Sample records for increased stability compared

  1. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    PubMed Central

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy. PMID:27471457

  2. Comparison of the primary stability of different tibial baseplate concepts to retain both cruciate ligaments during total knee arthroplasty.

    PubMed

    Nowakowski, Andrej M; Stangel, Melanie; Grupp, Thomas M; Valderrabano, Victor

    2013-10-01

    A novel tibial baseplate design (Transversal Support Tibial Plateau) as a new treatment concept for bi-cruciate retaining total knee arthroplasty is evaluated for mechanical stability and compared to other tibial baseplate designs. This concept should provide better primary stability and thus, less subsidence, than implantation of two separate unicondylar tibial baseplates. Different baseplates were implanted into synthetic bone specimens (Sawbones® Pacific Research Laboratories, Inc., Washington, USA), all uncemented. Using a standardized experimental setup, subsidence was achieved, enabling comparison of the models regarding primary stability. Overall implant subsidence was significantly increased for the two separate unicondylar tibial baseplates versus the new Transversal Support Tibial Plateau concept, which showed comparable levels to a conventional tibial baseplate. Reduced subsidence results in better primary stability. Linking of two separate baseplates appears to provide increased primary stability in terms of bony fixation, comparable to that of a conventional single tibial baseplate. © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Soil Aggregates and Associated Organic Matter under Conventional Tillage, No-Tillage, and Forest Succession after Three Decades

    PubMed Central

    Devine, Scott; Markewitz, Daniel; Hendrix, Paul; Coleman, David

    2014-01-01

    Impacts of land use on soil organic C (SOC) are of interest relative to SOC sequestration and soil sustainability. The role of aggregate stability in SOC storage under contrasting land uses has been of particular interest relative to conventional tillage (CT) and no-till (NT) agriculture. This study compares soil structure and SOC fractions at the 30-yr-old Horseshoe Bend Agroecosystem Experiment (HSB). This research is unique in comparing NT and CT with adjacent land concurrently undergoing forest succession (FS) and in sampling to depths (15–28 cm) previously not studied at HSB. A soil moving experiment (SME) was also undertaken to monitor 1-yr changes in SOC and aggregation. After 30 years, enhanced aggregate stability under NT compared to CT was limited to a depth of 5 cm, while enhanced aggregate stability under FS compared to CT occurred to a depth of 28 cm and FS exceeded NT from 5–28 cm. Increases in SOC concentrations generally followed the increases in stability, except that no differences in SOC concentration were observed from 15–28 cm despite greater aggregate stability. Land use differences in SOC were explained equally by differences in particulate organic carbon (POC) and in silt-clay associated fine C. Enhanced structural stability of the SME soil was observed under FS and was linked to an increase of 1 Mg SOC ha−1 in 0–5 cm, of which 90% could be attributed to a POC increase. The crushing of macroaggregates in the SME soil also induced a 10% reduction in SOC over 1 yr that occurred under all three land uses from 5–15 cm. The majority of this loss was in the fine C fraction. NT and FS ecosystems had greater aggregation and carbon storage at the soil surface but only FS increased aggregation below the surface, although in the absence of increased carbon storage. PMID:24465460

  4. The clinical and EMG assessment of the effects of stabilization exercise on nonspecific chronic neck pain: A randomized controlled trial.

    PubMed

    Ghaderi, Fariba; Jafarabadi, Mohammad Asghari; Javanshir, Khodabakhsh

    2017-01-01

    Neck pain is an important cause of disability. In spite of its high prevalence rate, treatment of the disorder is a challenging topic. Stabilization exercise has been the topic of many studies. To compare the effects of stabilization and routine exercises on chronic neck pain. Forty patients were randomly assigned into either stabilization or routine exercise groups and undertook a 10-week training program. Electromyographic (EMG) activity was recorded from Sternocleidomastoid (SCM), Anterior Scalene (AS) and Splenius Capitis (SC) muscles bilaterally. Endurance time of deep flexor muscles was measured by chronometer.Pain and disability were measured using Visual Analogue Scale (VAS) and neck disability index (NDI) questionnaire, respectively before and after training period. Findings revealed significant decreased pain and disability in both groups after intervention (P< 0/001). Flexor muscles endurance of stabilization group was significantly increased compared with that of routine (P< 0/001). Also EMG activity of SCM, AS and SC muscles were significantly decreased in stabilization group compared with routine (P< 0/001). Increased deep flexor endurance and decreased EMG activity of SCM, AS and SC muscles suggest an important role for stabilizing exercises on reducing the activity of superficial muscles in chronic neck pain.

  5. Improved stability and oral bioavailability of Ganneng dropping pills following transforming lignans of herpetospermum caudigerum into nanosuspensions.

    PubMed

    Li, Juan-Juan; Cheng, Ling; Shen, Gang; Qiu, Ling; Shen, Cheng-Ying; Zheng, Juan; Xu, Rong; Yuan, Hai-Long

    2018-01-01

    The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC 0-t , C max and decrease in T max when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  6. Fusion of an oligopeptide to the N terminus of an alkaline α-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation.

    PubMed

    Yang, Haiquan; Lu, Xinyao; Liu, Long; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-05-01

    In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK. Compared with AmyK, the specific activity and catalytic constant (kcat) of AmyK-p1 were increased by 4.1-fold and 3.5-fold, respectively. The following properties were also improved in AmyK-p1 compared with AmyK: kcat/Km increased from 1.8 liter/(g·min) to 9.7 liter/(g·min), stable pH range was extended from 7.0 to 11.0 to 7.0 to 12.0, optimal temperature increased from 50°C to 55°C, and the half-life at 60°C increased by ∼2-fold. Moreover, AmyK-p1 showed improved resistance to oxidation and retained 54% of its activity after incubation with H2O2, compared with 20% activity retained by AmyK. Finally, AmyK-p1 was more compatible than AmyK with the commercial solid detergents tested. The mechanisms responsible for these changes were analyzed by comparing the three-dimensional (3-D) structural models of AmyK and AmyK-p1. The significantly enhanced catalytic efficiency and stability of AmyK-p1 suggests its potential as a detergent ingredient. In addition, the oligopeptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes.

  7. Fusion of an Oligopeptide to the N Terminus of an Alkaline α-Amylase from Alkalimonas amylolytica Simultaneously Improves the Enzyme's Catalytic Efficiency, Thermal Stability, and Resistance to Oxidation

    PubMed Central

    Yang, Haiquan; Lu, Xinyao; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R.; Du, Guocheng

    2013-01-01

    In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK. Compared with AmyK, the specific activity and catalytic constant (kcat) of AmyK-p1 were increased by 4.1-fold and 3.5-fold, respectively. The following properties were also improved in AmyK-p1 compared with AmyK: kcat/Km increased from 1.8 liter/(g·min) to 9.7 liter/(g·min), stable pH range was extended from 7.0 to 11.0 to 7.0 to 12.0, optimal temperature increased from 50°C to 55°C, and the half-life at 60°C increased by ∼2-fold. Moreover, AmyK-p1 showed improved resistance to oxidation and retained 54% of its activity after incubation with H2O2, compared with 20% activity retained by AmyK. Finally, AmyK-p1 was more compatible than AmyK with the commercial solid detergents tested. The mechanisms responsible for these changes were analyzed by comparing the three-dimensional (3-D) structural models of AmyK and AmyK-p1. The significantly enhanced catalytic efficiency and stability of AmyK-p1 suggests its potential as a detergent ingredient. In addition, the oligopeptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes. PMID:23455344

  8. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

    EPA Science Inventory

    A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon...

  9. Minimally Invasive Repair of Pectus Excavatum Without Bar Stabilizers Using Endo Close.

    PubMed

    Pio, Luca; Carlucci, Marcello; Leonelli, Lorenzo; Erminio, Giovanni; Mattioli, Girolamo; Torre, Michele

    2016-02-01

    Since the introduction of the Nuss technique for pectus excavatum (PE) repair, stabilization of the bar has been a matter of debate and a crucial point for the outcome, as bar dislocation remains one of the most frequent complications. Several techniques have been described, most of them including the use of a metal stabilizer, which, however, can increase morbidity and be difficult to remove. Our study compares bar stabilization techniques in two groups of patients, respectively, with and without the metal stabilizer. A retrospective study on patients affected by PE and treated by the Nuss technique from January 2012 to June 2013 at our institution was performed in order to evaluate the efficacy of metal stabilizers. Group 1 included patients who did not have the metal stabilizer inserted; stabilization was achieved with multiple (at least four) bilateral pericostal Endo Close™ (Auto Suture, US Surgical; Tyco Healthcare Group, Norwalk, CT) sutures. Group 2 included patients who had a metal stabilizer placed because pericostal sutures could not be used bilaterally. We compared the two groups in terms of bar dislocation rate, surgical operative time, and other complications. Statistical analysis was performed with the Mann-Whitney U test and Fisher's exact test. Fifty-seven patients were included in the study: 37 in Group 1 and 20 in Group 2. Two patients from Group 2 had a bar dislocation. Statistical analysis showed no difference between the two groups in dislocation rate or other complications. In our experience, the placement of a metal stabilizer did not reduce the rate of bar dislocation. Bar stabilization by the pericostal Endo Close suture technique appears to have no increase in morbidity or migration compared with the metal lateral stabilizer technique.

  10. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.

    PubMed

    Patel, Prakruti J; Bhatt, Tanvi

    2016-10-01

    We examined whether aging with and without a cerebral lesion such as stroke affects modulation of reactive balance response for recovery from increasing intensity of sudden slip-like stance perturbations. Ten young adults, older age-match adults and older chronic stroke survivors were exposed to three different levels of slip-like perturbations, level 1 (7.75m/s(2)), Level II (12.00m/s(2)) and level III (16.75m/s(2)) in stance. The center of mass (COM) state stability was computed as the shortest distance of the instantaneous COM position and velocity relative to base of support (BOS) from a theoretical threshold for backward loss of balance (BLOB). The COM position (XCOM/BOS) and velocity (ẊCOM/BOS) relative to BOS at compensatory step touchdown, compensatory step length and trunk angle at touchdown were also recorded. At liftoff, stability reduced with increasing perturbation intensity across all groups (main effect of intensity p<0.05). At touchdown, while the young group showed a linear improvement in stability with increasing perturbation intensity, such a trend was absent in other groups (intensity×group interaction, p<0.05). Between-group differences in stability at touchdown were thus observed at levels II and III. Further, greater stability at touchdown positively correlated with anterior XCOM/BOS however not with ẊCOM/BOS. Young adults maintained anterior XCOM/BOS by increasing compensatory step length and preventing greater trunk extension at higher perturbation intensities. The age-match group attempted to increase step length from intensity I to II to maintain stability however could not further increase step length at intensity III, resulting in lower stability on this level compared with the young group. Stroke group on the other hand was unable to modulate compensatory step length or control trunk extension at higher perturbation intensities resulting in reduced stability on levels II and III compared with the other groups. The findings reflect impaired modulation of recovery response with increasing intensity of sudden perturbations among stroke survivors compared with their healthy counter parts. Thus, aging superimposed with a cortical lesion could further impair reactive balance control, potentially contributing toward a higher fall risk in older stroke survivors. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Walking a high beam: the balance between employment stability, workplace flexibility, and nonresident father involvement.

    PubMed

    Castillo, Jason T; Welch, Greg W; Sarver, Christian M

    2012-03-01

    Compared with resident fathers, nonresident fathers are more likely to be unemployed or underemployed and less likely, when they are employed, to have access to flexible work arrangements. Although lack of employment stability is associated with lower levels of father involvement, some research shows that increased stability at work without increased flexibility is negatively related to involvement. Using data from the Fragile Families and Child Wellbeing Study (N = 895), the authors examined the relationship between nonresident fathers' employment stability, workplace flexibility, and father involvement. Results indicate that workplace flexibility, but not employment stability, is associated with higher levels of involvement. Policy and practice implications are discussed.

  12. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability.

    PubMed

    Li, Meng; Li, Zheng; Li, Xin; Xin, Jianzeng; Wang, Ying; Li, Guixia; Wu, Liguo; Shen, Qingwu W; Zhang, Dequan

    2018-02-01

    The phosphorylation of sarcoplasmic proteins in postmortem muscles was investigated in relationship to color stability in the present study. Although no difference was observed in the global phosphorylation level of sarcoplasmic proteins, difference was determined in the phosphorylation levels of individual protein bands from muscles with different color stability. Correlation analysis and liquid chromatography - tandem mass spectrometry (LC-MS/MS) identification of phosphoproteins showed that most of the color stability-related proteins were glycolytic enzymes. Interestingly, the phosphorylation level of myoglobin was inversely related to meat color stability. As the phosphorylation of myoglobin increased, color stability based on a ∗ value decreased and metMb content increased. In summary, the study revealed that protein phosphorylation might play a role in the regulation of meat color stability probably by regulating glycolysis and the redox stability of myoglobin, which might be affected by the phosphorylation of myoglobin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of an Unstable Load on Primary and Stabilizing Muscles During the Bench Press.

    PubMed

    Ostrowski, Stephanie J; Carlson, Lara A; Lawrence, Michael A

    2017-02-01

    Ostrowski, SJ, Carlson, LA, and Lawrence, MA. Effect of an unstable load on primary and stabilizing muscles during the bench press. J Strength Cond Res 31(2): 430-434, 2017-Unstable resistance exercises are performed to increase activity of stabilizing muscles. The premise is that this increase in activity will yield greater strength gains than traditional resistance exercises. The purpose of this study was to determine if an unstable load increases muscle activity of stabilizing muscles during a bench press as compared with a standard bench press with a typical load. Fifteen resistance-trained males (age 24.2 ± 2.7 years, mass 84.8 ± 12.0 kg, height 1.77 ± 0.05 m, weight lifting experience 9.9 ± 3.4 years, and bench press 1 repetition maximum [1RM] 107.5 ± 25.9 kg) volunteered for this study. Subjects pressed 2 sets of 5 repetitions in both stable (75% 1RM) and unstable (60% 1RM) conditions using a standard barbell and a flexible Earthquake bar, respectively. Surface electromyography was used to detect muscle activity of primary movers (pectoralis major, anterior deltoid, and triceps) and stabilizing musculature (latissimus dorsi, middle and posterior deltoid, biceps brachii, and upper trapezius). Muscle activity was compared using a multivariate analysis of variance to determine significant (p ≤ 0.05) phase and condition differences. The right and left biceps and the left middle deltoid were significantly more active in the unstable condition. Some of the stabilizing muscles were found to be significantly more active in the unstable condition with 15% less weight. Therefore, bench pressing with an unstable load appears promising in activating stabilizing musculature compared with pressing a typical barbell.

  14. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate.

    PubMed

    Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2014-12-19

    The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of glucuronosylation on anthocyanin color stability.

    PubMed

    Osmani, Sarah Anne; Hansen, Esben Halkjaer; Malien-Aubert, Céline; Olsen, Carl-Erik; Bak, Søren; Møller, Birger Lindberg

    2009-04-22

    The effect of glucuronosylation on the color stability of anthocyanins was investigated using glucuronosylated anthocyanins isolated from the flower petals of the red daisy (Bellis perennis) or obtained by enzymatic in vitro synthesis using heterologously expressed red daisy glucuronosyltransferase BpUGT94B1. Color stability toward light and heat stress was assessed by monitoring CIELAB color coordinates and stability at pH 7.0 by A(550). Cyanidin-3-O-2''-O-glucuronosylglucoside showed improved color stability in response to light compared to both cyanidin 3-O-glucoside and cyanidin 3-O-2''-O-diglucoside. A similar increase in color stability was not observed following heat treatment. Glucuronosylation did not increase the stability of anthocyanins at pH 7.0 as determined by A(550). To test for a possible effect of glucuronosylation on the color stability of anthocyanins in plant extracts used for food coloration, an elderberry (Sambucus nigra) extract was glucuronosylated in vitro. Glucuronosylation of approximately 50% of total anthocyanins proceeded fast and resulted in increased color stability in response to both heat and light. The data show that glucuronosylation may be used to stabilize industrially used extracts of natural colorants.

  16. Structural stability of myoglobin and glycomyoglobin: a comparative molecular dynamics simulation study.

    PubMed

    Alizadeh-Rahrovi, Joulia; Shayesteh, Alireza; Ebrahim-Habibi, Azadeh

    2015-09-01

    Glycoproteins are formed as the result of enzymatic glycosylation or chemical glycation in the body, and produced in vitro in industrial processes. The covalently attached carbohydrate molecule(s) confer new properties to the protein, including modified stability. In the present study, the structural stability of a glycoprotein form of myoglobin, bearing a glucose unit in the N-terminus, has been compared with its native form by the use of molecular dynamics simulation. Both structures were subjected to temperatures of 300 and 500 K in an aqueous environment for 10 ns. Changes in secondary structures and RMSD were then assessed. An overall higher stability was detected for glycomyoglobin, for which the most stable segments/residues were highlighted and compared with the native form. The simple addition of a covalently bound glucose is suggested to exert its stabilizing effect via increased contacts with surrounding water molecules, as well as a different pattern of interactions with neighbor residues.

  17. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  18. The restriction of grazing duration does not compromise lamb meat colour and oxidative stability.

    PubMed

    Luciano, G; Biondi, L; Pagano, R I; Scerra, M; Vasta, V; López-Andrés, P; Valenti, B; Lanza, M; Priolo, A; Avondo, M

    2012-09-01

    Over 72 days, 33 lambs were fed: concentrates in stall (S), grass at pasture for 8 hours (8 h), or grass at pasture for 4 hours in the afternoon (4h-PM). The 4h-PM treatment did not affect the carcass yield compared to the 8h treatment. Meat colour development after blooming was unaffected by the treatments. The 4 h-PM treatment increased the proportion of polyunsaturated fatty acids (PUFA; P<0.0005) and of the highly peroxidizable fatty acids (HP-PUFA; P<0.001) in meat compared to the 8h treatment. The S treatment increased lipid oxidation (higher TBARS values) and impaired colour stability (higher H* values) of meat over storage compared to the 8h and 4 h-PM treatments (P<0.0005 and P=0.003, respectively). No difference in meat oxidative stability was found between the 8h and the 4h-PM treatments. In conclusion, growing lambs can tolerate a restriction of grazing duration without detrimental effects on performances and meat oxidative stability. Copyright © 2012. Published by Elsevier Ltd.

  19. Unconstrained tripolar hip implants: effect on hip stability.

    PubMed

    Guyen, Olivier; Chen, Qing Shan; Bejui-Hugues, Jacques; Berry, Daniel J; An, Kai-Nan

    2007-02-01

    Tripolar implants were developed to treat unstable total hip arthroplasties. However, there is limited confirmation that they achieve this purpose despite their increasing use. Because they have a larger effective head size, these implants are expected to increase range of motion to impingement and improve stability in situations at risk for impingement compared with conventional implants. We assessed the range of motion to impingement using a tripolar implant mounted to an automated hip simulator using 22.2-mm and 28-mm femoral head sizes. The 22 and 28-mm tripolar implants provided increases of 30.5 degrees in flexion, 15.4 degrees in adduction, and 22.4 degrees in external rotation compared with the conventional 22.2-mm femoral head diameter implant. At the critical position of 90 degrees hip flexion, there was an increase of 45.2 degrees in internal rotation. At 0 degrees and 30 degrees external rotation, extension increases were 18.8 degrees and 7.8 degrees, respectively. Bony impingement was the limiting factor. Tripolar implants increased the arc of motion before impingement in positions at risk for dislocation and are expected to provide greater stability.

  20. Comparing the Developmental Genetics of Cognition and Personality over the Life Span.

    PubMed

    Briley, Daniel A; Tucker-Drob, Elliot M

    2017-02-01

    Empirical studies of cognitive ability and personality have tended to operate in isolation of one another. We suggest that returning to a unified approach to considering the development of individual differences in both cognition and personality can enrich our understanding of human development. We draw on previous meta-analyses of longitudinal, behavior genetic studies of cognition and personality across the life span, focusing particular attention on age trends in heritability and differential stability. Both cognition and personality are moderately heritable and exhibit large increases in stability with age; however, marked differences are evident. First, the heritability of cognition increases substantially with child age, while the heritability of personality decreases modestly with age. Second, increasing stability of cognition with age is overwhelmingly mediated by genetic factors, whereas increasing stability of personality with age is entirely mediated by environmental factors. Third, the maturational time-course of stability differs: Stability of cognition nears its asymptote by the end of the first decade of life, whereas stability of personality takes three decades to near its asymptote. We discuss how proximal gene-environment dynamics, developmental processes, broad social contexts, and evolutionary pressures may intersect to give rise to these divergent patterns. © 2015 Wiley Periodicals, Inc.

  1. Comparing the Developmental Genetics of Cognition and Personality over the Lifespan

    PubMed Central

    Briley, Daniel A.; Tucker-Drob, Elliot M.

    2015-01-01

    Objective Empirical studies of cognitive ability and personality have tended to operate in isolation of one another. We suggest that returning to a unified approach to considering the development of individual differences in both cognition and personality can enrich our understanding of human development. Method We draw on previous meta-analyses of longitudinal, behavior genetic studies of cognition and personality across the lifespan, focusing particular attention on age trends in heritability and differential stability. Results Both cognition and personality are moderately heritable and exhibit large increases in stability with age; however, marked differences are evident. First, the heritability of cognition increases substantially with child age, while the heritability of personality decreases modestly with age. Second, increasing stability of cognition with age is overwhelmingly mediated by genetic factors, whereas increasing stability of personality with age is entirely mediated by environmental factors. Third, the maturational time-course of stability differs: Stability of cognition nears its asymptote by the end of the first decade of life, whereas stability of personality takes three decades to near its asymptote. Conclusions We discuss how proximal gene-environment dynamics, developmental processes, broad social contexts, and evolutionary pressures may intersect to give rise to these divergent patterns. PMID:26045299

  2. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    PubMed Central

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  3. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain

    DOE PAGES

    Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya; ...

    2016-04-12

    Serine β-lactamases are bacterial enzymes that hydrolyze β- lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. Here, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M- 14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutantmore » were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. In addition, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. Our findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.« less

  4. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain

    PubMed Central

    Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya; Mehta, Shrenik C.; Sankaran, Banumathi; Zwart, Peter; Prasad, B.V. Venkataram; Palzkill, Timothy

    2016-01-01

    Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine by glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48 and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intra-helical hydrogen bond network compared to the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability. PMID:27073009

  5. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya

    Serine β-lactamases are bacterial enzymes that hydrolyze β- lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. Here, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M- 14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutantmore » were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. In addition, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. Our findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.« less

  6. Cervical spinal motion during intubation: efficacy of stabilization maneuvers in the setting of complete segmental instability.

    PubMed

    Lennarson, P J; Smith, D W; Sawin, P D; Todd, M M; Sato, Y; Traynelis, V C

    2001-04-01

    The purpose of this study was to characterize and compare segmental cervical motion during orotracheal intubation in cadavers with and without a complete subaxial injury, as well as to examine the efficacy of commonly used stabilization techniques in limiting that motion. Intubation procedures were performed in 10 fresh human cadavers in which cervical spines were intact and following the creation of a complete C4-5 ligamentous injury. Movement of the cervical spine during direct laryngoscopy and intubation was recorded using video fluoroscopy and examined under the following conditions: 1) without stabilization; 2) with manual in-line cervical immobilization; and 3) with Gardner-Wells traction. Subsequently, segmental angular rotation, subluxation, and distraction at the injured C4-5 level were measured from digitized frames of the recorded video fluoroscopy. After complete C4-5 destabilization, the effects of attempted stabilization on distraction, angulation, and subluxation were analyzed. Immobilization effectively eliminated distraction, and diminished angulation, but increased subluxation. Traction significantly increased distraction, but decreased angular rotation and effectively eliminated subluxation. Orotracheal intubation without stabilization had intermediate results, causing less distraction than traction, less subluxation than immobilization, but increased angulation compared with either intervention. These results are discussed in terms of both statistical and clinical significance and recommendations are made.

  7. Interosseous Ligament and Transverse Forearm Stability: A Biomechanical Cadaver Study.

    PubMed

    Gutowski, Christina J; Darvish, Kurosh; Ilyas, Asif M; Jones, Christopher M

    2017-02-01

    The interosseous ligament (IOL) is known to be an important longitudinal stabilizer of the forearm. We hypothesize that it may also contribute to transverse stability, with pronosupination tensioning of the radius relative to the ulna. Therefore, when injured, we predict the interosseous space should widen in the transverse plane, enough to be appreciable on plain radiographs. A measurable difference in interosseous space, comparing an injured with an uninjured forearm, can potentially be of diagnostic and clinical value. Ten fresh-frozen cadaver arms (from 5 individuals) were radiographed in 6 different positions of forearm supination, first in an uninjured state and then with the IOL sectioned, both partially (central band only) and completely. The transverse interosseous distance was measured on radiographs using edge detection software and compared using analysis of variance and contrast analysis. The maximum range of pronosupination was also compared before and after injury, using a paired t test. Average maximum supination increased from 84° to 106°, and pronation from 69° to 84°, after the IOL was sectioned completely. Sectioning of the IOL led to a statistically significant increase in the interosseous distance, a minimum of 2 mm, in all but one forearm position. The IOL of the forearm plays an important role in providing transverse stability to the radius and ulna. When the IOL is sectioned, the forearm exhibits increased pronosupination range of motion. Radiographs of bilateral forearms taken in identical rotational position can reliably differentiate between an intact and torn IOL in cadavers. The IOL's stabilizing role during forearm rotation suggests a novel strategy for diagnosing forearm IOL injury using comparative radiographic measurements. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  9. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  10. Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles.

    PubMed

    Chen, Mu; Mokhtar, Muhamad Z; Whittaker, Eric; Lian, Qing; Hamilton, Bruce; O'Brien, Paul; Zhu, Mingning; Cui, Zhengxing; Haque, Saif A; Saunders, Brian R

    2017-07-20

    Perovskite solar cells (PSCs) are a disruptive technology that continues to attract considerable attention due to their remarkable and sustained power conversion efficiency increase. Improving PSC stability and reducing expensive hole transport material (HTM) usage are two aspects that are gaining increased attention. In a new approach, we investigate the ability of insulating polystyrene microgel particles (MGs) to increase PSC stability and replace the majority of the HTM phase. MGs are sub-micrometre crosslinked polymer particles that swell in a good solvent. The MGs were prepared using a scalable emulsion polymerisation method. Mixed HTM/MG dispersions were subsequently spin-coated onto PSCs and formed composite HTM-MG layers. The HTMs employed were poly(triaryl amine) (PTAA), poly(3-hexylthiophene) (P3HT) and Spiro-MeOTAD (Spiro). The MGs formed mechanically robust composite HTMs with PTAA and P3HT. In contrast, Spiro-MG composites contained micro-cracks due the inability of the relatively small Spiro molecules to interdigitate. The efficiencies for the PSCs containing PTAA-MG and P3HT-MG decreased by only ∼20% compared to control PSCs despite PTAA and P3HT being the minority phases. They occupied only ∼35 vol% of the composite HTMs. An unexpected finding from the study was that the MGs dispersed well within the PTAA matrix. This morphology aided strong quenching of the CH 3 NH 3 PbI 3-x Cl x fluorescence. In addition, the open circuit voltages for the PSCs prepared using P3HT-MG increased by ∼170 mV compared to control PSCs. To demonstrate their versatility the MGs were also used to encapsulate P3HT-based PSCs. Solar cell stability data for the latter as well as those for PSCs containing composite HTM-MG were both far superior compared to data measured for a control PSC. Since MGs can reduce conjugated polymer use and increase stability they have good potential as dual-role PSC additives.

  11. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks.

    PubMed

    Graham, Ryan B; Brown, Stephen H M

    2012-06-01

    Stability of the spinal column is critical to bear loads, allow movement, and at the same time avoid injury and pain. However, there has been a debate in recent years as to how best to define and quantify spine stability, with the outcome being that different methods are used without a clear understanding of how they relate to one another. Therefore, the goal of the present study was to directly compare lumbar spine rotational stiffness, calculated with an EMG-driven biomechanical model, to local dynamic spine stability calculated using Lyapunov analyses of kinematic data, during a series of continuous dynamic lifting challenges. Twelve healthy male subjects performed 30 repetitive lifts under three varying load and three varying rate conditions. With an increase in the load lifted (constant rate) there was a significant increase in mean, maximum, and minimum spine rotational stiffness (p<0.001) and a significant increase in local dynamic stability (p<0.05); both stability measures were moderately to strongly related to one another (r=-0.55 to -0.71). With an increase in lifting rate (constant load), there was also a significant increase in mean and maximum spine rotational stiffness (p<0.01); however, there was a non-significant decrease in the minimum rotational stiffness and a non-significant decrease in local dynamic stability (p>0.05). Weak linear relationships were found for the varying rate conditions (r=-0.02 to -0.27). The results suggest that spine rotational stiffness and local dynamic stability are closely related to one another, as they provided similar information when movement rate was controlled. However, based on the results from the changing lifting rate conditions, it is evident that both models provide unique information and that future research is required to completely understand the relationship between the two models. Using both techniques concurrently may provide the best information regarding the true effects of (in) stability under different loading and movement scenarios, and in comparing healthy and clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of infrared heating on the formation of sesamol and quality of defatted flours from Sesamum indicum L.

    PubMed

    Kumar, C Mahendra; Appu Rao, A G; Singh, Sridevi Annapurna

    2009-01-01

    Infrared (IR) heating offers several advantages over conventional heating in terms of heat transfer efficiency, compactness of equipment, and quality of the products. Roasting of sesame seeds degrades the lignan sesamolin to sesamol, which increases the oxidative stability of sesame oil synergistically with tocopherols. IR (near infrared, 1.1 to 1.3 microm, 6 kW power) roasting conditions were optimized for the conversion of sesamolin to sesamol. The resultant oil was evaluated for sesamol and tocopherol content as well as oxidative stability. The defatted flours were evaluated for their nutritional content and functionality. IR roasting of sesame seeds at 200 degrees C for 30 min increased the efficiency of conversion of sesamolin to sesamol (51% to 82%) compared to conventional heating. The gamma-tocopherol content decreased by 17% and 25% in oils treated at 200 and 220 degrees C for 30 min, respectively. There were no significant differences in the tocopherol content and oxidative stability of the oil. Methionine and cysteine content of the flours remained unchanged due to roasting. The functional properties of defatted flours obtained from either IR roasted or conventionally roasted sesame seeds remained the same. Practical Applications: Sesame oil is stable to oxidation compared to other vegetable oils. This stability can be attributed to the presence of tocopherols and the formation of sesamol, the thermal degradation product of sesamolin-a lignan present in sesame. Roasting of sesame seeds before oil extraction increases sesamol content which is a more potent antioxidant than the parent molecule. The conversion efficiency of sesamolin to sesamol is increased by 31% by infrared roasting of seeds compared to electric drum roasting. This can be used industrially to obtain roasted oil with greater oxidative stability.

  13. Mechanical Properties of Stable Glasses Using Nanoindentation

    NASA Astrophysics Data System (ADS)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  14. Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Ping; Li, Hongyu; Gan, Chun

    Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes itmore » very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.« less

  15. Does core stability exercise improve lumbopelvic stability (through endurance tests) more than general exercise in chronic low back pain? A quasi-randomized controlled trial.

    PubMed

    Shamsi, Mohammad Bagher; Rezaei, Mandana; Zamanlou, Mehdi; Sadeghi, Mehdi; Pourahmadi, Mohammad Reza

    2016-01-01

    The aim was to compare core stability and general exercises (GEs) in chronic low back pain (LBP) patients based on lumbopelvic stability (LPS) assessment through three endurance core stability tests. There is a controversy about preference of core stability exercise (CSE) over other types of exercise for chronic LBP. Studies which have compared these exercises used other outcomes than those related to LPS. As it is claimed that CSE enhances back stability, endurance tests for LPS were used. A 16-session CSE program and a GE program with the same duration were conducted for two groups of participants. Frequency of interventions for both groups was three times a week. Forty-three people (aged 18-60 years) with chronic non-specific LBP were alternately allocated to core stability (n = 22) or GE group (n = 21) when admitted. The primary outcomes were three endurance core stability tests including: (1) trunk flexor; (2) trunk extensor; and (3) side bridge tests. Secondary outcomes were disability and pain. Measurements were taken at baseline and the end of the intervention. After the intervention, test times increased and disability and pain decreased within groups. There was no significant difference between two groups in increasing test times (p = 0.23 to p = 0.36) or decreasing disability (p = 0.16) and pain (p = 0.73). CSE is not more effective than GE for improving endurance core stability tests and reducing disability and pain in chronic non-specific LBP patients.

  16. Effect of polyacrylamide on soil physical and hydraulic properties

    NASA Astrophysics Data System (ADS)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Hamdan, Enas

    2017-04-01

    The effect of polyacrylamide (PAM), as a soil conditioner, on selected soil physical and hydraulic properties (infiltration rate (f(t)), hydraulic conductivity (HC), soil moisture content, aggregate stability (AS), and soil aggregation) was studied. Two types of anionic PAM were used: Low molecular weight (LPAM) (1×105 g/mol) with medium charge density (33-43) and high molecular weight (HPAM) (1-6×106 g/mol) with medium charge density (33-43). Sandy loam soil was packed into plastic columns; PAM solutions at different concentrations (100, 250, 500, and 1000 mg L-1) were used every two weeks in four wetting and drying cycles. The highest infiltration rate value was 0.16 mm s-1 at 1000 mg/L low molecular weight PAM while the highest value of infiltration rate in high PAM molecular weight was 0.11 mm s-1 compared to the control (0.01 mm s-1). Soil HC was about 3.00 cm h-1 for LPAM at 1000 mg L-1 PAM, while the highest value for HPAM was about 2 cm h-1 for the same concentration, compared to the control. The amount of water that can be held by soil increased with the addition of PAM compared to the control. Differences in water content were more pronounced in LPAM compared to HPAM. The addition of LPAM increased aggregate stability proportional to PAM concentration. Moreover, 1000 mg L-1 produced the highest aggregate stability (19{%}) compared to HPAM and control (7{%} and 5{%}), respectively. As PAM concentration increased, the geometric mean diameter (GMD) increased for both PAM molecular weights compared to control (0.4 mm). At 1000 mg L-1 the GMD values were 0.88 mm and 0.79 mm for LPAM and HPAM, respectively. The addition of PAM improved soil physical and hydraulic properties, with an advantage to LPAM owing that to its ability to penetrate soil aggregates and therefore stabilizing them.

  17. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  18. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes

    PubMed Central

    Zu, Yujiao; Overby, Haley; Ren, Guofeng; Fan, Zhaoyang; Zhao, Ling; Wang, Shu

    2018-01-01

    Trans -resveratrol (R) has a potential to increase energy expenditure via inducing browning in white adipose tissue. However, its low levels of aqueous solubility, stability, and poor bioavailability limit its application. We have successfully synthesized biocompatible, and biodegradable R encapsulated lipid nanocarriers (R-nano), and R encapsulated liposomes (R-lipo). The mean particle size of R-nano and R-lipo were 140 nm and 110 nm, respectively, and their polydispersity index values were less than 0.2. Nanoen-capsulation significantly increased aqueous solubility and enhanced chemical stability of R, especially at 37 °C. R-lipo had higher physical and chemical stability than R-nano while R-nano had more prolonged release than R-lipo. Both R-nano and R-lipo increased cellular R content in 3T3-L1 cells. Both R-nano and R-lipo dose-dependently induced uncoupling protein 1 (UCP1) mRNA expression and decreased white specific marker insulin growth factor binding protein 3 expression under isoproterenol (ISO)-stimulated conditions. At the low dose (5 μM), nanoencapsulated compared to native R enhanced UCP1 and beige marker CD137 expression under ISO-stimulated conditions. Compared to R-nano, R-lipo had better biological activity, possibly due to its higher physical and chemical stability at the room and body temperature. Taken together, our study demonstrates that nanoencapsulation increased R’s aqueous solubility and stability, which led to enhanced browning of white adipocytes. Even though both R-lipo and R-nano increased R’s browning activities, their differential characteristics need to be considered in obesity treatment. PMID:29433059

  19. The Influence of Increasing Rain and Earthquake Activities on Landslide Slope Stability in Forest Areas

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Aditian, A.

    2014-12-01

    Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.

  20. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  1. Not All Is Lost: Old Adults Retain Flexibility in Motor Behaviour during Sit-to-Stand

    PubMed Central

    Greve, Christian; Zijlstra, Wiebren; Hortobágyi, Tibor; Bongers, Raoul M.

    2013-01-01

    Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits. PMID:24204952

  2. Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    NASA Astrophysics Data System (ADS)

    Stefanikova, E.; Frassinetti, L.; Saarelma, S.; Loarte, A.; Nunes, I.; Garzotti, L.; Lomas, P.; Rimini, F.; Drewelow, P.; Kruezi, U.; Lomanowski, B.; de la Luna, E.; Meneses, L.; Peterka, M.; Viola, B.; Giroud, C.; Maggi, C.; contributors, JET

    2018-05-01

    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (δ) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.

  3. Activity of Shoulder Stabilizers and Prime Movers During an Unstable Overhead Press.

    PubMed

    Williams, Martin R; Hendricks, Dustin S; Dannen, Michael J; Arnold, Andrea M; Lawrence, Michael A

    2018-06-08

    Williams, MR Jr, Hendricks, DS, Dannen, MJ, Arnold, AM, and Lawrence, MA. Activity of shoulder stabilizers and prime movers during an unstable overhead press. J Strength Cond Res XX(X): 000-000, 2018-Overhead reaching is a common movement that relies heavily on muscles for dynamic stability. Stabilizer muscle activation increased during squatting and bench pressing with an unstable load, but the overhead press (OHP) has yet to be examined. The purpose of this study is to compare muscle activity of the shoulder stabilizers and prime movers and excursions of the center of pressure (CoP) during the OHP in 2 unstable and one stable conditions. Twelve men (aged 25.3 ± 2.7 years, mass: 91.5 ± 8.4 kg, height: 1.81 ± 0.06 m) pressed 50% of their 1 repetition maximum for 10 repetitions over 3 conditions: a straight stable barbell (SS), a straight unstable (SU) barbell with kettlebells suspend by elastic bands, and an unstable Earthquake (EU) bar with kettlebells suspended by elastic bands. Activity of the shoulder stabilizers and prime movers were measured via surface and indwelling electromyography. Center of pressure excursion of the right foot was also measured. A multivariate analysis was used to determine significant differences between conditions. Pressing with the EQ increased activation of the biceps brachii, erector spinae, latissimus dorsi, pectoralis major, rectus abdominus, rhomboids, and serratus anterior over the SS condition, whereas only the SU condition increased activation in the erector spinae and latissimus dorsi muscles. The EQ condition produced greater CoP excursion (35.3 ± 7.9% foot length) compared with the SU (28.0 ± 7.2% foot length) and SS (22.2 ± 6.3% foot length) conditions. Therefore, the EU condition may be an effective exercise to activate scapular stabilizers.

  4. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    PubMed

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  5. Efficacy of Dorsoradial Capsulodesis for Trapeziometacarpal Joint Instability: A Cadaver Study.

    PubMed

    Chenoweth, Brian A; O'Mahony, Gavin D; Fitzgerald, Casey; Stoner, Julie A; O'Donoghue, Daniel L; Rayan, Ghazi M

    2017-01-01

    To test the biomechanical properties of the dorsoradial capsulodesis procedure. Six cadaveric hands were used. After exposing the trapeziometacarpal (TMC) joint, we placed Kirschner wires in the distal radius and thumb metacarpal. The rotation shear test was then performed to test the joint axial laxity, and angular measurements using Kirschner wires as reference points were documented. The dorsoradial (DR) ligament and capsule were released, followed by the intermetacarpal (IM) ligament; angular measurements were obtained. Finally, the DR capsulodesis procedure was performed, and final measurements were obtained. Comparisons were made among the various stages of ligament integrity to determine the amount of stability provided by DR capsulodesis. All cadavers demonstrated axial laxity with transection of the DR ligament; an increase in stability was obtained after DR capsulodesis. Transection of the capsule and IM ligament caused increased laxity relative to the native joint (median, 24° and 35°, respectively, on rotational testing). After we performed DR capsulodesis, rotational stability improved by a median of 41° compared with DR ligament transection, 49° compared with DR and IM ligament transection, and 18° relative to the native joint. Dorsoradial capsulodesis restores rotational stability for TMC joint after division of the DR and IM ligaments. The stability achieved was statistically significant compared with both an intact native TMC joint and induced laxity of the TMC joint. The DR capsulodesis procedure may improve rotational stability to the TMC joint. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. Parametric analysis of swept-wing geometry with sheared wing tips

    NASA Technical Reports Server (NTRS)

    Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.

    1990-01-01

    A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.

  7. Effect of arm swing strategy on local dynamic stability of human gait.

    PubMed

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van Dieën, Jaap H

    2015-02-01

    Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. To examine how different modes of arm swing affect gait stability. Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior-posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Excessive arm swing significantly increases local dynamic stability of human gait. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.

    PubMed

    Tomoyasu, Toshifumi; Tabata, Atsushi; Ishikawa, Yoko; Whiley, Robert A; Nagamune, Hideaki

    2013-01-01

    A small heat shock protein, AgsA, possesses chaperone activity that can reduce the amount of heat-aggregated protein in vivo, and suppress the aggregation of chemical- and heat-denatured proteins in vitro. Therefore, we examined the ability of AgsA to stabilize the activity of several enzymes by using this chaperone activity. We observed that AgsA can stabilize the enzymatic activities of Renilla (Renilla reniformis) luciferase, firefly (Photinus pyralis) luciferase, and β-galactosidase, and showed comparable or greater stabilization of these enzymes than bovine serum albumin (BSA), a well-known stabilizer of enzyme activities. In particular, AgsA revealed better stabilization of Renilla luciferase and β-galactosidase than BSA under disulfide bond-reducing conditions with dithiothreitol. In addition, AgsA also increased the enzymatic performance of β-galactosidase and various restriction enzymes to a comparable or greater extent than BSA. These data indicate that AgsA may be useful as a general stabilizer of enzyme activities. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed similar correlations, i.e. that ?' of low density soil material (~15.5 kN/m³) increased by the same amount whether by planting with White Alder or by compaction to ~19.0 kN/m³. Based on this coincidence the method to quantify soil aggregate produced satisfying results which indicate that soil aggregate stability is a potential proxy for ?' and the joint impact of mycorrhizal fungi and plant roots increase the resistance against superficial soil failure. It is concluded that soil aggregate stability mirrors biological effects on soil stability reasonably well and may be used as an indicator to quantify the effectiveness of ecological restoration and stabilisation measures.

  10. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.

    PubMed

    Maghsoodi, Maryam; Nokhodchi, Ali

    2016-12-01

    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  11. Biomechanical Stability of a Stand-Alone Interbody Spacer in Two-Level and Hybrid Cervical Fusion Constructs.

    PubMed

    Kang, Daniel G; Wagner, Scott C; Tracey, Robert W; Cody, John P; Gaume, Rachel E; Lehman, Ronald A

    2017-10-01

    In vitro human cadaveric biomechanical analysis. To evaluate the segmental stability of a stand-alone spacer (SAS) device compared with the traditional anterior cervical plate (ACP) construct in the setting of a 2-level cervical fusion construct or as a hybrid construct adjacent to a previous 1-level ACP construct. Twelve human cadaveric cervical spines (C2-T1) were nondestructively tested with a custom 6-degree-of-freedom spine simulator under axial rotation (AR), flexion-extension (FE), and lateral bending (LB) at 1.5 N m loads. After intact analysis, each specimen underwent instrumentation and testing in the following 3 configurations, with each specimen randomized to the order of construct: (A) C5-7 SAS; (B) C5-6 ACP, and C6-7 SAS (hybrid); (C) C5-7 ACP. Full range of motion (ROM) data at C5-C7 was obtained and analyzed by each loading modality utilizing mean comparisons with repeated measures analysis of variance with Sidak correction for multiple comparisons. Compared with the intact specimen, all tested constructs had significantly increased segmental stability at C5-C7 in AR and FE ROM, with no difference in LB ROM. At C5-C6, all test constructs again had increased segmental stability in FE ROM compared with intact (10.9° ± 4.4° Intact vs SAS 6.6° ± 3.2°, P < .001; vs.Hybrid 2.9° ± 2.0°, P = .005; vs ACP 2.1° ± 1.4°, P < .001), but had no difference in AR and LB ROM. Analysis of C6-C7 ROM demonstrated all test groups had significantly greater segmental stability in FE ROM compared with intact (9.6° ± 2.7° Intact vs SAS 5.0° ± 3.0°, P = .018; vs Hybrid 5.0° ± 2.7°, P = .018; vs ACP 4.4° ± 5.2°, P = .005). Only the hybrid and 2-level ACP constructs had increased stability at C6-C7 in AR ROM compared with intact, with no difference for all test groups in LB ROM. Comparison between test constructs demonstrated no difference in C5-C7 and C6-C7 segmental stability in all planes of motion. However, at C5-C6 comparison between test constructs found the 2-level SAS had significantly less segmental stability compared to the hybrid (6.6° ± 3.2° vs 2.9° ± 2.0°, P = .025) and ACP (6.6° ± 3.2° vs 2.1° ± 1.4°, P = .004). Our study found the currently tested SAS device may be a reasonable option as part of a 2-level hybrid construct, when used below an adjacent 1-level ACP, but should be used with careful consideration as a 2-level SAS construct. Consequences of decreased segmental stability in FE are unknown; however, optimal immediate fixation stability is an important surgical principle to avoid loss of fixation, segmental kyphosis, interbody graft subsidence, and pseudarthrosis.

