accessory olfactory tract (BAOT) in males, diestrous females and estrous females using NADPH-diaphorase. Our results demonstrate a significant increase in the density of the medium-stained cells in the estrous female rats suggesting that during estrous a specific subpopulation of nitrinergic cells are activated in the BAOT. This might be related to the physiological and behavioral changes that occurs in estrous.
1983-01-01
this project, a series of exploratory studies were conducted with 4- year and community college students to develon the Learning Activities...capabilities needed for our national security" (Bement, 1980). Three specific goals for this program in Fiscal Year 1981 are: 1. Provide real growth in the...percent compared to FY 1980; this is about the average increase for all Department of Defense research programs this year ; ( this increase is about
Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P
2015-06-29
Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.
Salivary exoglycosidases as markers of alcohol dependence.
Waszkiewicz, Napoleon; Chojnowska, Sylwia; Zalewska, Anna; Zwierz, Krzysztof; Szulc, Agata; Szajda, Sławomir Dariusz
2014-01-01
Some salivary markers of alcohol abuse/dependence have been proposed so far: aminotransferases, gamma-glutamyltransferase, ethanol, ethyl glucuronide, ethyl sulfate, sialic acid, β-hexosaminidase A, oral peroxidase, methanol, diethylene/ethylene glycol, α-amylase, clusterin, haptoglobin, heavy/light chains of immunoglobulins and transferrin. To investigate the effect of chronic alcohol drinking and smoking on the activity (pKat/ml) and output (pKat/min) of salivary lysosomal exoglycosidases: α-fucosidase (FUC), α-mannosidase (MAN), β-galactosidase (GAL), and β-glucuronidase (GLU), and their applicability as markers of alcohol dependence. The activity of FUC, MAN, GAL and GLU was measured colorimetrically in the saliva of healthy social drinkers, alcohol-dependent non-smokers and alcohol-dependent smokers. We observed an increased salivary activity of FUC, GAL, GLU and MAN, as well as an increased output of GAL and GLU, in comparison with controls. The highest increase in the activity/output was found in salivary GLU and MAN (GLU, even 7- to 18-fold), and the least in GAL. We found an excellent sensitivity and specificity and a high accuracy (measured by the area under the ROC curve) for salivary FUC, GLU and MAN activities. The salivary GLU activity positively correlated with the number of days of last alcohol intoxication. Salivary activity of FUC, GAL and MAN, but not GLU, positively correlated with the periodontal parameters such as gingival index and papilla bleeding index. Although we found an excellent sensitivity and specificity as well as a high accuracy for the salivary activity of FUC, GLU and MAN, the GLU activity seems to be mostly applicable as a marker of chronic alcohol drinking (alcohol dependence). © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Rhythmic activities of hypothalamic magnocellular neurons: autocontrol mechanisms.
Richard, P; Moos, F; Dayanithi, G; Gouzènes, L; Sabatier, N
1997-12-01
Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20-40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.
Engineered Cpf1 variants with altered PAM specificities increase genome targeting range
Gao, Linyi; Cox, David B.T.; Yan, Winston X.; Manteiga, John C.; Schneider, Martin W.; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng
2017-01-01
The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells1–7. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS7 assay indicated that these variants retain high DNA targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately three-fold in human coding sequences to one cleavage site per ~11 bp. PMID:28581492
[The future of methotrexate therapy and other folate inhibitors].
Fiehn, C
2011-02-01
Because of its good effectiveness and tolerability, methotrexate (MTX) has been the most important DMARD for the treatment of rheumatoid arthritis (RA) worldwide for many years. Thus the treatment of this disease is strongly based on the principle of folate inhibition. Recent years have brought new insights into the pharmacology and mechanisms of action of MTX. As a result, it now appears possible to further develop folate inhibitors to increase effectiveness and specificity. Polyglutamation of the drug, a metabolic step which appears to play a role both in terms of therapeutic effects and hepatic side effects, might be a possible starting point. Moreover, methods of targeted drug delivery intended to increase drug accumulation at the site of inflammation can increase the effectiveness of treatment and reduce toxicity. Albumin-coupled and liposomally-conjugated MTX, both of which inhibit inflammation in animal models more potently than MTX, are undergoing preclinical evaluation. It was recognized that activated synovial macrophages upregulate folate receptor ß (FR-ß) expression and that MTX can become active by this pathway. This finding makes it possible to develop new FR-ß-specific folate inhibitors with specificity for this pathophysiologically important cell population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzykantov, V.R.; Puchnina, E.A.; Atochina, E.N.