  12. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    PubMed Central

    Kurakula, Mallesh; El-Helw, AM; Sobahi, Tariq R; Abdelaal, Magdy Y

    2015-01-01

    Cationic charged chitosan as stabilizer was evaluated in preparation of nanocrystals using probe sonication method. The influence of cationic charge densities of chitosan (low CSL, medium CSM, high CSH molecular weights) and Labrasol® in solubility enhancement and modifying the release was investigated, using atorvastatin (ATR) as poorly soluble model drug. Compared to CSM and CSH; low cationic charge of CSL acted as both electrostatic and steric stabilizer by significant size reduction to 394 nm with charge of 21.5 meV. Solubility of ATR-CSL increased to 60-fold relative to pure ATR and ATR-L. Nanocrystals were characterized for physiochemical properties. Scanning electron microscopy revealed scaffold-like structures with high surface area. X-ray powder diffractometry and differential scanning calorimetry revealed crystalline to slight amorphous state changes after cationic charge size reduction. Fourier transform-infrared spectra indicated no potent drug-excipient interactions. The enhanced dissolution profile of ATR-CSL indicates that sustained release was achieved compared with ATR-L and Lipitor®. Anti-hyperlipidemic performance was pH dependent where ATR-CSL exhibited 2.5-fold higher efficacy at pH 5 compared to pH 6 and Lipitor®. Stability studies indicated marked changes in size and charge for ATR-L compared to ATR-CSL exemplifying importance of the stabilizer. Therefore, nanocrystals developed with CSL as a stabilizer is a promising choice to enhance dissolution, stability, and in-vivo efficacy of major Biopharmaceutical Classification System II/IV drugs. PMID:25609947

  13. Multi-muscle electrical stimulation and stand training: Effects on standing.

    PubMed

    Momeni, Kamyar; Ramanujam, Arvind; Garbarini, Erica L; Forrest, Gail F

    2018-02-15

    To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). Single-subject, longitudinal study. Neuroplasticity laboratory. A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSL A/P =54.0 kg.cm, TSL M/L =14.5 kg.cm), compared to ES-alone (TSL A/P =8.5 kg.cm, TSL M/L =3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.

  14. Meniscal material properties are minimally affected by matrix stabilization using glutaraldehyde and glycation with ribose.

    PubMed

    Hunter, Shawn A; Noyes, Frank R; Haridas, Balakrishna; Levy, Martin S; Butler, David L

    2005-05-01

    Knee meniscus replacement holds promise, but current allografts are susceptible to biodegradation. Matrix stabilization with glutaraldehyde, a crosslinking agent used clinically to fabricate cardiovascular bioprostheses, or with glycation, a process of crosslinking collagen with sugars such as ribose, is a potential means of rendering tissue resistant to such degradation. However, stabilization should not significantly alter meniscal material properties, which could disturb normal function in the knee. Our objective was to evaluate the effects of glutaraldehyde- and glycation-induced matrix stabilization on the material properties of porcine meniscus. Normal untreated meniscus specimens were tested in confined compression at one of three applied stresses (0.069, 0.208, 0.347 MPa), subjected to either a glutaraldehyde or glycation stabilization treatment, and then re-tested to measure changes in tissue aggregate modulus, permeability, and compressive strain at equilibrium. Changes in these properties significantly increased with glutaraldehyde concentration and exposure time to ribose. One glutaraldehyde and three glycation treatments did not alter aggregate modulus or compressive strain at equilibrium compared to controls (p > 0.10). However, all treatments increased permeability by at least 108% compared to controls (p < 0.001). This study reveals a dose-dependent relationship between meniscal material properties and certain stabilization conditions and identifies treatments that minimally affect these properties. Further research is necessary to determine whether these treatments prevent enzymatic degradation before and after surgical implantation in the knee.

  15. Effect of Temperature and Time on Fecal Hemoglobin Stability in 5 Fecal Immunochemical Test Methods and One Guaiac Method.

    PubMed

    Catomeris, Peter; Baxter, Nancy N; Boss, Sheila C; Paszat, Lawrence F; Rabeneck, Linda; Randell, Edward; Serenity, Mardie L; Sutradhar, Rinku; Tinmouth, Jill

    2018-01-01

    - Although promising for colorectal cancer screening, hemoglobin (Hb) stability remains a concern with fecal immunochemical tests. This study implemented a novel, standardized method to compare Hb stability across various fecal immunochemical tests. The method can be used to inform decisions when selecting a kit for use in colorectal cancer screening. In so doing, this work addressed a critical need for standardization in this field. - To compare the stability of Hb across 5 different immunochemical kits and one guaiac kit. - The stability of Hb was analyzed in collection devices inoculated with Hb-spiked feces and (1) stored at various temperatures (frozen, refrigerated, ambient, and elevated) for more than 60 days; (2) after undergoing 3 controlled, freeze-thaw cycles; and (3) after being transported by courier or postal services in uncontrolled temperature conditions from 3 locations in Ontario, Canada, to a central testing center. - The stability of Hb varied with time and temperature and by kit. Lower Hb recoveries occurred with increasing temperature and increasing time from sample collection to testing. Refrigeration provided the best stability, although results varied across kits (eg, from 4.2 days to >60 days before a prespecified threshold [<70% probability of the test results remaining positive] was reached). Freeze-thaw stability varied across kits and cycles (Hb recoveries: NS Plus [Alfresa Pharma, Chuo-ku, Osaka, Japan], 91.7% to 95.4%; OC Diana [Eiken Chemical, Taito-ku, Tokyo, Japan], 57.6% to 74.9%). Agreement regarding Hb levels before and after transportation varied across kits (from 57% to 100%). - Important differences in Hb stability were found across the included fecal immunochemical tests. These findings should inform practice-based and population-based colorectal cancer screening.

  16. Treatment of fractures of the condylar head with resorbable pins or titanium screws: an experimental study.

    PubMed

    Schneider, Matthias; Loukota, Richard; Kuchta, Anne; Stadlinger, Bernd; Jung, Roland; Speckl, Katrin; Schmiedekampf, Robert; Eckelt, Uwe

    2013-07-01

    We aimed to compare in vivo the stability of fixation of condylar fractures in sheep using sonic bone welding and standard titanium screws. We assessed stability of the osteosynthesis and maintenance of the height of the mandibular ramus. Height decreased slightly in both groups compared with the opposite side. The volume of the condyle increased considerably in both groups mainly because callus had formed. The results showed no significant disadvantages for pin fixation compared with osteosynthesis using titanium screws. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. All rights reserved.

  17. Increased coagulation and fibrinolytic potential of solvent-detergent plasma: a comparative study between Omniplasma and fresh frozen plasma.

    PubMed

    van Beers, J J B C; van Egmond, L T; Wetzels, R J H; Verhezen, P W M; Beckers, E A M; van Oerle, R; Spronk, H M H; Straat, R J M H E; Henskens, Y M C

    2016-07-01

    In this study, differences in levels of proteins involved in coagulation and fibrinolysis were compared between fresh frozen (quarantine plasma) and Omniplasma. Furthermore, thawing conditions and plasma stability after thawing were studied. 10 Omniplasma and 10 quarantine plasma units were used to study different procoagulation, anticoagulation and fibrinolytic parameters. Analysis took place at different time-points during plasma storage at 2-6°C. At baseline, significant reduced levels of factor V, free protein S, α2-antiplasmin and tPA-induced ROTEM lysis time were observed in Omniplasma as compared to quarantine plasma. Moreover, thrombin generation, IXa-AT complex levels and factor XIa were significantly increased in Omniplasma. The majority of the parameters studied remained stable in Omniplasma 48 h after thawing, with the exception of factor VIII (decrease) and IXa-AT (increase). Our results suggest an increased coagulation potential, presumingly as a result of contact activation during the production process and also, an increased fibrinolytic potential in Omniplasma. The stability of Omniplasma, based upon the different parameters studied, is comparable to Q-plasma. A maximum post-thawing time of 48 hfor Omniplasma can be suggested. © 2016 International Society of Blood Transfusion.

  18. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    PubMed

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, <0.4% of total arsenic was leached, which was comparable to the amount leached during the TCLP (<0.3%). Short-term (18 h) modified TCLP tests (pH 3-12) found that cement stabilization lowered arsenic leaching at high pH, but increased leaching at pH<4.2 compared to non-stabilized wastes. Presenting the first characterization of cement stabilized waste using μXRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of Implant Stability Using Resonance Frequency Analysis: Osteotome Versus Conventional Drilling

    PubMed Central

    Sadeghi, Rokhsareh; Miremadi, Asghar

    2015-01-01

    Objectives: Implant primary stability is one of the important factors in achieving implant success. The osteotome technique may improve primary stability in patients with poor bone quality. The aim of this study was to compare implant stability using two different techniques namely osteotome versus conventional drilling in the posterior maxilla. Materials and Methods: In this controlled randomized clinical trial, 54 dental implants were placed in 32 patients; 29 implants were placed in the osteotome group and 25 in the conventional drilling group. Implant stability was assessed at four time intervals namely at baseline, one, two and three months after implant placement using resonance frequency analysis (RFA). Results: Primary stability based on implant stability quotient (ISQ) units was 71.4±7 for the osteotome group and 67.4±10 for the control group. There was no statistically significant difference between the two groups in implant stability at any of the measurement times. In each group, changes in implant stability from baseline to one month and also from two months to three months post-operatively were not significant but from one month to two months after implant placement, implant stability showed a significant increase in both groups. Conclusion: The results of this study revealed that in both techniques, good implant stability was achieved and osteotome technique did not have any advantage compared to conventional drilling in this regard. PMID:27148375

  20. Continuous synthesis of peralkylated imidazoles and their transformation into ionic liquids with improved (electro)chemical stabilities.

    PubMed

    Maton, Cedric; De Vos, Nils; Roman, Bart I; Vanecht, Evert; Brooks, Neil R; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V

    2012-09-17

    A versatile and efficient method to synthesize tetrasubstituted imidazoles via a one-pot modified Debus-Radziszewski reaction and their subsequent transformation into the corresponding imidazolium ionic liquids is reported. The tetrasubstituted imidazoles were also synthesized by means of a continuous flow process. This straightforward synthetic procedure allows for a fast and selective synthesis of tetrasubstituted imidazoles on a large scale. The completely substituted imidazolium dicyanamide and bis(trifluoromethylsulfonyl)imide salts were obtained via a metathesis reaction of the imidazolium iodide salts. The melting points and viscosities are of the same order of magnitude as for their non-substituted analogues. In addition to the superior chemical stability of these novel ionic liquids, which allows them to be applied in strong alkaline media, the improved thermal and electrochemical stabilities of these compounds compared with conventional imidazolium ionic liquids is also demonstrated by thermogravimetrical analysis (TGA) and cyclic voltammetry (CV). Although increased substitution of the ionic liquids does not further increase thermal stability, a definite increase in cathodic stability is observable. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  2. Stabilizing properties of the halo apparatus.

    PubMed

    Mirza, S K; Moquin, R R; Anderson, P A; Tencer, A F; Steinmann, J; Varnau, D

    1997-04-01

    A cadaveric cervical spine specimen fixed between a fiberglass torso and a plastic skull was used as a model to determine the effect of halo structural parameters on motion at a lesion simulated at C5-C6. In a second part, nine commercially available halo devices were compared. To define the contributions of the various components of the halo apparatus to reducing motion in an injured cervical spine and to compare the stability offered by a sample of commercially available halo devices. Controversy exists concerning the ability of the halo apparatus to stabilize the injured cervical spine. The halo apparatus has been shown to be the most effective nonsurgical method for stabilizing the fractured spine. Nonetheless, several clinical studies have demonstrated that unacceptably large motions can occur at the injured spinal segment stabilized with a halo apparatus. Each cadaveric cervical spine was mounted onto a fiberglass torso and a rigid plastic skull was attached to the base of the occiput. A posterior ligamentous lesion was created between C5 and C6. The halo ring was fitted to the skull and a vest to the torso. Loads were applied to the skull in flexion, extension, and lateral bending, and relative angulation between C5 and C6 was measured with electroinclinometers. In the first part, the effect of parameters such as vest tightness, vest-thorax friction, vest deformation, and connecting bar rigidity on spinal angulation were measured using one vest. In the second part, the stability offered by each of nine commercially available halo devices was compared. Increasing chest strap tightness and decreasing vest deformation reduced angulation at the spinal lesion. Once connecting bar joints were tightened to 25% of their recommended torque, increased tightening or adding additional bars had no effect on rigidity. Although specific vests permitted significantly greater motion in specific directions, no vest allowed greater angulation consistently in all loading planes. Increasing vest tightness, decreasing the deformability of the vest, and ensuring a good fit can reduce motion in the fractured spine. Most commercially available halo vests provide similar mechanical stability to the injured cervical spine.

  3. Perioperative alendronate, risedronate, calcitonin and indomethacin treatment alters femoral stem fixation and periprosthetic bone mineral density in ovariectomized rats.

    PubMed

    Cankaya, Deniz; Tabak, Yalcin; Ozturk, Akif Muhtar; Gunay, Muhammed Cuneyd

    2015-07-01

    Many factors affect implant stability and periprosthetic bone mineral density (BMD) following total joint arthroplasty. We asked whether perioperative alendronate, risedronate, calcitonin and indomethacine administration altered (1) femoral stem shear strength and periprosthetic bone mineral density BMD in ovariectomized rats and (2) whether there were differences in the effect of these drugs. Thirty overiectomized rats were divided into five groups and implanted with intramedullary mini-cortical screws in the femur. Four groups were treated with alendronate, risedronate, salmon calcitonin and indomethacin for 4 weeks preoperatively and 8 weeks postoperatively. Although alendronate and risedronate increased the periprosthetic BMD more than calcitonin, they did not alter implant fixation compared to calcitonin. Indomethacin significantly decreased the BMD around the stem and implant stability compared to all other groups. This study showed that perioperative treatment with bisphosphonates and calcitonin improved the BMD around the stems and implant stability. Although bisphosphonates increased the BMD more than calcitonin, there was no difference in implant stability. Indomethacin markedly decreased the periprosthetic BMD and implant stability. The main clinical significance of our study was the finding about the need to strictly avoid long-term use of high-dose nonsteroidal antiinflammatory drugs for patients who have major joint arthritis and a previous history of arthroplasty.

  4. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  5. Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods.

    PubMed

    Sommerfeld, Thomas; Ehara, Masahiro

    2015-01-21

    The energy of a temporary anion can be computed by adding a stabilizing potential to the molecular Hamiltonian, increasing the stabilization until the temporary state is turned into a bound state, and then further increasing the stabilization until enough bound state energies have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime can be obtained from the same data, but only if the extrapolation is done through analytic continuation of the momentum as a function of the square root of a shifted stabilizing parameter. This method is known as analytic continuation of the coupling constant, and it requires--at least in principle--that the bound-state input data are computed with a short-range stabilizing potential. In the context of molecules and ab initio packages, long-range Coulomb stabilizing potentials are, however, far more convenient and have been used in the past with some success, although the error introduced by the long-rang nature of the stabilizing potential remains unknown. Here, we introduce a soft-Voronoi box potential that can serve as a short-range stabilizing potential. The difference between a Coulomb and the new stabilization is analyzed in detail for a one-dimensional model system as well as for the (2)Πu resonance of CO2(-), and in both cases, the extrapolation results are compared to independently computed resonance parameters, from complex scaling for the model, and from complex absorbing potential calculations for CO2(-). It is important to emphasize that for both the model and for CO2(-), all three sets of results have, respectively, been obtained with the same electronic structure method and basis set so that the theoretical description of the continuum can be directly compared. The new soft-Voronoi-box-based extrapolation is then used to study the influence of the size of diffuse and the valence basis sets on the computed resonance parameters.

  6. Rational Design of Protein Stability: Effect of (2S,4R)-4-Fluoroproline on the Stability and Folding Pathway of Ubiquitin

    PubMed Central

    Crespo, Maria D.; Rubini, Marina

    2011-01-01

    Background Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a Cγ-exo or a Cγ-endo ring pucker in dependence of proline chirality (4R/4S) in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying Cγ-exo puckering. Methodology/Principal Findings While (2S,4R)-4-fluoroproline ((4R)-FPro) containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S)-4-fluoroproline ((4S)-FPro) failed. Our results indicate that (4R)-FPro is favoring the Cγ-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of −4.71 kJ·mol−1 in the case of (4R)-FPro containing ubiquitin ((4R)-FPro-ub) compared to wild type ubiquitin (wt-ub). Expectedly, activity assays revealed that (4R)-FPro-ub retained the full biological activity compared to wt-ub. Conclusions/Significance The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein. PMID:21625626

  7. Tyrosine Phosphorylation of the Human Serotonin Transporter: A Role in the Transporter Stability and Function

    PubMed Central

    Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S.; Jayanthi, Lankupalle D.

    2012-01-01

    The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant 32P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport. PMID:21992875

  8. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.

    PubMed

    Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy

    2008-02-21

    X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.

  9. Feasibility study of basic characterization of MAGAT polymer gel using CBCT attached in linear accelerator: Preliminary study

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, P.; Samuel, E. James jebaseelan

    2018-01-01

    The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.

  10. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  11. Effect of Afterbody Length and Keel Angle on Minimum Depth of Step for Landing Stability and on Take-Off Stability of a Flying Boat

    NASA Technical Reports Server (NTRS)

    Olson, Roland E; Land, Norman S

    1949-01-01

    Tests were made to fill partly the need for information on the effect of afterbody dimensions on the hydrodynamic stability of a flying boat in smooth water. The dimensions investigated were depth of step, angle of afterbody keel, and length of afterbody. An analysis of the data showed that as either the afterbody length or keel angle was increased an accompanying increase in depth of step was required in order to maintain adequate landing stability. The landing-tests results have been reduced to an empirical formula giving the minimum depth of step in terms of afterbody length and keel angle. This formula is compared with results from other tank tests, and the correlation is fairly good. The formula thus becomes of use in preliminary design.

  12. Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil.

    PubMed

    Abbas Ali, M; Anowarul Islam, M; Othman, Noor Hidayu; Noor, Ahmadilfitri Md

    2017-12-01

    The oxidative stability and fatty acid composition of groundnut seed oil (GSO) exposed to microwaves were evaluated during heating at 170 °C. During heating, the oxidative indices such as free fatty acid, peroxide value, p -anisidine value, TOTOX, thiobarbituric acid value, specific extinctions, and color value were increased. The increments were found to be higher in unroasted seed oils compared to roasted ones indicating lower release of lipid oxidation products in roasted GSO. After 9 h heating, the relative content of polyunsaturated fatty acid (PUFA) decreased to 89.53% and that of saturated fatty acid (SFA) increased to 117.46% in unroasted sample. The relative content of PUFA decreased to 92.05% and that of SFA increased to 105.76% in 7.5 min roasted sample after 9 h of heating. However, the roasting process slowed down the oxidative deterioration of PUFA. With increased heating times, an appreciable loss was more apparent in the triacylglycerol species OLL and OOL in unroasted samples compared to roasted ones. In FTIR, the peak intensities in unroasted samples were markedly changed in comparison with roasted samples during heating. The roasting of groundnut seed prior to the oil extraction reduced the oxidative degradation of oil samples; thereby increasing heat stability.

  13. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOEpatents

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  14. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    PubMed

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tryptophan 375 stabilizes the outer-domain core of gp120 for HIV vaccine immunogen design.

    PubMed

    Hu, Duoyi; Bowder, Dane; Wei, Wenzhong; Thompson, Jesse; Wilson, Mark A; Xiang, Shi-Hua

    2017-05-25

    The outer-domain core of gp120 may serve as a better HIV vaccine immunogen than the full-length gp120 because of its greater stability and immunogenicity. In our previous report, we introduced two disulfide bonds to the outer-domain core of gp120 to fix its conformation into a CD4-bound state, which resulted in a significant increase in its immunogenicity when compared to the wild-type outer-domain core. In this report, to further improve the immunogenicity of the outer-domain core based immunogen, we have introduced a Tryptophan residue at gp120 amino acid sequence position 375 (375S/W). Our data from immunized guinea pigs indeed shows a striking increase in the immune response due to this stabilized core outer-domain. Therefore, we conclude that the addition of 375W to the outer-domain core of gp120 further stabilizes the structure of immunogen and increases the immunogenicity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. What you see is what you step: the horizontal-vertical illusion increases toe clearance in older adults during stair ascent.

    PubMed

    Foster, Richard J; Whitaker, David; Scally, Andrew J; Buckley, John G; Elliott, David B

    2015-05-01

    Falls on stairs are a significant cause of morbidity and mortality in elderly people. A simple safety strategy to avoid tripping on stairs is increasing foot clearance. We determined whether a horizontal-vertical illusion superimposed onto stairs to create an illusory perceived increase in stair-riser height would increase stair ascent foot clearance in older participants. Preliminary experiments determined the optimum parameters for the horizontal-vertical illusion. Fourteen older adults (mean age ± 1 SD, 68.5 ± 7.4 years) ascended a three-step staircase with the optimized version of the horizontal-vertical illusion (spatial frequency: 12 cycles per stair riser) positioned either on the bottom or top stair only, or on the bottom and top stair simultaneously. These were compared to a control condition, which had a plain stair riser with edge highlighters positioned flush with each stair-tread edge. Foot clearance and measures of postural stability were compared across conditions. The optimized illusion on the bottom and top stair led to a significant increase in foot clearance over the respective stair edge, compared to the control condition. There were no significant decreases in postural stability. An optimized horizontal-vertical visual illusion led to significant increases in foot clearance in older adults when ascending a staircase, but the effects did not destabilize their postural stability. Inclusion of the horizontal-vertical illusion on raised surfaces (e.g., curbs) or the bottom and top stairs of staircases could improve stair ascent safety in older adults.

  17. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    PubMed

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  18. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    PubMed

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol -1 ) than at 0.1MPa (181.7±12.1kJmol -1 ). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm 3 mol -1 . A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    PubMed

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Characterization, stabilization and activity of uricase loaded in lipid vesicles.

    PubMed

    Tan, Q Y; Wang, N; Yang, H; Zhang, L K; Liu, S; Chen, L; Liu, J; Zhang, L; Hu, N N; Zhao, C J; Zhang, J Q

    2010-01-15

    Uricase-containing lipid vesicles (UOXLVs) were prepared by reverse-phase evaporation method with high efficiency and the characteristics of UOXLVs were described. The average size and zeta potential of UOXLVs obtained by the optimized formulation were 205.47 nm and -37.33 mV, respectively. Uricase was encapsulated in the alkaline aqueous phase of the lipid vesicle and the stability of its tetrameric structure was thus improved and its activity preserved. The storage stability of uricase in lipid vesicles was significantly increased compared to that of free uricase at 4 degrees C in borate buffer of pH 8.5. At 55 degrees C, free uricase was deactivated much more quickly especially at lower concentration predominantly due to enhanced dissociation of uricase into subunits. An intrinsic tryptophan of uricase recovered from the lipid vesicle thermally treated at 55 degrees C revealed that a partially denatured uricase molecule was stabilized through its hydrophobic interaction with lipid vesicle membrane. This interaction was depressed mainly by dissociation of uricase into subunits. At the physiological pH, significant increase of enzyme activity was found for the uricase entrapped in the lipid vesicles (1.8 times that of free uricase) at their respective optimum pH. The shift of optimum pH and increased uricolytic activity suggested the conformation change of the uricase during the entrapment process. The stability to proteolytic digestion was increased obviously by entrapping the uricase in the lipid vesicles. UOXLVs also showed relatively slower loss in activity compared with free uricase when treated with some chemical reagents. Lastly, in vitro study explicitly indicated that the uricase entrapped by UOXLVs possessed higher uricolytic activity than that of native uricase solution.

  1. Yield performance and stability of CMS-based triticale hybrids.

    PubMed

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  2. Biomechanical Stability of a Stand-Alone Interbody Spacer in Two-Level and Hybrid Cervical Fusion Constructs

    PubMed Central

    Wagner, Scott C.; Tracey, Robert W.; Cody, John P.; Gaume, Rachel E.; Lehman, Ronald A.

    2017-01-01

    Study Design: In vitro human cadaveric biomechanical analysis. Objective: To evaluate the segmental stability of a stand-alone spacer (SAS) device compared with the traditional anterior cervical plate (ACP) construct in the setting of a 2-level cervical fusion construct or as a hybrid construct adjacent to a previous 1-level ACP construct. Methods: Twelve human cadaveric cervical spines (C2-T1) were nondestructively tested with a custom 6-degree-of-freedom spine simulator under axial rotation (AR), flexion-extension (FE), and lateral bending (LB) at 1.5 N m loads. After intact analysis, each specimen underwent instrumentation and testing in the following 3 configurations, with each specimen randomized to the order of construct: (A) C5-7 SAS; (B) C5-6 ACP, and C6-7 SAS (hybrid); (C) C5-7 ACP. Full range of motion (ROM) data at C5-C7 was obtained and analyzed by each loading modality utilizing mean comparisons with repeated measures analysis of variance with Sidak correction for multiple comparisons. Results: Compared with the intact specimen, all tested constructs had significantly increased segmental stability at C5-C7 in AR and FE ROM, with no difference in LB ROM. At C5-C6, all test constructs again had increased segmental stability in FE ROM compared with intact (10.9° ± 4.4° Intact vs SAS 6.6° ± 3.2°, P < .001; vs.Hybrid 2.9° ± 2.0°, P = .005; vs ACP 2.1° ± 1.4°, P < .001), but had no difference in AR and LB ROM. Analysis of C6-C7 ROM demonstrated all test groups had significantly greater segmental stability in FE ROM compared with intact (9.6° ± 2.7° Intact vs SAS 5.0° ± 3.0°, P = .018; vs Hybrid 5.0° ± 2.7°, P = .018; vs ACP 4.4° ± 5.2°, P = .005). Only the hybrid and 2-level ACP constructs had increased stability at C6-C7 in AR ROM compared with intact, with no difference for all test groups in LB ROM. Comparison between test constructs demonstrated no difference in C5-C7 and C6-C7 segmental stability in all planes of motion. However, at C5-C6 comparison between test constructs found the 2-level SAS had significantly less segmental stability compared to the hybrid (6.6° ± 3.2° vs 2.9° ± 2.0°, P = .025) and ACP (6.6° ± 3.2° vs 2.1° ± 1.4°, P = .004). Conclusions: Our study found the currently tested SAS device may be a reasonable option as part of a 2-level hybrid construct, when used below an adjacent 1-level ACP, but should be used with careful consideration as a 2-level SAS construct. Consequences of decreased segmental stability in FE are unknown; however, optimal immediate fixation stability is an important surgical principle to avoid loss of fixation, segmental kyphosis, interbody graft subsidence, and pseudarthrosis. PMID:28989848

  3. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature.

    PubMed

    Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P

    2018-07-15

    The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.

  4. Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry.

    PubMed

    Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio

    2010-07-01

    In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.

  5. The stability of vocational interests from early adolescence to middle adulthood: a quantitative review of longitudinal studies.

    PubMed

    Low, K S Douglas; Yoon, Mijung; Roberts, Brent W; Rounds, James

    2005-09-01

    The present meta-analysis examined the stability of vocational interests from early adolescence (age 12) to middle adulthood (age 40). Stability was represented by rank-order and profile correlations. Interest stability remained unchanged during much of adolescence and increased dramatically during the college years (age 18-21.9), where it remained for the next 2 decades. Analyses of potential moderators showed that retest time interval was negatively related to interest stability and that rank-order stability was less stable than profile stability. Although cohort standings did not moderate stability, interests of the 1940s birth cohort were less stable than those of other cohorts. Furthermore, interests reflecting hands-on physical activities and self-expressive/artistic activities were more stable than scientific, social, enterprising, and clerical interests. Vocational interests showed substantial continuity over time, as evidenced by their higher longitudinal stability when compared with rank-order stability of personality traits. The findings are discussed in the context of psychosocial development.

  6. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  7. Hybrid rocket engine, theoretical model and experiment

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  8. Whey utilization in furrow irrigation: effects on aggregate stability and erosion.

    PubMed

    Lehrsch, Gary A; Robbins, Charles W; Brown, Melvin J

    2008-11-01

    Improving soil structure often reduces furrow erosion and maintains adequate infiltration. Cottage cheese whey, the liquid byproduct from cottage cheese manufacture, was utilized to stabilize soil aggregates and reduce sediment losses from furrow irrigation. We applied either 2.4 or 1.9L of whey per meter of furrow (3.15 or 2.49Lm(-2), respectively) by gravity flow without incorporation to two fields of Portneuf silt loam (Durinodic Xeric Haplocalcid) near Kimberly, ID. Furrows were irrigated with water beginning four days later. We measured sediment losses with furrow flumes during each irrigation and measured aggregate stability by wet sieving about 10 days after the last irrigation. Overall, whey significantly increased aggregate stability 25% at the 0-15mm depth and 14% at 15-30mm, compared to controls. On average, whey reduced sediment losses by 75% from furrows sloped at 2.4%. Whey increased the aggregate stability of structurally degraded calcareous soil in irrigation furrows.

  9. Stabilization of miscible viscous fingering by a step-growth polymerization reaction

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.

  10. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  11. Stabilization, Rolling, and Addition of Other Extracellular Matrix Proteins to Collagen Hydrogels Improve Regeneration in Chitosan Guides for Long Peripheral Nerve Gaps in Rats.

    PubMed

    Gonzalez-Perez, Francisco; Cobianchi, Stefano; Heimann, Claudia; Phillips, James B; Udina, Esther; Navarro, Xavier

    2017-03-01

    Autograft is still the gold standard technique for the repair of long peripheral nerve injuries. The addition of biologically active scaffolds into the lumen of conduits to mimic the endoneurium of peripheral nerves may increase the final outcome of artificial nerve devices. Furthermore, the control of the orientation of the collagen fibers may provide some longitudinal guidance architecture providing a higher level of mesoscale tissue structure. To evaluate the regenerative capabilities of chitosan conduits enriched with extracellular matrix-based scaffolds to bridge a critical gap of 15 mm in the rat sciatic nerve. The right sciatic nerve of female Wistar Hannover rats was repaired with chitosan tubes functionalized with extracellular matrix-based scaffolds fully hydrated or stabilized and rolled to bridge a 15 mm nerve gap. Recovery was evaluated by means of electrophysiology and algesimetry tests and histological analysis 4 months after injury. Stabilized constructs enhanced the success of regeneration compared with fully hydrated scaffolds. Moreover, fibronectin-enriched scaffolds increased muscle reinnervation and number of myelinated fibers compared with laminin-enriched constructs. A mixed combination of collagen and fibronectin may be a promising internal filler for neural conduits for the repair of peripheral nerve injuries, and their stabilization may increase the quality of regeneration over long gaps. Copyright © 2017 by the Congress of Neurological Surgeons

  12. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites

    NASA Astrophysics Data System (ADS)

    Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.

    2017-06-01

    In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.

  13. Housing flexibility effects on rotor stability

    NASA Technical Reports Server (NTRS)

    Davis, L. B.; Wolfe, E. A.; Beatty, R. F.

    1985-01-01

    Preliminary rotordynamic evaluations are performed with a housing stiffness assumption that is typically determined only after the hardware is built. In addressing rotor stability, a rigid housing assumption was shown to predict an instability at a lower spin speed than a comparable flexible housing analysis. This rigid housing assumption therefore provides a conservative estimate of the stability threshold speed. A flexible housing appears to act as an energy absorber and dissipated some of the destabilizing force. The fact that a flexible housing is usually asymmetric and considerably heavier than the rotor was related to this apparent increase in rotor stability. Rigid housing analysis is proposed as a valuable screening criteria and may save time and money in construction of elaborate housing finite element models for linear stability analyses.

  14. A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenji; Utsunomiya, Hitoshi

    2009-09-01

    This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.

  15. A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome

    PubMed Central

    Anderson, Ericka L.; Li, Weizhong; Klitgord, Niels; Highlander, Sarah K.; Dayrit, Mark; Seguritan, Victor; Yooseph, Shibu; Biggs, William; Venter, J. Craig; Nelson, Karen E.; Jones, Marcus B.

    2016-01-01

    As reports on possible associations between microbes and the host increase in number, more meaningful interpretations of this information require an ability to compare data sets across studies. This is dependent upon standardization of workflows to ensure comparability both within and between studies. Here we propose the standard use of an alternate collection and stabilization method that would facilitate such comparisons. The DNA Genotek OMNIgene∙Gut Stool Microbiome Kit was compared to the currently accepted community standard of freezing to store human stool samples prior to whole genome sequencing (WGS) for microbiome studies. This stabilization and collection device allows for ambient temperature storage, automation, and ease of shipping/transfer of samples. The device permitted the same data reproducibility as with frozen samples, and yielded higher recovery of nucleic acids. Collection and stabilization of stool microbiome samples with the DNA Genotek collection device, combined with our extraction and WGS, provides a robust, reproducible workflow that enables standardized global collection, storage, and analysis of stool for microbiome studies. PMID:27558918

  16. Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.

    PubMed

    Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin

    2013-01-01

    Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.

  17. Analyzing the Influence of a New Dental Implant Design on Primary Stability.

    PubMed

    Valente, Mariana Lima da Costa; de Castro, Denise Tornavoi; Shimano, Antonio Carlos; Lepri, César Penazzo; dos Reis, Andréa Cândido

    2016-02-01

    The macrogeometry of dental implants strongly influences the primary stability and hence the osseointegration process. Compare the performance of conventional and modified implant models in terms of primary stability. A total of 36 implants (Neodent®) with two different formats (n = 18): Alvim CM (Conical CM, Ø 4.3 mm × 10 mm in length) and Titamax Ti (Cylindrical HE, Ø 4.0 mm × 11 mm in length) were inserted into artificial bone blocks. Nine implants from each set were selected to undergo external geometry changes. The primary stability was quantified by insertion torque and resonance frequency using an Osstell device and the pullout test. One-way analysis of variance and Tukey's test were used for statistical evaluation. The comparative analysis of the implants showed a significant increase of the insertion torque for the modified Conical CM implants (p = 0.000) and Cylindrical HE (p = 0.043); for the resonance frequency the modified Cylindrical HE showed a lower statistical mean (p = 0.002) when compared to the conventional model, and in the pullout test both modified implants showed significant reduction (p = 0.000). Within the limitations of this study, the proposed modification showed good stability levels and advantages when compared to the conventional implants. © 2015 Wiley Periodicals, Inc.

  18. The hip fluid seal--Part II: The effect of an acetabular labral tear, repair, resection, and reconstruction on hip stability to distraction.

    PubMed

    Nepple, Jeffrey J; Philippon, Marc J; Campbell, Kevin J; Dornan, Grant J; Jansson, Kyle S; LaPrade, Robert F; Wijdicks, Coen A

    2014-04-01

    The acetabular labrum is theorized to be important to normal hip function by providing stability to distraction forces through the suction effect of the hip fluid seal. The purpose of this study was to determine the relative contributions of the hip capsule and labrum to the distractive stability of the hip, and to characterize hip stability to distraction forces in six labral conditions: intact labrum, labral tear, labral repair (looped vs. through sutures), partial resection, labral reconstruction with iliotibial band, and complete resection. Eight cadaveric hips with a mean age of 47.8 years (SD 4.3, range 41-51 years) were included. For each condition, the hip seal was broken by distracting the hip at a rate of 0.33 mm/s while the required force, energy, and negative intra-articular pressure were measured. For comparisons between labral conditions, measurements were normalized to the intact labral state (percent of intact). The relative contribution of the labrum to distractive stability was greatest at 1 and 2 mm of displacement, where it was significantly greater than the role of the capsule and accounted for 77 % (SD 27 %, p = 0.006) and 70 % (SD 7 %, p = 0.009) of total distractive stability, respectively. The relative contribution of the capsule to distractive stability increased with progressive displacement, providing 41 % (SD 49 %) and 52 % (SD 53 %) of distractive stability at 3 and 5 mm of distraction, respectively. The maximal distraction force required to break the hip seal in the intact labral state (capsule removed) varied from 124 to 150 N. Labral tear, partial resection, and complete resection resulted in average maximal distraction forces of 76 % (SD 34 %), 29 % (SD 26 %), and 27 % (SD 22 %), respectively, compared to the intact state. Through type labral repairs resulted in significantly greater improvements (from the labral tear state) in maximal negative pressure generated, compared to looped type repairs (median increase; +32 vs. -9 %, p = 0.029). Labral reconstruction resulted in a mean maximal distraction force of 66 % (SD 35 %), with a significant improvement of 37 % compared to partial labral resection (p < 0.001). The acetabular labrum was the primary hip stabilizer to distraction forces at small displacements (1-2 mm). Partial labral resection significantly decreased the distractive strength of the hip fluid seal. Labral reconstruction significantly improved distractive stability, compared to partial labral resection. The results of this study may provide insight into the relative importance of the capsule and labrum to distractive stability of the hip and may help to explain hip microinstability in the setting of labral disease.

  19. Toward understanding the structural heterogeneity and ion pair stability in dicationic ionic liquids.

    PubMed

    Li, Song; Bañuelos, José Leobardo; Zhang, Pengfei; Feng, Guang; Dai, Sheng; Rother, Gernot; Cummings, Peter T

    2014-12-07

    The structural and dynamical properties of dicationic ionic liquids (DILs) [Cn(mim)2](Tf2N)2, that is, 3-methylimidazolium dications separated by an alkyl chain and with bis(trifluoromethylsulfonyl)amide as the anion, were investigated by molecular dynamics (MD) simulation in combination with small/wide-angle X-ray scattering (SWAXS) measurements. Enhanced spatial heterogeneity is observed as the DIL chain length is increased, characterized by the changes in the scattering and the increased heterogeneity order parameter (HOP). Temperature variation imposes only slight influences on the local structures of DILs compared to monocationic ionic liquids (MILs). The peaks at 0.9 Å(-1) and 1.4 Å(-1) of the structure function shift towards low Q as the temperature increases, in a similar manner to MILs, and changes in peak positions in response to temperature changes are reflected in HOP variations. However, the prepeak shift with increasing temperature is ∼3 times smaller in DILs compared to MILs, and both MD and SWAXS indicate a DIL-specific prepeak shifting. Furthermore, the high ion pair/ion cage stability in DILs is indicative of high thermal stability and relative insensitivity of structural heterogeneity to temperature variation, which might be caused by the stronger Coulombic interactions in DILs.

  20. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  1. Effect of fish oils containing different amounts of EPA, DHA, and antioxidants on plasma and brain fatty acids and brain nitric oxide synthase activity in rats

    PubMed Central

    Engström, Karin; Saldeen, Ann-Sofie; Yang, Baichun; Mehta, Jawahar L.

    2009-01-01

    Background The interest in n-3 polyunsaturated fatty acids (PUFAs) has expanded significantly in the last few years, due to their many positive effects described. Consequently, the interest in fish oil supplementation has also increased, and many different types of fish oil supplements can be found on the market. Also, it is well known that these types of fatty acids are very easily oxidized, and that stability among supplements varies greatly. Aims of the study In this pilot study we investigated the effects of two different types of natural fish oils containing different amounts of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and antioxidants on plasma and brain fatty acids, blood lipids, vitamin E, and in vivo lipid peroxidation, as well as brain nitric oxide synthase (NOS) activity, an enzyme which has been shown to be important for memory and learning ability. Methods Sprague-Dawley rats were divided into four groups and fed regular rat chow pellets enriched with 5% (w/w) of butter (control group), a natural fish oil (17.4% EPA and 11.7% DHA, referred to as EPA-rich), and a natural fish oil rich in DHA (7.7% EPA and 28.0% DHA, referred to as DHA-rich). Both of the fish oils were stabilized by a commercial antioxidant protection system (Pufanox®) at production. The fourth group received the same DHA-rich oil, but without Pufanox® stabilization (referred to as unstable). As an index of stability of the oils, their peroxide values were repeatedly measured during 9 weeks. The dietary treatments continued until sacrifice, after 10 days. Results Stability of the oils varied greatly. It took the two stabilized oils 9 weeks to reach the same peroxide value as the unstable oil reached after only a few days. Both the stabilized EPA- and DHA-rich diets lowered the triacylglycerols and total cholesterol compared to control (-45%, P < 0.05 and -54%, P < 0.001; -31%, P < 0.05 and -25%, P < 0.01) and so did the unstable oil, but less efficiently. Only the unstable oil increased in vivo lipid peroxidation significantly compared to control (+40%, P < 0.001). Most of the fatty acids in the plasma phospholipids were significantly affected by both the EPA- and DHA-rich diets compared to control, reflecting their specific fatty acid pattern. The unstable oil diet resulted in smaller changes, especially in n-3 PUFAs. In the brain phospholipids the changes were less pronounced, and only the diet enriched with the stabilized DHA-rich oil resulted in a significantly greater incorporation of DHA (+13%, P < 0.01), as well as total n-3 PUFAs (+13%, P < 0.01) compared to control. Only the stabilized DHA-rich oil increased the brain NOS activity (+33%, P < 0.01). Conclusions Both the EPA- and DHA-rich diets affected the blood lipids in a similarly positive manner, and they both had a large impact on plasma phospholipid fatty acids. It was only the unstable oil that increased in vivo lipid peroxidation. However, the intake of DHA was more important than that of EPA for brain phospholipid DHA enrichment and brain NOS activity, and the stability of the fish oil was also important for these effects. PMID:19961266

  2. Effect of fish oils containing different amounts of EPA, DHA, and antioxidants on plasma and brain fatty acids and brain nitric oxide synthase activity in rats.

    PubMed

    Engström, Karin; Saldeen, Ann-Sofie; Yang, Baichun; Mehta, Jawahar L; Saldeen, Tom

    2009-01-01

    The interest in n-3 polyunsaturated fatty acids (PUFAs) has expanded significantly in the last few years, due to their many positive effects described. Consequently, the interest in fish oil supplementation has also increased, and many different types of fish oil supplements can be found on the market. Also, it is well known that these types of fatty acids are very easily oxidized, and that stability among supplements varies greatly. In this pilot study we investigated the effects of two different types of natural fish oils containing different amounts of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and antioxidants on plasma and brain fatty acids, blood lipids, vitamin E, and in vivo lipid peroxidation, as well as brain nitric oxide synthase (NOS) activity, an enzyme which has been shown to be important for memory and learning ability. Sprague-Dawley rats were divided into four groups and fed regular rat chow pellets enriched with 5% (w/w) of butter (control group), a natural fish oil (17.4% EPA and 11.7% DHA, referred to as EPA-rich), and a natural fish oil rich in DHA (7.7% EPA and 28.0% DHA, referred to as DHA-rich). Both of the fish oils were stabilized by a commercial antioxidant protection system (Pufanox) at production. The fourth group received the same DHA-rich oil, but without Pufanox stabilization (referred to as unstable). As an index of stability of the oils, their peroxide values were repeatedly measured during 9 weeks. The dietary treatments continued until sacrifice, after 10 days. Stability of the oils varied greatly. It took the two stabilized oils 9 weeks to reach the same peroxide value as the unstable oil reached after only a few days. Both the stabilized EPA- and DHA-rich diets lowered the triacylglycerols and total cholesterol compared to control (-45%, P < 0.05 and -54%, P < 0.001; -31%, P < 0.05 and -25%, P < 0.01) and so did the unstable oil, but less efficiently. Only the unstable oil increased in vivo lipid peroxidation significantly compared to control (+40%, P < 0.001). Most of the fatty acids in the plasma phospholipids were significantly affected by both the EPA- and DHA-rich diets compared to control, reflecting their specific fatty acid pattern. The unstable oil diet resulted in smaller changes, especially in n-3 PUFAs. In the brain phospholipids the changes were less pronounced, and only the diet enriched with the stabilized DHA-rich oil resulted in a significantly greater incorporation of DHA (+13%, P < 0.01), as well as total n-3 PUFAs (+13%, P < 0.01) compared to control. Only the stabilized DHA-rich oil increased the brain NOS activity (+33%, P < 0.01). Both the EPA- and DHA-rich diets affected the blood lipids in a similarly positive manner, and they both had a large impact on plasma phospholipid fatty acids. It was only the unstable oil that increased in vivo lipid peroxidation. However, the intake of DHA was more important than that of EPA for brain phospholipid DHA enrichment and brain NOS activity, and the stability of the fish oil was also important for these effects.

  3. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  4. Erythrocyte membrane stability to hydrogen peroxide is decreased in Alzheimer disease.

    PubMed

    Gilca, Marilena; Lixandru, Daniela; Gaman, Laura; Vîrgolici, Bogdana; Atanasiu, Valeriu; Stoian, Irina

    2014-01-01

    The brain and erythrocytes have similar susceptibility toward free radicals. Therefore, erythrocyte abnormalities might indicate the progression of the oxidative damage in Alzheimer disease (AD). The aim of this study was to investigate erythrocyte membrane stability and plasma antioxidant status in AD. Fasting blood samples (from 17 patients with AD and 14 healthy controls) were obtained and erythrocyte membrane stability against hydrogen peroxide and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), serum Trolox equivalent antioxidant capacity (TEAC), residual antioxidant activity or gap (GAP), erythrocyte catalase activity (CAT), erythrocyte superoxide dismutase (SOD) activity, erythrocyte nonproteic thiols, and total plasma thiols were determined. A significant decrease in erythrocyte membrane stability to hydrogen peroxide was found in AD patients when compared with controls (P<0.05). On the contrary, CAT activity (P<0.0001) and total plasma thiols (P<0.05) were increased in patients with AD compared with controls. Our results indicate that the most satisfactory measurement of the oxidative stress level in the blood of patients with AD is the erythrocyte membrane stability to hydrogen peroxide. Reduced erythrocyte membrane stability may be further evaluated as a potential peripheral marker for oxidative damage in AD.

  5. Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification.

    PubMed

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-03-01

    High hydrostatic pressure (HHP) stabilized glucose oxidase (GOx) against thermal inactivation. The apparent first-order kinetics of inactivation of GOx were investigated at 0.1-300 MPa and 58.8-80.0°C. At 240 MPa and 74.5°C, GOx inactivated at a rate 50 times slower than at atmospheric pressure at the same temperature. The apparent activation energy of inactivation at 300 MPa was 281.0 ± 17.4 kJ mol -1 or 1.3-fold smaller than for the inactivation at atmospheric pressure (378.1 ± 25.6 kJ mol -1 ). The stabilizing effect of HHP was greatest at 74.5°C, where the activation volume of 57.0 ± 12.0 cm 3  mol -1 was highest compared to all other studied temperatures. Positive apparent activation volumes for all the treatment temperatures confirmed that HHP favors GOx stabilization. A second approach to increase GOx stability involved crosslinking with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and either aniline or benzoate. The modified enzyme remained fully active with only slight increases in K M (1.3-1.9-fold increases for aniline and benzoate modification, respectively). The thermal stability of GOx increased by 8°C with aniline modification, while it decreased by 0.9°C upon modification with benzoate. Biotechnol. Bioeng. 2017;114: 516-525. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes.

  7. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  8. N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris.

    PubMed

    Zou, Shuping; Huang, Shen; Kaleem, Imdad; Li, Chun

    2013-03-10

    Recombinant β-glucuronidase (GUS) expressed in Pichia pastoris GS115 is an important glycoprotein, encoded by a gene with four potential N-glycosylation sites. To investigate the impact of N-linked carbohydrate moieties on the stability of recombinant GUS, it was deglycosylated by peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic activities of the glycosylated and deglycosylated GUS were compared under various conditions such as temperature, pH, organic solvents, detergents and chaotropic agent. The results demonstrated that the glycosylated GUS retained greater fraction of maximum enzymatic activity against various types of denaturants compared with the deglycosylated. The conformational stabilities of both GUS were analyzed by monitoring the unfolding equilibrium by using the denaturant guanidinium chloride (dn-HCl). The glycosylated GUS displayed a significant increase in its conformational stability than the deglycosylated counterpart. These results affirmed the key role of N-glycosylation on the structural and functional stability of β-glucuronidase and could have potential applications in the functional enhancement of industrial enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effects of Dendrimer-Like Biopolymers on Physical Stability of Amorphous Solid Dispersions and Drug Permeability Across Caco-2 Cell Monolayers.

    PubMed

    Lavan, Monika; Knipp, Gregory

    2018-06-04

    The potential applications of dendrimer-like biopolymers (DLB) as stabilizing excipients for amorphous solid dispersion (ASD) of niclosamide, celecoxib, and resveratrol were evaluated based on (1) the formation and physical stability of the ASD and (2) the permeability and flux of the agents across Caco-2 cell monolayers. The evaluation was made by comparing the performance of prototype phytoglycogen derivatives (DLB1, DLB2, and DLB3) with commonly used polymers such as HPMCAS, PVPVA, and Soluplus®. PXRD was used to confirm the formation of the dispersions and detect crystallinity peaks formed during 2- and 4-week storage at 40°C/75% RH. At concentrations below 2 g/mL, the viability of Caco-2 cells remained above 80% for all DLB samples compared to untreated cells in the MTT assay. Permeability studies revealed a repeating pattern in which an increase in the initial concentration (C 0 ) was associated with a concomitant decrease in the apparent permeability (P app ) which we theorize is due to differences in drug-polymer interactions. Niclosamide-DLB1 dispersion had the lowest flux due to a significant reduction in P app . The high increase in the C 0 of celecoxib-DLB2, however, made up for the reduction in the P app and produced the highest flux values compared to other polymers. Resveratrol-DLB3 had a 5× reduction in P app , but C 0 increased from 25.8 to 176 μg/mL led to a higher flux compared to the crystalline drug without polymer. Collectively, these results provide a "proof-of-concept" basis to demonstrate that DLB excipients have the ability to increase apparent solubility (Sol app ), most likely due to drug-binding capacity.

  10. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.

    2006-04-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.

  11. Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry.

    PubMed

    Belayneh, Henok D; Wehling, Randy L; Cahoon, Edgar B; Ciftci, Ozan N

    2017-03-01

    Camelina seed is a new alternative omega-3 source attracting growing interest. However, it is susceptible to oxidation due to its high omega-3 content. The objective of this study was to improve the oxidative stability of the camelina seed oil at the extraction stage in order to eliminate or minimize the use of additive antioxidants. Camelina seed oil extracts were enriched in terms of natural antioxidants using ethanol-modified supercritical carbon dioxide (SC-CO 2 ) extraction. Oxidative stability of the camelina seed oils extracted by ethanol modified SC-CO 2 was studied by differential scanning calorimeter (DSC), and compared with cold press, hexane, and SC-CO 2 methods. Nonisothermal oxidation kinetics of the oils obtained by different extraction methods were studied by DSC at varying heating rates (2.5, 5, 10, and 15 °C/min). Increasing ethanol level in the ethanol-modified SC-CO 2 increased the oxidative stability. Based on oxidation onset temperatures (T on ), SC-CO 2 containing 10% ethanol yielded the most stable oil. Oxidative stability depended on the type and content of the polar fractions, namely, phenolic compounds and phospholipids. Phenolic compounds acted as natural antioxidants, whereas increased phospholipid contents decreased the stability. Study has shown that the oxidative stability of the oils can be improved at the extraction stage and this may eliminate the need for additive antioxidants. © 2017 Institute of Food Technologists®.

  12. Lateral Stability and Steady State Curving Performance of Unconventional Rail Trucks

    NASA Astrophysics Data System (ADS)

    Dukkipati, Rao V.; Narayanaswamy, Srinivasan

    Conventional railway vehicle systems exhibit hunting phenomenon which increases component wear and imposes operating speed limits. There is also a conflict between dynamic stability and the ability of the vehicle to steer around curves. Alternatively, independently rotating wheels (IRW) in a wheelset eliminate hunting but the wheelset guidance set capability is lost. A compromise solution is made possible by a modified design that exploits a lack of fore-and-aft symmetry in the suspension design. A comparative study on steady state curving performance and dynamic stability of some unconventional truck designs is carried out. The effects of suspension and conicity are considered to evaluate the trade-off between dynamic stability and curving performance.

  13. Effect of parallel electric fields on the ponderomotive stabilization of MHD instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Hershkowitz, N.

    The contribution of the wave electric field component E/sub parallel/, parallel to the magnetic field, to the ponderomotive stabilization of curvature driven instabilities is evaluated and compared to the transverse component contribution. For the experimental density range, in which the stability is primarily determined by the m = 1 magnetosonic wave, this contribution is found to be the dominant and stabilizing when the electron temperature is neglected. For sufficiently high electron temperatures the dominant fast wave is found to be axially evanescent. In the same limit, E/sub parallel/ becomes radially oscillating. It is concluded that the increased electron temperature nearmore » the plasma surface reduces the magnitude of ponderomotive effects.« less

  14. Plasma membrane aquaporins mediates vesicle stability in broccoli

    PubMed Central

    Martínez-Ballesta, Maria del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L.; Teruel, José A.

    2018-01-01

    The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability. PMID:29420651

  15. Comparative analysis of different loading conditions on large container ships from the perspective of the stability requirement

    NASA Astrophysics Data System (ADS)

    Stanca, C.; Acomi, N.; Ancuta, C.; Georgescu, S.

    2015-11-01

    Container ships carry cargoes that are considered light from the weight point of view, compared to their volumetric capacity. This fact makes the still water vertical bending moment to be in hogging condition. Thus, the double bottom structure is permanent subject to compressive load. With the enlargement of container ships to the Post Panamax vessels, the breadth to depth ratio tends to be increased comparative to those of Panamax container ships that present restriction related to maximum breadth of the ship.The current studies on new build models reveal the impossibility for Panamax container ships to comply with the minimum metacentric height value of stability without loading ballast water in the double bottom tanks. In contrast, the Post-Panamax container ships, as resulted from metacentric height calculation, have adequate stability even if the ballast water is not loaded in the double bottom tanks. This analysis was conducted considering two partially loaded port-container vessels. Given the minimization of ballast quantities, the frequency with which the still water vertical bending moment reaches close to the allowable value increases.This study aims to analyse the ships’ behaviour in partially loaded conditions and carrying ballast water in the double bottom tanks. By calculating the metacentric height that influences the stability of the partially loaded port container vessels, this study will emphasize the critical level of loading condition which triggers the uptake of ballast water in the double bottom tanks, due to metacentric height variation.

  16. Parameters for Stable Water-in-Oil Lipiodol Emulsion for Liver Trans-Arterial Chemo-Eembolization.

    PubMed

    Deschamps, F; Moine, L; Isoardo, T; Tselikas, L; Paci, A; Mir, L M; Huang, N; Fattal, E; de Baère, T

    2017-12-01

    Water-in-oil type and stability are important properties for Lipiodol emulsions during conventional trans-arterial chemo-embolization. Our purpose is to evaluate the influence of 3 technical parameters on those properties. The Lipiodol emulsions have been formulated by repetitive back-and-forth pumping of two 10-ml syringes through a 3-way stopcock. Three parameters were compared: Lipiodol/doxorubicin ratio (2/1 vs. 3/1), doxorubicin concentration (10 vs. 20 mg/ml) and speed of incorporation of doxorubicin in Lipiodol (bolus vs. incremental vs. continuous). The percentage of water-in-oil emulsion obtained and the duration until complete coalescence (stability) for water-in-oil emulsions were, respectively, evaluated with the drop-test and static light scattering technique (Turbiscan). Among the 48 emulsions formulated, 32 emulsions (67%) were water-in-oil. The percentage of water-in-oil emulsions obtained was significantly higher for incremental (94%) and for continuous (100%) injections compared to bolus injection (6%) of doxorubicin. Emulsion type was neither influenced by Lipiodol/doxorubicin ratio nor by doxorubicin concentration. The mean stability of water-in-oil emulsions was 215 ± 257 min. The emulsions stability was significantly longer when formulated using continuous compared to incremental injection (326 ± 309 vs. 96 ± 101 min, p = 0.018) and using 3/1 compared to 2/1 ratio of Lipiodol/doxorubicin (372 ± 276 vs. 47 ± 43 min, p = <0.0001). Stability was not influenced by the doxorubicin concentration. The continuous and incremental injections of doxorubicin in the Lipiodol result in highly predictable water-in-oil emulsion type. It also demonstrates a significant increase in stability compared to bolus injection. Higher ratio of Lipiodol/doxorubicin is a critical parameter for emulsion stability too.

  17. Meteorological Measurements from Satellite Platforms. [stability and control of flexible stochastic satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1975-01-01

    The stability of stochastic satellites and the stability and control of flexible satellites were investigated. The effects of random environmental torques and noises in the moments of inertia of spinning and three-axes stabilized satellites were first compared analytically by four methods and by analog simulations. Among the analytical methods, it was shown that the Fokker-Planck formulation yields predictions which most coincide with the simulation results. It was then shown that the required stability criterion of a satellite is quite different from that obtained by a deterministic approach, under the assumption that the environmental and control torques experienced by the satellite are random. Finally, it was demonstrated that, by monitoring the deformations of the flexible elements of a satellite, the effectiveness of the satellite control system can be increased considerably.

  18. Relative performance of three stream bed stability indices as indicators of stream health.

    PubMed

    Kusnierz, Paul C; Holbrook, Christopher M

    2017-10-16

    Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (d bf ) and median particle diameter (D 50 ) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D 50 . The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D 50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.

  19. Relative performance of three stream bed stability indices as indicators of stream health

    USGS Publications Warehouse

    Kusnierz, Paul C; Holbrook, Christopher

    2017-01-01

    Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (dbf) and median particle diameter (D50) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D50.The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.

  20. The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature.

    PubMed

    Bush, Linda; Stevenson, Leo; Lane, Katie E

    2017-10-23

    There is growing demand for functional food products enriched with long chain omega-3 polyunsaturated fatty acids (LCω3PUFA). Nanoemulsions, systems with extremely small droplet sizes have been shown to increase LCω3PUFA bioavailability. However, nanoemulsion creation and processing methods may impact on the oxidative stability of these systems. The present systematic review collates information from studies that evaluated the oxidative stability of LCω3PUFA nanoemulsions suitable for use in functional foods. The systematic search identified seventeen articles published during the last 10 years. Researchers used a range of surfactants and antioxidants to create systems which were evaluated from 7 to 100 days of storage. Nanoemulsions were created using synthetic and natural emulsifiers, with natural sources offering equivalent or increased oxidative stability compared to synthetic sources, which is useful as consumers are demanding natural, cleaner label food products. Equivalent vegetarian sources of LCω3PUFA found in fish oils such as algal oils are promising as they provide direct sources without the need for conversion in the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that can produce nanoemulsion systems with equivalent/increased oxidative stability in comparison to other emulsifiers. Further studies to evaluate the oxidative stability of quillaja saponin nanoemulsions combined with algal sources of LCω3PUFA are warranted.

  1. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China.

    PubMed

    Zhang, Xubo; Sun, Nan; Wu, Lianhai; Xu, Minggang; Bingham, Ian J; Li, Zhongfang

    2016-08-15

    Although organic carbon sequestration in agricultural soils has been recommended as a 'win-win strategy' for mitigating climate change and ensuring food security, great uncertainty still remains in identifying the relationships between soil organic carbon (SOC) sequestration and crop productivity. Using data from 17 long-term experiments in China we determined the effects of fertilization strategies on SOC stocks at 0-20cm depth in the North, North East, North West and South. The impacts of changes in topsoil SOC stocks on the yield and yield stability of winter wheat (Triticum aestivum L.) and maize (Zea mays L.) were determined. Results showed that application of inorganic fertilizers (NPK) plus animal manure over 20-30years significantly increased SOC stocks to 20-cm depth by 32-87% whilst NPK plus wheat/maize straw application increased it by 26-38% compared to controls. The efficiency of SOC sequestration differed between regions with 7.4-13.1% of annual C input into the topsoil being retained as SOC over the study periods. In the northern regions, application of manure had little additional effect on yield compared to NPK over a wide range of topsoil SOC stocks (18->50MgCha(-1)). In the South, average yield from manure applied treatments was 2.5 times greater than that from NPK treatments. Moreover, the yield with NPK plus manure increased until SOC stocks (20-cm depth) increased to ~35MgCha(-1). In the northern regions, yield stability was not increased by application of NPK plus manure compared to NPK, whereas in the South there was a significant improvement. We conclude that manure application and straw incorporation could potentially lead to SOC sequestration in topsoil in China, but beneficial effects of this increase in SOC stocks to 20-cm depth on crop yield and yield stability may only be achieved in the South. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    NASA Astrophysics Data System (ADS)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  3. Stabilization of heavy metals in municipal sewage sludge by freeze-thaw treatment with a blend of diatomite, FeSO4, and Ca(OH)2.

    PubMed

    Wang, Jing; Fu, Rongbing; Xu, Zhen

    2017-08-01

    In this work, the effects of diatomite with 15% FeSO 4 •7H 2 O and 7.5% Ca(OH) 2 on sludge stabilization were investigated using batch leaching tests. The influence of cell rupture caused by freezing and thawing on stabilization was also evaluated. The results indicated that the optimal diatomite percentage was 2%. Cell rupture by freezing and thawing reduced heavy metal leachability, followed by cell death and decrease of organic groups. The concentration of heavy metals in sludge leachate increased after cell rupture, indicating that the heavy metal leachability was reduced after freezing and thawings. Moreover, the stabilization effects were generally improved after freezing and thawing. As compared with the stabilization of the original sludge, the unstable fractions decreased and the residual fractions of the heavy metals increased in the stabilized sludge after cell rupture. This study developed a method to stabilize heavy metals in municipal sewage sludge. Diatomite combined with FeSO 4 ·7H 2 O and Ca(OH) 2 improved the treatment of sewage sludge contaminated by heavy metals. Cell lysis by freeze-thaw treatment reduced the risk of leaching heavy metals caused by cell death and decreased major organic groups in the sludge.

  4. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-l-aspartate) (PEG-PBLA).

    PubMed

    Zong, Lanlan; Li, Xiaohua; Wang, Haiyan; Cao, Yanping; Yin, Li; Li, Mengmeng; Wei, Zhihao; Chen, Dongxiao; Pu, Xiaohui; Han, Jihong

    2017-10-05

    Amphiphilic block copolymers, PEG-PBLA with different molecular weights, were synthesized and used as new stabilizers for Itraconazole nannosuspensions (ITZ-PBLA-Nanos). ITZ-PBLA-Nanos were prepared by the microprecipitation-high pressure homogenization method, and the particle size and zeta potential were measured using a ZetaSizer Nano-ZS90. Morphology and crystallinity were studied using TEM, DSC and powder X-ray. The effect of the PEG-to-PBLA ratio, and the drug-to-stabilizer ratio were investigated to obtain the optimal formulation. It was found that the optimal length of hydrophobic block was 25 BLA-NCA molecules and the optimal ratio of drug/stabilizer was 1:1, where the resulted average particle size of ITZ-PBLA-Nanos was 262.1±7.13nm with a PDI value of 0.163±0.011. The images of TEM suggest that ITZ-PBLA-Nanos were rectangular in shape. ITZ existed as crystals in the nanoparticles as suggested by the DSC and XRD results. Compared with the crude drug suspensions, the dissolution rate of ITZ nanocrystals, was significantly increased and was similar to Sporanox ® injection. The ITZ-PBLA-Nanos also demonstrated better dilution stability and storage stability compared with ITZ-F68-Nanos. The particle size of ITZ-PBLA-Nanos did not change significantly after incubated in rat plasma for 24h which is a good attribute for I.V. administration. Acute toxicity tests showed that ITZ-PBLA-Nanos has the highest LD 50 compared with ITZ-F68-Nanos and Sporanox ® injection. ITZ-PBLA-Nanos also showed stronger inhibiting effect on the growth of Candida albicans compared with Sporanox ® injection. Therefore, PEG-PBLA has a promising potential as a biocompatible stabilizer for ITZ nanosuspensions and potentially for other nanosuspensions as well. Copyright © 2017. Published by Elsevier B.V.

  5. Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine.

    PubMed

    Mageswaran, Prasath; Techy, Fernando; Colbrunn, Robb W; Bonner, Tara F; McLain, Robert F

    2012-09-01

    The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine. Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4-5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4-5 fusion with pedicle screw dynamic stabilization constructs at L3-4, with the purpose of protecting the L3-4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared. In flexion-extension only, the rigid instrumentation at L4-5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1-2 (45.6%) and L2-3 (23.2%) only. The placement of the dynamic construct at L3-4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4-5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4-5 affected only a subadjacent level, L5-sacrum (52.0%), while causing a reduction in motion at the operated level (L4-5, -76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12-L1 (44.9%), L1-2 (57.3%), and L5-sacrum (83.9%), while motion at the operated level (L3-4) was reduced by 76.7%. In lateral bending, instrumentation at L4-5 increased motion at only T12-L1 (22.8%). The dynamic construct at L3-4 caused an increase in motion at T12-L1 (69.9%), L1-2 (59.4%), L2-3 (44.7%), and L5-sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3-4 caused a significant increase in motion of the adjacent levels L2-3 (25.1%) and L5-sacrum (31.4%). The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3-4) to the fusion (L4-5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.

  6. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    PubMed

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  7. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.

    PubMed

    Eberly, Valerie J; Mulroy, Sara J; Gronley, JoAnne K; Perry, Jacquelin; Yule, William J; Burnfield, Judith M

    2014-12-01

    For individuals with transfemoral amputation, walking with a prosthesis presents challenges to stability and increases the demand on the hip of the prosthetic limb. Increasing age or comorbidities magnify these challenges. Computerized prosthetic knee joints improve stability and efficiency of gait, but are seldom prescribed for less physically capable walkers who may benefit from them. To compare level walking function while wearing a microprocessor-controlled knee (C-Leg Compact) prosthesis to a traditionally prescribed non-microprocessor-controlled knee prosthesis for Medicare Functional Classification Level K-2 walkers. Crossover. Stride characteristics, kinematics, kinetics, and electromyographic activity were recorded in 10 participants while walking with non-microprocessor-controlled knee and Compact prostheses. Walking with the Compact produced significant increase in velocity, cadence, stride length, single-limb support, and heel-rise timing compared to walking with the non-microprocessor-controlled knee prosthesis. Hip and thigh extension during late stance improved bilaterally. Ankle dorsiflexion, knee extension, and hip flexion moments of the prosthetic limb were significantly improved. Improvements in walking function and stability on the prosthetic limb were demonstrated by the K-2 level walkers when using the C-Leg Compact prosthesis. Understanding the impact of new prosthetic designs on gait mechanics is essential to improve prescription guidelines for deconditioned or older persons with transfemoral amputation. Prosthetic designs that improve stability for safety and walking function have the potential to improve community participation and quality of life. © The International Society for Prosthetics and Orthotics 2013.

  8. Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation.

    PubMed

    Malcolme-Lawes, Louisa C; Lim, Phang Boon; Koa-Wing, Michael; Whinnett, Zachary I; Jamil-Copley, Shahnaz; Hayat, Sajad; Francis, Darrel P; Kojodjojo, Pipin; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa

    2013-01-01

    Recurrent arrhythmias after ablation procedures are often caused by recovery of ablated tissue. Robotic catheter manipulation systems increase catheter tip stability which improves energy delivery and could produce more transmural lesions. We tested this assertion using bipolar voltage attenuation as a marker of lesion quality comparing robotic and manual circumferential pulmonary vein ablation for atrial fibrillation (AF). Twenty patients were randomly assigned to robotic or manual AF ablation at standard radiofrequency (RF) settings for our institution (30 W 60 s manual, 25 W 30 s robotic, R30). A separate group of 10 consecutive patients underwent robotic ablation at increased RF duration, 25 W for 60 s (R60). Lesions were marked on an electroanatomic map before and after ablation to measure distance moved and change in bipolar electrogram amplitude during RF. A total of 1108 lesions were studied (761 robotic, 347 manual). A correlation was identified between voltage attenuation and catheter movement during RF (Spearman's rho -0.929, P < 0.001). The ablation catheter was more stable during robotic RF; 2.9 ± 2.3 mm (R30) and 2.6 ± 2.2 mm (R60), both significantly less than the manual group (4.3 ± 3.0 mm, P < 0.001). Despite improved stability, there was no difference in signal attenuation between the manual and R30 group. However, there was increased signal attenuation in the R60 group (52.4 ± 19.4%) compared with manual (47.7 ± 25.4%, P = 0.01). When procedures under general anaesthesia (GA) and conscious sedation were analysed separately, the improvement in signal attenuation in the R60 group was only significant in the procedures under GA. Robotically assisted ablation has the capability to deliver greater bipolar voltage attenuation compared with manual ablation with appropriate selection of RF parameters. General anaesthesia confers additional benefits of catheter stability and greater signal attenuation. These findings may have a significant impact on outcomes from AF ablation procedures.

  9. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  10. Comparison of a model vapor deposited glass films to equilibrium glass films

    NASA Astrophysics Data System (ADS)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  11. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews - an in vitro study.

    PubMed

    Tepedino, Michele; Masedu, Francesco; Chimenti, Claudio

    2017-05-30

    The aim of the present study was to evaluate the relationship between insertion torque and stability of miniscrews in terms of resistance against dislocation, then comparing a self-tapping screw with a self-drilling one. Insertion torque was measured during placement of 30 self-drilling and 31 self-tapping stainless steel miniscrews (Leone SpA, Sesto Fiorentino, Italy) in synthetic bone blocks. Then, an increasing pulling force was applied at an angle of 90° and 45°, and the displacement of the miniscrews was recorded. The statistical analysis showed a statistically significant difference between the mean Maximum Insertion Torque (MIT) observed in the two groups and showed that force angulation and MIT have a statistically significant effect on miniscrews stability. For both the miniscrews, an angle of 90° between miniscrew and loading force is preferable in terms of stability. The tested self-drilling orthodontic miniscrews showed higher MIT and greater resistance against dislocation than the self-tapping ones.

  12. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham.

    PubMed

    Kim, Ji-Han; Ju, Min-Gu; Yeon, Su-Jung; Hong, Go-Eun; Park, WooJoon; Lee, Chi-Ho

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (p<0.05). The pH of the S group was significantly higher than that of the control group, whereas the S group had a lower expressible drip compared to the control group. The S group also showed the lower lightness compared to the control group (p<0.05). In regard to the mineral status, the S group had significantly lower Fe(2+) and Ca(2+) content than the control group (p<0.05), whereas the proteolysis index of the S group was significantly increased compared to the control group (p<0.05). The feeding of processed sulfur to pigs led to increased oxidative stability, related to lipids and pigments, in the dry-cured ham (p<0.05). Compared to the dry-cured ham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham.

  13. Adaptation to larval crowding in Drosophila ananassae leads to the evolution of population stability.

    PubMed

    Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2012-05-01

    Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations.

  14. Microfluidic generation of particle-stabilized water-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Abbasi, Niki; Navi, Maryam; Tsai, Scott

    2017-11-01

    We present a microfluidic platform that generates particle-stabilized water-in-water emulsions, using an aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and Dextran (DEX). DEX droplets are generated passively at a flow focusing junction, in a continuous phase of PEG and carboxylated particles, using weak hydrostatic pressure to drive the flow. As DEX droplets travel inside the microfluidic device, carboxylated particles partition to the interface of the droplets. The number of particles partitioning to the interface of droplets increases as the droplets migrate downstream in the microchannel. As a result, the DEX droplets become stabilized against coalescence. We study the coverage and stability of the DEX droplets further downstream inside a reservoir, by changing the carboxylated particle concentration and the particle size. We anticipate that particle-stabilized water-in-water emulsions may have important biotechnological applications, due to their intrinsic biocompatibility compared to traditional particle-stabilized water-in-oil emulsions, for example for cell encapsulation.

  15. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions

    PubMed Central

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples (p<0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics. PMID:28115885

  16. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions.

    PubMed

    Serdaroğlu, Meltem; Nacak, Berker; Karabıyıkoğlu, Merve; Keser, Gökçen

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples ( p <0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics.

  17. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  18. Ergonomic design and evaluation of the handle for an endoscopic dissector.

    PubMed

    Shimomura, Yoshihiro; Minowa, Keita; Kawahira, Hiroshi; Katsuura, Tetsuo

    2016-05-01

    The purpose of this study was to design an endoscopic dissector handle and objectively assess its usability. The handles were designed with increased contact area between the fingers and thumb and the eye rings, and the eye rings were modified to have a more perpendicular insertion angle to the finger midline. Four different handle models were compared, including a conventional product. Subjects performed dissection, exclusion, grasping, precision manipulation and precision handling tasks. Electromyography and subjective evaluations were measured. Compared to conventional handles, the designated handle reduced the muscle load in the extensor and flexor muscles of the forearm and increased subjective stability. The activity of the first dorsal interosseous muscle was sometimes influenced by the shape of the other parts. The ergonomically designed endoscopic dissector handle used in this study achieved high usability. Medical instrument designs based on ergonomic concepts should be assessed with objective indices. Practitioner Summary: The endoscopic dissector handles were designed with increased contact area and more suitable insertion angle between the fingers and thumb and the eye rings. Compared to conventional handles, the designated handle reduced the muscle load in the extensor and flexor muscles of the forearm and increased subjective stability.

  19. Stabilizing the Electrode/Electrolyte Interface of LiNi0.8Co0.15Al0.05O2 through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries.

    PubMed

    Hou, Peiyu; Zhang, Hongzhou; Deng, Xiaolong; Xu, Xijin; Zhang, Lianqi

    2017-09-06

    The unstable electrode/electrolyte interface of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) cathodes, especially at a highly delithiated state, usually leads to the transformation of layered to spinel and/or rock-salt phases, resulting in drastic capacity fade and poor thermal stability. Herein, the Al-increased and Ni-,Co-decreased electrode surface is fabricated through tailoring element distribution in micrometer-sized spherical NCA secondary particles via coprecipitation and solid-state reactions, aimed at stabilizing the electrode/electrolyte interface during continuous cycles. As expected, it shows much extended cycle life, 93.6% capacity retention within 100 cycles, compared with that of 78.5% for the normal NCA. It also delivers large reversible capacity of about 140 mAh g -1 even at 20 C, corresponding to energy density of around 480 Wh kg -1 , which is enhanced by 45% compared to that of the normal NCA (about 330 Wh kg -1 ). Besides, the delayed heat emission temperature and reduced heat generation mean remarkably improved thermal stability. These foregoing improvements are ascribed to the Al-increased spherical secondary particle surface that stabilizes the electrode/electrolyte interface by protecting inner components from directly contacting with electrolyte and suppressing the side reaction on electrode surface between high oxidizing Ni 4+ and electrolyte.

  20. Bioactive Hybrid Particles from Poly(D,L-lactide-co-glycolide) Nanoparticle Stabilized Lipid Droplets.

    PubMed

    Joyce, Paul; Whitby, Catherine P; Prestidge, Clive A

    2015-08-12

    Biodegradable and bioactive hybrid particles composed of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and medium-chain triglycerides were prepared by spray drying lipid-in-water emulsions stabilized by PLGA nanoparticles, to form PLGA-lipid hybrid (PLH) microparticles approximately 5 μm in mean diameter. The nanoparticle stabilizer was varied and mannitol was also incorporated during the preparation to investigate the effect of stabilizer charge and cryoprotectant content on the particle microstructure. An in vitro lipolysis model was used to demonstrate the particles' bioactivity by manipulating the digestion kinetics of encapsulated lipid by pancreatic lipase in simulated gastrointestinal fluid. Lipid digestion kinetics were enhanced in PLH and PLGA-lipid-mannitol hybrid (PLMH) microparticles for both stabilizers, compared to a coarse emulsion, in biorelevant media. An optimal digestion rate was observed for the negatively charged PLMH system, evidenced by a 2-fold increase in the pseudo-first-order rate constant compared to a coarse emulsion. Improved microparticle redispersion, probed by dual dye confocal fluorescence microscopy, increased the available surface area of lipid for lipase adsorption, enhancing digestion kinetics. Thereby, lipase action was controlled in hybrid microparticles by altering the surface charge and carbohydrate content. Our results demonstrate that bioactive microparticles composed of versatile and biodegradable polymeric particles and oil droplets have great potential for use in smart food and nutrient delivery, as well as safer and more efficacious oral delivery of drugs and drug combinations.

  1. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    PubMed

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm.

  2. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    PubMed Central

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm. PMID:28713252

  3. Oral antioxidant therapy for marginal dry eye.

    PubMed

    Blades, K J; Patel, S; Aidoo, K E

    2001-07-01

    To assess the efficacy of an orally administered antioxidant dietary supplement for managing marginal dry eye. A prospective, randomised, placebo controlled trial with cross-over. Eye Clinic, Department of Vision Sciences, Glasgow Caledonian University. Forty marginal dry eye sufferers composed of 30 females and 10 males (median age 53 y; range 38-69 y). Baseline assessments were made of tear volume sufficiency (thread test), tear quality (stability), ocular surface status (conjunctival impression cytology) and dry eye symptoms (questionnaire). Each subject was administered courses of active treatment, placebo and no treatment, in random order for 1 month each and results compared to baseline. Tear stability and ocular surface status were significantly improved following active treatment (P<0.05). No changes from baseline were detected following administration of placebo and no treatment (P>0.05). Absolute increase in tear stability correlated with absolute change in goblet cell population density. Tear volume was not improved following any treatment period and dry eye symptom responses were subject to placebo effect. Oral antioxidants improved both tear stability and conjunctival health, although it is not yet understood whether increased ocular surface health mediates increased tear stability or vice versa. This study was supported by a PhD scholarship funded by the Department of Vision Sciences, Glasgow Caledonian University, Scotland. Antioxidant supplements and placebos were kindly donated by Vitabiotics.

  4. Comparative study of urea and betaine solutions by dielectric spectroscopy: liquid structures of a protein denaturant and stabilizer.

    PubMed

    Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio

    2007-10-11

    We performed dielectric spectroscopy measurements on aqueous solutions of glycine betaine (N,N,N-trimethylglycine), which is known to be a strong stabilizer of globular proteins, over a wide concentration range (3-62 wt %) and compared the results with our previously published data for aqueous solutions of urea, a representative protein denaturant. The hydration number of betaine (9), calculated on the basis of the reduction in the dielectric relaxation strength of bulk water with addition of betaine, is significantly larger than that of urea (2). Furthermore, the dielectric relaxation time increased with betaine concentration, while that remained nearly constant for the urea-water system over a wide concentration range. This difference between urea and betaine is probably related to their opposite effects on the protein stabilization.

  5. Bone implant sockets made using three different procedures: a stability study in dogs

    PubMed Central

    Campo, Julián

    2012-01-01

    Objective: This study compared the effects of three different methods of preparing bone implant sockets (drilling, osteotomes, and piezoelectric device) on osseointegration using resonance frequency analysis (RFA). Study Design: An experimental prospective study was designed. Material and Methods: Ten adult beagle dogs were studied. After 5 weeks, 23 out of 28 initially placed implants in the iliac crest were evaluated, comparing these three different procedures of bone implant socket. Student’s t-test (paired, two-tailed) was used to reveal differences among the three groups at each time point (SPSS 16.0, IL, USA). Results: After a 5-week healing period, the implants placed in sockets that were made using an osteotome or piezoelectric device were slightly more stable than those made by drilling. Reduced mechanical and heat injury to the bone is beneficial for maintaining and improving stability during the critical early healing period. Conclusion: Using RFA, there was evidence of a slight increase in implant stability in the iliac crest after 5 weeks of healing when the implant socket was made using a piezoelectric device or expansion procedure as compare with the drilling method. Key words:Bone implant sockets, drilling, osteotomes, piezoelectric, resonance frequency analysis, stability. PMID:24558558

  6. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.

    PubMed

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis

    2013-11-01

    The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  8. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    PubMed

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (P<0.01). To our knowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  9. Effect of filtered wood smoke treatment on chemical and microbial changes in mahi mahi fillets.

    PubMed

    Kristinsson, Hordur G; Danyali, Nineveh; Ua-Angkoon, Siriporn

    2007-01-01

    A study was performed to investigate the effect of filtered wood smoke processing on quality and safety of mahi mahi compared to no treatment. Skinless mahi mahi fillet portions were either treated with filtered smoke (FS) or left untreated for 24 h, followed by either (a) aerobic storage at 4 degrees C for 8 d or (b) freezing for 30 d (-25 degrees C) followed by thawing and aerobic storage at 4 degrees C for 8 d. Results show that treating mahi mahi fillets with FS increased (P < 0.05) a* values (redness) of the muscle and stabilized it during frozen storage. The redness did, however, decay (P < 0.05) rapidly on cold storage for both defrosted and fresh filtered-smoke-treated products, and reached initial (presmoking) redness levels in 2 d. The FS process overall significantly (P < 0.05) improved microbial stability of the product. Stability toward lipid oxidation was also significantly (P < 0.05) increased for the FS products compared to untreated products, particularly after defrosting. Sensory studies supported the microbial and lipid oxidation findings, showing that products treated with FS were better accepted and had increased (P < 0.05) shelf life over the untreated products. The shelf life was, however, compromised when microbial levels increased; that is, the process did not mask microbial spoilage; the spoilage did become evident in the sensory trials.

  10. Children's cortisol responses to a social evaluative laboratory stressor from early to middle childhood.

    PubMed

    Leppert, Katherine A; Kushner, Marissa; Smith, Victoria C; Lemay, Edward P; Dougherty, Lea R

    2016-12-01

    This study examined the stability of children's cortisol responses to a social evaluative laboratory stressor from early to middle childhood. Ninety-six children (51 males) completed stress-inducing laboratory tasks and provided five salivary cortisol samples in early (W1) and middle (W2) childhood. Although W1 cortisol responses did not predict W2 cortisol responses, children's cortisol responses demonstrated change: compared to their W1 cortisol responses, children's W2 cortisol responses demonstrated an increased slope and more negative quadratic curvature. Furthermore, child psychiatric symptoms at W1 moderated the stability of children's cortisol responses. Children with fewer preschool psychiatric symptoms demonstrated greater inter-individual and intra-individual stability, whereas children with higher preschool psychiatric symptoms and comorbidity demonstrated systematic inter-individual and intra-individual instability in cortisol responses over time. Findings suggest a developmental shift toward increasing cortisol stress responses from early to middle childhood and highlight preschool psychopathology as a moderator of stability in children's cortisol responses over time. © 2016 Wiley Periodicals, Inc.

  11. RNA major groove modifications improve siRNA stability and biological activity

    PubMed Central

    Terrazas, Montserrat; Kool, Eric T.

    2009-01-01

    RNA 5-methyl and 5-propynyl pyrimidine analogs were substituted into short interfering RNAs (siRNAs) to probe major groove steric effects in the active RNA-induced silencing complex (RISC). Synthetic RNA guide strands containing varied combinations of propynyl and methyl substitution revealed that all C-5 substitutions increased the thermal stability of siRNA duplexes containing them. Cellular gene suppression experiments using luciferase targets in HeLa cells showed that the bulky 5-propynyl modification was detrimental to RNA interference activity, despite its stabilization of the helix. Detrimental effects of this substitution were greatest at the 5′-half of the guide strand, suggesting close steric approach of proteins in the RISC complex with that end of the siRNA/mRNA duplex. However, substitutions with the smaller 5-methyl group resulted in gene silencing activities comparable to or better than that of wild-type siRNA. The major groove modifications also increased the serum stability of siRNAs. PMID:19042976

  12. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals.

    PubMed

    Shikov, Vasil; Kammerer, Dietmar R; Mihalev, Kiril; Mollov, Plamen; Carle, Reinhold

    2008-09-24

    Thermal degradation and color changes of purified strawberry anthocyanins in model solutions were studied upon heating at 85 degrees C by HPLC-DAD analyses and CIELCh measurements, respectively. The anthocyanin half-life values increased significantly due to the addition of rose (Rosa damascena Mill.) petal extracts enriched in natural copigments. Correspondingly, the color stability increased as the total color difference values were smaller for anthocyanins upon copigment addition, especially after extended heating. Furthermore, the stabilizing effect of rose petal polyphenols was compared with that of well-known copigments such as isolated kaempferol, quercetin, and sinapic acid. The purified rose petal extract was found to be a most effective anthocyanin-stabilizing agent at a molar pigment/copigment ratio of 1:2. The results obtained demonstrate that the addition of rose petal polyphenols slows the thermal degradation of strawberry anthocyanins, thus resulting in improved color retention without affecting the gustatory quality of the product.

  13. Trunk muscle activity increases with unstable squat movements.

    PubMed

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p < 0.05). Increased EMG activity of these muscles may be attributed to their postural and stabilization role. Furthermore, EMG activity was higher during concentric contractions compared to eccentric contractions. Performing squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  14. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  15. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    PubMed

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Real-Time Stability Margin Measurements for X-38 Robustness Analysis

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Stachowiak, Susan J.

    2005-01-01

    A method has been developed for real-time stability margin measurement calculations. The method relies on a tailored-forced excitation targeted to a specific frequency range. Computation of the frequency response is matched to the specific frequencies contained in the excitation. A recursive Fourier transformation is used to make the method compatible with real-time calculation. The method was incorporated into the X-38 nonlinear simulation and applied to an X-38 robustness test. X-38 stability margins were calculated for different variations in aerodynamic and mass properties over the vehicle flight trajectory. The new method showed results comparable to more traditional stability analysis techniques, and at the same time, this new method provided coverage that is more complete and increased efficiency.

  17. Gait Parameter Adjustments for Walking on a Treadmill at Preferred, Slower, and Faster Speeds in Older Adults with Down Syndrome

    PubMed Central

    Smith, Beth A.; Kubo, Masayoshi; Ulrich, Beverly D.

    2012-01-01

    The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability. PMID:22693497

  18. The Risk of Treatment-Emergent Mania With Methylphenidate in Bipolar Disorder.

    PubMed

    Viktorin, Alexander; Rydén, Eleonore; Thase, Michael E; Chang, Zheng; Lundholm, Cecilia; D'Onofrio, Brian M; Almqvist, Catarina; Magnusson, Patrik K E; Lichtenstein, Paul; Larsson, Henrik; Landén, Mikael

    2017-04-01

    The authors sought to determine the risk of treatment-emergent mania associated with methylphenidate, used in monotherapy or with a concomitant mood-stabilizing medication, in patients with bipolar disorder. Using linked Swedish national registries, the authors identified 2,307 adults with bipolar disorder who initiated therapy with methylphenidate between 2006 and 2014. The cohort was divided into two groups: those with and those without concomitant mood-stabilizing treatment. To adjust for individual-specific confounders, including disorder severity, genetic makeup, and early environmental factors, Cox regression analyses were used, conditioning on individual to compare the rate of mania (defined as hospitalization for mania or a new dispensation of stabilizing medication) 0-3 months and 3-6 months after medication start following nontreated periods. Patients on methylphenidate monotherapy displayed an increased rate of manic episodes within 3 months of medication initiation (hazard ratio=6.7, 95% CI=2.0-22.4), with similar results for the subsequent 3 months. By contrast, for patients taking mood stabilizers, the risk of mania was lower after starting methylphenidate (hazard ratio=0.6, 95% CI=0.4-0.9). Comparable results were observed when only hospitalizations for mania were counted. No evidence was found for a positive association between methylphenidate and treatment-emergent mania among patients with bipolar disorder who were concomitantly receiving a mood-stabilizing medication. This is clinically important given that up to 20% of people with bipolar disorder suffer from comorbid ADHD. Given the markedly increased hazard ratio of mania following methylphenidate initiation in bipolar patients not taking mood stabilizers, careful assessment to rule out bipolar disorder is indicated before initiating monotherapy with psychostimulants.

  19. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying

    PubMed Central

    Fonte, Pedro; Soares, Sandra; Costa, Ana; Andrade, José Carlos; Seabra, Vítor; Reis, Salette; Sarmento, Bruno

    2012-01-01

    PLGA nanoparticles are useful to protect and deliver proteins in a localized or targeted manner, with a long-term systemic delivery pattern intended to last for a period of time, depending on polymer bioerosion and biodegradability. However, the principal concern regarding these carriers is the hydrolytic instability of polymer in aqueous suspension. Freeze-drying is a commonly used method to stabilize nanoparticles, and cryoprotectants may be also used, to even increase its physical stability. The aim of the present work was to analyze the influence of cryoprotectants on nanoparticle stability and porosity after freeze-drying, which may influence protein release and stability. It was verified that freeze-drying significantly increased the number of pores on PLGA-NP surface, being more evident when cryoprotectants are added. The presence of pores is important in a lyophilizate to facilitate its reconstitution in water, although this may have consequences to protein release and stability. The release profile of insulin encapsulated into PLGA-NP showed an initial burst in the first 2 h and a sustained release up to 48 h. After nanoparticles freeze-drying the insulin release increased about 18% in the first 2 h due to the formation of pores, maintaining a sustained release during time. After freeze-drying with cryoprotectants, the amount of insulin released was higher for trehalose and lower for sucrose, glucose, fructose and sorbitol comparatively to freeze-dried PLGA-NP with no cryoprotectant added. Besides the porosity, the ability of cryoprotectants to be adsorbed on the nanoparticles surface may also play an important role on insulin release and stability. PMID:23507897

  20. Multifunctional Composites for Improved Polyimide Thermal Stability

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2007-01-01

    The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.