The biodistribution of radiolabeled monoclonal antibody (Mab) to angiotensin-converting enzyme (ACE) was examined in normal and endotoxin-treated rats. Endotoxin administration at a dose of 4 mg/kg induced mild or middle pulmonary edema. The ACE activity in lung homogenate remained virtually unchanged, while the activity of serum ACE increased 15 hr after endotoxin infusion. In normal rats, anti-ACE Mab accumulates specifically in the lung after i.v. injection. Endotoxin injection induces reduction of specific pulmonary uptake of this antibody. Even in non-edematous endotoxemia, the accumulation of anti-ACE Mab antibody (Mab 9B9) decreased from 19.02 to 11.91% of ID/g of tissue without anymore » change in accumulation of control nonspecific IgG. The antibody distribution in other organs and its blood level were almost the same as in the control. In a case of endotoxemia accompanied by increased microvascular permeability, the lung accumulation of Mab 9B9 was reduced to 9.17% of ID/g of tissue, while the accumulation of nonspecific IgG increased to 1.44% versus 0.89% in the control.« less
Arthanat, Sajay; Vroman, Kerryellen G; Lysack, Catherine
2016-01-01
To demonstrate the effectiveness and value of a home-based information communication technology (ICT) training program for older adults. Thirteen older adults were provided in-home ICT training by graduate occupational therapy students using an iPad. The breadth and frequency of ICT use, perspectives on technology, and perceived independence were recorded at baseline, during the 3-month training and at follow-up, along with an end-of-study questionnaire. Non-parametric Friedman analysis was conducted to verify trends in the outcome measures. The qualitative data were examined by content analysis. Participants' breadth of ICT activities showed a significant trend across 6 months. Leisure accounted for the significant increase, while health management and social connections activities increased modestly. A positive trend in participants' perspectives on technology was evident along with a marginal increase in perceived independence. Participants' perspectives were thematically categorized as technology experiences, interactions with coach, training approach, and specific activities. As reflection of the training program's value, 12 of the 13 participants took ownership of the iPad at the end of the study. Building capacity of older adults to utilize the multifaceted potential of ICT is critical in addressing declines in health, impending disabilities, and social isolation. Implications for Rehabilitation A one-on-one home-based individualized information communication technology (ICT) training program for older adults could result in a progressive increase in the breadth of online activities carried out by them. Specifically, the increase in their usage of ICT could be expected in leisure-based online activities. Individualized training programs designed based on needs, priorities, and learning style of older adults could have a positive impact on their technological perspectives and intrinsic motivation to adopt ICT.
Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.
Demir, Ozlem; Filibeli, Ayse
2012-09-01
The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.
Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies.
Mitani, Akinori; Dong, Mingyuan; Komiyama, Takaki
2018-01-08
Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schalk, Charles W.; Stasulis, Nicholas W.
2012-01-01
Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in one case, high concentration of dissolved oxygen at the bottom of the well indicated the presence of a highly transmissive fracture that was in good connection with a surficial feature (stream or atmosphere). Data indicated that fractures have a substantial influence on the transport of chlorides to the subsurface; that elevated specific conductance occurred throughout the year, not just when road salts were applied; and that chloride contamination, as indicated by elevated specific conductance, may persist for years.
Clute, Shalyn C.; Watkin, Levi B.; Cornberg, Markus; Naumov, Yuri N.; Sullivan, John L.; Luzuriaga, Katherine; Welsh, Raymond M.; Selin, Liisa K.
2005-01-01
The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M158–66–specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1280–288, which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM. PMID:16308574
Clute, Shalyn C; Watkin, Levi B; Cornberg, Markus; Naumov, Yuri N; Sullivan, John L; Luzuriaga, Katherine; Welsh, Raymond M; Selin, Liisa K
2005-12-01
The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M1(58-66)-specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1(280-288), which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM.
Patterning of somatosympathetic reflexes
NASA Technical Reports Server (NTRS)
Kerman, I. A.; Yates, B. J.
1999-01-01
In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.
Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli
Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria
2014-01-01
Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations. PMID:25386905