  1. Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage.

    PubMed

    Yuan, Xian J; Wen, Ai Y; Wang, Jian; Desta, Seare T; Dong, Zhi H; Shao, Tao

    2018-01-01

    The objective of the present study was to evaluate the effects of four chemicals on the fermentation quality and aerobic stability of alfalfa (Medicago sativa L.) silage. Wilted alfalfa was ensiled without additive (control), or with formic acid (FA), potassium diformate (KDF), sodium diacetate (SDA) or calcium propionate (CAP). After 60 days of ensiling, the pH values in FA, KDF and SDA silages were lower (P < 0.05) compared to that of control and CAP silages, and chemicals (P < 0.05) decreased butyric acid and ammonia N concentrations and populations of aerobic bacteria and yeasts compared to the control. The SDA and CAP silages had a higher (P < 0.05) lactic acid bacteria content compared to the FA and KDF silages. The SDA and CAP silages had higher (P < 0.05) acetic and propionic acid contents compared to the other silages, respectively. The ammonia N concentrations in the FA and KDF silages were lower compared to the other silages during the first 5 days of aerobic exposure, and then increased sharply to 105 and 100 g kg -1 total N, respectively, which was higher (P < 0.05) than that of the SDA and CAP silages on day 9 of aerobic exposure. Yeasts and aerobic bacteria counts in SDA silage slowly increased and remained at lower levels compared to the other silages after 7 days of aerobic exposure. Additives prolonged the aerobic stability duration compared to the control, and the SDA and CAP silages remained stable for more than 216 h, followed by the KDF and FA silages (202 and 196 h, respectively). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability.

    PubMed

    Scott, Katherine A; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Charleston, Bryan; Maree, Francois F

    2017-05-15

    Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses. Copyright © 2017 American Society for Microbiology.

  3. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability

    PubMed Central

    Scott, Katherine A.; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E.; Stuart, David I.; Charleston, Bryan

    2017-01-01

    ABSTRACT Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses. PMID:28298597

  4. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products.

    PubMed

    Salminen, Hanna; Herrmann, Kurt; Weiss, Jochen

    2013-03-01

    The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?

    NASA Astrophysics Data System (ADS)

    Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA<5 years) and CA during more than 5 years (CA>5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CA<5years). No improvement of aggregate stability level was observed after the 5th year of CA conversion. A positive correlation was observed between aggregate stability and total soil organic carbon (r=0.52, n=18). It is assumed that this correlation could be due to increased microbial activity under CA. A positive and statistically significant relationship was also noted between aggregate stability and the number of years after the no-till conversion (r= 0.46, n=18) for all plots.

  6. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  7. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE PAGES

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.; ...

    2017-12-27

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  8. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  9. Interactive effects of molasses by homofermentative and heterofermentative inoculants on fermentation quality, nitrogen fractionation, nutritive value and aerobic stability of wilted alfalfa (Medicago sativa L) silage.

    PubMed

    Hashemzadeh-Cigari, F; Khorvash, M; Ghorbani, G R; Ghasemi, E; Taghizadeh, A; Kargar, S; Yang, W Z

    2014-04-01

    The effect of adding molasses (0, UM or 50 g/kg on DM basis, M) and two types of inoculant including homofermentative (HO) and a combination of homofermentative and propionate-producing bacterial (HOPAB) inoculants on silage fermentation quality, nitrogen fractionation and aerobic stability of pre-bloom, wilted alfalfa (AS) was determined in laboratory silos. The HOPAB inoculant was more effective than HO in reducing the alfalfa silage pH but increased propionate content in the absence of M (p < 0.05). Inoculation of HOPAB reduced (p < 0.01) acid detergent fibre (ADF) and increased (p < 0.01) lactate to acetate ratio compared with uninoculated AS. Acetate concentration was lower (p < 0.01) in HOPAB-inoculated than other AS. This difference was more pronounced in M-added AS (inoculants × M interaction, p = 0.01). Both inoculants reduced (p < 0.01) ammonia-N content in AS added with M, whereas only HOPAB decreased (p < 0.01) ammonia-N concentration in silage without M. Inoculants increased (p < 0.01) B2 fraction in AS with M addition but had no effect on AS without M. Treating silages with HO-UM increased (p < 0.05) C fraction (acid-detergent insoluble-N) but HOPAB decreased C fraction at two levels of M. Treating alfalfa crop with M and HOPAB improved aerobic stability by increasing the concentration of acetate and propionate of AS respectively. Adding M tended (p < 0.10) to increase short-chain fatty acids (SCFA) and cumulative gas production (CGP). HOPAB alone increased DM disappearance at 24 h post-incubation and effective degradability assuming outflow rate of 8%/h relative to untreated AS (p < 0.05). It was concluded that adding M had no pronounced effects on AS fermentation quality, but increased aerobic stability. HOPAB-inoculated AS with no addition of M improved fermentation quality and increased DM degradability compared with HO. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  10. Ince-Strutt stability charts for ship parametric roll resonance in irregular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji

    2017-08-01

    Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.

  11. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  12. Medicolegal characteristics of firearm homicides in Belgrade, Serbia: before, during, and after the war in the Former Yugoslavia.

    PubMed

    Rancic, Nemanja; Erceg, Milena; Radojevic, Nemanja; Savic, Slobodan

    2013-11-01

    A comparative analysis of firearm homicides committed in Belgrade was performed including four representative years: 1987 (before the civil war in the Former Yugoslavia), 1991 (beginning of the war), 1997 (end of the war), and 2007 (period of social stabilization). The increase in the number of homicides was established in 1991 and 1997 compared with 1987, with the decrease in 2007, but with the continuous increase in the percentage of firearm homicides in the total number of homicides, from 12% in 1987 up to 56% in 2007. The significant increase in firearm homicides during the last decade of the 20th century can be explained by the social disturbances and the high availability of firearms, while their reduction in 2007 could be linked to the gradual stabilization of social circumstances. The results showed that the actual social, political, and economical changes strongly influenced medicolegal characteristics of homicides and particularly firearm homicides. © 2013 American Academy of Forensic Sciences.

  13. Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum.

    PubMed

    Gupta, A K; Rathore, P; Kaur, N; Singh, R

    1990-01-01

    Fusarium oxysporum produced maximum extracellular inulinase after 9 days of its growth at 25 degrees C on a medium (pH 5.5) containing 3% fructan and 0.2% sodium nitrate. The level of this enzyme decreased on the addition of either glucose, fructose, galactose or sucrose to F. oxysporum already growing on a fructan-containing medium. A significant increase in invertase production which resulted in an increase of the invertase/inulinase (S/I) ratio, was observed on addition of inulin to this fungus growing on other carbon sources. Glycerol (10%) gave better protection to inulinase against thermal denaturation at 50 degrees C compared to ethylene glycol and sorbitol. Inulinase immobilised in polyacrylamide gel retained 45% of its original activity. The immobilised enzyme showed a higher optimum temperature (45 degrees C) compared to free enzyme (37 degrees C). The immobilised enzyme after storage at 25 degrees C for 96 h showed 58% activity. Thermal stability of entrapped inulinase increased in the presence of inulin.

  14. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study

    PubMed Central

    Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja

    2016-01-01

    Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940

  15. Use of two test methods to ensure accurate surface firmness and stability measurements for accessibility.

    PubMed

    Axelson, Peter W; Hurley, Seanna L

    2018-05-01

    The firmness and stability of indoor and outdoor surfacing are critical to the accessibility and safety of all environments for people with mobility impairments and/or who use mobility devices. ASTM F1951 laboratory test procedures include pass/fail criteria for determining playground surface accessibility by comparing the work to propel up a 1:14 (7.1%) grade ramp to that of the test surface in a wheelchair. A portable instrumented surface indenter (ISI) was developed to validate that accessibility results obtained in the laboratory are maintained in the field where the surface is installed and used. Accessibility measurements have been made on indoor and outdoor surfaces tested in the laboratory using both the ASTM F1951 and the ISI over 13 years. Correlations between these two methods were calculated. A strong correlation has been demonstrated for the sum of the ISI firmness and stability results compared to the sum of the ASTM F1951 straight propulsion and turning results (R 2 =0.9006). The portable ISI can be used to verify that the firmness and stability of an installed surface in the field correlates to the accessibility results of the surface tested in the laboratory concurrently according to ASTM F1951 and the ISI. Implications for Rehabilitation The Instrumented Surface Indenter (ISI) allows for surfaces in all environments to be tested for firmness and stability, which is critical for wheelchair user safety, especially during rehabilitation when learning to use a wheelchair. The ISI allows for surfaces in all environments to be tested for firmness and stability, which increases access to all indoor and outdoor surfaces, thereby improving the quality of life for people who have mobility impairments and/or use mobility devices, such as canes, crutches, walkers, and wheelchairs. Using the ISI to test the firmness and stability of installed playground surfaces increases access to playgrounds for children with mobility impairments, facilitating developmentally critical peer-play opportunities for children who use mobility devices. Using the ISI to test the firmness and stability of installed playground surfaces increases access to playgrounds for people with mobility impairments, allowing adults who use a mobility device to supervise and play with children in their lives.

  16. Stabilization of molten salt materials using metal chlorides for solar thermal storage.

    PubMed

    Dunlop, T O; Jarvis, D J; Voice, W E; Sullivan, J H

    2018-05-29

    The effect of a variety of metal-chlorides additions on the melting behavior and thermal stability of commercially available salts was investigated. Ternary salts comprised of KNO 3, NaNO 2, and NaNO 3 were produced with additions of a variety of chlorides (KCl, LiCl, CaCl 2 , ZnCl 2 , NaCl and MgCl 2 ). Thermogravimetric analysis and weight loss experiments showed that the quaternary salt containing a 5 wt% addition of LiCl and KCl led to an increase in short term thermal stability compared to the ternary control salts. These additions allowed the salts to remain stable up to a temperature of 630 °C. Long term weight loss experiments showed an upper stability increase of 50 °C. A 5 wt% LiCl addition resulted in a weight loss of only 25% after 30 hours in comparison to a 61% loss for control ternary salts. Calorimetry showed that LiCl additions allow partial melting at 80 °C, in comparison to the 142 °C of ternary salts. This drop in melting point, combined with increased stability, provided a molten working range increase of almost 100 °C in total, in comparison to the control ternary salts. XRD analysis showed the oxidation effect of decomposing salts and the additional phase created with LiCl additions to allow melting point changes to occur.

  17. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  18. New opportunities of the application of natural herb and spice extracts in plant oils: application of electron paramagnetic resonance in examining the oxidative stability.

    PubMed

    Kozłowska, Mariola; Szterk, Arkadiusz; Zawada, Katarzyna; Ząbkowski, Tomasz

    2012-09-01

    The aim of this study was to establish the applicability of natural water-ethanol extracts of herbs and spices in increasing the oxidative stability of plant oils and in the production of novel food. Different concentrations (0, 100, 300, 500, and 700 ppm) of spice extracts and butylated hydroxyanisole (BHA) (100 ppm) were added to the studied oils. The antioxidant activity of spice extracts was determined with electron paramagnetic resonance (EPR) spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. The study showed that the extracts significantly increased the oxidative stability of the examined oils when compared to one of the strongest synthetic antioxidants--BHA. The applied simple production technology and addition of herb and spice extracts to plant oils enabled enhancement of their oxidative stability. The extracts are an alternative to the oils aromatized with an addition of fresh herbs, spices, and vegetables because it did not generate additional flavors thus enabling the maintenance of the characteristic ones. Moreover, it will increase the intake of natural substances in human diet, which are known to possess anticarcinogenic properties. © 2012 Institute of Food Technologists®

  19. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  20. Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor

    PubMed Central

    Chi, Eva Y.; Krishnan, Sampathkumar; Kendrick, Brent S.; Chang, Byeong S.; Carpenter, John F.; Randolph, Theodore W.

    2003-01-01

    We studied the non-native aggregation of recombinant human granulocyte stimulating factor (rhGCSF) in solution conditions where native rhGCSF is both conformationally stable compared to its unfolded state and at concentrations well below its solubility limit. Aggregation of rhGCSF first involves the perturbation of its native structure to form a structurally expanded transition state, followed by assembly process to form an irreversible aggregate. The energy barriers of the two steps are reflected in the experimentally measured values of free energy of unfolding (ΔGunf) and osmotic second virial coefficient (B22), respectively. Under solution conditions where rhGCSF conformational stability dominates (i.e., large ΔGunf and negative B22), the first step is rate-limiting, and increasing ΔGunf (e.g., by the addition of sucrose) decreases aggregation. In solutions where colloidal stability is high (i.e., large and positive B22 values) the second step is rate-limiting, and solution conditions (e.g., low pH and low ionic strength) that increase repulsive interactions between protein molecules are effective at reducing aggregation. rhGCSF aggregation is thus controlled by both conformational stability and colloidal stability, and depending on the solution conditions, either could be rate-limiting. PMID:12717013

  1. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide.

    PubMed

    Schumacher, Jens; Bacic, Tijana; Staritzbichler, René; Daneschdar, Matin; Klamp, Thorsten; Arnold, Philipp; Jägle, Sabrina; Türeci, Özlem; Markl, Jürgen; Sahin, Ugur

    2018-04-13

    Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.

  2. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment

    PubMed Central

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively. PMID:26222762

  3. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment.

    PubMed

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively.

  4. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin.

    PubMed

    Gómez-Mascaraque, Laura G; Casagrande Sipoli, Caroline; de La Torre, Lucimara Gaziola; López-Rubio, Amparo

    2017-10-15

    Novel food-grade hybrid encapsulation structures based on the entrapment of phosphatidylcholine liposomes, within a WPC matrix through electrospraying, were developed and used as delivery vehicles for curcumin. The loading capacity and encapsulation efficiency of the proposed system was studied, and the suitability of the approach to stabilize curcumin and increase its bioaccessibility was assessed. Results showed that the maximum loading capacity of the liposomes was around 1.5% of curcumin, although the loading capacity of the hybrid microencapsulation structures increased with the curcumin content by incorporation of curcumin microcrystals upon electrospraying. Microencapsulation of curcumin within the proposed hybrid structures significantly increased its bioaccessibility (∼1.7-fold) compared to the free compound, and could successfully stabilize it against degradation in PBS (pH=7.4). The proposed approach thus proved to be a promising alternative to produce powder-like functional ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sixteen-year comparisons of parent-reported emotional and behaviour problems and competencies in Norwegian children aged 7-9 years.

    PubMed

    Nøvik, Torunn Stene; Jozefiak, Thomas

    2014-04-01

    Studies about changes in the prevalence of emotional and behaviour problems across time are lacking, especially among younger children. To determine if the level of parent-reported emotional and behaviour problems and competencies in young Norwegian school children had changed across a 16-year time interval. We compared parent reports obtained by the Child Behavior Checklist in two samples of children aged 7-9 years from the general population assessed in 1991 and 2007. The results demonstrated overall stability or slight decreases of emotional and behaviour problems and a significant increase in competencies, mainly due to increased activity and social competence scores in the 2007 sample. Boys obtained higher scores than girls in Total Problems, Externalizing and Attention problems at both time points and there was a high stability of the rank order of items. The findings suggest stability in child emotional and behaviour problems, and an increase of competencies across the period.

  6. Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis: an in vitro human cadaveric study of the operative and adjacent segment kinematics.

    PubMed

    Dmitriev, Anton E; Kuklo, Timothy R; Lehman, Ronald A; Rosner, Michael K

    2007-03-15

    This is an in vitro biomechanical study. The current investigation was performed to evaluate the stabilizing potential of anterior, posterior, and circumferential cervical fixation on operative and adjacent segment motion following 2 and 3-level reconstructions. Previous studies reported increases in adjacent level range of motion (ROM) and intradiscal pressure following single-level cervical arthrodesis; however, no studies have compared adjacent level effects following multilevel anterior versus posterior reconstructions. Ten human cadaveric cervical spines were biomechanically tested using an unconstrained spine simulator under axial rotation, flexion-extension, and lateral bending loading. After intact analysis, all specimens were sequentially instrumented from C3 to C5 with: (1) lateral mass fixation, (2) anterior cervical plate with interbody cages, and (3) combined anterior and posterior fixation. Following biomechanical analysis of 2-level constructs, fixation was extended to C6 and testing repeated. Full ROM was monitored at the operative and adjacent levels, and data normalized to the intact (100%). All reconstructive methods reduced operative level ROM relative to intact specimens under all loading methods (P < 0.05). However, circumferential fixation provided the greatest segmental stability among 2 and 3-level constructs (P < 0.05). Moreover, anterior cervical plate fixation was least efficient at stabilizing operative segments following C3-C6 arthrodesis (P < 0.05). Supradjacent ROM was increased for all treatment groups compared to normal data during flexion-extension testing (P < 0.05). Similar trends were observed under axial rotation and lateral bending loading. At the distal level, flexion-extension and axial rotation testing revealed comparable intergroup differences (P < 0.05), while lateral bending loading indicated greater ROM following 2-level circumferential fixation (P < 0.05). Results from our study revealed greater adjacent level motion following all 3 fixation types. No consistent significant intergroup differences in neighboring segment kinematics were detected among reconstructions. Circumferential fixation provided the greatest level of segmental stability without additional significant increase in adjacent level ROM.

  7. The co-contraction index of the upper limb for young and old adult cyclists.

    PubMed

    Kiewiet, H; Bulsink, V E; Beugels, F; Koopman, H F J M

    2017-08-01

    Bicycling is a popular and convenient means of transportation amongst the elderly in the Netherlands. However, the uptake of the electric bicycle resulted in an increase of single-sided bicycle accidents amongst the elderly (Veiligheid, 2010). Since elderly are prone to severe injuries, bicycle stability is currently a popular research topic. Three main balance strategies have been proposed in former studies: steering as the primary balance strategy and trunk -and lateral knee movement as secondary balance strategies (Moore et al., 2011; Cain, 2013). Since steering is the primary strategy for bicycle stability, the stiffness of the arms plays an important role in active stability during cycling. It has been shown that the arm stiffness of a passive rider is an important factor on the stability of a bicycle (Doria and Tognazzo, 2014). In the study presented here, the co-contraction index (CCI) of the upper limb for young and old adult cyclist is studied. Data is collected during experiments based on the setup described in (Kiewiet et al., 2014), wherein contact forces, muscle activities and motions of the rider and bicycle are measured for 15 young adult (mean±sd: 25.3±2.8 yrs) and 15 old adult (mean±sd: 58.1±2.1 yrs) subjects during unperturbed and perturbed cycling. The arm stiffness is defined as a co-contraction ratio between muscle activity of the m. Biceps Brachii and m. Triceps Lateralis. Results suggest that older adult cyclists use more co-contraction of their arm muscles during cycling, compared to young cyclists. The inter-subject variability of the found CCI was higher for the old adult subject group, compared to the young group. The results support the initial hypothesis that the increase in co-contraction of the upper limb for older cyclists is higher during perturbed cycling compared to unperturbed cycling than for younger cyclists. The findings might give direction towards solutions for increasing the safety and stability for elderly cyclists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of core stability and general exercise on abdominal muscle thickness in non-specific chronic low back pain using ultrasound imaging.

    PubMed

    Shamsi, MohammadBagher; Sarrafzadeh, Javad; Jamshidi, Aliashraf; Zarabi, Vida; Pourahmadi, Mohammad Reza

    2016-05-01

    There is a controversy regarding whether core stability exercise (CSE) is more effective than general exercise (GE) for chronic LBP. To compare different exercises regarding their effect on improving back strength and stability, performance of abdominal muscles is a useful index. Ultrasound imaging for measuring muscle thickness could be used to assess muscle performance. The aim of this study was to compare CSE and GE in chronic LBP using ultrasound imaging for measurement of thickness of the deep stabilizing and main global trunk muscles in non-specific chronic LBP. Each program included 16 training sessions three times a week. Using ultrasound imaging, four transabdominal muscle thickness were measured before and after the intervention. Disability and pain were measured as secondary outcomes. After the intervention on participants (n = 43), a significant increase in muscle thickness (hypertrophy) was seen only in right and left rectus abdominis in the GE group, but significant difference to the CSE group was only on the right side. Disability and pain reduced within the groups without a significant difference in the change between them. The present results provided evidence that only GE increased right and left rectus muscle thickness. The only significant difference between CSE and GE groups was the right rectus thickness. As rectus is a global muscle, the effect of GE on strength improvement (one side stronger than the other) may have a negative effect on motor control of lumbopelvic muscles and possibly increase the risk of back pain occurring or becoming worse, though this was not observed in the present study.

  9. Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2016-01-01

    Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.

  10. Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage.

    PubMed

    Tao, Lian; Zhou, He; Zhang, Naifeng; Si, Bingwen; Tu, Yan; Ma, Tao; Diao, Qiyu

    2017-01-01

    To improve the silage quality and reduce the silage additive cost, the present experiment was designed to evaluate the potential of applying the fermented juice of epiphytic lactic acid bacteria (FJLB) as an additive in alfalfa silage. The effects of FJLB on the fermentation quality, carbohydrate and protein fractions, and aerobic stability of alfalfa silage wilted under five different conditions were investigated and compared with commercial lactic acid bacteria (CLAB) and the control. The FJLB application decreased the pH value, the volatile fatty acids and non-protein nitrogen content, and the loss of sugar by 9.9%, 22.9%, 19.6% and 9.6%, respectively; it increased the lactic acid concentration by 29.5% and the aerobic stability by 17 h in comparison to the control. The FJLB application also decreased the pH value (4.44 vs. 4.66) and volatile fatty acid content (38.32 vs. 44.82) and increased the lactic acid concentration (68.99 vs. 63.29) in comparison to the CLAB-treated silage. However, the FJLB treatment had lower aerobic stability (254 h vs. 274 h) than the CLAB treatment. The FJLB application improved silage quality in comparison to the control; in addition, its effect as a fermentation stimulant may be comparable to or even better than CLAB. © 2016 Japanese Society of Animal Science.

  11. Recursive regularization step for high-order lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre

    2017-09-01

    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.

  12. Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing.

    PubMed

    Overhoff, Kirk A; McConville, Jason T; Yang, Wei; Johnston, Keith P; Peters, Jay I; Williams, Robert O

    2008-01-01

    Solid dispersions containing various stabilizers and tacrolimus (TAC) prepared by an Ultra-rapid Freezing (URF) process were investigated to determine the effect on their ability to form supersaturated solutions in aqueous media and on enhancing transport across biological membranes. The stabilizers included poly(vinyl alcohol; PVA), poloxamer 407 (P407), and sodium dodecyl sulfate (SDS). In vivo absorption enhancement in rats was also investigated. Dissolution studies were conducted at supersaturated conditions in both acidic media for 24 h and at delayed release (enteric) conditions to simulate intestinal transit. The rank order of C/Ceq(max) in the dissolution studies at acidic conditions was URF-P407 > URF-SDS > Prograf (PRO) > URF-PVA:P407. For C/Ceq(max) under enteric conditions, the order was URF-SDS > PRO > URF-PVA:P407 > URF-P407, and for the extent of supersaturation (AUC) in acidic and pH shift conditions it was URF-SDS>PRO>URF-PVA:P407>URF-P407. The pharmacokinetic data suggests URF-P407 had the greatest absorption having higher C (max) with a 1.5-fold increase in AUC compared to PRO. All URF compositions had a shorter T (max) compared to PRO. The nanostructured powders containing various stabilizing polymers formed by the URF process offer enhanced supersaturation characteristics leading to increased oral absorption of TAC.

  13. Multiple-layer compression-coated tablets: formulation and humidity studies of novel chewable amoxicillin/clavulanate tablet formulations.

    PubMed

    Wardrop, J; Jaber, A B; Ayres, J W

    1998-08-01

    The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.

  14. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  15. Relative stability of tension band versus two-cortex screw fixation for treating fifth metatarsal base avulsion fractures.

    PubMed

    Husain, Z S; DeFronzo, D J

    2000-01-01

    This study assesses the strength of fixating avulsion fractures of the fifth metatarsal base with a 4.0-mm partially threaded cancellous screw crossing two cortices as compared to tension banding. Our data showed statistically significant fixation strength improvement over tension banding for avulsion fractures (p < 0.02) in both polystyrene foam models and fresh, nonpreserved frozen cadaveric samples. In cadavers, the screw fixations were able to withstand more than three times the load sustained by the tension band fixations. The study utilized the Instron 8500 tensiometer to apply physiologic loads to test the constructs until failure. The displacement and load data at failure show the limitations of both fixations. By increasing the load resistance while maintaining compression, the bicortical cancellous screw fixation created greater stability at the avulsion fracture of the fifth metatarsal base as compared to tension band stabilization.

  16. Postural Stability in Healthy Child and Youth Athletes: The Effect of Age, Sex, and Concussion-Related Factors on Performance.

    PubMed

    Paniccia, Melissa; Wilson, Katherine E; Hunt, Anne; Keightley, Michelle; Zabjek, Karl; Taha, Tim; Gagnon, Isabelle; Reed, Nick

    Postural stability plays a key role in sport performance, especially after concussion. Specific to healthy child and youth athletes, little is known about the influence development and sex may have on postural stability while considering other subjective clinical measures used in baseline/preinjury concussion assessment. This study aims to describe age- and sex-based trends in postural stability in uninjured child and youth athletes at baseline while accounting for concussion-related factors. (1) Postural stability performance will improve with age, (2) females will display better postural stability compared to males, and (3) concussion-like symptoms will affect postural stability performance in healthy children and youth. Cross-sectional study. Level 3. This study comprised 889 healthy/uninjured child and youth athletes (54% female, 46% male) between the ages of 9 and 18 years old. Participants completed preseason baseline testing, which included demographic information (age, sex, concussion history), self-report of concussion-like symptoms (Post-Concussion Symptom Inventory [PCSI]-Child and PCSI-Youth), and measures of postural stability (BioSway; Biodex Medical Systems). Two versions of the PCSI were used (PCSI-C, 9- to 12-year-olds; PCSI-Y, 13- to 18-year-olds). Postural stability was assessed via sway index under 4 sway conditions of increasing difficulty by removing visual and proprioceptive cues. In children aged 9 to 12 years old, there were significant age- ( P < 0.05) and sex-based effects ( P < 0.05) on postural stability. Performance improved with age, and girls performed better than boys. For youth ages 13 to 18 years old, postural stability also improved with age ( P < 0.05). In both child and youth subgroups, postural stability worsened with increasing concussion-like symptoms ( P < 0.05). There are developmental and baseline symptom trends regarding postural stability performance. These findings provide a preliminary foundation for postconcussion comparisons and highlight the need for a multimodal approach in assessing and understanding physical measures such as postural stability.

  17. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham

    PubMed Central

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (p<0.05). The pH of the S group was significantly higher than that of the control group, whereas the S group had a lower expressible drip compared to the control group. The S group also showed the lower lightness compared to the control group (p<0.05). In regard to the mineral status, the S group had significantly lower Fe2+ and Ca2+ content than the control group (p<0.05), whereas the proteolysis index of the S group was significantly increased compared to the control group (p<0.05). The feeding of processed sulfur to pigs led to increased oxidative stability, related to lipids and pigments, in the dry-cured ham (p<0.05). Compared to the dry-cured ham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham. PMID:26761895

  18. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.

  19. Can green solvents be alternatives for thermal stabilization of collagen?

    PubMed

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface.

    PubMed

    Bjørk, Alexandra; Dalhus, Bjørn; Mantzilas, Dimitrios; Eijsink, Vincent G H; Sirevåg, Reidun

    2003-12-05

    Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.

  1. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    PubMed

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  2. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis.

    PubMed

    Zhang, Zhenjun; Li, Hui; Fogel, Guy R; Liao, Zhenhua; Li, Yang; Liu, Weiqiang

    2018-03-01

    A porous additive manufactured (AM) cage may provide stability similar to that of traditional solid cages and may be beneficial to bone ingrowth. The biomechanical influence of various porous cages on stability, subsidence, stresses in cage, and facet contact force has not been fully described. The purpose of this study was to verify biomechanical effects of porous AM cages. The surgical finite element models with various cages were constructed. The partially porous titanium (PPT) cages and fully porous titanium (FPT) cages were applied. The mechanical parameters of porous materials were obtained by mechanical test. Then the porous AM cages were compared with solid titanium (TI) cage and solid polyetheretherketone (PEEK) cage. The 4 motion modes were simulated. Range of motion (ROM), cage stress, end plate stress, and facet joint force (FJF) were compared. For all the surgical models, ROM decreased by >90%. Compared with TI and PPT cages, PEEK and FPT cages substantially reduced the maximum stresses in cage and end plate in all motion modes. Compared with PEEK cages, the stresses in cage and end plate for FPT cages decreased, whereas the ROM increased. Comparing FPT cages, the stresses in cage and end plate decreased with increasing porosity, whereas ROM increased with increasing porosity. After interbody fusion, FJF was substantially reduced in all motion modes except for flexion. Fully porous cages may offer an alternative to solid PEEK cages in lateral lumbar interbody fusion. However, it may be prudent to further increase the porosity of the cage. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface

    PubMed Central

    Ou, Shuching; Patel, Sandeep

    2014-01-01

    We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166

  4. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis.

    PubMed

    Asad, Sedigheh; Dastgheib, Seyed Mohammad Mehdi; Khajeh, Khosro

    2016-11-01

    Horseradish peroxidase (HRP) with a variety of potential biotechnological applications is still isolated from the horseradish root as a mixture of different isoenzymes with different biochemical properties. There is an increasing demand for preparations of high amounts of pure enzyme but its recombinant production is limited because of the lack of glycosylation in Escherichia coli and different glycosylation patterns in yeasts which affects its stability parameters. The goal of this study was to increase the stability of non-glycosylated enzyme, which is produced in E. coli, toward hydrogen peroxide via mutagenesis. Asparagine 268, one of the N-glycosylation sites of the enzyme, has been mutated via saturation mutagenesis using the megaprimer method. Modification and miniaturization of previously described protocols enabled screening of a library propagated in E. coli XJb (DE3). The library of mutants was screened for stability toward hydrogen peroxide with azinobis (ethylbenzthiazoline sulfonate) as a reducing substrate. Asn268Gly mutant, the top variant from the screening, exhibited 18-fold increased stability toward hydrogen peroxide and twice improved thermal stability compared with the recombinant HRP. Moreover, the substitution led to 2.5-fold improvement in the catalytic efficiency with phenol/4-aminoantipyrine. Constructed mutant represents a stable biocatalyst, which may find use in medical diagnostics, biosensing, and bioprocesses. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  5. Role of organic matter on aggregate stability and related mechanisms through organic amendments

    NASA Astrophysics Data System (ADS)

    Zaher, Hafida

    2010-05-01

    To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter

  6. Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2016-03-01

    The structural properties and stabilities of four typical gadolinium carboxylates (Gd-CBX) in toluene, linear alkyl benzene (LAB), and phenyl xylyl ethane (PXE) solvents were theoretically studied using density functional theory (DFT/B3LYP with the basis sets 6-311G(d) and MWB54) and the polarizable continuum model (PCM). The average Gd-ligand interaction energies (E int, corrected for dispersion) and the values of the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (ΔHL) for the gadolinium complexes were calculated to compare the relative stabilities of the four Gd-CBX molecules in the three liquid scintillator solvents. According to the calculations, the values of E int and ΔHL for Gd-CBX in LAB are larger than the corresponding values in PXE and toluene. Gd-CBX may therefore be more compatible with LAB than with PXE and toluene. It was also found that, in the three scintillator solvents, the stabilities of the four Gd-CBX molecules increase in the order Gd-2EHA < Gd-2MVA < Gd-pivalate < Gd-TMHA.

  7. Probing the determinants of protein stability: comparison of class A beta-lactamases.

    PubMed Central

    Vanhove, M; Houba, S; b1motte-Brasseur, J; Frère, J M

    1995-01-01

    Five class A beta-lactamases produced by various mesophilic bacterial species have been compared. Although closely related in primary and overall structures, these enzymes exhibit very different stabilities. In order to investigate the factors responsible for these differences, several features deduced from the amino acid composition and three-dimensional structures were studied for the five proteins. This analysis revealed that higher stability appeared to correlate with increased numbers of intramolecular hydrogen bonds and of salt bridges. By contrast, the global hydrophobicity of the protein seemed to play a relatively minor role. A strongly unfavourable balance between charged residues and the presence of a cis-peptide bond preceding a non-proline residue might also contribute to the particularly low stability of two of the enzymes. PMID:8948443

  8. Numerical modelling on stabilizing large magnetic island by RF current for disruption avoidance

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-01-01

    Numerical modelling on tearing mode stabilization by RF current due to electron cyclotron current drive (ECCD) has been carried out for the purposes of disruption avoidance, focusing on stabilizing the magnetic island which can grow to a large width and therefore, might cause plasma disruption. When the island has become large, a threshold in driven current for fully stabilizing the mode is found; below this threshold, the island width only slightly decreases. The island’s O-point shifts radially towards the magnetic axis as the mode grows, as a result, applying ECCD at the minor radius of the island’s O-point has a stronger effect than that at the original equilibrium rational surface for stabilizing a large island. During the island growth, the required driven current for mode stabilization increases with the island’s width, indicating that it is more effective to apply ECCD as early as possible for disruption avoidance, as observed in experiments. The numerical results have been compared with those obtained from the modified Rutherford equation.

  9. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    PubMed

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  10. Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds.

    PubMed

    Sunar, Serap; Yildirim, Nalan; Aksakal, Ozkan; Agar, Guleray

    2013-06-01

    In this research, the methanolic extracts of Convolvulus arvensis were tested for genotoxic and inhibitor activity on the total soluble protein content and the genomic template stability against corn Zea mays L. seed. The methanol extracts of leaf, stem and root of C. arvensis were diluted to 50, 75 and 100 μl concentrations and applied to corn seed. The total soluble protein and genomic template stability results were compared with the control. The results showed that especially 100 μl extracts of diluted leaf, stem and root had a strong inhibitory activity on the genomic template stability. The changes occurred in random amplification of polymorphic DNA (RAPD) profiles of C. arvensis extract treatment included variation in band intensity, loss of bands and appearance of new bands compared with control. Also, the results obtained from this study revealed that the increase in the concentrations of C. arvensis extract increased the total soluble protein content in maize. The results suggested that RAPD analysis and total protein analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals.

  11. Hunting stability analysis of high-speed train bogie under the frame lateral vibration active control

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wu, Guosong; Sardahi, Yousef; Sun, Jian-Qiao

    2018-02-01

    In this paper, we study a multi-objective optimal design of three different frame vibration control configurations and compare their performances in improving the lateral stability of a high-speed train bogie. The existence of the time-delay in the control system and its impact on the bogie hunting stability are also investigated. The continuous time approximation method is used to approximate the time-delay system dynamics and then the root locus curves of the system before and after applying control are depicted. The analysis results show that the three control cases could improve the bogie hunting stability effectively. But the root locus of low- frequency hunting mode of bogie which determinates the system critical speed is different, thus affecting the system stability with the increasing of speed. Based on the stability analysis at different bogie dynamics parameters, the robustness of the control case (1) is the strongest. However, the case (2) is more suitable for the dynamic performance requirements of bogie. For the case (1), the time-delay over 10 ms may lead to instability of the control system which will affect the bogie hunting stability seriously. For the case (2) and (3), the increasing time-delay reduces the hunting stability gradually over the high-speed range. At a certain speed, such as 200 km/h, an appropriate time-delay is favourable to the bogie hunting stability. The mechanism is proposed according to the root locus analysis of time-delay system. At last, the nonlinear bifurcation characteristics of the bogie control system are studied by the numerical integration methods to verify the effects of these active control configurations and the delay on the bogie hunting stability.

  12. Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin.

    PubMed

    Huang, Xiaosong; Netravali, Anil N

    2006-10-01

    Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.

  13. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina E; Rojas, Orlando J

    2015-05-01

    Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Computational Analysis Reveals the Association of Threonine 118 Methionine Mutation in PMP22 Resulting in CMT-1A

    PubMed Central

    Swetha, Rayapadi G.

    2014-01-01

    The T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability difference between the wild type protein structure and the mutant protein structure. The mutation T118M resulted in the overall increase in the stability of the mutant protein. The superimposed structure shows marked structural variation between the wild type and the mutant protein structures. PMID:25400662

  15. Analysis of walking improvement with dynamic shoe insoles, using two accelerometers

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako

    2005-07-01

    The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.

  16. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    PubMed

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  17. An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress.

    PubMed

    Huch, Susanne; Nissan, Tracy

    2017-03-14

    Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation.

  18. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cementless Tapered Wedge Femoral Stems Decrease Subsidence in Obese Patients Compared to Traditional Fit-and-Fill Stems.

    PubMed

    Grant, Tanner W; Lovro, Luke R; Licini, David J; Warth, Lucian C; Ziemba-Davis, Mary; Meneghini, Robert M

    2017-03-01

    Femoral component stability and resistance to subsidence is critical for osseointegration and clinical success in cementless total hip arthroplasty. The purpose of this study was to radiographically evaluate the anatomic fit and subsidence of 2 different proximally tapered, porous-coated modern cementless femoral component designs. A retrospective cohort study of 126 consecutive cementless total hip arthroplasties was performed. Traditional fit-and-fill stems were implanted in the first 61 hips with the remaining 65 receiving morphometric tapered wedge stems. Preoperative bone morphology was radiographically assessed by the canal flare index. Canal fill in the coronal plane, subsidence, and the sagittal alignment of stems was measured digitally on immediate and 1-month postoperative radiographs. Demographics and canal flare indices were similar between groups. The percentage of femoral canal fill was greater in the tapered wedge compared to the fit-and-fill stem (P = .001). There was significantly less subsidence in the tapered wedge design (0.3 mm) compared to the fit-and-fill design (1.1 mm) (P = .001). Subsidence significantly increased as body mass index (BMI) increased in the fit-and-fill stems, a finding not observed in the tapered wedge design (P = .013). An anatomically designed morphometric tapered wedge femoral stem demonstrated greater axial stability and decreased subsidence with increasing BMI than a traditional fit-and-fill stem. The resistance to subsidence, irrespective of BMI, is likely due to the inherent axial stability of a tapered wedge design and may be the optimal stem design for obese patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Etude de la stabilite d'un avion BWB (Blended Wing Body) de 200 passagers

    NASA Astrophysics Data System (ADS)

    Legros, Clement

    The Blended Wing Body (BWB) is a type of innovative aircraft, based on the flying wing concept. This new type of airplane shows several advantages compared to the conventional airplanes : economy of fuel, reduction of the weight of the structure, reduction of the noise and less impact on the environment, increased payload capacity. However, this kind of aircraft has a lack of stability due to the absence of vertical tail. Several studies of stability were already realized on reduced size models of BWB, but there is no study on a 200 passengers BWB. That's why, the main objective of this present study is to integrate the engines and theirs pylons into the existing conceptual design of the BWB to analyze of their impact on its static and dynamic stability over the flight envelope. The conception of the BWB was realized with the platform of design CEASIOM. The airplane, the engines and theirs pylons were obtained in the geometrical module AcBuilder of CEASIOM. The various aerodynamic coefficients are calculated thanks to Tornado program. These coefficients allow realizing the calculations of stability, in particular with the longitudinal and lateral matrices of stability. Afterward, the BWB flight envelope is created based on aeronautical data of a similar airplane, the Airbus A320. From this flight envelope, we get back several thousand possible points of flight. The last step is to check the static and dynamic stability, using the longitudinal and lateral matrices of stability and the Flying Qualities Requirements, for every point of flight. To validate our study of stability, the already existing studies of stability of the Boeing 747 will be used and compared with our model.

  1. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments.

    PubMed

    Krishnaiah, Prakash; Ratnam, Chantara Thevy; Manickam, Sivakumar

    2017-01-01

    In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5°C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Stability enhanced, repeatability improved Parylene-C passivated on QCM sensor for aPTT measurement.

    PubMed

    Yang, Yuchen; Zhang, Wei; Guo, Zhen; Zhang, Zhiqi; Zhu, Hongnan; Yan, Ruhong; Zhou, Lianqun

    2017-12-15

    Determination of blood clotting time is essential in monitoring therapeutic anticoagulants. In this work, Parylene-C passivated on quartz crystal microbalance (P-QCM) was developed for the activated partial thromboplastin time (aPTT) measurement. Compared with typical QCM, P-QCM possessed a hydrophobic surface and sensitive frequency response to viscoelastic variations on electrode surface. Fibrin could be adsorbed effectively, due to the hydrophobicity of the P-QCM surface. Comparing with typical QCM, the peak-to-peak value (PPV) of P-QCM was increased by 1.94% ± 0.63%, which indicated enhancement of signal-to-noise ratio. For P-QCM, the coefficient of variation (CV) of frequency decrease and aPTT were 2.58% and 1.24% separately, which demonstrated improvement of stability and reproducibility. Moreover, compared with SYSMEX CS 2000i haematology analyzer, clinical coefficient index (R 2 ) was 0.983. In conclusion, P-QCM exhibited potential for improving stability, reproducibility and linearity of piezoelectric sensors, and might be more promising for point of care testing (POCT) applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  5. Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets.

    PubMed

    Finkenauer, Lauren R; Lu, Qingyun; Hakem, Ilhem F; Majidi, Carmel; Bockstaller, Michael R

    2017-09-26

    A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets. For the case of thiol-based surfactants in ethanol, the yield of nanodroplet formation increased with the number of carbon atoms in the aliphatic part. In the case of the most effective surfactant system-octadecanethiol-the nanodroplet yield increased by about 370% as compared to pristine ethanol. The rather low overall efficiency of the reaction process along with the incompatibility of surfactant-stabilized EGaIn nanodroplets in nonpolar organic solvents suggests that the stabilization mechanism differs from the established self-assembled monolayer formation process that has been widely observed in nanoparticle formation.

  6. Improving oxidative stability of virgin olive oil by addition of microalga Chlorella vulgaris biomass.

    PubMed

    Alavi, Nasireh; Golmakani, Mohammad-Taghi

    2017-07-01

    Antioxidant activity of Chlorella ( Chlorella vulgaris ) was evaluated in virgin olive oil (VOO) at different concentrations of 0.5, 1.0, and 1.5% (w/w) under accelerated storage conditions. Antioxidant activity of Chlorella was compared with those of BHT and β-carotene. Chlorella samples significantly retarded the formation of primary, secondary, and total oxidation products in comparison with those of the control. The stability increased as concentrations of Chlorella increased. Samples containing 0.5, 1.0, and 1.5% Chlorella significantly improved VOO stability by 19.99, 28.83, and 33.14%, respectively. Observed effects can be related to the release in the assortment of bioactive compounds from Chlorella algae to the VOO. Among the different antioxidants evaluatedy, BHT exhibited the highest antioxidant activity. On the contrary, β-carotene had no preventive effect against the oxidation of VOO. It also proved incapable of limiting the progress of VOO oxidation and played role as pro-oxidant. In conclusion, Chlorella enhanced VOO oxidative stability. Thus it can be considered as a promising source of natural antioxidants.

  7. Influence of vehicle properties and excipients on hydrolytic and photochemical stability of curcumin in preparations containing Pluronics: studies of curcumin and curcuminoids XLVIII.

    PubMed

    Singh, R; Kristensen, S; Tønnesen, H H

    2013-03-01

    The influence of vehicle properties and excipients on the hydrolytic and photochemical stability of curcumin in Pluronic preparations, and the interactions between curcumin and Pluronics was investigated. Curcumin was found to be degraded by general acid-base catalyzed hydrolytic degradation in alkaline preparations. The degradation rate of curcumin was higher in carbonate buffer than in phosphate buffer (pH 8.8), while it was higher in phosphate buffer than in citrate buffer (pH 7.8). At pH 8.0-8.8 the degradation rate of curcumin increased compared to preparations with pH <8.0. The stabilizing effect of the Pluronics against hydrolytic degradation of curcumin was only detectable at pH 8.0-8.8, and it was highest for F127 and lowest for P85, in phosphate buffer pH 8.8. An increase in the ionic strength increased the stabilization against hydrolytic degradation of curcumin by all Pluronics. Addition of ethanol decreased the hydrolytic stability of curcumin in all Pluronics. Addition of PEG 400 decreased the hydrolytic stability in preparation with either P123 or F127 while the degradation in preparations with P85 remained the same as in P85 preparations without PEG 400. Vehicle properties and excipients did not to any large degree influence the spectroscopic properties or the photostability of curcumin in Pluronic preparations. Photochemical half life of curcumin was in the minutes range. Spectrophotometric data indicate that Pluronic aggregates most likely solubilize curcumin through hydrophobic interactions, although hydrogen-bonding may also be involved.

  8. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.

    PubMed

    Thiagarajan, Geetha; Semple, Andrew; James, Jose K; Cheung, Jason K; Shameem, Mohammed

    2016-01-01

    With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2-8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2-8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.

  9. New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT.

    PubMed

    Drake, Walter R; Hou, Ching-Wen; Zachara, Natasha E; Grimes, Catherine Leimkuhler

    2018-06-01

    O-GlcNAcylation is a dynamic and functionally diverse post-translational modification shown to affect thousands of proteins, including the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Mutations of Nod2 (R702W, G908R and 1007 fs) are associated with Crohn's disease and have lower stabilities compared to wild type. Cycloheximide (CHX)-chase half-life assays have been used to show that O-GlcNAcylation increases the stability and response of both wild type and Crohn's variant Nod2, R702W. A more rapid method to assess stability afforded by post-translational modifications is necessary to fully comprehend the correlation between NLR stability and O-GlcNAcylation. Here, a recently developed cellular thermal shift assay (CETSA) that is typically used to demonstrate protein-ligand binding was adapted to detect shifts in protein stabilization upon increasing O-GlcNAcylation levels in Nod2. This assay was used as a method to predict if other Crohn's associated Nod2 variants were O-GlcNAcylated, and also identified the modification on another NLR, Nod1. Classical immunoprecipitations and NF-κB transcriptional assays were used to confirm the presence and effect of this modification on these proteins. The results presented here demonstrate that CETSA is a convenient method that can be used to detect the stability effect of O-GlcNAcylation on O-GlcNAc-transferase (OGT) client proteins and will be a powerful tool in studying post-translational modification.

  10. Physical stability of API/polymer-blend amorphous solid dispersions.

    PubMed

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele

    2018-03-01

    The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems.

    PubMed

    De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol

    2014-07-01

    Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained. © 2013 John Wiley & Sons Ltd.

  12. Effect of okra cell wall and polysaccharide on physical properties and stability of ice cream.

    PubMed

    Yuennan, Pilapa; Sajjaanantakul, Tanaboon; Goff, H Douglas

    2014-08-01

    Stabilizers are used in ice cream to increase mix viscosity, promote smooth texture, and improve frozen stability. In this study, the effects of varying concentrations (0.00%, 0.15%, 0.30%, and 0.45%) of okra cell wall (OKW) and its corresponding water-soluble polysaccharide (OKP) on the physical characteristics of ice cream were determined. Ice cream mix viscosity was measured as well as overrun, meltdown, and consumer acceptability. Ice recrystallization was determined after ice cream was subjected to temperature cycling in the range of -10 to -20 °C for 10 cycles. Mix viscosity increased significantly as the concentrations of OKW and OKP increased. The addition of either OKW or OKP at 0.15% to 0.45% significantly improved the melting resistance of ice cream. OKW and OKP at 0.15% did not affect sensory perception score for flavor, texture, and overall liking of the ice cream. OKW and OKP (0.15%) reduced ice crystal growth to 107% and 87%, respectively, as compared to 132% for the control (0.00%). Thus, our results suggested the potential use of OKW and OKP at 0.15% as a stabilizer to control ice cream quality and retard ice recrystallization. OKP, however, at 0.15% exhibited greater effect on viscosity increase and on ice recrystallization inhibition than OKW. © 2014 Institute of Food Technologists®

  13. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    PubMed

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    This note derives the first and second strike magnitudes and costs for strikes between vulnerable missile forces with multiple warheads. The extension to mixes with invulnerable missiles is performed in a companion note. Stability increases as the number of weapons per missile is reduced. The optimal allocation of weapons between missiles and value is significant in predicting the stability impact of the reduction of the number of weapons per missile at large numbers of missiles, less significant in reducing the number of missiles for fixed weapons per missile. At low numbers of missiles, the stability indices for singlet and tripletmore » configurations are comparable, as are the number of weapons each would deliver on value targets.« less

  15. Design of Launch Vehicle Flight Control Augmentors and Resulting Flight Stability and Control (Center Director's Discretionary Fund Project 93-05, Part III)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1997-01-01

    This publication presents the control requirements, the details of the designed Flight Control Augmentor's (FCA's), the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental Launch Vehicle (LV) with the designed FCA's, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater in the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.

  16. Synthesis and Characterisation of Biocompatible Polymer-Conjugated Magnetic Beads for Enhancement Stability of Urease.

    PubMed

    Doğaç, Yasemin Ispirli; Teke, Mustafa

    2016-04-01

    We reported natural polymer-conjugated magnetic featured urease systems for removal of urea effectively. The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70 °C), pH stability (4.0-9.0), operational stability (0-250 min), reusability (18 times) and storage stability (24 weeks) were studied for characterisation of the urease-encapsulated biocompatible polymer-conjugated magnetic beads. Also, the surface groups and chemical structure of the magnetic beads were determined by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The all urease-encapsulated magnetic beads protected their stability of 30-45 % relative activity at 70 °C. A significant increase was observed at their pH stability compared with the free urease for both acidic and alkaline medium. Besides this, their repeatability activity were approximately 100 % during 4(th) run. They showed residual activity of 50 % after 16 weeks. The importance of this work is enhancement stability of immobilised urease by biocompatible polymer-conjugated magnetic beads for the industrial application based on removal of urea.

  17. Diffusion and Stability of Hydrogen in Mg-Doped GaN: A Density Functional Study

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chang, Kee Joo

    2012-06-01

    Using hybrid functional calculations, we study the diffusion and thermal stability of hydrogen in Mg-doped GaN. Compared with the generalized gradient approximation, we obtain a higher activation barrier for dissociating a Mg-H complex, which is attributed to the increase in the binding energy of Mg-H. Kinetic Monte Carlo simulations yield the annealing temperature of around 800 °C for activating Mg acceptors, close to the measured values. The results provide an insight to understanding the annealing effect such that the annealing temperature generally increases with the Mg-H concentration, and the retrapping of H is partly responsible for the low doping efficiencies at high Mg concentrations.

  18. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    PubMed

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. © 2016 Wiley Periodicals, Inc.

  19. A comparison of water-based and land-based core stability exercises in patients with lumbar disc herniation: a pilot study.

    PubMed

    Bayraktar, Deniz; Guclu-Gunduz, Arzu; Lambeck, Johan; Yazici, Gokhan; Aykol, Sukru; Demirci, Harun

    2016-01-01

    To determine and compare the effects of core stability exercise programs performed in two different environments in lumbar disc herniation (LDH) patients. Thirty-one patients who were diagnosed with LDH and were experiencing pain or functional disability for at least 3 months were randomly divided into two groups as land-based exercises or water specific therapy. Also, 15 age-sex-matched healthy individuals were recruited as healthy controls. Both groups underwent an 8-week (3 times/week) core stabilization exercise program. Primary outcomes were pain, trunk muscle static endurance and perceived disability level. The secondary outcome was health-related quality of life. Level of static endurance of trunk muscles was found to be lower in the patients compared to the controls at baseline (p < 0.05). Both treatment groups showed significant improvements in all outcomes (p < 0.05) after 8-week intervention. When two treatment groups were compared, no differences were found in the amount of change after the intervention (p > 0.05). After the treatment, static endurance of trunk muscles of the LDH patients became similar to controls (p > 0.05). According to these results, core stabilization exercise training performed on land or in water both could be beneficial in LDH patients and there is no difference between the environments. An 8-week core stabilization program performed in water or on land decrease pain level and improve functional status in LDH patients. Both programs seem beneficial to increase health-related quality of life and static endurance of trunk muscles. Core stability exercises could be performed in water as well, no differences were found between methods due to environment.

  20. Solution stability of Captisol-stabilized melphalan (Evomela) versus Propylene glycol-based melphalan hydrochloride injection.

    PubMed

    Singh, Ramsharan; Chen, Jin; Miller, Teresa; Bergren, Michael; Mallik, Rangan

    2016-12-14

    The objective of this study was to compare the stability of recently approved Captisol-stabilized propylene glycol-free melphalan injection (Evomela™) against currently marketed propylene glycol-based melphalan injection. The products were compared as reconstituted solutions in vials as well as admixture solutions prepared from normal saline in infusion bags. Evomela and propylene glycol-based melphalan injection were reconstituted in normal saline and organic custom diluent, respectively, according to their package insert instructions. The reconstituted solutions were diluted in normal saline to obtain drug admixture solutions at specific drug concentrations. Stability of the solutions was studied at room temperature by assay of melphalan and determination of melphalan-related impurities. Results show that based on the increase in total impurities in propylene glycol-based melphalan injection at 0.45 mg/mL, Evomela admixture solutions are about 5, 9, 15 and 29 times more stable at concentrations of 0.45, 1.0, 2.0 and 5.0 mg/mL, respectively. Results confirmed that reconstituted Evomela solution can be stored in the vial for up to 1 h at RT or for up to 24 h at refrigerated temperature (2-8 °C) with no significant degradation. After storage in the vial, it remains stable for an additional 3-29 h after preparation of admixture solution in infusion bags at concentrations of 0.25-5.0 mg/mL, respectively. In addition, Evomela solution in saline, at concentration of 5.0 mg/mL melphalan was bacteriostatic through 72 h storage at 2-8 °C. Formulation of melphalan with Captisol technology significantly improved stability compared to melphalan hydrochloride reconstituted with propylene-glycol based diluents.

  1. Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes

    DOE PAGES

    Kinsinger, Corey L.; Liu, Yuan; Liu, Feilong; ...

    2015-10-09

    We present here the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 Å –1, which increases in amplitude when initially hydrated to 25% relativemore » humidity, but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. In conclusion, this reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the random copolymer, represents a viable alternative to current proton exchange membranes.« less

  2. Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall

    NASA Astrophysics Data System (ADS)

    Lau, William Ka-Ming; Kim, Kyu-Myong

    2017-05-01

    In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.

  3. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    PubMed

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum suggests greater film stability especially under the high shear stress of a blink. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Full-scale wind-tunnel test of the aeroelastic stability of a bearingless main rotor

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Mccloud, J., III; Sheffler, M.; Staley, J.

    1981-01-01

    The rotor studied in the wind tunnel had previously been flight tested on a BO-105 helicopter. The investigation was conducted to determine the rotor's aeroelastic stability characteristics in hover and at airspeeds up to 143 knots. These characteristics are compared with those obtained from whirl-tower and flight tests and predictions from a digital computer simulation. It was found that the rotor was stable for all conditions tested. At constant tip speed, shaft angle, and airspeed, stability increases with blade collective pitch setting. No significant change in system damping occurred that was attributable to frequency coalescence between the rotor inplane regressing mode and the support modes. Stability levels determined in the wind tunnel were of the same magnitude and yielded the same trends as data obtained from whirl-tower and flight tests.

  5. Laser Beam Melting of Alumina: Effect of Absorber Additions

    NASA Astrophysics Data System (ADS)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  6. Comparative stability of repackaged metoprolol tartrate tablets.

    PubMed

    Yang, Yongsheng; Gupta, Abhay; Carlin, Alan S; Faustino, Patrick J; Lyon, Robbe C; Ellison, Christopher D; Rothman, Barry; Khan, Mansoor A

    2010-01-29

    The stability of metoprolol tartrate tablets packaged in original high density polyethylene containers and repackaged in USP Class A unit-dose blister packs was investigated. Studies were conducted at 25 degrees C/60% relative humidity (RH) for 52 weeks and at 40 degrees C/75% RH for 13 weeks. The potency, dissolution, water content, loss on drying and hardness of the drug products were analyzed. Results indicated no differences in the stability between the tablets in both packages stored under 25 degrees C/60% RH. No difference in potency was found in both packages under either condition. However, a significant weight increase due to moisture uptake was observed for the repackaged tablets stored under 40 degrees C/75% RH. The weight increase was accompanied by a decrease in tablet hardness (6.5-0 kp) and a increase in dissolution rate (51-92%) in 5 min. Near-infrared (NIR) chemical imaging also monitored moisture uptake of the tablet non-invasively through the package. The observed changes in product stability may adversely affect the products bioavailability profile, even though the potency of the active drug remained within USP specification range of 90-110%. Study results suggest product quality can be negatively impacted even when using USP Class A repackaging materials. Published by Elsevier B.V.

  7. The impact of the concentration of casein micelles and whey protein-stabilized fat globules on the rennet-induced gelation of milk.

    PubMed

    Gaygadzhiev, Zafir; Corredig, Milena; Alexander, Marcela

    2009-02-01

    The rennet-induced aggregation of skim milk recombined with whey protein-stabilized emulsion droplets was studied using diffusing wave spectroscopy (DSW) and small deformation rheology. The effect of different volume fractions of casein micelles and fat globules was investigated by observing changes in turbidity (1/l*), apparent radius, elastic modulus and mean square displacement (MSD), in addition to confocal imaging of the gels. Skim milk containing different concentration of casein micelles showed comparable light-scattering profiles; a higher volume fraction of caseins led to the development of more elastic gels. By following the development of 1/l* in recombined milks, it was possible to describe the behaviour of the fat globules during the initial stages of rennet coagulation. Increasing the volume fraction of fat globules showed a significant increase in gel elasticity, caused by flocculation of the oil droplets. The presence of flocculated oil globules within the gel structure was confirmed by confocal microscopy observations. Moreover, a lower degree of kappa-casein hydrolysis was needed to initiate casein micelles aggregation in milk containing whey protein-stabilized oil droplets compared to skim milk. This study for the first time clearly describes the impact of a mixture of casein micelles and whey protein-stabilized fat globules on the pre-gelation stages of rennet coagulation, and further highlights the importance of the flocculation state of the emulsion droplets in affecting the structure formation of the gel.

  8. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part II — Techno-economic assessment

    DOE PAGES

    Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin; ...

    2017-04-26

    The seasonal variability in algal biomass production and its susceptibility to rapid degradation increases uncertainty in algal productivity and increases risks to feedstock supply for conversion. During summer months when algal biomass productivity is highest, production could exceed conversion capacity, resulting in delayed processing and risk of biomass degradation. Drying algae for preservation is energy-intensive and can account for over 50% of the total energy demand in algae preprocessing. Anaerobic wet storage – ensiling – is a widely used storage technique for stabilization of high moisture forage. Wet stabilization of algae eliminates the need for drying, and blending with herbaceousmore » biomass allows for the utilization of the silage industry’s existing harvest, handling and storage infrastructure. A storage facility co-located with the algae production and conversion operations was designed to stabilize algal biomass produced in excess of conversion capacity during summer months for use in the winter when algal biomass production is reduced. Techno-economic assessment of the costs associated with ensiling algae and corn stover blends suggest it to be a cost effective approach, compared to drying. In a high algal biomass productivity scenario, costs of wet storage ($/gallon diesel) were only 65% of the cost of drying. When a reduced algal biomass productivity scenario was considered, the stored blend was able to cost-effectively provide sufficient biomass such that winter production in the algal ponds could cease, meanwhile incurring only 91% of the costs of drying; such an approach would facilitate algal biomass production in northern latitudes. Moreover, the wet storage approaches requiring only 8-10% of the total energy consumption and releasing only 20-25% of the greenhouse gasses when compared to a natural-gas based drying approach for microalgae stabilization.« less

  9. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part II — Techno-economic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin

    The seasonal variability in algal biomass production and its susceptibility to rapid degradation increases uncertainty in algal productivity and increases risks to feedstock supply for conversion. During summer months when algal biomass productivity is highest, production could exceed conversion capacity, resulting in delayed processing and risk of biomass degradation. Drying algae for preservation is energy-intensive and can account for over 50% of the total energy demand in algae preprocessing. Anaerobic wet storage – ensiling – is a widely used storage technique for stabilization of high moisture forage. Wet stabilization of algae eliminates the need for drying, and blending with herbaceousmore » biomass allows for the utilization of the silage industry’s existing harvest, handling and storage infrastructure. A storage facility co-located with the algae production and conversion operations was designed to stabilize algal biomass produced in excess of conversion capacity during summer months for use in the winter when algal biomass production is reduced. Techno-economic assessment of the costs associated with ensiling algae and corn stover blends suggest it to be a cost effective approach, compared to drying. In a high algal biomass productivity scenario, costs of wet storage ($/gallon diesel) were only 65% of the cost of drying. When a reduced algal biomass productivity scenario was considered, the stored blend was able to cost-effectively provide sufficient biomass such that winter production in the algal ponds could cease, meanwhile incurring only 91% of the costs of drying; such an approach would facilitate algal biomass production in northern latitudes. Moreover, the wet storage approaches requiring only 8-10% of the total energy consumption and releasing only 20-25% of the greenhouse gasses when compared to a natural-gas based drying approach for microalgae stabilization.« less

  10. Quadriceps Tendon Autograft in Anterior Cruciate Ligament Reconstruction: A Systematic Review.

    PubMed

    Hurley, Eoghan T; Calvo-Gurry, Manuel; Withers, Dan; Farrington, Shane K; Moran, Ray; Moran, Cathal J

    2018-05-01

    To systematically review the current evidence to ascertain whether quadriceps tendon autograft (QT) is a viable option in anterior cruciate ligament reconstruction. A literature review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Cohort studies comparing QT with bone-patellar tendon-bone autograft (BPTB) or hamstring tendon autograft (HT) were included. Clinical outcomes were compared, with all statistical analyses performed using IBM SPSS Statistics for Windows, version 22.0, with P < .05 being considered statistically significant. We identified 15 clinical trials with 1,910 patients. In all included studies, QT resulted in lower rates of anterior knee pain than BPTB. There was no difference in the rate of graft rupture between QT and BPTB or HT in any of the studies reporting this. One study found that QT resulted in greater knee stability than BPTB, and another study found increased stability compared with HT. One study found that QT resulted in improved functional outcomes compared with BPTB, and another found improved outcomes compared with HT, but one study found worse outcomes compared with BPTB. Current literature suggests QT is a viable option in anterior cruciate ligament reconstruction, with published literature showing comparable knee stability, functional outcomes, donor-site morbidity, and rerupture rates compared with BPTB and HT. Level III, systematic review of Level I, II, and III studies. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Does Increased Coefficient of Friction of Highly Porous Metal Increase Initial Stability at the Acetabular Interface?

    PubMed

    Goldman, Ashton H; Armstrong, Lucas C; Owen, John R; Wayne, Jennifer S; Jiranek, William A

    2016-03-01

    Highly porous metal acetabular components illustrate a decreased rate of aseptic loosening in short-term follow-up compared with previous registry data. This study compared the effect of component surface roughness at the bone-implant interface and the quality of the bone on initial pressfit stability. The null hypothesis is that a standard porous coated acetabular cup would show no difference in initial stability as compared with a highly porous acetabular cup when subjected to a bending moment. Second, would bone mineral density (BMD) be a significant variable under these test conditions. In a cadaveric model, acetabular cup micromotion was measured during a 1-time cantilever bending moment applied to 2 generations of pressfit acetabular components. BMD data were also obtained from the femoral necks available for associated specimen. The mean bending moment at 150 μm was not found to be significantly different for Gription (24.6 ± 14.0 N m) cups vs Porocoat (25 ± 10.2 N m; P > .84). The peak bending moment tolerated by Gription cups (33.9 ± 20.3 N m) was not found to be significantly different from Porocoat (33.5 ± 12.2 N m; P > .92). No correlation between BMD and bending moment at 150 μm of displacement could be identified. The coefficient of friction provided by highly porous metal acetabular shells used in this study did not provide better resistance to migration under bending load when compared with a standard porous coated component. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Plasma deposited stability enhancement coating for amorphous ketoprofen.

    PubMed

    Bosselmann, Stephanie; Owens, Donald E; Kennedy, Rachel L; Herpin, Matthew J; Williams, Robert O

    2011-05-01

    A hydrophobic fluorocarbon coating deposited onto amorphous ketoprofen via pulsed plasma-enhanced chemical vapor deposition (PPECVD) significantly prolonged the onset of recrystallization compared to uncoated drug. Rapid freezing (RF) employed to produce amorphous ketoprofen was followed by PPECVD of perfluorohexane. The effect of coating thickness on the recrystallization and dissolution behavior of ketoprofen was investigated. Samples were stored in open containers at 40°C and 75% relative humidity, and the onset of recrystallization was monitored by DSC. An increase in coating thickness provided enhanced stability against recrystallization for up to 6 months at accelerated storage conditions (longest time of observation) when compared to three days for uncoated ketoprofen. Results from XPS analysis demonstrated that an increase in coating thickness was associated with improved surface coverage thus enabling superior protection. Dissolution testing showed that at least 80% of ketoprofen was released in buffer pH 6.8 from all coated samples. Overall, an increase in coating thickness resulted in a more complete drug release due to decreased adhesion of the coating to the substrate. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Control of locomotor stability in stabilizing and destabilizing environments.

    PubMed

    Wu, Mengnan/Mary; Brown, Geoffrey; Gordon, Keith E

    2017-06-01

    To develop effective interventions targeting locomotor stability, it is crucial to understand how people control and modify gait in response to changes in stabilization requirements. Our purpose was to examine how individuals with and without incomplete spinal cord injury (iSCI) control lateral stability in haptic walking environments that increase or decrease stabilization demands. We hypothesized that people would adapt to walking in a predictable, stabilizing viscous force field and unpredictable destabilizing force field by increasing and decreasing feedforward control of lateral stability, respectively. Adaptations in feedforward control were measured using after-effects when fields were removed. Both groups significantly (p<0.05) decreased step width in the stabilizing field. When the stabilizing field was removed, narrower steps persisted in both groups and subjects with iSCI significantly increased movement variability (p<0.05). The after-effect of walking in the stabilizing field was a suppression of ongoing general stabilization mechanisms. In the destabilizing field, subjects with iSCI took faster steps and increased lateral margins of stability (p<0.05). Step frequency increases persisted when the destabilizing field was removed (p<0.05), suggesting that subjects with iSCI made feedforward adaptions to increase control of lateral stability. In contrast, in the destabilizing field, non-impaired subjects increased movement variability (p<0.05) and did not change step width, step frequency, or lateral margin of stability (p>0.05). When the destabilizing field was removed, increases in movement variability persisted (p<0.05), suggesting that non-impaired subjects made feedforward decreases in resistance to perturbations. Published by Elsevier B.V.

  14. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    PubMed

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Jump Landing Characteristics Predict Lower Extremity Injuries in Indoor Team Sports.

    PubMed

    van der Does, H T D; Brink, M S; Benjaminse, A; Visscher, C; Lemmink, K A P M

    2016-03-01

    The aim of this study is to investigate the predictive value of landing stability and technique to gain insight into risk factors for ankle and knee injuries in indoor team sport players. Seventy-five male and female basketball, volleyball or korfball players were screened by measuring landing stability after a single-leg jump landing and landing technique during a repeated counter movement jump by detailed 3-dimensional kinematics and kinetics. During the season 11 acute ankle injuries were reported along with 6 acute and 7 overuse knee injuries by the teams' physical therapist. Logistic regression analysis showed less landing stability in the forward and diagonal jump direction (OR 1.01-1.10, p≤0.05) in players who sustained an acute ankle injury. Furthermore landing technique with a greater ankle dorsiflexion moment increased the risk for acute ankle injury (OR 2.16, p≤0.05). A smaller knee flexion moment and greater vertical ground reaction force increased the risk of an overuse knee injury (OR 0.29 and 1.13 respectively, p≤0.05). Less one-legged landing stability and suboptimal landing technique were shown in players sustaining an acute ankle and overuse knee injury compared to healthy players. Determining both landing stability and technique may further guide injury prevention programs. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Modification and investigation of silica particles as a foam stabilizer

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhou, Hua-lei; Song, Ying-xiao; Chang, Zhi-dong; Li, Wen-jun

    2017-02-01

    As a solid foam stabilizer, spherical silica particles with diameters ranging from 150 to 190 nm were prepared via an improved Stöber method and were subsequently modified using three different silane coupling agents to attain the optimum surface hydrophobicity of the particles. Fourier transform infrared (FTIR) spectra and the measured contact angles were used to characterize the surface properties of the prepared particles. The foam stability was investigated by the foam drainage half-life and the expansion viscoelastic modulus of the liquid film. The results demonstrate that all of the modified silica nanoparticles effectively improve the foam stability. The surface hydrophobicity of the modified particles is found to be a key factor influencing the foam stability. The optimum contact angle of the particles lies in the approximate range from 50° to 55°. The modifier molecular structure used can also influence the stabilizing foam property of the solid particles. The foam system stabilized by (CH3)2SiCl2-modified silica particles exhibits the highest stability; its drainage half-life at maximum increases by 27% compared to that of the blank foam system and is substantially greater than those of the foam systems stabilized by KH570- and KH550-modified particles.

  17. [Influence of Restricting the Ankle Joint Complex Motions on Gait Stability of Human Body].

    PubMed

    Li, Yang; Zhang, Junxia; Su, Hailong; Wang, Xinting; Zhang, Yan

    2016-10-01

    The purpose of this study is to determine how restricting inversion-eversion and pronation-supination motions of the ankle joint complex influences the stability of human gait.The experiment was carried out on a slippery level ground walkway.Spatiotemporal gait parameter,kinematics and kinetics data as well as utilized coefficient of friction(UCOF)were compared between two conditions,i.e.with restriction of the ankle joint complex inversion-eversion and pronation-supination motions(FIXED)and without restriction(FREE).The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time.Furthermore,FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane.In FIXED condition,UCOF was significantly increased,which could lead to an increase of slip probability and a decrease of gait stability.Hence,in the design of a walker,bipedal robot or prosthetic,the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.

  18. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  19. Postural Stability in Older Adults With Alzheimer Disease.

    PubMed

    Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh

    2017-03-01

    The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association

  20. Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.

    PubMed

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-06-21

    Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

  1. Stability of multifinger action in different state spaces

    PubMed Central

    Reschechtko, Sasha; Zatsiorsky, Vladimir M.

    2014-01-01

    We investigated stability of action by a multifinger system with three methods: analysis of intertrial variance, application of transient perturbations, and analysis of the system's motion in different state spaces. The “inverse piano” device was used to apply transient (lifting-and-lowering) perturbations to individual fingers during single- and two-finger accurate force production tasks. In each trial, the perturbation was applied either to a finger explicitly involved in the task or one that was not. We hypothesized that, in one-finger tasks, task-specific stability would be observed in the redundant space of finger forces but not in the nonredundant space of finger modes (commands to explicitly involved fingers). In two-finger tasks, we expected that perturbations applied to a nontask finger would not contribute to task-specific stability in mode space. In contrast to our expectations, analyses in both force and mode spaces showed lower stability in directions that did not change total force output compared with directions that did cause changes in total force. In addition, the transient perturbations led to a significant increase in the enslaving index. We consider these results within a theoretical scheme of control with referent body configurations organized hierarchically, using multiple few-to-many mappings organized in a synergic way. The observed volatility of enslaving, greater equifinality of total force compared with elemental variables, and large magnitude of motor equivalent motion in both force and mode spaces provide support for the concept of task-specific stability of performance and the existence of multiple neural loops, which ensure this stability. PMID:25253478

  2. Stability of multifinger action in different state spaces.

    PubMed

    Reschechtko, Sasha; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-12-15

    We investigated stability of action by a multifinger system with three methods: analysis of intertrial variance, application of transient perturbations, and analysis of the system's motion in different state spaces. The "inverse piano" device was used to apply transient (lifting-and-lowering) perturbations to individual fingers during single- and two-finger accurate force production tasks. In each trial, the perturbation was applied either to a finger explicitly involved in the task or one that was not. We hypothesized that, in one-finger tasks, task-specific stability would be observed in the redundant space of finger forces but not in the nonredundant space of finger modes (commands to explicitly involved fingers). In two-finger tasks, we expected that perturbations applied to a nontask finger would not contribute to task-specific stability in mode space. In contrast to our expectations, analyses in both force and mode spaces showed lower stability in directions that did not change total force output compared with directions that did cause changes in total force. In addition, the transient perturbations led to a significant increase in the enslaving index. We consider these results within a theoretical scheme of control with referent body configurations organized hierarchically, using multiple few-to-many mappings organized in a synergic way. The observed volatility of enslaving, greater equifinality of total force compared with elemental variables, and large magnitude of motor equivalent motion in both force and mode spaces provide support for the concept of task-specific stability of performance and the existence of multiple neural loops, which ensure this stability. Copyright © 2014 the American Physiological Society.

  3. Assessing the effects of lumbar posterior stabilization and fusion to vertebral bone density in stabilized and adjacent segments by using Hounsfield unit

    PubMed Central

    Öksüz, Erol; Deniz, Fatih Ersay; Demir, Osman

    2017-01-01

    Background Computed tomography (CT) with Hounsfield unit (HU) is being used with increasing frequency for determining bone density. Established correlations between HU and bone density have been shown in the literature. The aim of this retrospective study was to determine the bone density changes of the stabilized and adjacent segment vertebral bodies by comparing HU values before and after lumbar posterior stabilization. Methods Sixteen patients who had similar diagnosis of lumbar spondylosis and stenosis were evaluated in this study. Same surgical procedures were performed to all of the patients with L2-3-4-5 transpedicular screw fixation, fusion and L3-4 total laminectomy. Bone mineral density measurements were obtained with clinical CT. Measurements were obtained from stabilized and adjacent segment vertebral bodies. Densities of vertebral bodies were evaluated with HU before the surgeries and approximately one year after the surgeries. The preoperative HU value of each vertebra was compared with postoperative HU value of the same vertebrae by using statistical analysis. Results The HU values of vertebra in the stabilized and adjacent segments consistently decreased after the operations. There were significant differences between the preoperative HU values and the postoperative HU values of the all evaluated vertebral bodies in the stabilized and adjacent segments. Additionally first sacral vertebra HU values were found to be significantly higher than lumbar vertebra HU values in the preoperative group and postoperative group. Conclusions Decrease in the bone density of the adjacent segment vertebral bodies may be one of the major predisposing factors for adjacent segment disease (ASD). PMID:29354730

  4. Reliability, stability, and sensitivity to change and impairment in acoustic measures of timing and frequency.

    PubMed

    Vogel, Adam P; Fletcher, Janet; Snyder, Peter J; Fredrickson, Amy; Maruff, Paul

    2011-03-01

    Assessment of the voice for supporting classifications of central nervous system (CNS) impairment requires a different practical, methodological, and statistical framework compared with assessment of the voice to guide decisions about change in the CNS. In experimental terms, an understanding of the stability and sensitivity to change of an assessment protocol is required to guide decisions about CNS change. Five experiments (N = 70) were conducted using a set of commonly used stimuli (eg, sustained vowel, reading, extemporaneous speech) and easily acquired measures (eg, f₀-f₄, percent pause). Stability of these measures was examined through their repeated application in healthy adults over brief and intermediate retest intervals (ie, 30 seconds, 2 hours, and 1 week). Those measures found to be stable were then challenged using an experimental model that reliably changes voice acoustic properties (ie, the Lombard effect). Finally, adults with an established CNS-related motor speech disorder (dysarthria) were compared with healthy controls. Of the 61 acoustic variables studied, 36 showed good stability over all three stability experiments (eg, number of pauses, total speech time, speech rate, f₀-f₄. Of the measures with good stability, a number of frequency measures showed a change in response to increased vocal effort resulting from the Lombard effect challenge. Furthermore, several timing measures significantly separated the control and motor speech impairment groups. Measures with high levels of stability within healthy adults, and those that show sensitivity to change and impairment may prove effective for monitoring changes in CNS functioning. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  5. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.

    PubMed

    Lestringant, Pauline; Guri, Anilda; Gülseren, Ibrahim; Relkin, Perla; Corredig, Milena

    2014-08-20

    Varying amounts of epigallocatechin-3-gallate (EGCG) were encapsulated in β-lactoglobulin (β-Lg) nanoparticles, either native or processed, denoted as heated or desolvated protein. The stability, physical properties, and bioactivity of the β-Lg-EGCG complexes were tested. Native β-Lg-EGCG complexes showed comparable stability and binding efficacy (EGCG/β-Lg molar ratio of 1:1) to heated β-Lg nanoparticles (1% and 5% protein w/w). The sizes of heated and desolvated β-Lg nanoparticles were comparable, but the latter showed the highest binding affinity for EGCG. The presence of EGCG complexed with β-Lg did not affect the interfacial tension of the protein when tested at the soy oil-water interface but caused a decrease in dilational elasticity. All β-Lg complexes (native, heated, or desolvated) showed a decrease in cellular proliferation similar to that of free ECGC. In summary, protein-EGCG complexes did not alter the bioefficacy of EGCG and contributed to increased stability with storage, demonstrating the potential benefits of nanoencapsulation.

  6. Sb7Te3/Ge multilayer films for low power and high speed phase-change memory

    NASA Astrophysics Data System (ADS)

    Chen, Shiyu; Wu, Weihua; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2017-06-01

    Phase-change memory has attracted enormous attention for its excellent properties as compared to flash memories due to their high speed, high density, better date retention and low power consumption. Here we present Sb7Te3/Ge multilayer films by using a magnetron sputtering method. The 10 years’ data retention temperature is significantly increased compared with pure Sb7Te3. When the annealing temperature is above 250 °C, the Sb7Te3/Ge multilayer thin films have better interface properties, which renders faster crystallization speed and high thermal stability. The decrease in density of ST/Ge multilayer films is only around 5%, which is very suitable for phase change materials. Moreover, the low RESET power benefits from high resistivity and better thermal stability in the PCM cells. This work demonstrates that the multilayer configuration thin films with tailored properties are beneficial for improving the stability and speed in phase change memory applications.

  7. High stability buffered phase comparator

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1984-01-01

    A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.

  8. Assessment of the midflexion rotational laxity in posterior-stabilized total knee arthroplasty.

    PubMed

    Hino, Kazunori; Kutsuna, Tatsuhiko; Oonishi, Yoshio; Watamori, Kunihiko; Kiyomatsu, Hiroshi; Iseki, Yasutake; Watanabe, Seiji; Ishimaru, Yasumitsu; Miura, Hiromasa

    2017-11-01

    To evaluate changes in midflexion rotational laxity before and after posterior-stabilized (PS)-total knee arthroplasty (TKA). Twenty-nine knees that underwent PS-TKA were evaluated. Manual mild passive rotational stress was applied to the knees, and the internal-external rotational angle was measured automatically by a navigation system at 30°, 45°, 60°, and 90° of knee flexion. The post-operative internal rotational laxity was statistically significantly increased compared to the preoperative level at 30°, 45°, 60°, and 90° of flexion. The post-operative external rotational laxity was statistically significantly decreased compared to the preoperative level at 45° and 60° of flexion. The post-operative internal-external rotational laxity was statistically significantly increased compared to the preoperative level only at 30° of flexion. The preoperative and post-operative rotational laxity showed a significant correlation at 30°, 45°, 60°, and 90° of flexion. Internal-external rotational laxity increases at the initial flexion range due to resection of both the anterior or posterior cruciate ligaments and retention of the collateral ligaments in PS-TKA. Preoperative and post-operative rotational laxity indicated a significant correlation at the midflexion range. This study showed that a large preoperative rotational laxity increased the risk of a large post-operative laxity, especially at the initial flexion range in PS-TKA. III.

  9. Elevated CO2 and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability.

    PubMed

    Dijkstra, Feike A; Carrillo, Yolima; Blumenthal, Dana M; Mueller, Kevin E; LeCain, Dan R; Morgan, Jack A; Zelikova, Tamara J; Williams, David G; Follett, Ronald F; Pendall, Elise

    2018-05-01

    Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO 2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change. © 2018 John Wiley & Sons Ltd/CNRS.

  10. Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb.

    PubMed

    Heinecke, Dirk C; Bartels, Albrecht; Diddams, Scott A

    2011-09-12

    This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves from the photodetected pulse train.

  11. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  12. Postural stability and vehicle kinematics during an evasive lane change manoeuvre: a driver training study.

    PubMed

    Petersen, Andrew; Barrett, Rod

    2009-05-01

    The purpose of this study was to investigate the effect of a 2-day driver-training course that emphasised postural stability maintenance during critical driving situations on postural stability and vehicle kinematics during an evasive lane change manoeuvre. Following training, the trainee group experienced enhanced postural stability during specific phases of the task. In terms of vehicle kinematics, the main adaptation to training was that trained drivers reduced the extent to which they experienced vehicle decelerations during rapid turning compared to controls. Such a strategy may confer a safety benefit due to the increased risks associated with simultaneous braking while turning during an evasive manoeuvre. The newly learned strategy was consistent with the strategy used by a group of highly skilled drivers (driving instructors). Taken together, the results of the study suggest postural stability may be a useful variable to consider in relation to the skill-based component of hierarchical driver training programmes. The findings of this study provide some preliminary evidence to suggest that postural stability may be an important consideration when instructing individuals on how to safely negotiate obstacles during driving.

  13. Laboratory evaluation of the pointing stability of the ASPS Vernier System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.

  14. Post-sampling release of free fatty acids - effects of heat stabilization and methods of euthanasia.

    PubMed

    Jernerén, Fredrik; Söderquist, Marcus; Karlsson, Oskar

    2015-01-01

    The field of lipid research has made progress and it is now possible to study the lipidome of cells and organelles. A basic requirement of a successful lipid study is adequate pre-analytical sample handling, as some lipids can be unstable and postmortem changes can cause substantial accumulation of free fatty acids (FFAs). The aim of the present study was to investigate the effects of conductive heat stabilization and euthanasia methods on FFA levels in the rat brain and liver using liquid chromatography tandem mass spectrometry. The analysis of brain homogenates clearly demonstrated phospholipase activity and time-dependent post-sampling changes in the lipid pool of snap frozen non-stabilized tissue. There was a significant increase in FFAs already at 2min, which continued over time. Heat stabilization was shown to be an efficient method to reduce phospholipase activity and ex vivo lipolysis. Post-sampling effects due to tissue thawing and sample preparation induced a massive release of FFAs (up to 3700%) from non-stabilized liver and brain tissues compared to heat stabilized tissue. Furthermore, the choice of euthanasia method significantly influenced the levels of FFAs in the brain. The FFAs were decreased by 15-44% in the group of animals euthanized by pentobarbital injection compared with CO2 inhalation or decapitation. Our results highlight the importance of considering euthanasia methods and pre-analytical treatment in lipid analysis, factors which may otherwise interfere with the outcome of the experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Marital stability and repartnering: infertility-related stress trajectories of unsuccessful fertility treatment.

    PubMed

    Martins, Mariana V; Costa, Patrício; Peterson, Brennan D; Costa, Maria E; Schmidt, Lone

    2014-12-01

    To compare the trajectories of infertility-related stress between patients who remain in the same relationship and patients who repartner. Longitudinal cohort study using latent growth modeling. Fertility centers. Childless men and women evaluated before starting a new cycle of fertility treatment and observed for a 5-year period of unsuccessful treatments. None. Marital stability and infertility-related stress. The majority of patients (86%) remained with their initial partner, but 14% of participants separated and repartnered while pursuing fertility treatments. Marital stability significantly predicted the initial status of infertility stress and infertility stress growth levels. Specifically, patients who repartnered had higher infertility stress levels at all time points compared with those who remained in the same relationship, regardless of the partner they were with at assessment. Furthermore, results showed an increasing stress trajectory over time for those who repartnered, compared with those who remained in a stable relationship. Men and women in fertility treatment who form a second union have higher initial levels of stress in their original relationship and higher changes in stress levels over the course of treatments. These findings suggest that high infertility-related stress levels before entering fertility treatment can negatively affect the stability of marital relationships and lead to repartnering. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Characterization of the complete sequences and stability of plasmids carrying the genes aac(6')-Ib-cr or qnrS in Shigella flexneri in the Hangzhou area of China.

    PubMed

    Pu, Xiao-Ying; Gu, Yaming; Li, Jun; Song, Shu-Juan; Lu, Zhe

    2018-05-18

    The aim of this study was to explore the fluoroquinolone resistance mechanism of aac (6')-Ib-cr and qnrS gene by comparing complete sequences and stability of the aac(6')-Ib-cr- and qnrS-positive plasmids from Shigella isolates in the Hangzhou area of China. The complete sequences of four newly acquired plasmids carrying aac(6')-Ib-cr or qnrS were compared with those of two plasmids obtained previously and two similar reference Escherichia coli plasmids. The results showed that the length, antibiotic resistance genes and genetic environment were different among the plasmids. Moreover, the plasmid stability of three wild-type isolates and five plasmid transformants carrying aac(6')-Ib-cr and/or qnrS was measured in vitro, and all eight isolates were found to have lost their aac(6')-Ib-cr- or qnrS-positive plasmids to a different extent at different stages. When the plasmids were electroporated into Shigella flexneri or they lost positive plasmids, the MICs of ciprofloxacin increased or decreased two- to eightfold for aac(6')-Ib-cr-positive plasmids and 16- to 32-fold for qnrS-positive plasmids. To our knowledge, this is the first report comparing the complete sequences and describing stability for the aac(6')-Ib-cr- and qnrS-positive plasmids from Shigella isolates.

  17. Potential mechanisms of carbon monoxide and high oxygen packaging in maintaining color stability of different bovine muscles.

    PubMed

    Liu, Chenglong; Zhang, Yimin; Yang, Xiaoyin; Liang, Rongrong; Mao, Yanwei; Hou, Xu; Lu, Xiao; Luo, Xin

    2014-06-01

    The objectives were to compare the effects of packaging methods on color stability, metmyoglobin-reducing-activity (MRA), total-reducing-activity and NADH concentration of different bovine muscles and to explore potential mechanisms in the enhanced color stability by carbon monoxide modified atmosphere packaging (CO-MAP, 0.4% CO/30% CO2/69.6% N2). Steaks from longissimus lumborum (LL), psoas major (PM) and longissimus thoracis (LT) packaged in CO-MAP, high-oxygen modified atmosphere packaging (HiOx-MAP, 80% O2/20% CO2) or vacuum packaging were stored for 0day, 4days, 9days, and 14days or stored for 9days then displayed in air for 0day, 1day, or 3days. The CO-MAP significantly increased red color stability of all muscles, and especially for PM. The PM and LT were more red than LL in CO-MAP, whereas PM had lowest redness in HiOx-MAP. The content of MetMb in CO-MAP was lower than in HiOx-MAP. Steaks in CO-MAP maintained a higher MRA compared with those in HiOx-MAP during storage. After opening packages, the red color of steaks in CO-MAP deteriorated more slowly compared with that of steaks in HiOx-MAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Dermal miconazole nitrate nanocrystals - formulation development, increased antifungal efficacy & skin penetration.

    PubMed

    Pyo, Sung Min; Hespeler, David; Keck, Cornelia M; Müller, Rainer H

    2017-10-05

    Miconazole nitrate nanosuspension was developed to increase its antifungal activity and dermal penetration. In addition, the nanosuspension was combined with the synergistic additive chlorhexidine digluconate. The production was performed by wet bead milling and both production and formulation parameters were optimized. A stabilizer screening revealed poloxamer 407 and Tween 80 both at 0.15% as the most effective stabilizers for miconazole nanosuspensions at 1.0%. The nanocrystals were incorporated into a hydroxypropyl cellulose gel base. Short-term stability (3months) of the nanocrystal bulk population could be shown at room temperature and fridge. Besides the stable bulk nanocrystals, some longitudinal crystal growth to needle like crystals occurred. The addition of ionic compounds as the chlorhexidine digluconate often destabilizes suspensions. Surprisingly here, the addition minimized the crystal growth. An underlying mechanism is proposed. An inhibition zone assay was performed using Candida albicans (ATCC ® 10231™). When comparing the nanocrystals in suspension and in gel to μm-sized miconazole nitrate formulations and two market products, the increase in inhibition zone diameter for the nanosuspension formulations was most pronounced in the chlorhexidine digluconate free formulations. These nanocrystal formulations were closely or similarly effective as the microsuspensions and the market products containing the synergistic chlorhexidine digluconate, showing the potential of the nanosuspension formulation. Nanosuspension performance was even further increased when chlorhexidine digluconate was added. Ex-vivo skin penetration studies on porcine ears revealed distinctly less remaining miconazole nitrate on the skin surface for nanocrystals (e.g., 76-86%) compared to market products (e.g. 94%). Also, penetration was increased e.g. in skin depth of 5-10μm from <1.0/1.7% to e.g. 3.3-6.2% for nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods.

    PubMed

    Giménez, Pedro J; Fernández-López, José A; Angosto, José M; Obón, José M

    2015-12-01

    There is a great interest in natural yellow colorants due to warnings issued about certain yellow food colorings of synthetic origin. However, no comparative studies have been reported of their thermal stability. For this reason, the thermal stabilities of six natural yellow colorants used in foods--lutein, riboflavin, curcumin, ß-carotene, gardenia yellow and Opuntia betaxanthins--were studied in simple solutions over a temperature range 30-90 °C. Spectral properties and visual color were investigated during 6 h of heat treatment. Visual color was monitored from the CIEL*a*b* parameters. The remaining absorbance at maximum wavelength and the total color difference were used to quantify color degradation. The rate of color degradation increased as the temperature rose. The results showed that the thermal degradation of the colorants followed a first-order reaction kinetics. The reaction rate constants and half-life periods were determined as being central to understanding the color degradation kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. Activation energies ranged from 3.2 kJmol(-1) (lutein) to 43.7 kJmol(-1) (Opuntia betaxanthins). ß-carotene and lutein exhibited high thermal stability, while betaxanthins and riboflavin degraded rapidly as temperature increased. Gardenia yellow and curcumin were in an intermediate position.

  20. Stabilization of a human recombinant factor VIII by poloxamer 188 in relation to polysorbate 80.

    PubMed

    Clark, Jakson; Montgomery, Jade; Squires, Ryan; McGuire, Joseph

    2016-03-01

    Detection of enhanced surface tension depression by surfactant in the presence of protein was recently suggested as a basis for determining whether protein stabilization by that surfactant is owing to surfactant forming a steric barrier at interfaces or surfactant association with the protein. In particular, protein interaction with surfactant aggregates may lead to an increased concentration of monomers thus enhancing surfactant adsorption, or to formation of surfactant-protein complexes having little or no effect on adsorption. We compared the initial rates of surface tension depression by poloxamer 188 and polysorbate 80 (PS 80) in the presence and absence of a human recombinant factor VIII (rFVIII). Indirect evidence had suggested poloxamer 188 enters into stable associations with rFVIII in solution but does not form a steric barrier at the interface, while PS 80 behaves in contrary fashion. In this study, we show the presence of rFVIII caused an increase in the rate (reduction in the activation energy) of PS 80 adsorption, while no such change was recorded in the case of poloxamer 188. Thus, we provide substantiation for detection of protein-mediated acceleration of surfactant adsorption as a means to compare different surfactants in relation to their favored mechanism for protein stabilization.

  1. Effects of different soil management practices on soil properties and microbial diversity

    NASA Astrophysics Data System (ADS)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  2. A reusable multipurpose magnetic nanobiocatalyst for industrial applications.

    PubMed

    Perwez, Mohammad; Ahmad, Razi; Sardar, Meryam

    2017-10-01

    A multipurpose magnetic nanobiocatalyst is developed by conjugating Pectinex 3XL (a commercial enzyme containing pectinase, xylanase and cellulase activities) on 3-aminopropyl triethoxysilane activated magnetic nanoparticles. The nanobiocatalyst retained 87% of pectinase, 69% of xylanase and 58% of cellulase activity after conjugation on modified nanoparticles as compared to their soluble counterparts. Thermal stability data at 70°C showed increase in enzyme stability after conjugation to nanoparticles and the kinetic parameters (K m and V max ) remain unaltered after immobilization. The immobilized enzyme system can be successfully used upto 5th cycle after that slight decrease in enzyme activities was observed. The nanobiocatalyst retained high pectinase activities in organic solvents and chemical reagents as compared to free enzymes. DLS data shows that the nanoparticles size increases from 63nm to 86nm after immobilization. Atomic Force Microscopy data confirms the deposition of enzymes on the nanoparticles. The nanobiocatalyst was used for the clarification of pine apple and orange juice and was also used for the production of bioethanol. Hydrolysis of pretreated wheat straw produced 1.39g/l and 1.59g/l after treatment with free Pectinex 3xL and nanobiocatalyst respectively. The concentration of bioethanol also increases by 1.4 fold as compared to the free enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability

    PubMed Central

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Kan, Yue

    2014-01-01

    There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4–0.8 for biochar production at 500°C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%–56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%–47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pre-treating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity. PMID:25531111

  4. Postural Stability of Special Warfare Combatant-Craft Crewmen With Tactical Gear.

    PubMed

    Morgan, Paul M; Williams, Valerie J; Sell, Timothy C

    The US Naval Special Warfare's Special Warfare Combatant-Craft Crewmen (SWCC) operate on small, high-speed boats while wearing tactical gear (TG). The TG increases mission safety and success but may affect postural stability, potentially increasing risk for musculoskeletal injury. Therefore, the purpose of this study was to examine the effects of TG on postural stability during the Sensory Organization Test (SOT). Eight SWCC performed the SOT on NeuroCom's Balance Manager with TG and with no tactical gear (NTG). The status of gear was performed in randomized order. The SOT consisted of six different conditions that challenge sensory systems responsible for postural stability. Each condition was performed for three trials, resulting in a total of 18 trials. Overall performance, each individual condition, and sensory system analysis (somatosensory, visual, vestibular, preference) were scored. Data were not normally distributed therefore Wilcoxon signed-rank tests were used to compare each variable (ρ = .05). No significant differences were found between NTG and TG tests. No statistically significant differences were detected under the two TG conditions. This may be due to low statistical power, or potentially insensitivity of the assessment. Also, the amount and distribution of weight worn during the TG conditions, and the SWCC's unstable occupational platform, may have contributed to the findings. The data from this sample will be used in future research to better understand how TG affects SWCC. The data show that the addition of TG used in our study did not affect postural stability of SWCC during the SOT. Although no statistically significant differences were observed, there are clinical reasons for continued study of the effect of increased load on postural stability, using more challenging conditions, greater surface perturbations, dynamic tasks, and heavier loads. 2016.

  5. Partial prevention of long-term femoral bone loss in aged ovariectomized rats supplemented with choline-stabilized orthosilicic acid.

    PubMed

    Calomme, M; Geusens, P; Demeester, N; Behets, G J; D'Haese, P; Sindambiwe, J B; Van Hoof, V; Vanden Berghe, D

    2006-04-01

    Silicon (Si) deficiency in animals results in bone defects. Choline-stabilized orthosilicic acid (ch-OSA) was found to have a high bioavailability compared to other Si supplements. The effect of ch-OSA supplementation was investigated on bone loss in aged ovariectomized (OVX) rats. Female Wistar rats (n = 58, age 9 months) were randomized in three groups. One group was sham-operated (sham, n = 21), and bilateral OVX was performed in the other two groups. OVX rats were supplemented orally with ch-OSA over 30 weeks (OVX1, n = 20; 1 mg Si/kg body weight daily) or used as controls (OVX0, n = 17). The serum Si concentration and the 24-hour urinary Si excretion of supplemented OVX rats was significantly higher compared to sham and OVX controls. Supplementation with ch-OSA significantly but partially reversed the decrease in Ca excretion, which was observed after OVX. The increase in bone turnover in OVX rats tended to be reduced by ch-OSA supplementation. ch-OSA supplementation increased significantly the femoral bone mineral content (BMC) in the distal region and total femoral BMC in OVX rats, whereas lumbar BMC was marginally increased. Femoral BMD was significantly increased at two sites in the distal region in OVX rats supplemented with ch-OSA compared to OVX controls. Total lumbar bone mineral density was marginally increased by ch-OSA supplementation. In conclusion, ch-OSA supplementation partially prevents femoral bone loss in the aged OVX rat model.

  6. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    PubMed

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  7. Stability of hydrogenated graphene: a first-principles study

    DOE PAGES

    Yi, Ding; Yang, Liu; Xie, Shijie; ...

    2015-02-10

    In order to explain the disagreement between present theoretical and experimental investigations on the stability of hydrogenated graphene, we have systematically studied hydrogenated graphene with different configurations from the consideration of single-side and double-side adsorption using first-principles calculations. Both binding energy and formation energy are calculated to characterize the stability of the system. It is found that single-side hydrogenated graphene is always unstable. However, for double-side hydrogenation, some configurations are stable due to the increased carbon–carbon sp 3 hybridization compared to single-side hydrogenation. Furthermore, it is found that the system is energetically favorable when an equal number of hydrogen atomsmore » are adsorbed on each side of the graphene.« less

  8. Thermal Stability of Zone Melting p-Type (Bi, Sb)2Te3 Ingots and Comparison with the Corresponding Powder Metallurgy Samples

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu

    2018-04-01

    During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.

  9. The role of auditory and kinaesthetic feedback mechanisms on phonatory stability in children.

    PubMed

    Rathna Kumar, S B; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S G R

    2013-12-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory masking condition in adult subjects showed that most of the subjects maintained normal levels of phonatory stability. The authors in the earlier investigations suggested that auditory feedback is not the sole contributor to vocal motor control and phonatory stability, a complex neuromuscular reflex system known as kinaesthetic feedback may play a role in controlling phonatory stability when auditory feedback is disrupted or lacking. This proposes the need to further investigate this phenomenon as to whether children show similar patterns of phonatory stability under auditory masking since their neuromotor systems are still at developmental stage, less mature and are less resistant to altered auditory feedback than adults. A total of 40 normal hearing and speaking children (20 male and 20 female) between the age group of 6 and 8 years participated as subjects. The acoustic parameters such as shimmer, jitter and harmonic-to-noise ratio (HNR) were measures and compared between no masking condition (0 dB ML) and masking condition (90 dB ML). Despite the neuromotor systems being less mature in children and less resistant than adults to altered auditory feedback, most of the children in the study demonstrated increased phonatory stability which was reflected by reduced shimmer, jitter and increased HNR values. This study implicates that most of the children demonstrate well established patterns of kinaesthetic feedback, which might have allowed them to maintain normal levels of vocal motor control even in the presence of disturbed auditory feedback. Hence, it can be concluded that children also exhibit kinaesthetic feedback mechanism to control phonatory stability when auditory feedback is disrupted which in turn highlights the importance of kinaesthetic feedback to be included in the therapeutic/intervention approaches for children with hearing and neurogenic speech deficits.

  10. Influence of the visual environment on the postural stability in healthy older women.

    PubMed

    Brooke-Wavell, K; Perrett, L K; Howarth, P A; Haslam, R A

    2002-01-01

    A poor postural stability in older people is associated with an increased risk of falling. It is recognized that visual environment factors (such as poor lighting and repeating patterns on escalators) may contribute to falls, but little is known about the effects of the visual environment on postural stability in the elderly. To determine whether the postural stability of older women (using body sway as a measure) differed under five different visual environment conditions. Subjects were 33 healthy women aged 65-76 years. Body sway was measured using an electronic force platform which identified the location of their centre of gravity every 0.05 s. Maximal lateral sway and anteroposterior sway were determined and the sway velocity calculated over 1-min trial periods. Body sway was measured under each of the following conditions: (1) normal laboratory lighting (186 lx); (2) moderate lighting (10 lx); (3) dim lighting (1 lx); (4) eyes closed, and (5) repeating pattern projected onto a wall. Each measure of the postural stability was significantly poorer in condition 4 (eyes closed) than in all other conditions. Anteroposterior sway was greater in condition 3 than in conditions 1 and 2, whilst the sway velocity was greater in condition 3 than in condition 2. Lateral sway did not differ significantly between different lighting levels (conditions 1-3). A projected repeating pattern (condition 5) did not significantly influence the postural stability relative to condition 1. The substantially greater body sway with eyes closed than with eyes open confirms the importance of vision in maintaining the postural stability. At the lowest light level, the body sway was significantly increased as compared with the other light levels, but was still substantially smaller than on closing the eyes. A projected repeating pattern did not influence the postural stability. Dim lighting levels and removing visual input appear to be associated with a poorer postural stability in older people and hence might be associated with an increased risk of falls. Copyright 2002 S. Karger AG, Basel

  11. Temperature effect on the structural stabilities and electronic properties of X22H28 (X=C, Si and Ge) nanocrystals: A first-principles study

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Lin; Zhao, Yu-Jun; Wang, Ya-Ting; Liao, Ji-Hai; Yang, Xiao-Bao

    2016-12-01

    Based on ab initio molecular dynamic simulations, we have theoretically investigated the structural stabilities and electronic properties of X22H28 (X=C, Si, and Ge) nanocrystals, as a function of temperature with consideration of vibrational entropy effects. To compare the relative stabilities of X22H28 isomers, the vibration free energies are obtained according to the calculated phonon spectrum, where the typical modes are shown to be dominant to the structural stabilities. In addition, there is a significant gap reduction as the temperature increases from 0 K to 300 K, where the decrements are 0.2 /0.5 /0.6eV for C/Si/Ge nanocrystals, respectively. The dependence of energy gap on the variance of bond length is also analyzed according to the corresponding atomic attributions to the HOMO and LUMO levels.

  12. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex.

    PubMed

    Wang, Xinge; Luo, Zhigang; Xiao, Zhigang

    2014-01-30

    β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Error trends in SASS winds as functions of atmospheric stability and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1983-01-01

    Wind speed measurements obtained with the scatterometer instrument aboard the Seasat satellite are compared equivalent neutral wind measurements obtained from ship reports in the western N. Atlantic and eastern N. Pacific where the concentration of ship reports are high and the ranges of atmospheric stability and sea surface temperature are large. It is found that at low wind speeds the difference between satellite measurements and surface reports depends on sea surface temperature. At wind speeds higher than 8 m/s the dependence was greatly reduced. The removal of systematic errors due to fluctuations in atmospheric stability reduced the r.m.s. difference from 1.7 m/s to 0.8 m/s. It is suggested that further clarification of the effects of fluctuations in atmospheric stability on Seasat wind speed measurements should increase their reliability in the future.

  14. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy.

    PubMed

    Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav

    2010-04-26

    Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.

  15. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

    PubMed Central

    Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav

    2010-01-01

    Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy. PMID:20588732

  16. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  17. Application of chitooligosaccharides as antioxidants in beer to improve the flavour stability by protecting against beer staling during storage.

    PubMed

    Yang, Fan; Luan, Bo; Sun, Zhen; Yang, Chao; Yu, Zhimin; Li, Xianzhen

    2017-02-01

    To improve beer flavour stability by adding chitooligosaccharides that prevent formation of staling compounds and also scavenge radicals in stale beer. Chitooligosaccharides, at 0.001-0.01%, inhibited the formation of staling compounds in forced aged beer. The formation of 5-hydroxymethylfurfural, trans-2-nonenal and phenylacetaldehyde were decreased by 105, 360 and 27%, respectively, when compared with those in stale beer without chitooligosaccharide addition. The capability of chitooligosaccharides to prevent staling compound formation depended on their molecular size (2 or 3 kDa). The DPPH/hydroxyl radical scavenging activity in fresh beer significantly lower than that in forced aged beer in the presence of chitooligosaccharides. When compared with stale beer without added chitooligosaccharides, the radical scavenging activity could be increased by adding chitooligosaccharides to forced aged beer. Chitooligosaccharides play an active part in the prevention of beer flavour deterioration by inhibiting the formation of staling compounds and increasing radical scavenging activity.

  18. Increased thermolability of benzodiazepine receptors in cerebral cortex of a baboon with spontaneous seizures: a case report.

    PubMed

    Squires, R; Naquet, R; Riche, D; Braestrup, C

    1979-06-01

    The benzodiazepine receptor in the cortex of 1 spontaneously epileptic baboon exhibited an increased rate of thermal inactivation at 65 degrees C when compared with those from 3 other baboons. In other respects (receptor concentration, affinities for flunitrazepam and diazepam, and response to changing pH), the benzodiazepine receptor from this animal was very similar to the receptors in the cortex of 3 other baboons. The 3H-QNB (muscarinic) and 3H-naloxone (opiate) binding sites in the brain of all 4 baboons appeared very similar with respect to all parameters studied (thermal stability, concentration, regional distribution, and affinities for respective ligands). An endogenous factor stabilizing the benzodiazepine receptor could be lacking in the spontaneously epileptic baboon.

  19. Effective Identification on Adulteration of Polyethylene With Post-consumer Ones

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Qin, W. B.; Guo, J. F.; Liu, J.; Wang, Y. L.; Zhang, W.; Zhao, X. Y.; Wang, L.

    2018-05-01

    This paper mainly describes the effective identification of the adulteration of polyethylene with post-consumer ones. Degradation would be happened when multiple processings occurred. The melt flow index (MFI) analysis, thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) were used to characterize the processability and thermal stabilities of virgin polyethylene and recycled polyethylene which adulterated post-consumer PE. The results indicated that MFI of PE increased with the increasing doping content. Adulterating reclaimed PE had effects on the thermal stability of PE, which led to lower thermal decomposition temperature. Melting peak of recycled LLDPE varied from merely single to double, which differently compared differently with virgin LLDPE. Besides, with the doping content of post-consumer LDPE, the melting temperature had a decreasing tendency.

  20. Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method

    PubMed Central

    Segerström, Lova; Gustavsson, Jenny

    2016-01-01

    Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg6 (LARG), and Met-enkephalin-Arg6-Phe7 (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid peptide analysis. The result is improved diagnostic and research value of the samples with great benefits for basic research and clinical work. PMID:27007059

  1. influx_s: increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments.

    PubMed

    Sokol, Serguei; Millard, Pierre; Portais, Jean-Charles

    2012-03-01

    The problem of stationary metabolic flux analysis based on isotope labelling experiments first appeared in the early 1950s and was basically solved in early 2000s. Several algorithms and software packages are available for this problem. However, the generic stochastic algorithms (simulated annealing or evolution algorithms) currently used in these software require a lot of time to achieve acceptable precision. For deterministic algorithms, a common drawback is the lack of convergence stability for ill-conditioned systems or when started from a random point. In this article, we present a new deterministic algorithm with significantly increased numerical stability and accuracy of flux estimation compared with commonly used algorithms. It requires relatively short CPU time (from several seconds to several minutes with a standard PC architecture) to estimate fluxes in the central carbon metabolism network of Escherichia coli. The software package influx_s implementing this algorithm is distributed under an OpenSource licence at http://metasys.insa-toulouse.fr/software/influx/. Supplementary data are available at Bioinformatics online.

  2. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers.

    PubMed

    El-Salamouni, Noha S; Farid, Ragwa M; El-Kamel, Amal H; El-Gamal, Safaa S

    2015-12-30

    Nanoparticulate delivery systems have recently been under consideration for topical ophthalmic drug delivery. Brimonidine base-loaded solid lipid nanoparticles and nanostructured lipid carrier formulations were prepared using glyceryl monostearate as solid lipid and were evaluated for their physical stability following sterilization by autoclaving at 121°C for 15min. The objective of this work was to evaluate the effect of autoclaving on the physical appearance, particle size, polydispersity index, zeta potential, entrapment efficiency and particle morphology of the prepared formulations, compared to non-autoclaved ones. Results showed that, autoclaving at 121°C for 15min allowed the production of physically stable formulations in nanometric range, below 500nm suitable for ophthalmic application. Moreover, the autoclaved samples appeared to be superior to non-autoclaved ones, due to their increased zeta potential values, indicating a better physical stability. As well as, increased amount of brimonidine base entrapped in the tested formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chemical composition, rheological, quality characteristics and storage stability of buns enriched with coriander and curry leaves.

    PubMed

    Sudha, M L; Rajeswari, G; Venkateswara Rao, G

    2014-12-01

    Effect of addition of normal (NL) and dehydrated (DL) curry leaves (Murraya koeniggi) and coriander leaves (Corinadrum sativum) in the ratio of 1:1 to refined wheat flour (WF) or a blend of refined wheat flour-whole wheat flour (WF-WWF, 1:1) on the rheological, nutritional, storage and quality characteristics of the buns were studied. Water absorption increased on addition of increasing levels of DL from 0 to 7.5 % to WF-WWF when compared to WF. Dough weakening was greater when DL was added to WF-WWF as seen in decrease in dough stability and abscissa at rupture values. Addition of gluten and emulsifiers improved the quality characteristics of buns prepared using either 25 % NL or 5 % DL. Storage stability of buns with DL was better. The protein, dietary fiber, iron and carotenoids in buns prepared from WF-WWF were higher. The results indicate the utilization of leaves in dehydrated form in the preparation of nutritionally improved buns.

  4. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Cross-cultural validity of Morningness-Eveningness Stability Scale improved (MESSi) in Iran, Spain and Germany.

    PubMed

    Rahafar, Arash; Randler, Christoph; Díaz-Morales, Juan F; Kasaeian, Ali; Heidari, Zeinab

    2017-01-01

    Morningness-Eveningness Stability Scale improved (MESSi) is a newly constructed measure to assess circadian types and amplitude. In this study, we applied this measure to participants from three different countries: Germany, Spain and Iran. Confirmatory factorial analysis (CFA) of MESSi displayed mediocre fit in the three countries. Comparing increasingly stringent models using multigroup confirmatory factor analyses indicated at least partial measurement invariance (metric invariance) by country for Morning Affect and Distinctness subscales. Age was positively related to Morning Affect (MA), and negatively related to Eveningness (EV) and Distinctness (DI). Men reported higher MA than women, whereas women reported higher DI than men. Regarding country effect, Iranian participants reported highest MA compared to Spaniards and Germans, whereas Germans reported higher DI compared to Iranians and Spaniards. As a conclusion, our study corroborated the validity and reliability of MESSi across three different countries with different geographical and cultural characteristics.

  6. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    PubMed

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  7. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry.

    PubMed

    Guo, Jianxin; Kumar, Sandeep; Prashad, Amarnauth; Starkey, Jason; Singh, Satish K

    2014-07-01

    To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.

  8. Stability of simulated flight path control at +3 Gz in a human centrifuge.

    PubMed

    Guardiera, Simon; Dalecki, Marc; Bock, Otmar

    2010-04-01

    Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.

  9. Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant.

    PubMed Central

    Antonino, L C; Kautz, R A; Nakano, T; Fox, R O; Fink, A L

    1991-01-01

    Cold denaturation is now recognized as a general property of proteins but has been observed only under destabilizing conditions, such as moderate denaturant concentration or low pH. By destabilizing the protein using site-directed mutagenesis, we have observed cold denaturation at pH 7.0 in the absence of denaturants in a mutant of staphylococcal nuclease, which we call NCA S28G for a hybrid protein between staphylococcal nuclease and concanavalin A in which there is the point mutation Ser-28----Gly. The temperature of maximum stability (tmax) as determined by circular dichroism (CD) was 18.1 degrees C, and the midpoints of the thermal unfolding transitions (tm) were 0.6 degrees C and 30.0 degrees C. These values may be compared with the tm of 52.5 degrees C for wild-type staphylococcal nuclease, for which no cold denaturation was observed under these conditions. When the stability of the mutant was examined in 2H2O by NMR, CD, or fluorescence, a substantial increase in the amount of folded protein at the tmax was noted as well as a decrease in tmax, reflecting increased stability. PMID:1652762

  10. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability.

    PubMed

    Chen, Yefu; Yang, Xu; Zhang, Shijie; Wang, Xiaoqiong; Guo, Changhui; Guo, Xuewu; Xiao, Dongguang

    2012-01-01

    Sulfur compounds, such as sulfite (SO(2)), hydrogen sulfide (H(2)S), and glutathione (GSH), play different roles in beer flavor stability. SO(2) and GSH have antiaging effects which are helpful to improve the flavor stability of beer, whereas H(2)S is undesirable to beer flavor because of its unpleasant aroma. Here, we report the development of Saccharomyces cerevisiae which produces higher levels of SO(2) and GSH but lower level of H(2)S to improve beer flavor stability by nongenetic engineering approaches. After two rounds of UV mutagenesis coupled with specific plate screening methods, one promising mutant named MV16 was obtained. Compared with the original strain, the SO(2) and GSH production of MV16 in fermenting liquor increased by 31% and 30.2%, respectively, while H(2)S content decreased by 74.9%, and the DPPH radical clearance and the resistance staling value of beer fermented by MV16 increased by 24.6% and 33.0%, respectively. The antioxidizability of the mutant was improved significantly. The strategy adopted in our study could be used to obtain S. cerevisiae of improved antiaging properties, and the mutant would be safe for public use.

  11. Adult work commitment, financial stability, and social environment as related to trajectories of marijuana use beginning in adolescence.

    PubMed

    Brook, Judith S; Lee, Jung Yeon; Finch, Stephen J; Seltzer, Nathan; Brook, David W

    2013-01-01

    The objective of this study is to examine trajectories of marijuana use among African Americans and Puerto Ricans from adolescence to adulthood, with attention paid to work commitment, financial stability, drug use, and violence. Participants (N = 816) completed in-class questionnaires as students in the East Harlem area of New York City at the first wave and provided follow-up data at 4 additional points in time (mean ages = 14, 19, 24, 29, and 32 years). Among 816 participants, there were 60% females, 52% African American, and 48% Puerto Ricans. The chronic marijuana user trajectory group compared with the none or low, increasing, and/or moderate marijuana user trajectory group was associated with negative aspects of work commitment, financial stability, and the social environment. The chronic marijuana user group was similar to the increasing marijuana user group on work commitment and financial stability. These results suggest that treating marijuana use in late adolescence may reduce difficulty in the assumption of adult roles. Because chronic marijuana users experienced the most adverse effects in each of the domains, they require more intense clinical intervention than moderate marijuana users.

  12. Vitamin A degradation in triglycerides varying by their saturation levels.

    PubMed

    Moccand, Cyril; Martin, Fréderic; Martiel, Isabelle; Gancel, Charlotte; Michel, Martin; Fries, Lennart; Sagalowicz, Laurent

    2016-10-01

    Vitamin A deficiency has a widespread occurrence globally and is considered as one of the world's most serious health risk factors. Potential solutions to address this deficiency include dietary diversification or supplementation, but food fortification is generally accepted as the most cost-effective solution. The main issue with food fortification of this vitamin is related to its high instability in food matrices. Dilution of vitamin A in triglycerides is a natural and appropriate way to stabilize this compound. We show here that vitamin A palmitate stability increases with increasing concentration of triglycerides. Moreover, we found that vitamin A palmitate displays improved stability in more saturated oils. Using various temperatures, and Arrhenius plots of experiments performed at storage temperatures between 30°C and 60°C for oils varying by their saturation and crystallinity, we demonstrate that crystallization is not responsible for this phenomenon. Additionally, we show by centrifugation that vitamin A is preferably solubilized in the liquid phase compared to the crystalline phase, explaining that triglyceride crystallization does not stabilize vitamin A palmitate. It is proposed that unsaturated fats generate more oxidation products such as radicals and peroxides, leading to a quicker degradation of vitamin A. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Development of antibacterial paper coated with sodium hyaluronate stabilized curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications

    NASA Astrophysics Data System (ADS)

    Rao Kummara, Madhusudana; Kumar, Anuj; Soo, Han Sung

    2017-11-01

    Sodium hyaluronate (HA) stabilized curcumin-Ag (Cur-Ag) hybrid nanoparticles were prepared in the water-ethanol mixture under constant mechanical stirring condition. The obtained HA stabilized Cur-Ag hybrid nanoparticles were characterized by fourier transform infrared spectroscopy, UV-visible spectroscopy, and x-ray diffraction to confirm the formation and structural interactions. The obtained Cur-Ag hybrid nanoparticles showed spherical shape with their size range 5-12 nm that was increased with the increasing a amount of silver ions as confirmed by transmission electron microscopic analysis. Further, a fibrous cellulose filter paper was impregnated with these hybrid nanoparticles and chitosan (CS) as biopolymer via polyelectrolyte complexation. The morphological analysis confirmed the uniform distribution of hybrid nanoparticle system onto the cellulose fibers of the fibrous filter paper. As per disc diffusion method, the Cur-Ag hybrid nanoparticles impregnated CS-coated filter paper exhibited excellent antibacterial properties against gram-negative Escherichia coli (E.coli) bacteria compared to HA stabilized Cur only. Moreover, as prepared hybrid nanoparticles impregnated biocomposite system is eco-friendly with efficient antibacterial property and have good potential to be used in medical applications.

  14. Effects of a cognitive dual task on variability and local dynamic stability in sustained repetitive arm movements using principal component analysis: a pilot study.

    PubMed

    Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud

    2018-06-01

    In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.

  15. The Effect of Union Status at First Childbirth on Union Stability: Evidence from Eastern and Western Germany.

    PubMed

    Schnor, Christine

    2014-01-01

    It is often assumed that cohabitation is much less stable than marriage. If cohabitation becomes more common among parents, children may be increasingly exposed to separation. However, little is known about how the proportion of cohabiting parents relates to their separation behavior. Higher shares of childbearing within cohabitation might reduce the proportion of negatively selected couples among cohabiting parents, which could in turn improve their union stability. This study focuses on parents who were cohabiting when they had their first child. It compares their union stability within a context in which they represent the majority or the minority. The German case is well-suited to this research goal because non-marital childbearing is common in eastern Germany (60 %) but not in western Germany (27 %). The data came from the German Family Panel (pairfam), and include 1,844 married and cohabiting mothers born in 1971-1973 and 1981-1983. The empirical results suggest that the union stability of cohabiting mothers is positively related to their prevalence: survival curves showed that eastern German cohabiting mothers had a greater degree of union stability than their western German counterparts. This difference increased in the event-history model, which accounted for the particular composition of eastern German society, including the relatively low level of religious affiliation among the population. Controlling for unobserved heterogeneity did not change this result. In sum, these findings indicate that context plays an important role in the union stability of cohabiting parents.

  16. Anterior stability of the reverse shoulder arthroplasty depending on implant configuration and rotator cuff condition.

    PubMed

    Pastor, Marc-Frederic; Kraemer, Manuel; Wellmann, Mathias; Hurschler, Christof; Smith, Tomas

    2016-11-01

    The aim of this study was to investigate the stabilizing influence of the rotator cuff as well as the importance of glenosphere and onlay configuration on the anterior stability of the reverse total shoulder replacement (RTSR). A reverse total shoulder replacement was implanted into eight human cadaveric shoulders, and biomechanical testing was performed under three conditions: after implantation of the RTSR, after additional dissection of the subscapularis tendon, and after additional dissection of the infraspinatus and teres minor tendon. Testing was performed in 30° of abduction and three rotational positions: 30° internal rotation, neutral rotation, and 30° external rotation. Furthermore, the 38-mm and 42-mm glenospheres were tested in combination with a standard and a high-mobility humeral onlay. A gradually increased force was applied to the glenohumeral joint in anterior direction until the RTSR dislocated. The 42-mm glenosphere showed superior stability compared with the 38-mm glenosphere. The standard humeral onlay required significantly higher anterior dislocation forces than the more shallow high-mobility onlay. External rotation was the most stable position. Furthermore, isolated detachment of the subscapularis and combined dissection of the infraspinatus, teres minor, and subscapularis tendon increased anterior instability. This study showed superior stability with the 42-mm glenosphere and the more conforming standard onlay. External rotation was the most stable position. Detachment of the subscapularis as well as dissection of the complete rotator cuff decreased anterior stability.

  17. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction.

    PubMed

    Nitri, Marco; Rasmussen, Matthew T; Williams, Brady T; Moulton, Samuel G; Cruz, Raphael Serra; Dornan, Grant J; Goldsmith, Mary T; LaPrade, Robert F

    2016-03-01

    Recent biomechanical studies have demonstrated that an extra-articular lateral knee structure, most recently referred to as the anterolateral ligament (ALL), contributes to overall rotational stability of the knee. However, the effect of anatomic ALL reconstruction (ALLR) in the setting of anterior cruciate ligament (ACL) reconstruction (ACLR) has not been biomechanically investigated or validated. The purpose of this study was to investigate the biomechanical function of anatomic ALLR in the setting of a combined ACL and ALL injury. More specifically, this investigation focused on the effect of ALLR on resultant rotatory stability when performed in combination with concomitant ACLR. It was hypothesized that ALLR would significantly reduce internal rotation and axial plane translation laxity during a simulated pivot-shift test compared with isolated ACLR. Controlled laboratory study. Ten fresh-frozen cadaveric knees were evaluated with a 6 degrees of freedom robotic system. Knee kinematics were evaluated with simulated clinical examinations including a simulated pivot-shift test consisting of coupled 10-N·m valgus and 5-N·m internal rotation torques, a 5-N·m internal rotation torque, and an 88-N anterior tibial load. Kinematic differences between ACLR with an intact ALL, ACLR with ALLR, and ACLR with a deficient ALL were compared with the intact state. Single-bundle ACLR tunnels and ALLR tunnels were placed anatomically according to previous quantitative anatomic attachment descriptions. Combined anatomic ALLR and ACLR significantly improved the rotatory stability of the knee compared with isolated ACLR in the face of a concurrent ALL deficiency. During a simulated pivot-shift test, ALLR significantly reduced internal rotation and axial plane tibial translation when compared with ACLR with an ALL deficiency. Isolated ACLR for the treatment of a combined ACL and ALL injury was not able to restore stability of the knee, resulting in a significant increase in residual internal rotation laxity. ALLR did not affect anterior tibial translation; no significant differences were observed between the varying ALL conditions with ACLR except between ACLR with an intact ALL and ACLR with a deficient ALL at 0° of flexion. In the face of a combined ACL and ALL deficiency, concurrent ACLR and ALLR significantly improved the rotatory stability of the knee compared with solely reconstructing the ACL. Significant increases in residual internal rotation and laxity during the pivot-shift test may exist in both acute and chronic settings of an ACL deficiency and in patients treated with isolated ACLR for a combined ACL and ALL deficiency. For this subset of patients, surgical treatment of the ALL, in addition to ACLR, should be considered to restore knee stability. © 2016 The Author(s).

  18. Is lateral stabilization enough in thoracolumbar burst fracture reconstruction? A biomechanical investigation.

    PubMed

    Panchal, Ripul R; Matheis, Erika A; Gudipally, Manasa; Hussain, Mir M; Kim, Kee D; Bucklen, Brandon S

    2015-10-01

    Traditional reconstruction for burst fractures involves columnar support with posterior fixation at one or two levels cephalad/caudad; however, some surgeons choose to only stabilize the vertebral column. The aim was to distinguish biomechanical differences in stability between a burst fracture stabilized through a lateral approach using corpectomy spacers of different end plate sizes with and without integrated screws and with and without posterior fixation. This was an in vitro biomechanical study assessing thoracolumbar burst fracture stabilization. Six human spines (T11-L3) were tested on a six-degrees-of-freedom simulator enabling unconstrained range of motion (ROM) at ±6 N·m in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) after a simulated burst fracture at L1. Expandable corpectomy spacers with/without integrated screws (Fi/F; FORTIFY Integrated/FORTIFY; Globus Medical, Inc., Audubon, PA, USA) were tested with different end plate sizes (21×23 mm, 22×40-50 mm). Posterior instrumentation (PI) via bilateral pedicle screws and rods was used one level above and one level below the burst fracture. Lateral plate (LP) fixation was tested. Devices were tested in the following order: intact; Fi21×23; Fi21×23+PI; F21×23+PI+LP; F21×23+LP; F22×40-50+LP; F22×40-50+PI+LP; Fi22×40-50+PI; Fi22×40-50. In FE and AR, constructs without PI showed no significant difference (p<.05) in stability compared with intact. In LB, F22×40-50+LP showed a significant increase in stability relative to intact, but no other construct without PI reached significance. In FE and LB, circumferential constructs were significantly more stable than intact. In AR, no construct showed significant differences in motion when compared with the intact condition. Constructs without posterior fixation were the least stable of all tested constructs. Circumferential fixation provided greater stability in FE and LB than lateral fixation and intact. Axial rotation showed no significant differences in any construct compared with the intact state. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Design and preliminary biomechanical analysis of artificial cervical joint complex.

    PubMed

    Jian, Yu; Lan-Tao, Liu; Zhao, Jian-ning; Jian-ning, Zhao

    2013-06-01

    To design an artificial cervical joint complex (ACJC) prosthesis for non-fusion reconstruction after cervical subtotal corpectomy, and to evaluate the biomechanical stability, preservation of segment movements and influence on adjacent inter-vertebral movements of this prosthesis. The prosthesis was composed of three parts: the upper/lower joint head and the middle artificial vertebrae made of Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy and polyethylene with a ball-and-socket joint design resembling the multi-axial movement in normal inter-vertebral spaces. Biomechanical tests of intact spine (control), Orion locking plate system and ACJC prosthesis were performed on formalin-fixed cervical spine specimens from 21 healthy cadavers to compare stability, range of motion (ROM) of the surgical segment and ROM of adjacent inter-vertebral spaces. As for stability of the whole lower cervical spine, there was no significant difference of flexion, extension, lateral bending and torsion between intact spine group and ACJC prosthesis group. As for segment movements, difference in flexion, lateral bending or torsion between ACJC prosthesis group and control group was not statistically significant, while ACJC prosthesis group showed an increase in extension (P < 0.05) compared to that of the control group. In addition, ACJC prosthesis group demonstrated better flexion, extension and lateral bending compared to those of Orion plating system group (P < 0.05). Difference in adjacent inter-vertebral ROM of the ACJC prosthesis group was not statistically significant compared to that of the control group. After cervical subtotal corpectomy, reconstruction with ACJC prosthesis not only obtained instant stability, but also reserved segment motions effectively, without abnormal gain of mobility at adjacent inter-vertebral spaces.

  20. Gain in Body Fat Is Associated with Increased Striatal Response to Palatable Food Cues, whereas Body Fat Stability Is Associated with Decreased Striatal Response

    PubMed Central

    Yokum, Sonja

    2016-01-01

    Cross-sectional brain-imaging studies reveal that obese versus lean humans show greater responsivity of reward and attention regions to palatable food cues, but lower responsivity of reward regions to palatable food receipt. However, these individual differences in responsivity may result from a period of overeating. We conducted a repeated-measures fMRI study to test whether healthy weight adolescent humans who gained body fat over a 2 or 3 year follow-up period show an increase in responsivity of reward and attention regions to a cue signaling impending milkshake receipt and a simultaneous decrease in responsivity of reward regions to milkshake receipt versus adolescents who showed stability of or loss of body fat. Adolescents who gained body fat, who largely remained in a healthy weight range, showed increases in activation in the putamen, mid-insula, Rolandic operculum, and precuneus to a cue signaling impending milkshake receipt versus those who showed stability of or loss of body fat, though these effects were partially driven by reductions in responsivity among the latter groups. Adolescents who gained body fat reported significantly greater milkshake wanting and milkshake pleasantness ratings at follow-up compared to those who lost body fat. Adolescents who gained body fat did not show a reduction in responsivity of reward regions to milkshake receipt or changes in responsivity to receipt and anticipated receipt of monetary reward. Data suggest that initiating a prolonged period of overeating may increase striatal responsivity to food cues, and that maintaining a balance between caloric intake and expenditure may reduce striatal, insular, and Rolandic operculum responsivity. SIGNIFICANCE STATEMENT This novel, repeated-measures brain-imaging study suggests that adolescents who gained body fat over our follow-up period experienced an increase in striatal responsivity to cues for palatable foods compared to those who showed stability of or loss of body fat. Results also imply that maintaining a balance between caloric intake and expenditure over time may reduce striatal, insular, and Rolandic operculum responsivity to food cues, which might decrease risk for future overeating. PMID:27358453

  1. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.

    PubMed

    Ma, Hongrui; Gao, Mao; Hua, Li; Chao, Hao; Xu, Jing

    2015-11-01

    Tannery sludge contained plenty of organic matter, and the organic substance stability had direct impact on its derived chars' utilization. In this paper, the stabilization of tannery sludge and the variation of humic acid-like (HAL) extracted by different methods were investigated in a magnetic stirring reactor under low temperature pyrolysis of 100-400 °C. Results showed that the aromatic structure of pyrolysis chars increased with the increase of temperature and time. The char contained highly aromatic structure and relatively small dissolved organic matters (DOM) at 300 °C. The similar behaviors appeared in two HAL series by different extraction methods. The N content, H/C value, and aliphatic structures of HAL decreased with the increase of pyrolysis temperature, while the C/N value and aromatic structures increased with the rise of pyrolysis temperature. The composition and functional groups of HAL were similar with the purchased humic acid (HA). The fluorescence spectra revealed that two main peaks were found at Ex/Em = 239/363-368 nm and 283/359-368 nm in each HAL series from raw and 100 °C pyrolysis tannery sludge, representing a protein-like matter. The new peak appeared at Ex/Em = 263-283/388 nm in each HAL series from 200 °C pyrolysis tannery sludge-represented humic acid-like matter. The fluorescence intensity increased strongly compared to the other two peak intensity. Therefore, the humification of organic matter was increased by pyrolyzing. Notably, the HAL from 200 °C pyrolysis tannery sludge contained simple molecular structure, and the polycondensation increased but with a relative lower humification degree compared to soil HAL and purchased HA. Therefore, the sludge needs further oxidation. The humic substance was negligible by direct extraction when the temperature was 300 and 400 °C.

  2. The Effect of Sensory Noise Created by Compliant and Sway-Referenced Support Surfaces on Postural Stability

    NASA Technical Reports Server (NTRS)

    Forth, Katharine E.; Taylor, Laura C.; Paloski, William H.

    2006-01-01

    The purpose of the present experiment was to compare in normal human subjects the differential effects on postural stability of introducing somatosensory noise via compliant and/or sway-referenced support surfaces during quiet standing. The use of foam surfaces (two thicknesses: thin (0.95cm) and thick (7.62cm)) and sway-referenced support allowed comparison between two different types of destabilizing factors that increased ankle/foot somatosensory noise. Under some conditions neck extensions were used to increase sensory noise by deviating the vestibular system from its optimal orientation for balance control. The impact of these conditions on postural control was assessed through objective measures of instability. Thick foam and sway-referenced support conditions generated comparable instability in subjects, as measured by equilibrium score and minimum time-to-contact. However, simultaneous application of the conditions resulted in greater instability, suggesting a higher level of generated sensory noise and thus, different receptor types affected during each manipulation. Indeed, sway-referenced support generated greater anterior-posterior center-of-mass (COM) sway, while thick foam generated greater medio-lateral COM sway and velocity. Neck extension had minimal effect on postural stability until combined with simultaneous thick foam and sway-referenced support. Thin foam never generated enough sensory noise to affect postural stability even with noise added by sway-reference support or neck extension. These results provide an interesting window into the central integration of redundant sensory information and indicate the postural impact of sensory inputs is not solely based on their existence, but also their level of noise.

  3. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    PubMed

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  4. CO2 laser surface treatment of failed dental implants for re-implantation: an animal study.

    PubMed

    Kasraei, Shahin; Torkzaban, Parviz; Shams, Bahar; Hosseinipanah, Seyed Mohammad; Farhadian, Maryam

    2016-07-01

    The aim of the present study was to evaluate the success rate of failed implants re-implanted after surface treatment with CO2 laser. Despite the widespread use of dental implants, there are many incidents of failures. It is believed that lasers can be applied to decontaminate the implant surface without damaging the implant. Ten dental implants that had failed for various reasons other than fracture or surface abrasion were subjected to CO2 laser surface treatment and randomly placed in the maxillae of dogs. Three failed implants were also placed as the negative controls after irrigation with saline solution without laser surface treatment. The stability of the implants was evaluated by the use of the Periotest values (PTVs) on the first day after surgery and at 1, 3, and 6 months post-operatively. The mean PTVs of treated implants increased at the first month interval, indicating a decrease in implant stability due to inflammation followed by healing of the tissue. At 3 and 6 months, the mean PTVs decreased compared to the 1-month interval (P < 0.05), indicating improved implant stability. The mean PTVs increased in the negative control group compared to baseline (P < 0.05). Independent t-test showed that the mean PTVs of treated implants were significantly lower than control group at 3 and 6 months after implant placement (P < 0.05). Based on the PTVs, re-implantation of failed implants in Jack Russell Terrier dogs after CO2 laser surface debridement is associated with a high success rate in terms of implant stability.

  5. Structure-Based Engineering of Methionine Residues in the Catalytic Cores of Alkaline Amylase from Alkalimonas amylolytica for Improved Oxidative Stability

    PubMed Central

    Yang, Haiquan; Wang, Mingxing; Li, Jianghua; Wang, Nam Sun; Du, Guocheng

    2012-01-01

    This work aims to improve the oxidative stability of alkaline amylase from Alkalimonas amylolytica through structure-based site-directed mutagenesis. Based on an analysis of the tertiary structure, five methionines (Met 145, Met 214, Met 229, Met 247, and Met 317) were selected as the mutation sites and individually replaced with leucine. In the presence of 500 mM H2O2 at 35°C for 5 h, the wild-type enzyme and the M145L, M214L, M229L, M247L, and M317L mutants retained 10%, 28%, 46%, 28%, 72%, and 43% of the original activity, respectively. Concomitantly, the alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant were also improved. The pH stability of the mutants (M145L, M214L, M229L, and M317L) remained unchanged compared to that of the wild-type enzyme, while the stable pH range of the M247L mutant was extended from pH 7.0 to 11.0 for the wild type to pH 6.0 to 12.0 for the mutant. The wild-type enzyme lost its activity after incubation at 50°C for 2 h, and the M145L, M214L, M229L, and M317L mutants retained less than 14% of the activity, whereas the M247L mutant retained 34% of the activity under the same conditions. Compared to the wild-type enzyme, the kcat values of the M145L, M214L, M229L, and M317L mutants decreased, while that of the M247L mutant increased slightly from 5.0 × 104 to 5.6 × 104 min−1. The mechanism responsible for the increased oxidative stability, alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant was further analyzed with a structure model. The combinational mutants were also constructed, and their biochemical properties were characterized. The resistance of the wild-type enzyme and the mutants to surfactants and detergents was also investigated. Our results indicate that the M247L mutant has great potential in the detergent and textile industries. PMID:22865059

  6. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    PubMed Central

    Reinders, Jörn; Kretzer, Jan Philippe

    2014-01-01

    Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P ≤ 0.001) were observed for the unstable knee (14.58 ± 0.56 mg/106 cycles) compared to the stable knee (7.97 ± 0.87 mg/106 cycles). A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P ≤ 0.01). This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study. PMID:25276820

  7. Natural polymer-stabilized multiple water-in-oil-in-water emulsions: a novel dermal drug delivery system for 5-fluorouracil.

    PubMed

    Hoppel, Magdalena; Mahrhauser, Denise; Stallinger, Christina; Wagner, Florian; Wirth, Michael; Valenta, Claudia

    2014-05-01

    The aim of this study was to create multiple water-in-oil-in-water (W/O/W) emulsions with an increased long-term stability as skin delivery systems for the hydrophilic model drug 5-fluorouracil. Multiple W/O/W emulsions were prepared in a one-step emulsification process, and were characterized regarding particle size, microstructure and viscosity. In-vitro studies on porcine skin with Franz-type diffusion cells, tape stripping experiments and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) were performed. The addition of Solagum AX, a natural polymer mixture of acacia and xanthan gum, led to multiple W/O/W emulsions with a remarkably increased long-term stability in comparison to formulations without a thickener. The higher skin diffusion of 5-fluorouracil from the multiple emulsions compared with an O/W-macroemulsion could be explained by ATR-FTIR. Shifts to higher wave numbers and increase of peak areas of the asymmetric and symmetric CH2 stretching vibrations confirmed a transition of parts of the skin lipids from an ordered to a disordered state after impregnation of porcine skin with the multiple emulsions. Solagum AX is highly suitable for stabilization of the created multiple emulsions. Moreover, these formulations showed superiority over a simple O/W-macroemulsion regarding skin permeation and penetration of 5-fluorouracil. © 2013 Royal Pharmaceutical Society.

  8. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles.

    PubMed

    Zhang, Man; Bacik, Deborah B; Roberts, Christopher B; Zhao, Dongye

    2013-07-01

    In this work, we developed and tested a new class of supported Pd catalysts by immobilizing CMC (carboxymethyl cellulose) stabilized Pd nanoparticles onto alumina support. The alumina supported Pd nanoparticles were able to facilitate rapid and complete hydrodechlorination of TCE (trichloroethylene) without intermediate by-products detected. With a Pd mass loading of 0.33 wt% of the alumina mass, the observed pseudo first order reaction rate constant, k(obs), for the catalyst was increased from 28 to 109 L/min/g when CMC concentration was raised from 0.005 to 0.15 wt%. The activity increase was in accord with an increase of the Pd dispersion (measured via CO chemisorption) from 30.4% to 45.1%. Compared to the commercial alumina supported Pd, which has a lower Pd dispersion of 21%, our CMC-stabilized Pd nanoparticles offered more than 7 times greater activity. Pre-calcination treatment of the supported catalyst resulted in minor drop in activity, yet greatly reduced bleeding (<6%) of the Pd nanoparticles from the support during multiple cycles of applications. The presence of DOM (dissolved organic matter) at up to 10 mg/L as TOC had negligible effect on the catalytic activity. The alumina supported CMC-stabilized Pd nanoparticles may serve as a class of more effective catalysts for water treatment uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influence of PNA containing 8-aza-7-deazaadenine on structure stability and binding affinity of PNA·DNA duplex: insights from thermodynamics, counter ion, hydration and molecular dynamics analysis.

    PubMed

    Gupta, Sharad K; Sur, Souvik; Prasad Ojha, Rajendra; Tandon, Vibha

    2013-07-01

    This paper describes the synthesis of a novel 8-aza-7-deazapurin-2,6-diamine (DPP)-containing peptide nucleic acid (PNA) monomer and Boc protecting group-based oligomerization of PNA, replacing adenine (A) with DPP monomers in the PNA strand. The PNA oligomers were synthesized against the biologically relevant SV40 promoter region (2494-AATTTTTTTTATTTA-2508) of pEGFP-N3 plasmid. The DPP-PNA·DNA duplex showed enhanced stability as compared to normal duplex (A-PNA·DNA). The electronic distribution of DPP monomer suggested that DPP had better electron donor properties over 2,6-diamino purine. UV melting and thermodynamic analysis revealed that the PNA oligomer containing a diaminopyrazolo(3,4-d)pyrimidine moiety (DPP) stabilized the PNA·DNA hybrids compared to A-PNA·DNA. DPP-PNA·DNA duplex showed higher water activity (Δnw = 38.5) in comparison to A-PNA·DNA duplex (Δnw = 14.5). The 50 ns molecular dynamics simulations of PNA·DNA duplex containing DPP or unmodified nucleobase-A showed average H-bond distances in the DPP-dT base pair of 2.90 Å (OH-N bond) and 2.91 Å (NH-N bond), which were comparably shorter than in the A-dT base pair, in which the average distances were 3.18 Å (OH-N bond) and 2.97 Å (NH-N bond), and there was one additional H-bond in the DPP-dT base pair of around 2.98 Å (O2H-N2 bond), supporting the higher stability of DPP-PNA·DNA. The analysis of molecular dynamics simulation data showed that the system binding free energy increased at a rate of approximately -4.5 kcal mol(-1) per DPP base of the PNA·DNA duplex. In summary, increased thermal stability, stronger hydrogen bonding and more stable conformation in the DPP-PNA·DNA duplex make it a better candidate as antisense/antigene therapeutic agents.

  10. CAN STABILITY REALLY PREDICT AN IMPENDING SLIP-RELATED FALL AMONG OLDER ADULTS?

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2015-01-01

    The primary purpose of this study was to systematically evaluate and compare the predictive power of falls for a battery of stability indices, obtained during normal walking among community-dwelling older adults. One hundred and eighty seven community-dwelling older adults participated in the study. After walking regularly for 20 strides on a walkway, participants were subjected to an unannounced slip during gait under the protection of a safety harness. Full body kinematics and kinetics were monitored during walking using a motion capture system synchronized with force plates. Stability variables, including feasible-stability-region measurement, margin of stability, the maximum Floquet multiplier, the Lyapunov exponents (short- and long-term), and the variability of gait parameters (including the step length, step width, and step time) were calculated for each subject. Accuracy of predicting slip outcome (fall vs. recovery) was examined for each stability variable using logistic regression. Results showed that the feasible-stability-region measurement predicted fall incidence among these subjects with the highest accuracy (68.4%). Except for the step width (with an accuracy of 60.2%), no other stability variables could differentiate fallers from those who did not fall for the sample studied in this study. The findings from the present study could provide guidance to identify individuals at increased risk of falling using the feasible-stability-region measurement or variability of the step width. PMID:25458148

  11. Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments✫

    PubMed Central

    Beltran, Eduardo J.; Dingwell, Jonathan B.; Wilken, Jason M.

    2014-01-01

    Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-minute walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under three each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p < 0.010). Also, AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p < 0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p < 0.050) and MOS variability (p < 0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p < 0.005); mean and variability of the range of COM motion (p < 0.010); and variability of COM peak velocity (p < 0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected walking stability during platform perturbations. PMID:24444777

  12. Bon-EV: an improved multiple testing procedure for controlling false discovery rates.

    PubMed

    Li, Dongmei; Xie, Zidian; Zand, Martin; Fogg, Thomas; Dye, Timothy

    2017-01-03

    Stability of multiple testing procedures, defined as the standard deviation of total number of discoveries, can be used as an indicator of variability of multiple testing procedures. Improving stability of multiple testing procedures can help to increase the consistency of findings from replicated experiments. Benjamini-Hochberg's and Storey's q-value procedures are two commonly used multiple testing procedures for controlling false discoveries in genomic studies. Storey's q-value procedure has higher power and lower stability than Benjamini-Hochberg's procedure. To improve upon the stability of Storey's q-value procedure and maintain its high power in genomic data analysis, we propose a new multiple testing procedure, named Bon-EV, to control false discovery rate (FDR) based on Bonferroni's approach. Simulation studies show that our proposed Bon-EV procedure can maintain the high power of the Storey's q-value procedure and also result in better FDR control and higher stability than Storey's q-value procedure for samples of large size(30 in each group) and medium size (15 in each group) for either independent, somewhat correlated, or highly correlated test statistics. When sample size is small (5 in each group), our proposed Bon-EV procedure has performance between the Benjamini-Hochberg procedure and the Storey's q-value procedure. Examples using RNA-Seq data show that the Bon-EV procedure has higher stability than the Storey's q-value procedure while maintaining equivalent power, and higher power than the Benjamini-Hochberg's procedure. For medium or large sample sizes, the Bon-EV procedure has improved FDR control and stability compared with the Storey's q-value procedure and improved power compared with the Benjamini-Hochberg procedure. The Bon-EV multiple testing procedure is available as the BonEV package in R for download at https://CRAN.R-project.org/package=BonEV .

  13. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  14. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  15. Research and application of non-traditional chemical stabilizers on bauxite residue (red sand) dust control, a review.

    PubMed

    Xu, Guang; Ding, Xuhan; Kuruppu, Mahinda; Zhou, Wei; Biswas, Wahidul

    2018-03-01

    Bauxite residue is a by-product of aluminium processing. It is usually stored in large-scale residue drying area (RDA). The bauxite residue is highly alkaline and contains a large percentage of metal oxides which are hazardous to the environment and human health. Therefore, the generated dust is a major environmental concern that needs to be addressed and efficiently managed. One of the major dust generation sources is from the coarse fraction of the bauxite residue named red sand. To minimize the environmental and health impacts, non-traditional chemical stabilizers can be applied to construct a binding surface crust with certain hardness and strength. Dust emission is reduced due to the increased moisture retention capacity and strong cohesion between sand particles. There are limited number of refereed publications that discuss the application of this method to alleviate dust generation from red sand. By critically reviewing the literature and the application of non-traditional chemical stabilizers to sand-like materials in other fields, this paper introduces some non-traditional chemical stabilizers that can be potentially used for controlling red sand dust. Commonly used evaluation methods in various studies are compared and summarized; the stabilization mechanisms are examined; and the performance of three types of stabilizers are compared and evaluated. This review potentially serves as a reference and guide for further studies in red sand dust control. The findings are especially useful for developing suitable quantitative methods for evaluating the dust suppression efficiency of soil stabilizers, and for determining the appropriate additive quantities that achieve both economic and performance effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genetic and environmental continuity in personality development: a meta-analysis.

    PubMed

    Briley, Daniel A; Tucker-Drob, Elliot M

    2014-09-01

    The longitudinal stability of personality is low in childhood but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from 6 types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near zero in early childhood to moderate in adulthood. The life-span trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Genetic and Environmental Continuity in Personality Development: A Meta-Analysis

    PubMed Central

    Briley, Daniel A.; Tucker-Drob, Elliot M.

    2014-01-01

    The longitudinal stability of personality is low in childhood, but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from six types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age-trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near-zero in early childhood to moderate in adulthood. The lifespan trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PMID:24956122

  18. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the fuel types, temperature, and substrate materials.

  19. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  20. Effects of McGill stabilization exercises and conventional physiotherapy on pain, functional disability and active back range of motion in patients with chronic non-specific low back pain.

    PubMed

    Ghorbanpour, Arsalan; Azghani, Mahmoud Reza; Taghipour, Mohammad; Salahzadeh, Zahra; Ghaderi, Fariba; Oskouei, Ali E

    2018-04-01

    [Purpose] The aim of this study was to compare the effects of "McGill stabilization exercises" and "conventional physiotherapy" on pain, functional disability and active back flexion and extension range of motion in patients with chronic non-specific low back pain. [Subjects and Methods] Thirty four patients with chronic non-specific low back pain were randomly assigned to McGill stabilization exercises group (n=17) and conventional physiotherapy group (n=17). In both groups, patients performed the corresponding exercises for six weeks. The visual analog scale (VAS), Quebec Low Back Pain Disability Scale Questionnaire and inclinometer were used to measure pain, functional disability, and active back flexion and extension range of motion, respectively. [Results] Statistically significant improvements were observed in pain, functional disability, and active back extension range of motion in McGill stabilization exercises group. However, active back flexion range of motion was the only clinical symptom that statistically increased in patients who performed conventional physiotherapy. There was no significant difference between the clinical characteristics while compared these two groups of patients. [Conclusion] The results of this study indicated that McGill stabilization exercises and conventional physiotherapy provided approximately similar improvement in pain, functional disability, and active back range of motion in patients with chronic non-specific low back pain. However, it appears that McGill stabilization exercises provide an additional benefit to patients with chronic non-specific low back, especially in pain and functional disability improvement.

  1. Dietary Supplementation with Rice Bran or Navy Bean Alters Gut Bacterial Metabolism in Colorectal Cancer Survivors

    PubMed Central

    Sheflin, Amy M.; Borresen, Erica C.; Kirkwood, Jay S.; Boot, Claudia M.; Whitney, Alyssa K.; Lu, Shen; Brown, Regina J.; Broeckling, Corey D.; Ryan, Elizabeth P.; Weir, Tiffany L.

    2016-01-01

    Scope Heat-stabilized rice bran and cooked navy bean powder contain a variety of phytochemicals that are fermented by colonic microbiota and may influence intestinal health. Dietary interventions with these foods should be explored for modulating colorectal cancer risk. Methods and results A randomized-controlled pilot clinical trial investigated the effects of eating heat-stabilized rice bran (30g/day) or cooked navy bean powder (35g/day) on gut microbiota and metabolites (NCT01929122). Twenty-nine overweight/obese volunteers with a prior history of colorectal cancer consumed a study-provided meal and snack daily for 28 days. Volunteers receiving rice bran or bean powder showed increased gut bacterial diversity and altered gut microbial composition at 28 days compared to baseline. Supplementation with rice bran or bean powder increased total dietary fiber intake similarly, yet only rice bran intake led to a decreased Firmicutes:Bacteroidetes ratio and increased short chain fatty acids (propionate and acetate) in stool after 14 days but not at 28 days. Conclusion These findings support modulation of gut microbiota and fermentation by-products by heat-stabilized rice bran and suggest that foods with similar ability to increase dietary fiber intake may not have equal effects on gut microbiota and microbial metabolism. PMID:27461523

  2. The effect of composting on the persistence of four ionophores in dairy manure and poultry litter

    USDA-ARS?s Scientific Manuscript database

    Manure composting is a well-described approach for stabilization of nutrients and reduction of pathogens and odors. Although composting studies have shown that thermophilic temperatures and aerobic conditions can increase removal rates of selected antibiotics, comparable information is lacking for ...

  3. Effects of scale and Froude number on the hydraulics of waste stabilization ponds.

    PubMed

    Vieira, Isabela De Luna; Da Silva, Jhonatan Barbosa; Ide, Carlos Nobuyoshi; Janzen, Johannes Gérson

    2018-01-01

    This paper presents the findings from a series of computational fluid dynamics simulations to estimate the effect of scale and Froude number on hydraulic performance and effluent pollutant fraction of scaled waste stabilization ponds designed using Froude similarity. Prior to its application, the model was verified by comparing the computational and experimental results of a model scaled pond, showing good agreement and confirming that the model accurately reproduces the hydrodynamics and tracer transport processes. Our results showed that the scale and the interaction between scale and Froude number has an effect on the hydraulics of ponds. At 1:5 scale, the increase of scale increased short-circuiting and decreased mixing. Furthermore, at 1:10 scale, the increase of scale decreased the effluent pollutant fraction. Since the Reynolds effect cannot be ignored, a ratio of Reynolds and Froude numbers was suggested to predict the effluent pollutant fraction for flows with different Reynolds numbers.

  4. Improved post-prandial ghrelin response by nateglinide or acarbose therapy contributes to glucose stability in Type 2 diabetic patients.

    PubMed

    Zheng, F; Yin, X; Lu, W; Zhou, J; Yuan, H; Li, H

    2013-01-01

    Recent studies highlight an important role of ghrelin in glucose homeostasis, while the association between ghrelin regulation and glucose fluctuation is unclear. We compared the effects of two postprandial hypoglycemic agents on ghrelin response and determined the contribution of ghrelin response to glucose stability in Type 2 diabetic (T2DM) patients. Forty newly- diagnosed T2DM patients were randomly allocated to receive nateglinide or acarbose for 4 weeks, with twenty body mass index (BMI)-matched normoglycemic subjects as controls. Mean glucose values and daily average glucose excursion were assessed using continuous glucose monitoring system. Serum ghrelin levels were determined by enzyme-linked immunosorbent assay. T2DM patients had similar fasting ghrelin levels (p=0.546), while their postprandial ghrelin suppressions at 30 min and 120 min were reduced as compared to BMI-matched normoglycemic controls (p<0.01). Both nateglinide and acarbose increased post-prandial ghrelin suppression at 120 min and reduced ghrelin area under the curve (AUCGHRL) (p<0.05), while only nateglinide increased postprandial ghrelin suppression at 30 min (p<0.01), which was positively correlated with the increased early-phase insulin secretion by 4 weeks of nateglinide therapy (r=0.48, p=0.05). The decrease in AUCGHRL was positively correlated with the decrease in daily average glucose excursion and mean glucose values either by 4 weeks of nateglinide or acarbose therapy (p<0.05). Both nateglinide and acarbose increase post-prandial ghrelin suppression. Improved ghrelin regulation is most likely to play a role in glucose stability in T2DM patients with nateglinide or acarbose therapy.

  5. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A study of the Al content impact on the properties of MmNi 4.4- xCo 0.6Al x alloys as precursors for negative electrodes in NiMH batteries

    NASA Astrophysics Data System (ADS)

    Bliznakov, S.; Lefterova, E.; Dimitrov, N.; Petrov, K.; Popov, A.

    AB 5-type hydrogen storage alloys with MmNi 4.4- xCo 0.6Al x (Mm-mischmetal) composition are synthesized, structurally and thermodynamically characterized, and electrochemically tested in 6 M KOH electrolyte. It is shown that an increase of the Al content in the alloy results in expansion of both the alloy lattice cell size and the unit cell volume. These structural changes lead to decrease of the plateau pressure and increase of the plateau width in the pressure-composition-temperature desorption isotherms. Improvement of the specific electrode capacity is also registered with the increase of the cell parameters. In addition to that the higher Al content is found to enhance the stability of the alloy components' hydrides. Maximum discharge capacity of 278 mAh g -1 is measured with an electrode made from a MmNi 3.6Co 0.6Al 0.8 alloy. Cycle life tests of the accordingly prepared electrodes suggest a stability that is comparable to the stability of commercially available hydrogen storage electrodes.

  7. Analysis and test evaluation of the dynamic stability of three advanced turboprop models at zero forward speed

    NASA Technical Reports Server (NTRS)

    Smith, Arthur F.

    1985-01-01

    Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 m (18 ft) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisons with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generaly coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.

  8. The effects of stabilizing and directional selection on phenotypic and genotypic variation in a population of RNA enzymes.

    PubMed

    Hayden, Eric J; Bratulic, Sinisa; Koenig, Iwo; Ferrada, Evandro; Wagner, Andreas

    2014-02-01

    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.

  9. Thermal stability of bioactive enzymatic papers.

    PubMed

    Khan, Mohidus Samad; Li, Xu; Shen, Wei; Garnier, Gil

    2010-01-01

    The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.

  10. Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support.

    PubMed

    Li, Tuoping; Li, Suhong; Wang, Na; Tain, Lirui

    2008-08-15

    Pectinase was immobilized on an activated agar-gel support by multipoint attachment. The maximal activity of immobilized pectinase was obtained at 5°C, pH 3.6, with a 24h reaction time at an enzyme dose of 0.52mg protein/g gel, and the gel was activated with 1.0M glycidol. These conditions increased the thermal stability of the immobilized pectinase 19-fold compared with the free enzyme at 65°C. The optimal temperature for pectinase activity changed from 40 to 50°C after immobilization; however, the optimal pH remained unchanged. The immobilized enzyme also exhibited great operational stability, and an 81% residual activity was observed in the immobilized enzyme after 10 batch reactions. Copyright © 2008 Elsevier Ltd. All rights reserved.

  11. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease.

    PubMed

    Ayers, Jacob I; Schutt, Charles R; Shikiya, Ronald A; Aguzzi, Adriano; Kincaid, Anthony E; Bartz, Jason C

    2011-03-01

    Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrP(Sc), is an essential component of the infectious agent, the strain-specific relationship between PrP(Sc) properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrP(Sc) from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrP(Sc) in neurons and glia. We found that short incubation period strains were characterized by more efficient PrP(Sc) amplification and higher PrP(Sc) conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrP(Sc) in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrP(Sc) did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrP(Sc) in neurons.

  12. The effects of running in place in a limited area with abdominal drawing-in maneuvers on abdominal muscle thickness in chronic low back pain patients.

    PubMed

    Gong, Wontae

    2016-11-21

    Based on previous studies indicating that core stabilization exercises accompanied by abdominal drawing-in maneuvers increase the thickness of the transversus abdominis muscle. The purpose of this study was to compare the measurements of abdominal muscle thicknesses during running in place in a limited area with the abdominal drawing-in maneuver. The study classified the subjects into two experimental groups: the training group (M = 2, F = 13), and the control group (M = 2, F = 13). The training group performed three sets of running in place in a limited area with abdominal drawing-in maneuvers each time, three times a week for six weeks. The abdominal muscle thicknesses of the subjects were measured using ultrasonography. Comparing the training group's abdominal muscle thickness before and after this study, there was a statistical significance in all of the external obliquus abdominis, the internal obliquus abdominis, and the transversus abdominis. In particular, thicknesses of external obliquus abdominis and internal obliquus increased remarkably. Running in place in a limited area accompanied by abdominal drawing-in maneuvers increased the thickness of the deep abdominal muscles that are the basis of trunk stabilization.

  13. Preclinical evaluation of posterior spine stabilization devices: can the current standards represent basic everyday life activities?

    PubMed

    La Barbera, Luigi; Galbusera, Fabio; Wilke, Hans-Joachim; Villa, Tomaso

    2016-09-01

    To discuss whether the available standard methods for preclinical evaluation of posterior spine stabilization devices can represent basic everyday life activities and how to compare the results obtained with different procedures. A comparative finite element study compared ASTM F1717 and ISO 12189 standards to validated instrumented L2-L4 segments undergoing standing, upper body flexion and extension. The internal loads on the spinal rod and the maximum stress on the implant are analysed. ISO recommended anterior support stiffness and force allow for reproducing bending moments measured in vivo on an instrumented physiological segment during upper body flexion. Despite the significance of ASTM model from an engineering point of view, the overly conservative vertebrectomy model represents an unrealistic worst case scenario. A method is proposed to determine the load to apply on assemblies with different anterior support stiffnesses to guarantee a comparable bending moment and reproduce specific everyday life activities. The study increases our awareness on the use of the current standards to achieve meaningful results easy to compare and interpret.

  14. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis).

    PubMed

    Saarman, Norah P; Kober, Kord M; Simison, W Brian; Pogson, Grant H

    2017-10-01

    Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage. Nonetheless, our finding of more stabilizing amino acid changes in the warm adapted lineage is important because it suggests that adaption for thermal stability has contributed to M. galloprovincialis' superior tolerance to heat stress, and that pairing tests for positive selection and tests for transcriptional response to heat stress can identify candidates of protein stability adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Patch-augmented rotator cuff repair: influence of the patch fixation technique on primary biomechanical stability.

    PubMed

    Jung, Christian; Spreiter, Gregor; Audigé, Laurent; Ferguson, Stephen J; Flury, Matthias

    2016-05-01

    There is an ongoing debate about the potential of patch augmentation to improve biomechanical stability and healing associated with rotator cuff repair. The biomechanical properties of three different patch-augmented rotator cuff repair techniques were assessed in vitro and compared with a standard repair. Dermal collagen patch augmentation may increase the primary stability and strength of the repaired tendon in vitro, depending on the technique used for patch application. Forty cadaveric sheep shoulders with dissected infraspinatus tendons were randomized into four groups (n = 10/group) for tendon repair using a knotless double-row suture anchor technique. A xenologous dermal extracellular matrix patch was used for augmentation in the three test groups using an "integrated", "cover", or "hybrid" technique. Tendons were preconditioned, cyclically loaded from 10 to 30 N at 1 Hz, and then loaded monotonically to failure. Biomechanical properties and the mode of failure were evaluated. Patch augmentation significantly increased the maximum load at failure by 61 % in the "cover" technique test group (225.8 N) and 51 % in the "hybrid" technique test group (211.4 N) compared with the non-augmented control group (140.2 N) (P ≤ 0.015). For the test group with "integrated" patch augmentation, the load at failure was 28 % lower (101.6 N) compared with the control group (P = 0.043). There was no significant difference in initial and linear stiffness among the four experimental groups. The most common mode of failure was tendon pullout. No anchor dislocation, patch disruption or knot breakage was observed. Additional patch augmentation with a collagen patch influences the biomechanical properties of a rotator cuff repair in a cadaveric sheep model. Primary repair stability can be significantly improved depending on the augmentation technique.

  16. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.

    PubMed

    Huyge, Katrien; Van Reeth, Kristien; De Beer, Thomas; Landman, Wil J M; van Eck, Jo H H; Remon, Jean Paul; Vervaet, Chris

    2012-04-01

    Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The impact of collisionality, FLR, and parallel closure effects on instabilities in the tokamak pedestal: Numerical studies with the NIMROD code

    DOE PAGES

    King, J. R.; Pankin, A. Y.; Kruger, S. E.; ...

    2016-06-24

    The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.

  18. The impact of collisionality, FLR, and parallel closure effects on instabilities in the tokamak pedestal: Numerical studies with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Pankin, A. Y.; Kruger, S. E.

    The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. The full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.

  19. The impact of collisionality, FLR, and parallel closure effects on instabilities in the tokamak pedestal: Numerical studies with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Pankin, A. Y.; Kruger, S. E.

    The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.

  20. Biomechanical evaluation of bone screw fixation with a novel bone cement.

    PubMed

    Juvonen, Tiina; Nuutinen, Juha-Pekka; Koistinen, Arto P; Kröger, Heikki; Lappalainen, Reijo

    2015-07-30

    Bone cement augmentation is commonly used to improve the fixation stability of orthopaedic implants in osteoporotic bone. The aim of this study was to evaluate the effect of novel bone cements on the stability of bone screw fixation by biomechanical testing and to compare them with a conventional Simplex(®)P bone cement and requirements of the standards. Basic biomechanical properties were compared with standard tests. Adhesion of bone cements were tested with polished, glass blasted and corundum blasted stainless steel surfaces. Screw pullout testing with/without cement was carried out using a synthetic bone model and cancellous and cortical bone screws. All the tested bone cements fulfilled the requirements of the standard for biomechanical properties and improved the screw fixation stability. Even a threefold increase in shear and tensile strength was achieved with increasing surface roughness. The augmentation improved the screw pullout force compared to fixation without augmentation, 1.2-5.7 times depending on the cement and the screw type. The good biomechanical properties of novel bone cement for osteoporotic bone were confirmed by experimental testing. Medium viscosity of the bone cements allowed easy handling and well-controlled penetration of bone cement into osteoporotic bone. By proper parameters and procedures it is possible to achieve biomechanically stable fixation in osteoporotic bone. Based on this study, novel biostable bone cements are very potential biomaterials to enhance bone screw fixation in osteoporotic bone. Novel bone cement is easy to use without hand mixing using a dual syringe and thus makes it possibility to use it as required during the operation.

  1. [Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].

    PubMed

    Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping

    2013-02-01

    Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.

  2. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor.

    PubMed

    Wang, Jinjing; Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2010-11-01

    Glutathione in beer works as the main antioxidant compounds which correlates with beer flavor stability. High residual sugars in beer contribute to major non-volatile components which correlate to high caloric content. In this work, Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and Scharomycopsis fibuligera ALP1 gene encoding alpha-amylase were co-expressed in industrial brewing yeast strain Y31 targeting at alpha-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), and new recombinant strain TY3 was constructed. The glutathione content from the fermentation broth of TY3 increased to 43.83 mg/l compared to 33.34 mg/l from Y31. The recombinant strain showed high alpha-amylase activity and utilized more than 46% of starch after 5 days growing on starch as sole carbon source. European Brewery Convention tube fermentation tests comparing the fermentation broth of TY3 and Y31 showed that the flavor stability index increased to 1.3 fold and residual sugar concentration were reduced by 76.8%, respectively. Due to the interruption of ILV2 gene and ADH2 gene, the amounts of off-flavor compounds diacetyl and acetaldehyde were reduced by 56.93% and 31.25%, comparing with the amounts of these from Y31 fermentation broth. In addition, as no drug-resistance genes were introduced to new recombinant strain, consequently, it should be more suitable for use in beer industry because of its better flavor stability and other beneficial characteristics.

  3. Postural stability and the influence of concurrent muscle activation--Beneficial effects of jaw and fist clenching.

    PubMed

    Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten

    2015-10-01

    Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Temperature- and pH-dependent effect of lactate on in vitro redox stability of red meat myoglobins.

    PubMed

    Nair, M N; Suman, S P; Li, S; Ramanathan, R; Mancini, R A

    2014-01-01

    Our objective was to evaluate the influence of lactate on in vitro redox stability and thermostability of beef, horse, pork, and sheep myoglobins. Lactate (200 mM) had no effect (P>0.05) on redox stability at physiological (pH7.4, 37°C) and meat (pH 5.6, 4°C) conditions. However, lactate increased (P<0.05) metmyoglobin formation at a condition simulating stressed live skeletal muscle (pH 6.5, 37°C). The redox stability of myoglobins at stressed live skeletal muscle and meat conditions was species-specific (P<0.05). Myoglobin thermostability at 71°C was lower (P<0.05) in the presence of lactate compared with controls and was influenced (P<0.05) by species. The results of the present study indicate that the effects of lactate on myoglobin are temperature and pH dependent. The observed lack of influence of lactate on myoglobin redox stability at meat condition suggests that the color stability of lactate-enhanced fresh meat is not due to direct interactions between the ingredient and the heme protein. © 2013.

  5. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.

    PubMed

    Deng, Zhuangmei; Yang, Haiquan; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2014-05-01

    This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants - H209L, Q226V, N302W, and P477V - showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0-11.0 to 6.0-12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cat/K m) increased from 1.8×10(4) to 3.5 × 10(4) l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.

  6. pH-dependent stability of creatine ethyl ester: relevance to oral absorption.

    PubMed

    Gufford, Brandon T; Ezell, Edward L; Robinson, Dennis H; Miller, Donald W; Miller, Nicholas J; Gu, Xiaochen; Vennerstrom, Jonathan L

    2013-09-01

    Creatine ethyl ester hydrochloride (CEE) was synthesized as a prodrug of creatine (CRT) to improve aqueous solubility, gastrointestinal permeability, and ultimately the pharmacodynamics of CRT. We used high-performance liquid chromatography (HPLC) and proton nuclear magnetic resonance (NMR) to characterize the pH-dependent stability of CEE in aqueous solution and compared the permeability of CEE to CRT and creatinine (CRN) across Caco-2 human epithelial cell monolayers and transdermal permeability across porcine skin. CEE was most stable in a strongly acidic condition (half-life = 570 hours at pH 1.0) where it undergoes ester hydrolysis to CRT and ethanol. At pH ≥ 1.0, CEE cyclizes to CRN with the logarithm of the first order rate constant increasing linearly with pH. Above pH 8.0 (half-life = 23 sec) the rate of degradation was too rapid to be determined. The rate of degradation of CEE in cell culture media and simulated intestinal fluid (SIF) was a function of pH and correlated well with the stability in aqueous buffered solutions. The permeability of CEE across Caco-2 monolayers and porcine skin was significantly greater than that of CRT or CRN. The stability of CEE in acidic media together with its improved permeability suggests that CEE has potential for improved oral absorption compared to CRT.

  7. Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions.

    PubMed

    Karoui, Iness Jabri; Dhifi, Wissal; Jemia, Meriam Ben; Marzouk, Brahim

    2011-03-30

    The thermal stability of corn oil flavoured with thyme flowers was determined and compared with that of the original refined corn oil (control). The oxidative stability index (OSI) was measured and samples were exposed to heating (30 min at 150, 180 and 200 °C) and deep-frying (180 °C). Changes in peroxide value (PV), free fatty acid (FFA) content, specific absorptivity values (K(232) and K(270)), colour and chlorophyll, carotenoid and total phenol contents were monitored. The OSI and heating results showed that thyme incorporation was effective against thermal oxidation based on the increased induction time observed for the flavoured oil (6.48 vs 4.36 h), which was characterised by lower PV, FFA content, K(232) and K(270) than the control oil after heating from 25 to 200 °C, with higher red and yellow colour intensities and chlorophyll, carotenoid and total phenol contents. The deep-frying test showed the accelerated deterioration of both oils in the presence of French fries. Compared with the control oil, the thyme-flavoured oil showed improved thermal stability after heating. This could be attributed to the presence of thyme pigments and antioxidant compounds allowing extended oil thermal resistance. Copyright © 2011 Society of Chemical Industry.

  8. NiTiNol Hernia Device Stability in Inguinal Hernioplasty Without Fixation

    PubMed Central

    2011-01-01

    Background and Objective: To determine whether the NiTiNol frame of a novel hernia repair device utilizing polypropylene mesh for inguinal hernioplasty remains stable and intransient without fixation after a minimum of 6 months. Methods: Twenty patients had 27 inguinal hernias repaired using a novel hernia repair device that has a NiTiNol frame without any fixation. Initial single-view, postoperative X-rays were compared with a second X-ray obtained at least 6 months later. The NiTiNol frame, which can be easily visualized on a plain X-ray, was measured in 2 dimensions, as were anatomic landmarks. The measurements obtained and the appearances of the 2 X-rays were compared to determine the percentage of change in device size and device stability with regard to device location and shape. Results: There were minimal changes noted between the 2 sets of measurements obtained with an overall trend towards a slight increase in the size of the hernia repair device. The devices demonstrated intransience of position and stability of shape. Conclusions: The NiTiNol frame of a novel hernia repair device utilizing polypropylene mesh exhibits radiographic evidence of size and shape stability and intransience of position without fixation when used in inguinal hernioplasty after a minimum follow-up of 6 months. PMID:21902967

  9. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay

    PubMed Central

    Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence

    2016-01-01

    Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823

  10. On the measurement of stability in over-time data.

    PubMed

    Kenny, D A; Campbell, D T

    1989-06-01

    In this article, autoregressive models and growth curve models are compared. Autoregressive models are useful because they allow for random change, permit scores to increase or decrease, and do not require strong assumptions about the level of measurement. Three previously presented designs for estimating stability are described: (a) time-series, (b) simplex, and (c) two-wave, one-factor methods. A two-wave, multiple-factor model also is presented, in which the variables are assumed to be caused by a set of latent variables. The factor structure does not change over time and so the synchronous relationships are temporally invariant. The factors do not cause each other and have the same stability. The parameters of the model are the factor loading structure, each variable's reliability, and the stability of the factors. We apply the model to two data sets. For eight cognitive skill variables measured at four times, the 2-year stability is estimated to be .92 and the 6-year stability is .83. For nine personality variables, the 3-year stability is .68. We speculate that for many variables there are two components: one component that changes very slowly (the trait component) and another that changes very rapidly (the state component); thus each variable is a mixture of trait and state. Circumstantial evidence supporting this view is presented.

  11. [Stability of whole cell biocatalyst for biodiesel production from renewable oils].

    PubMed

    Sun, Ting; Du, Wei; Liu, Dehua; Li, Wei; Zeng, Jing; Dai, Lingmei

    2009-09-01

    Lipase-mediated biodiesel production becomes increasingly important because of mild reaction conditions, pollution free during the process and easy product separation. Compared with traditional immobilized lipase, whole cell biocatalyst is promising for biodiesel production because it is easy to prepare and has higher enzyme activity recovery. Rhizopus oryzae IFO4697 can be used as the catalyst for biodiesel production. To further study the stability of the whole cell biocatalyst is extremely important for its further application on large scale. This paper focuses on the stability study of Rhizopus oryzae IFO4697 when used for the methanolysis of renewable oils for biodiesel production. The results showed that water content was important for achieving high catalytic activity and good stability of the biocatalyst. The optimum water content was found to be 5%-15%. Both particle size and desiccation methods showed no obvious effect on the stability of the biocatalyst. With GA cross-linking pretreatment, the stability of the biocatalyst could be improved significantly. When Rhizopus oryzae IFO4697 repeatedly used for next batch reaction, direct vacuum filtration was found to be a good way for the maintenance of good stability of the biocatalyst. Under the optimum reaction conditions, the methyl ester yield could keep over 80% during 20 repeated reaction batches.

  12. Cy3 and Cy5 dyes attached to oligonucleotide terminus stabilize DNA duplexes: predictive thermodynamic model.

    PubMed

    Moreira, Bernardo G; You, Yong; Owczarzy, Richard

    2015-03-01

    Cyanine dyes are important chemical modifications of oligonucleotides exhibiting intensive and stable fluorescence at visible light wavelengths. When Cy3 or Cy5 dye is attached to 5' end of a DNA duplex, the dye stacks on the terminal base pair and stabilizes the duplex. Using optical melting experiments, we have determined thermodynamic parameters that can predict the effects of the dyes on duplex stability quantitatively (ΔG°, Tm). Both Cy dyes enhance duplex formation by 1.2 kcal/mol on average, however, this Gibbs energy contribution is sequence-dependent. If the Cy5 is attached to a pyrimidine nucleotide of pyrimidine-purine base pair, the stabilization is larger compared to the attachment to a purine nucleotide. This is likely due to increased stacking interactions of the dye to the purine of the complementary strand. Dangling (unpaired) nucleotides at duplex terminus are also known to enhance duplex stability. Stabilization originated from the Cy dyes is significantly larger than the stabilization due to the presence of dangling nucleotides. If both the dangling base and Cy3 are present, their thermodynamic contributions are approximately additive. New thermodynamic parameters improve predictions of duplex folding, which will help design oligonucleotide sequences for biophysical, biological, engineering, and nanotechnology applications. Copyright © 2015. Published by Elsevier B.V.

  13. Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications.

    PubMed

    Mohammadinia, Alireza; Arulrajah, Arul; Horpibulsuk, Suksun; Chinkulkijniwat, Avirut

    2017-01-05

    Fly Ash (FA), an abundant by-product with no carbon footprint, is a potential stabilizer for enhancing the physical and geotechnical properties of pavement aggregates. In this research, FA was used in different ratios to stabilize crushed brick (CB) and reclaimed asphalt pavement (RAP) for pavement base/subbase applications. The FA stabilization of CB and RAP was targeted to improve the strength and durability of these recycled materials for pavement base/subbase applications. The Unconfined Compressive Strength (UCS) and resilient modulus (M R ) development of the stabilized CB and RAP aggregates was studied under room temperature and at an elevated temperatures of 40°C, and results compared with unbound CB and RAP. Analysis of atomic silica content showed that when the amount of silica and alumina crystalline was increased, the soil structure matrix deteriorated, resulting in strength reduction. The results of UCS and M R testing of FA stabilized CB and RAP aggregates indicated that FA was a viable binder for the stabilization of recycled CB and RAP. CB and RAP stabilized with 15% FA showed the highest UCS results at both room temperature and at 40°C. Higher temperature curing was also found to result in higher strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering

    PubMed Central

    Tehei, Moeava; Franzetti, Bruno; Madern, Dominique; Ginzburg, Margaret; Ginzburg, Ben Z; Giudici-Orticoni, Marie-Thérèse; Bruschi, Mireille; Zaccai, Giuseppe

    2004-01-01

    Mean macromolecular dynamics was quantified in vivo by neutron scattering in psychrophile, mesophile, thermophile and hyperthermophile bacteria. Root mean square atomic fluctuation amplitudes determining macromolecular flexibility were found to be similar for each organism at its physiological temperature (∼1 Å in the 0.1 ns timescale). Effective force constants determining the mean macromolecular resilience were found to increase with physiological temperature from 0.2 N/m for the psychrophiles, which grow at 4°C, to 0.6 N/m for the hyperthermophiles (85°C), indicating that the increase in stabilization free energy is dominated by enthalpic rather than entropic terms. Larger resilience allows macromolecular stability at high temperatures, while maintaining flexibility within acceptable limits for biological activity. PMID:14710189

  15. Grain boundary stability and influence on ionic conductivity in a disordered perovskite -- a first-principles investigation of lithium lanthanum titanate

    DOE PAGES

    Alexander, Kathleen C.; Ganesh, P.; Chi, Miaofang; ...

    2016-12-01

    The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Recent microscopy images show Type I and Type II grain boundaries. Using first-principles based calculations we find that experimentally observed Type I boundaries are more stable compared to the Type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along Type II grain boundaries thanmore » across, consistent with recent experiments of increased conductivity when Type II densities were increased.« less

  16. Evaluation of a New Technique for iFOBT Utilising a New Sample Collection Device with Increased Buffer Stability.

    PubMed

    Bruns-Toepler, Markus; Hardt, Philip

    2017-07-01

    The aims of the present study were: (i) Evaluate specificity and sensitivity of Hb Smart enzyme-linked immunosorbent assay (ELISA) (ScheBo Biotech) compared to colonoscopy results and (ii) assess stability of a new sample collection device containing a newly formulated buffer to extract haemoglobin using buffer and stool samples spiked with defined concentrations of haemoglobin. Stool samples were quantified with the ELISA method. The stability of haemoglobin in the extraction buffer and in native stool samples, respectively, was determined daily by ELISA during storage for 5 days at 4°C and at room temperature after addition of haemoglobin. Haemoglobin ELISA had a sensitivity of 78.4% for detection of CRC with a specificity of 98%. Haemoglobin extracted in corresponding extraction buffer demonstrated stability throughout storage for 5 days at 4°C and at room temperature. Hb Smart represents a very promising tool for large-scale screening of CRC with regard to sample handling, stability and analysis of haemoglobin in faeces. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Development of a 30-kA cable-in-conduit conductor for pulsed poloidal coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashi, Y.; Dresner, L.; Kato, T.

    1983-05-01

    This paper describes design parameters of a 30-kA cable-in-conduit conductor (JF-30), and the test results of stability margin measured by using a triplex in a conduit. Cross sectional size of JF-30 is 35mm X 35 mm and 567 NbTi-Cu-CuNi strands are in a stainless steel conduit whose thickness is 2 mm. Void fraction is 33 % and the designed stability margin is 270 mJ/cc at 5 atm and 7 T. Stability test by a triplex showed a favorable margin, a few hundreds of mJ at 7 T even without helium flow. In addition, the stability was strongly increased when heliummore » flow up to 0.2 g/s was applied. At around 3 atm, the authors found that the stability margin was more than 2 J/cc which exceeded the present heater capacity. This resulted in an extension of current range, in which the sample is stable, up to 150 to 200 % when compared to the case without helium flow.« less

  18. Stability and change in religiousness during emerging adulthood.

    PubMed

    Koenig, Laura B; McGue, Matt; Iacono, William G

    2008-03-01

    Understanding the development of religiousness is an important endeavor because religiousness has been shown to be related to positive outcomes. The current study examined mean-level, rank-order, and individual-level change in females' religiousness during emerging adulthood. Genetic and environmental influences on religiousness and its change and stability were also investigated. Analyses were completed with an epidemiological study of 2 cohorts of twins: 1 assessed at ages 14 and 18 and a 2nd at 20 and 25. Mean levels of religiousness decreased significantly with age, while rank-order stability was high. Individual-level change was also evident. Analyses also supported the hypotheses that more change would occur in the younger cohort compared with the older cohort and that more change would occur in religious service attendance than the general index of religiousness. Twin analyses suggested that the heritability of religiousness increased with age, while the shared environmental influences decreased. For the younger cohort, change was genetic in origin, while stability was environmental. In the older cohort, change was influenced by nonshared environment and stability by both genes and family environment.

  19. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    PubMed

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  20. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  1. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.

    PubMed

    Chen, Guan-Jie; Kuo, Chia-Hung; Chen, Chih-I; Yu, Chung-Cheng; Shieh, Chwen-Jen; Liu, Yung-Chuan

    2012-02-01

    In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Cervical stability training with and without core stability training for patients with cervical disc herniation: A randomized, single-blind study.

    PubMed

    Buyukturan, B; Guclu-Gunduz, A; Buyukturan, O; Dadali, Y; Bilgin, S; Kurt, E E

    2017-11-01

    This study aims at evaluating and comparing the effects of cervical stability training to combined cervical and core stability training in patients with neck pain and cervical disc herniation. Fifty patients with neck pain and cervical disc herniation were included in the study, randomly divided into two groups as cervical stability and cervical-core stability. Training was applied three times a week in three phases, and lasted for a total duration of 8 weeks. Pain, activation and static endurance of deep cervical flexor muscles, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia were assessed. Pain, activation and static endurance of deep cervical flexors, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia improved in both groups following the training sessions (p < 0.05). Comparison of the effectiveness of these two training methods revealed that the cervical stability group produced a greater increase in the right transverse diameter of M. Longus Colli (p < 0.05). However, static endurance of trunk muscles and kinesiophobia displayed better improvement in the cervical-core stability group (p < 0.05). Cervical stability training provided benefit to patients with cervical disc herniation. The addition of core stability training did not provide any additional significant benefit. Further research is required to investigate the efficacy of combining other techniques with cervical stability training in patients with cervical disc herniation. Both cervical stability training and its combination with core stability training were significantly and similarly effective on neck pain and neck muscle endurance in patients with cervical disc herniation. © 2017 European Pain Federation - EFIC®.

  3. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  4. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  5. Quality preservation of reduced sodium pork patties: effects of antioxidants on colour and lipid stability.

    PubMed

    Cheng, Jen-Hua; Wang, Shu-Tai; Ockerman, Herbert W

    2013-09-01

    The purpose of this study was to explore the effect of lipid oxidation and colour change of precooked pork patties with reduced sodium and added antioxidants. This study can fill the gap of antioxidant application between meat products with regular and low salt content. For precooked pork patties, addition of sodium tripolyphosphate and carnosine increased pH values and cooking yields. Patties with ascorbic acid had significantly higher a* values compared to the other samples. There was no significant difference of b* values among treatments. Precooked pork patties with sodium tripolyphosphate or carnosine had significantly higher L* values compared to other patties. The addition of antioxidants reduced lipid oxidation in precooked pork patties during refrigerated storage, except for the addition of 0.5% carnosine. Tripolyphosphate and ascorbic acid were successfully proven to be effective in retarding lipid oxidation and preserve the colour stability in reduced salt pork patties. This study provides a preliminary foundation of keeping meat products from lipid oxidation and maintaining in better stability. © 2013 Society of Chemical Industry.

  6. Interaction of formic acid with nitrogen: stabilization of the higher-energy conformer.

    PubMed

    Marushkevich, Kseniya; Räsänen, Markku; Khriachtchev, Leonid

    2010-10-07

    Conformational change is an important concept in chemistry and physics. In the present work, we study conformations of formic acid (HCOOH, FA) and report the preparation and identification of the complex of the higher-energy conformer cis-FA with N(2) in an argon matrix. The cis-FA···N(2) complex was synthesized by combining annealing and vibrational excitation of the ground-state trans-FA in a FA/N(2)/Ar matrix. The assignment is based on IR spectroscopic measurements and ab initio calculations. The cis-FA···N(2) complex decay in an argon matrix is much slower compared with the cis-FA monomer. In agreement with the experimental observations, the calculations predict a substantial increase in the stabilization barrier for the cis-FA···N(2) complex compared with the uncomplexed cis-FA monomer. A number of solvation effects in an argon matrix are computationally estimated and discussed. The present results on the cis-FA···N(2) complex show that intermolecular interaction can stabilize intrinsically unstable conformers, as previously found for some other cis-FA complexes.

  7. Oxyresveratrol and ascorbic acid O/W microemulsion: Preparation, characterization, anti-isomerization and potential application as antibrowning agent on fresh-cut lotus root slices.

    PubMed

    He, Jianfei; Zhu, Qin; Dong, Xue; Pan, Hongyang; Chen, Jie; Zheng, Zong-Ping

    2017-01-01

    The purpose of this study is to prepare an oxyresveratrol (Oxy) microemulsion (ME) with improved Oxy's solubility and stability and to investigate its antibrowning effects on fresh-cut lotus root slices. The formula of OxyME consisted of ethyl butyrate, Tween 80, PEG400, and water with w/w of 4%, 10.67%, 5.33%, and 80%, respectively. Encapsulating Oxy into OxyME greatly increased its solubility and stability compared with that of in water. Strong antibrowning effects were observed on fresh-cut lotus root slices treated with OxyME, even better than 4-hexylresorcinol. The addition of ascorbic acid (VC) into OxyME greatly improved the Oxy stability in long-term storage and antibrowning effects on fresh-cut lotus root slices. However, the simultaneous addition of calcium chloride and VC did not obviously improve the antibrowning effects compared with the addition of VC alone. These results indicated that Oxy+VCME may be suitable as an antibrowning agent for fresh-cut vegetables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Strengthen effects of dominant strains on aerobic digestion and stabilization of the residual sludge.

    PubMed

    Liu, Yongjun; Gao, Min; Zhang, Aining; Liu, Zhe

    2017-07-01

    In order to strengthen the aerobic digestion of residual sludge, shorten the time of sludge stabilization and further reduce operating costs, 3 dominant strains identified as Pseudomonas sp. L3, Acinetobacter sp. L16 and Bacillus sp. L19 were isolated from long-term aerobic digestion sludge. Results showed that the sludge stabilization time were reduced by 3-4days compared with the control when the dominant strains were added to the process of sludge aerobic digestion. The addition of dominant strains accelerated the accumulation of TOC, nitrate nitrogen and ammonia nitrogen in the digestive solution at different levels, and it was beneficial to the dissolution of phosphorus. Controlling DO 3-5mg/L, pH 6.5, the strains of Pseudomonas sp. L3 and Bacillus sp. L19 were combined dosing with the dosage of 2% in the process of sludge aerobic digestion, compared with the control, digestion rates of TOC and MLSS were increased about 19% and 16%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  10. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    PubMed

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Postural Instability Caused by Extended Bed Rest Is Alleviated by Brief Daily Exposure to Low Magnitude Mechanical Signals

    PubMed Central

    Muir, Jesse; Judex, Stefan; Qin, Yi-Xian; Rubin, Clinton

    2011-01-01

    Loss of postural stability, as exacerbated by chronic bed rest, aging, neuromuscular injury or disease, results in a marked increase in the risk of falls, potentiating severe injury and even death. To investigate the capacity of low magnitude mechanical signals (LMMS) to retain postural stability under conditions conducive to its decline, twenty-nine healthy adult subjects underwent 90 days of 6-degree head down tilt bed-rest. Treated subjects underwent a daily 10 minute regimen of 30 Hz LMMS at either a 0.3g-force (n=12) or 0.5g force (n=5). Control subjects (n=13) received no LMMS treatment. Postural stability, quantified by dispersions of the plantar-based center of pressure, deteriorated significantly from baseline in control subjects, with displacement and velocity at 60d increasing 98.7% and 193% respectively, while the LMMS group increased only 26.7% and 6.4%, reflecting a 73% and 97% relative retention in stability as compared to control. Increasing LMMS magnitude from 0.3 to 0.5g had no significant influence on outcomes. LMMS failed to spare loss of muscle extension strength, but helped to retain flexion strength (e.g., 46.2% improved retention of baseline concentric flexion strength vs. untreated controls; p=0.01). These data suggest the potential of extremely small mechanical signals as a non-invasive means of preserving postural control under the challenge of chronic bed rest, and may ultimately represent non-pharmacologic means of reducing the risk of debilitating falls in elderly and infirm. PMID:21273076

  12. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule.

    PubMed

    Moussa, Zeinab; Chebl, Mazhar; Patra, Digambara

    2017-01-01

    Stability of curcumin in neutral and alkaline buffer conditions has been a serious concern for its medicinal applications. We demonstrate that the stability of curucmin can be improved in 1,2-Dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. Curcumin strongly partition into liquid crystalline phase compared to solid gel phase of DSPC liposomes. Variation of fluorescence intensity of curcumin associated with liposomes with temperature successfully determines phase transition temperature of DSPC liposomes. However, at higher molar ratio curcumin can influence phase transition temperature by intercalating into deep hydrophobic layer of liposomes and facilitating fusion of two membrane phases. Rhamnolipids (RLs) are recently being applied for various biomedical applications. Here, we have explored new insight on intercalation of rhamnolipids with DSPC liposomes. Intercalation of rhamnolipids exceptionally increases partition of curcumin into solid gel phase of DSPC liposomes, whereas this increase is moderate in liquid crystalline phase. Fluorescence quenching study establishes that permeability and fluidity of the DSPC liposomes are enhanced in the presence of RLs. Membrane permeability and fluidity can be improved further by increasing the percentage of RLs in DSPC liposomes. The phase transition temperature of DSPC liposomes decreases with increase in percentage of RLs in DSPC liposomes by encouraging fusion between solid gel and liquid crystalline phases. Intercalation of RLs is found to further boost stability of drug, curcumin, in DSPC liposomes. Thus, mixing RLs with DSPC liposomes could potentially serve as a good candidate for drug delivery application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities.

    PubMed

    Van Haver, Annemieke; De Roo, Karel; De Beule, Matthieu; Labey, Luc; De Baets, Patrick; Dejour, David; Claessens, Tom; Verdonk, Peter

    2015-06-01

    Trochlear dysplasia appears in different geometrical variations. The Dejour classification is widely used to grade the severity of trochlear dysplasia and to decide on treatment. To investigate the effect of trochlear dysplasia on patellofemoral biomechanics and to determine if different types of trochlear dysplasia have different effects on patellofemoral biomechanics. Controlled laboratory study. Trochlear dysplasia was simulated in 4 cadaveric knees by replacing the native cadaveric trochlea with different types of custom-made trochlear implants, manufactured with 3-dimensional printing. For each knee, 5 trochlear implants were designed: 1 implant simulated the native trochlea (control condition), and 4 implants simulated 4 types of trochlear dysplasia. The knees were subjected to 3 biomechanical tests: a squat simulation, an open chain extension simulation, and a patellar stability test. The patellofemoral kinematics, contact area, contact pressure, and stability were compared between the control condition (replica implants) and the trochlear dysplastic condition and among the subgroups of trochlear dysplasia. The patellofemoral joint in the trochlear dysplastic group showed increased internal rotation, lateral tilt, and lateral translation; increased contact pressures; decreased contact areas; and decreased stability when compared with the control group. Within the trochlear dysplastic group, the implants graded as Dejour type D showed the largest deviations for the kinematical parameters, and the implants graded as Dejour types B and D showed the largest deviations for the patellofemoral contact areas and pressures. Patellofemoral kinematics, contact area, contact pressure, and stability are significantly affected by trochlear dysplasia. Of all types of trochlear dysplasia, the models characterized with a pronounced trochlear bump showed the largest deviations in patellofemoral biomechanics. Investigating the relationship between the shape of the trochlea and patellofemoral biomechanics can provide insight into the short-term effects (maltracking, increased pressures, and instability) and long-term effects (osteoarthritis) of different types of trochlear dysplasia. Furthermore, this investigation provides an empirical explanation for better treatment outcomes of trochleoplasty for Dejour types B and D dysplasia. © 2015 The Author(s).

  14. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    PubMed

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  15. The influence of disulfide bonds on the mechanical stability of proteins is context dependent.

    PubMed

    Manteca, Aitor; Alonso-Caballero, Álvaro; Fertin, Marie; Poly, Simon; De Sancho, David; Perez-Jimenez, Raul

    2017-08-11

    Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP.

    PubMed

    Iyer, Bharat Ramasubramanian; Mahalakshmi, Radhakrishnan

    2016-09-06

    The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.

  17. Physiochemical and functional properties of chum salmon (Oncorhynchus keta) skin gelatin extracted at different temperatures.

    PubMed

    Liu, Yang; Xia, Lining; Jia, Hui; Li, Qi; Jin, Wengang; Dong, Xiuping; Pan, Jinfeng

    2017-12-01

    Aquatic source gelatins are gaining more attention due to the advantages in safety and religion acceptability compared with mammalian sources. For understanding the effects of extracting temperature on gelatins from chum salmon (Oncorhynchus keta) skins (GCSS), gelatins were extracted at temperatures from 40 to 90°C and the physiochemical properties of GCSS were investigated. GCSS yield increased while imino acids content declined as the increase of temperature. GCSS40, 50 and 60 showed strong β-, α1- and α2-chains but the three faded in GCSS70, 80 and 90, with the presence of low molecular weight fragments. Amides A, I and III were shifted to higher wavenumber in GCSS70, 80 and 90 compared with that of GCSS40, 50 and 60. X-ray diffraction showed lower intensity of peak at 7° in GCSS80 and 90 than in the other GCSS. Gel strength declined while a*, b* and ΔE* value increased as temperature increased. Foam expansion and stability of GCSS40, 50 and 60 were lower than those of GCSS70, 80 and 90. Emulsion activity and stability decreased as temperature increased. Extracting temperature greatly affected yield, molecular composition and functionalities of GCSS. A temperature lower than 50°C is recommended for GCSS extraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study.

    PubMed

    Palepu, Vivek; Peck, Jonathan H; Simon, David D; Helgeson, Melvin D; Nagaraja, Srinidhi

    2017-04-01

    OBJECTIVE Lumbar cages with integrated fixation screws offer a low-profile alternative to a standard cage with anterior supplemental fixation. However, the mechanical stability of integrated fixation cages (IFCs) compared with a cage with anterior plate fixation under fatigue loading has not been investigated. The purpose of this study was to compare the biomechanical stability of a screw-based IFC with a standard cage coupled with that of an anterior plate under fatigue loading. METHODS Eighteen functional spinal units were implanted with either a 4-screw IFC or an anterior plate and cage (AP+C) without integrated fixation. Flexibility testing was conducted in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) on intact spines, immediately after device implantation, and post-fatigue up to 20,000 cycles of FE loading. Stability parameters such as range of motion (ROM) and lax zone (LZ) for each loading mode were compared between the 2 constructs at multiple stages of testing. In addition, construct loosening was quantified by subtracting post-instrumentation ROM from post-fatigue ROM. RESULTS IFC and AP+C configurations exhibited similar stability (ROM and LZ) at every stage of testing in FE (p ≥ 0.33) and LB (p ≥ 0.23) motions. In AR, however, IFCs had decreased ROM compared with AP+C constructs at pre-fatigue (p = 0.07) and at all post-fatigue time points (p ≤ 0.05). LZ followed a trend similar to that of ROM in AR. ROM increased toward intact motion during fatigue cycling for AP+C and IFC implants. IFC specimens remained significantly (p < 0.01) more rigid than specimens in the intact condition during fatigue for each loading mode, whereas AP+C construct motion did not differ significantly (p ≥ 0.37) in FE and LB and was significantly greater (p < 0.01) in AR motion compared with intact specimens after fatigue. Weak to moderate correlations (R 2 ≤ 56%) were observed between T-scores and construct loosening, with lower T-scores leading to decreased stability after fatigue testing. CONCLUSIONS These data indicate that a 4-screw IFC design provides fixation similar to that provided by an AP+C construct in FE and LB during fatigue testing and better stability in AR motion.

  19. Novel expandable short dental implants in situations with reduced vertical bone height-technical note and first results.

    PubMed

    Reich, Waldemar; Schweyen, Ramona; Heinzelmann, Christian; Hey, Jeremias; Al-Nawas, Bilal; Eckert, Alexander Walter

    2017-10-30

    Short implants often have the disadvantage of reduced primary stability. The present study was conducted to evaluate the feasibility and safety of a new expandable short dental implant system intended to increase primary stability. As a "proof of concept", a prospective clinical cohort study was designed to investigate intraoperative handling, primary and secondary implant stability (resonance frequency analysis), crestal bone changes, implant survival and implant success, of an innovative short expandable screw implant. From 2014 until 2015, 9 patients (7-9-mm vertical bone height) with 30 implants (length 5-7 mm, diameter 3.75-4.1 mm) were recruited consecutively. All 30 implants in the 9 patients (age 44 to 80 years) could be inserted and expanded without intraoperative problems. Over the 3-year follow-up period, the implant success rate was 28/30 (93.3%). The mean implant stability quotients (ISQ) were as follows: primary stability, 69.7 ± 10.3 ISQ units, and secondary stability, 69.8 ± 10.2 ISQ units (p = 0.780), both without significant differences between the maxilla and mandible (p ≥ 0.780). The mean crestal bone changes after loading were (each measured from the baseline) as follows: in the first year, 1.0 ± 0.9 mm in the maxilla and 0.7 ± 0.4 mm in the mandible, and in the second year, 1.3 ± 0.8 mm and 1.0 ± 0.7 mm, respectively. Compared to other prospective studies, in this indication, the success rate is acceptable. Implant stability shows high initial and secondary stability values. The system might present an extension of functional rehabilitation to the group of elderly patients with limited vertical bone height. Further long-term investigations should directly compare this compressive implant with standard short implants.

  20. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less

  1. Fundamental and applied studies in nanoparticle biomedical imaging, stabilization, and processing

    NASA Astrophysics Data System (ADS)

    Pansare, Vikram J.

    Nanoparticle carrier systems are gaining importance in the rapidly expanding field of biomedical whole animal imaging where they provide long circulating, real time imaging capability. This thesis presents a new paradigm in imaging whereby long wavelength fluorescent or photoacoustically active contrast agents are embedded in the hydrophobic core of nanocarriers formed by Flash NanoPrecipitation. The long wavelength allows for improved optical penetration depth. Compared to traditional contrast agents where fluorophores are placed on the surface, this allows for improved signal, increased stability, and molecular targeting capabilities. Several types of long wavelength hydrophobic dyes based on acene, cyanine, and bacteriochlorin scaffolds are utilized and animal results obtained for nanocarrier systems used in both fluorescent and photoacoustic imaging modes. Photoacoustic imaging is particularly promising due to its high resolution, excellent penetration depth, and ability to provide real-time functional information. Fundamental studies in nanoparticle stabilization are also presented for two systems: model alumina nanoparticles and charge stabilized polystyrene nanoparticles. Motivated by the need for stable suspensions of alumina-based nanocrystals for security printing applications, results are presented for the adsorption of various small molecule charged hydrophobes onto the surface of alumina nanoparticles. Results are also presented for the production of charge stabilized polystyrene nanoparticles via Flash NanoPrecipitation, allowing for the independent control of polymer molecular weight and nanoparticle size, which is not possible by traditional emulsion polymerization routes. Lastly, methods for processing nanoparticle systems are explored. The increasing use of nanoparticle therapeutics in the pharmaceutical industry has necessitated the development of scalable, industrially relevant processing methods. Ultrafiltration is particularly well suited for concentrating and purifying macromolecular suspensions. Processing parameters are defined and optimized for PEGylated nanoparticles, charge stabilized latices, and solutions of albumin. The fouling characteristics are compared and scale-up recommendations made. Finally, a pilot scale spray drying system to produce stable nanocrystalline powders of highly crystalline drugs which cannot be stably formulated by traditional spray drying methods is presented. To accomplish this, a novel mixing device was developed and implemented at pilot scale, demonstrating feasibility beyond the lab scale.

  2. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles.

    PubMed

    Wang, Yong-Hui; Yuan, Yang; Yang, Xiao-Quan; Wang, Jin-Mei; Guo, Jian; Lin, Yuan

    2016-07-01

    The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.

  3. The biomechanical stability of a novel spacer with integrated plate in contiguous two-level and three-level ACDF models: an in vitro cadaveric study.

    PubMed

    Clavenna, Andrew L; Beutler, William J; Gudipally, Manasa; Moldavsky, Mark; Khalil, Saif

    2012-02-01

    Anterior cervical plating increases stability and hence improves fusion rates to treat cervical spine pathologies, which are often symptomatic at multiple levels. However, plating is not without complications, such as dysphagia, injury to neural elements, and plate breakage. The biomechanics of a spacer with integrated plate system combined with posterior instrumentation (PI), in two-level and three-level surgical models, has not yet been investigated. The purpose of the study was to biomechanically evaluate the multidirectional rigidity of spacer with integrated plate (SIP) at multiple levels as comparable to traditional spacers and plating. An in vitro cervical cadaveric model. Eight fresh human cervical (C2-C7) cadaver spines were tested under pure moments of ±1.5 Nm on spine simulator test frame. Each spine was tested in intact condition, with only anterior fixation and with both anterior and PI. Range of motion (ROM) was measured using Optotrak Certus (NDI, Inc., Waterloo, Ontario, Canada) motion analysis system in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) at the instrumented levels (C3-C6). Repeated-measures analysis of variance was used for statistical analysis. All the surgical constructs showed significant reduction in motion compared with intact condition. In two-level fusion, SIP (C4-C6) construct significantly reduced ROM by 66.5%, 65.4%, and 60.3% when compared with intact in FE, LB, and AR, respectively. In three-level fusion, SIP (C3-C6) construct significantly reduced ROM by 65.8%, 66%, and 49.6% when compared with intact in FE, LB, and AR, respectively. Posterior instrumentation showed significant stability only in three-level fusion when compared with their respective anterior constructs. In both two-level and three-level fusion, SIP showed comparable stability to traditional spacer and plate constructs in all loading modes. The anatomically profiled spacer with integrated plate allows treatment of cervical disorders with fewer steps and less impact to cervical structures. In this biomechanical study, spacer with integrated plate construct showed comparable stability to traditional spacer and plate for two-level and three-level fusion. Posterior instrumentation showed significant effect only in three-level fusion. Clinical data are required for further validation of using spacer with integrated plate at multiple levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  5. Low-level laser therapy with 940 nm diode laser on stability of dental implants: a randomized controlled clinical trial.

    PubMed

    Torkzaban, Parviz; Kasraei, Shahin; Torabi, Sara; Farhadian, Maryam

    2018-02-01

    Low-level laser therapy (LLLT) is a non-invasive modality to promote osteoblastic activity and tissue healing. The aim of this study was to evaluate the efficacy of LLLT for improvement of dental implant stability. This randomized controlled clinical trial was performed on 80 dental implants placed in 19 patients. Implants were randomly divided into two groups (n = 40). Seven sessions of LLLT (940 nm diode laser) were scheduled for the test group implants during 2 weeks. Laser was irradiated to the buccal and palatal sides. The same procedure was performed for the control group implants with laser hand piece in "off" mode. Implant stability was measured by Osstell Mentor device in implant stability quotient (ISQ) value immediately after surgery and 10 days and 3, 6, and 12 weeks later. Repeated measures ANOVA was used to compare the mean ISQ values (implant stability) in the test and control groups. Statistical test revealed no significant difference in the mean values of implant stability between the test and control groups over time (P = 0.557). Although the mean values of implant stability changed significantly in both groups over time (P < 0.05). Although the trend of reduction in stability was slower in the laser group in the first weeks and increased from the 6th to 12th week, LLLT had no significant effect on dental implant stability.

  6. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    PubMed

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Stability of subsea pipelines during large storms

    PubMed Central

    Draper, Scott; An, Hongwei; Cheng, Liang; White, David J.; Griffiths, Terry

    2015-01-01

    On-bottom stability design of subsea pipelines transporting hydrocarbons is important to ensure safety and reliability but is challenging to achieve in the onerous metocean (meteorological and oceanographic) conditions typical of large storms (such as tropical cyclones, hurricanes or typhoons). This challenge is increased by the fact that industry design guidelines presently give no guidance on how to incorporate the potential benefits of seabed mobility, which can lead to lowering and self-burial of the pipeline on a sandy seabed. In this paper, we demonstrate recent advances in experimental modelling of pipeline scour and present results investigating how pipeline stability can change in a large storm. An emphasis is placed on the initial development of the storm, where scour is inevitable on an erodible bed as the storm velocities build up to peak conditions. During this initial development, we compare the rate at which peak near-bed velocities increase in a large storm (typically less than 10−3 m s−2) to the rate at which a pipeline scours and subsequently lowers (which is dependent not only on the storm velocities, but also on the mechanism of lowering and the pipeline properties). We show that the relative magnitude of these rates influences pipeline embedment during a storm and the stability of the pipeline. PMID:25512592

  8. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  9. Insight from first principles into the stability and magnetism of alkali-metal superoxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Arcelus, Oier; Suaud, Nicolas; Katcho, Nebil A.; Carrasco, Javier

    2017-05-01

    Alkali-metal superoxides are gaining increasing interest as 2p magnetic materials for information and energy storage. Despite significant research efforts on bulk materials, gaps in our knowledge of the electronic and magnetic properties at the nanoscale still remain. Here, we focused on the role that structural details play in determining stability, electronic structure, and magnetic couplings of (MO2)n (M = Li, Na, and K, with n = 2-8) clusters. Using first-principles density functional theory based on the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functionals, we examined the effect of atomic structure on the relative stability of different polymorphs within each investigated cluster size. We found that small clusters prefer to form planar-ring structures, whereas non-planar geometries become more stable when increasing the cluster size. However, the crossover point depends on the nature of the alkali metal. Our analysis revealed that electrostatic interactions govern the highly ionic M-O2 bonding and ultimately control the relative stability between 2-D and 3-D geometries. In addition, we analyzed the weak magnetic couplings between superoxide molecules in (NaO2)4 clusters comparing model Hamiltonian methods based on Wannier function projections onto πg states with wave function-based multi-reference calculations.

  10. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  11. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    PubMed Central

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  12. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.

    PubMed

    Santos-Ocaña, C; Navas, P; Crane, F L; Córdoba, F

    1995-12-01

    The presence of yeast cells in the incubation medium prevents the oxidation of ascrobate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization.

  13. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    NASA Astrophysics Data System (ADS)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-12-01

    We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.

  14. Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium.

    PubMed

    Chen, Gecai; Yue, Aihuan; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2014-12-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology, immunophenotype and multi-lineage potential were analyzed at passages 3, 5, 10, 15, 20, and 25 (P3, P5, P10, P15, P20, and P25, respectively). The cell cycle distribution, apoptosis, and karyotype of human umbilical cord-derived (hUC)-MSCs were analyzed at P3, P5, P10, P15, P20, and P25. From P3 to P25, the three defining biological properties of hUC-MSCs [adherence to plastic, specific surface antigen expression, multipotent differentiation potential] met the standards proposed by the International Society for Cellular Therapy for definition of MSCs. The cell cycle distribution analysis at the P25 showed that the percentage of cells at G0/G1 was increased, compared with the cells at P3 (P < 0.05). Cells at P25 displayed an increase in the apoptosis rate (to 183 %), compared to those at P3 (P < 0.01). Within subculture generations 3-20 (P3-P20), the differences between the cell apoptotic rates were not statistically significant (P > 0.05). There were no detectable chromosome eliminations, displacements, or chromosomal imbalances, as assessed by the karyotyping guidelines of the International System for Human Cytogenetic Nomenclature (ISCN, 2009). Long-term culture affects the biological stability of MSCs in serum-free MesenCult-XF medium. MSCs can be expanded up to the 25th passage without chromosomal changes by G-band. The best biological activity period and stability appeared between the third to 20th generations.

  15. Characterization of Chemically and Thermally Treated Oil-in-Water Heteroaggregates and Comparison to Conventional Emulsions.

    PubMed

    Maier, Christiane; Reichert, Corina L; Weiss, Jochen

    2016-10-01

    Heteroaggregated oil-in-water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3-dimensional network at comparably low-fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d 43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ 0 ) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP-based emulsions (τ 0 , SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29-fold (glutaraldehyde) and 2-fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin-driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents. © 2016 Institute of Food Technologists®.

  16. Physical and chemical stability of proflavine contrast agent solutions for early detection of oral cancer.

    PubMed

    Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S

    2016-02-01

    Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.

  17. Effects of source and seasonal variations of natural organic matters on the fate and transport of CeO2 nanoparticles in the environment.

    PubMed

    Li, Zhen; Sahle-Demessie, Endalkachew; Aly Hassan, Ashraf; Pressman, Jonathan G; Sorial, George A; Han, Changseok

    2017-12-31

    Natural organic matter (NOM) affects the stability and transport of nanoparticles (NPs) in natural waters by modifying their physiochemical properties. Source location, and seasonal variations, influence their molecular, physical and electrical charge properties. To understand the variations of NOM on the mobilization of NPs, large volumes of water were collected from the Ohio River (OR) over winter and summer seasons and dissolved NOMs were concentrated. The chemical and structural differences of these NOMs were compared with the Suwannee River humic acid (SRHA) SRHA using 1 H and 13 C nuclear magnetic resonance spectroscopy, and Fourier transforms infrared (FTIR) spectroscopy. Thermal analysis and FTIR confirmed that differences in composition, structure, and functional groups are a result of SRHA fractionation compared to whole molecule OR-NOM. The influence of OR-NOMs on the surface charge of CeO 2 NPs and the effects on the transport and retention in a three-phase (deposition-rinse-re-entrainment) sand-packed columns were investigated at CeO 2 NPs initial concertation of 10ppm, pH6.8, increasing ionic strength (3, 5, and 10mM), retention time of 1min, and increasing NOM concentration (1, 5, and 10ppm). The summer OR-NOM showed higher stabilization and mobilization effect on the CeO 2 than the winter NOM; while their effect was very different form the SRHA. The stabilization of NPs is attributed to both electrostatic and steric effects. The differences in the chemical structure of the complex and heterogeneous NOMs showed disparate reactivity and direct impact on CeO 2 -NPs stability. Using SRHA to study the effect of NOM for drinking water related assessment does not sufficiently represent the natural conditions of the environment. Published by Elsevier B.V.

  18. Modified granulation of red mud by weak gelling and its application to stabilization of Pb.

    PubMed

    Luo, Hui-li; Huang, Sheng-sheng; Luo, Lin; Wu, Gen-yi; Liu, Yan

    2012-08-15

    This study presents a novel modification of red mud (RM) with cementitious materials by rotary drum granulation under partial hydration. Admixtures and surfactants were applied to improve the microspore structure of red mud-based granules in order to stabilize Pb steadily. Through XRD and SEM-EDS analyses, it was demonstrated that calcite, the main alkali in RM, was partially concreted and coated. Compared to pH 12.47 for RM, the lowest pH of the granules was 10.66 implying that the release of OH(-) from hydrolysis and decomposition was decreased. Based on stabilization of Pb, influence on soil properties and forming qualities, composition of the optimum granule PSP was determined as 5% cement, 5% gypsum, 1% rice straw, and 0.1% emulsifier OP-10. Within a 90 d remediation, immobilization of ionic Pb in a 500 mg kg(-1) Pb-contaminated artificial soil was 9.85 mg kg(-1) at day 30 with 5% PSP2 as substitute. Furthermore, the reverse increase diminished as the final concentration was 11.13 mg kg(-1) while it was 14.25 mg kg(-1) by RM. The increase of residual Pb was 122.61%, which was better than the 83.92% of RM. Particularly, the highest pH in mine soil was 11.09 at day 1 with RM, but the decrease of ionic Pb was 46.26%. Meanwhile, a significant deviation from the control soil zeta-potential lasted longer and the recovery was more difficult, as compared to the granules. Therefore, a granulated modification of RM is shown to be very important when aiming at steady release of OH(-) to improve the later stabilization of Pb. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. No beneficial effects of vitamin D supplementation on muscle function or quality of life in primary hyperparathyroidism: results from a randomized controlled trial.

    PubMed

    Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja; Heickendorff, Lene; Vestergaard, Peter; Mosekilde, Leif; Christiansen, Peer

    2015-05-01

    Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed, although decreased muscle function may contribute to increased fracture risk. We aimed to assess the changes in muscle strength, muscle function, postural stability, quality of life (QoL), and well-being during treatment with vitamin D or placebo before and after parathyroidectomy (PTX) in PHPT patients. A randomized placebo-controlled trial. We included 46 PHPT patients, mean age 58 (range 29-77) years and 35 (76%) were women. Daily treatment with 70 μg (2800 IU) cholecalciferol or placebo for 52 weeks. Treatment was administered 26 weeks before PTX and continued for 26 weeks after PTX. Changes in QoL and measures of muscle strength and function. Preoperatively, 25-hydroxyvitamin D (25OHD) increased significantly (50-94 nmol/l) compared with placebo (57-52 nmol/l). We did not measure any beneficial effects of supplementation with vitamin D compared with placebo regarding well-being, QoL, postural stability, muscle strength, or function. In all patients, we measured marked improvements in QoL, well-being (P<0.01), muscle strength in the knee flexion and extension (P<0.001), and muscle function tests (P<0.01) after surgical cure. Postural stability improved during standing with eyes closed (P<0.05), but decreased with eyes open (P<0.05). Patients with PHPT and 25OHD levels around 50 nmol/l did not benefit from vitamin D supplementation concerning muscle strength, muscle function, postural stability, well-being, or QoL. Independent of preoperative 25OHD levels, PTX improved these parameters. © 2015 European Society of Endocrinology.

  20. Effect of Smaller Left Ventricular Capture Threshold Safety Margins to Improve Device Longevity in Recipients of Cardiac Resynchronization-Defibrillation Therapy.

    PubMed

    Steinhaus, Daniel A; Waks, Jonathan W; Collins, Robert; Kleckner, Karen; Kramer, Daniel B; Zimetbaum, Peter J

    2015-07-01

    Device longevity in cardiac resynchronization therapy (CRT) is affected by the pacing capture threshold (PCT) and programmed pacing amplitude of the left ventricular (LV) pacing lead. The aims of this study were to evaluate the stability of LV pacing thresholds in a nationwide sample of CRT defibrillator recipients and to determine potential longevity improvements associated with a decrease in the LV safety margin while maintaining effective delivery of CRT. CRT defibrillator patients in the Medtronic CareLink database were eligible for inclusion. LV PCT stability was evaluated using ≥2 measurements over a 14-day period. Separately, a random sample of 7,250 patients with programmed right atrial and right ventricular amplitudes ≤2.5 V, LV thresholds ≤ 2.5 V, and LV pacing ≥90% were evaluated to estimate theoretical battery longevity improvement using LV safety margins of 0.5 and 1.5 V. Threshold stability analysis in 43,256 patients demonstrated LV PCT stability of <0.5 V in 77% of patients and <1 V in 95%. Device longevity analysis showed that the use of a 0.5-V safety margin increased average battery longevity by 0.62 years (95% confidence interval 0.61 to 0.63) compared with a safety margin of 1.5 V. Patients with LV PCTs >1 V had the greatest increases in battery life (mean increase 0.86 years, 95% confidence interval 0.85 to 0.87). In conclusion, nearly all CRT defibrillator patients had LV PCT stability <1.0 V. Decreasing the LV safety margin from 1.5 to 0.5 V provided consistent delivery of CRT for most patients and significantly improved battery longevity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    PubMed

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  3. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  4. Stepping strategies for regulating gait adaptability and stability.

    PubMed

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  6. Study on Market Stability and Price Limit of Chinese Stock Index Futures Market: An Agent-Based Modeling Perspective.

    PubMed

    Xiong, Xiong; Nan, Ding; Yang, Yang; Yongjie, Zhang

    2015-01-01

    This paper explores a method of managing the risk of the stock index futures market and the cross-market through analyzing the effectiveness of price limits on the Chinese Stock Index 300 futures market. We adopt a cross-market artificial financial market (include the stock market and the stock index futures market) as a platform on which to simulate the operation of the CSI 300 futures market by changing the settings of price limits. After comparing the market stability under different price limits by appropriate liquidity and volatility indicators, we find that enhancing price limits or removing price limits both play a negative impact on market stability. In contrast, a positive impact exists on market stability if the existing price limit is maintained (increase of limit by10%, down by 10%) or it is broadened to a proper extent. Our study provides reasonable advice for a price limit setting and risk management for CSI 300 futures.

  7. Color stability and lipid oxidation of broiler breast meat from animals raised on organic versus non-organic production systems.

    PubMed

    Viana, F M; Canto, A C V C S; Costa-Lima, B R C; Salim, A P A A; Conte-Junior, C A

    2017-03-01

    The aim of the present research was to evaluate the influence of organic and non-organic production systems on color stability and lipid oxidation of broiler meat Pectoralis major (PM) stored under refrigeration (4°C) for 9 days. PM samples from organic (ORG) and non-organic (NORG) production systems were compared based on physicochemical analyses (instrumental color, myoglobin concentration, metmyoglobin reducing activity (MRA), pH, and lipid oxidation) performed in 4 different trials (n = 4). In general, NORG broilers demonstrated higher (P < 0.05) b* and lipid oxidation values than ORG, whereas ORG samples exhibited increased (P < 0.05) MRA, ratio of reflectance at 630 per 580 nanometers (R 630/580), and a* values. The lower color stability observed in NORG samples can be partly due to lipid oxidation. Therefore, the production system can affect color and lipid stability of broiler breast meat during storage. © 2016 Poultry Science Association Inc.

  8. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    PubMed

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  9. Comparative systems pharmacology of HIF stabilization in the prevention of retinopathy of prematurity

    PubMed Central

    Hoppe, George; Yoon, Suzy; Gopalan, Banu; Savage, Alexandria R.; Brown, Rebecca; Case, Kelsey; Vasanji, Amit; Chan, E. Ricky; Silver, Randi B.; Sears, Jonathan E.

    2016-01-01

    Retinopathy of prematurity (ROP) causes 100,000 new cases of childhood blindness each year. ROP is initiated by oxygen supplementation necessary to prevent neonatal death. We used organ systems pharmacology to define the transcriptomes of mice that were cured of oxygen-induced retinopathy (OIR, ROP model) by hypoxia-inducible factor (HIF) stabilization via HIF prolyl hydroxylase inhibition using the isoquinolone Roxadustat or the 2-oxoglutarate analog dimethyloxalylglycine (DMOG). Although both molecules conferred a protective phenotype, gene expression analysis by RNA sequencing found that Roxadustat can prevent OIR by two pathways: direct retinal HIF stabilization and induction of aerobic glycolysis or indirect hepatic HIF-1 stabilization and increased serum angiokines. As predicted by pathway analysis, Roxadustat rescued the hepatic HIF-1 knockout mouse from retinal oxygen toxicity, whereas DMOG could not. The simplicity of systemic treatment that targets both the liver and the eye provides a rationale for protecting the severely premature infant from oxygen toxicity. PMID:27091985

  10. Study on Market Stability and Price Limit of Chinese Stock Index Futures Market: An Agent-Based Modeling Perspective

    PubMed Central

    2015-01-01

    This paper explores a method of managing the risk of the stock index futures market and the cross-market through analyzing the effectiveness of price limits on the Chinese Stock Index 300 futures market. We adopt a cross-market artificial financial market (include the stock market and the stock index futures market) as a platform on which to simulate the operation of the CSI 300 futures market by changing the settings of price limits. After comparing the market stability under different price limits by appropriate liquidity and volatility indicators, we find that enhancing price limits or removing price limits both play a negative impact on market stability. In contrast, a positive impact exists on market stability if the existing price limit is maintained (increase of limit by10%, down by 10%) or it is broadened to a proper extent. Our study provides reasonable advice for a price limit setting and risk management for CSI 300 futures. PMID:26571135

  11. PEG-stabilized core-shell surface-imprinted nanoparticles.

    PubMed

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2013-08-06

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.

  12. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  13. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models.

    PubMed Central

    Webb, M. S.; Harasym, T. O.; Masin, D.; Bally, M. B.; Mayer, L. D.

    1995-01-01

    This study reports on the development of a liposomal formulation of vincristine with significantly enhanced stability and biological properties. The in vitro and in vivo pharmacokinetic, tumour delivery and efficacy properties of liposomal vincristine formulations based on sphingomyelin (SM) and cholesterol were compared with liposomes composed of distearoylphosphatidylcholine (DSPC) and cholesterol. SM/cholesterol liposomes had significantly greater in vitro stability than did similar DSPC/cholesterol liposomes. SM/cholesterol liposomes also had significantly improved biological properties compared with DSPC/cholesterol. Specifically, SM/cholesterol liposomes administered intravenously retained 25% of the entrapped vincristine after 72 h in the circulation, compared with 5% retention in DSPC/cholesterol liposomes. The improved retention properties of SM/cholesterol liposomes resulted in plasma vincristine levels 7-fold higher than in DSPC/cholesterol liposomes. The improved circulation lifetime of vincristine in SM/cholesterol liposomes correlated with increased vincristine accumulation in peritoneal ascitic murine P388 tumours and in subcutaneous solid A431 human xenograft tumours. Increased vincristine delivery to tumours was also accompanied by increased anti-tumour efficacy. Treatment with SM/cholesterol liposomal formulations of vincristine resulted in greater than 50% cures in mice bearing ascitic P388 tumours, an activity that could not be achieved with the DSPC/cholesterol formulation. Similarly, treatment of mice with severe combined immunodeficiency (SCID) bearing solid human A431 xenograft tumours with SM/cholesterol vincristine formulations delayed the time required for 100% increase in tumour mass to > 40 days, compared with 5 days, 7 days and 14 days for mice receiving no treatment or treatment with free vincristine or DSPC/cholesterol formulations of vincristine respectively. PMID:7547237

  14. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment.

    PubMed

    Cruz-Cansino, Nelly Del Socorro; Ramírez-Moreno, Esther; León-Rivera, Jesús Ernesto; Delgado-Olivares, Luis; Alanís-García, Ernesto; Ariza-Ortega, José Alberto; Manríquez-Torres, José de Jesús; Jaramillo-Bustos, Diana Pamela

    2015-11-01

    The objective of this study was to evaluate changes in color, betalain content, browning index, viscosity, physical stability, microbiological growth, antioxidant content and antioxidant activity of purple cactus pear juice during storage after thermoultrasonication at 80% amplitude level for 15 and 25 min in comparison with pasteurized juice. Thermoultrasound treatment for 25 min increased color stability and viscosity compared to treatment for 15 min (6.83 and 6.72 MPa, respectively), but this last parameter was significantly lower (p<0.05) compared to the control and pasteurized juices (22.47 and 26.32 MPa, respectively). Experimental treatment reduced significantly (p<0.05) sediment solids in juices. Total plate counts decreased from the first day of storage exhibiting values of 1.38 and 1.43 logCFU/mL, for 15 and 25 min treatment, respectively. Compared to the control, both treatments reduced enterobacteria counts (1.54 logCFU/mL), and compared to pasteurized juice decreased pectinmethylesterase activity (3.76 and 3.82 UPE/mL), maintained high values of ascorbic acid (252.05 and 257.18 mg AA/L) and antioxidant activity (by ABTS: 124.8 and 115.6 mg VCEAC/100 mL; and DPPH: 3114.2 and 2757.1 μmol TE/L). During storage thermoultrasonicated juices had a minimum increase in pectinmethylesterase activity (from day 14), and exhibited similar total plate counts to pasteurized juice. An increase of phenolic content was observed after 14 days of storage, particularly for treatment at 80%, 25 min, and an increase in antioxidant activity (ABTS, DPPH) by the end of storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Correlating the Effects of Antimicrobial Preservatives on Conformational Stability, Aggregation Propensity, and Backbone Flexibility of an IgG1 mAb.

    PubMed

    Arora, Jayant; Joshi, Sangeeta B; Middaugh, C Russell; Weis, David D; Volkin, David B

    2017-06-01

    Multidose formulations of biotherapeutics, which offer better dosage management and reduced production costs, require the addition of antimicrobial preservatives (APs). APs have been shown, however, to decrease protein stability in solution and cause protein aggregation. In this report, the effect of 4 APs, m-cresol, phenol, phenoxyethanol, and benzyl alcohol on conformational stability, aggregation propensity, and backbone flexibility of an IgG1 mAb, mAb-4, is investigated. Compared with no preservative control, each of the APs decreased the conformational stability of mAb-4 as measured by differential scanning calorimetry and extrinsic fluorescence spectroscopy. The addition of APs resulted in increased monomer loss and aggregate accumulation at 50°C over 28 days, as monitored by size-exclusion chromatography. The extent of conformational destabilization and protein aggregation of mAb-4 induced by APs followed their calculated octanol-water partition coefficients. Increases in backbone flexibility, as measured by hydrogen exchange, of a region located in the C H 2 domain of the mAb (heavy chain 237-254) in the presence of APs also correlated with hydrophobicity. Based on these results, the destabilizing effect of APs on mAb-4 correlates with the increased hydrophobicity of the APs and their ability to enhance the local backbone flexibility of an aggregation hot spot within the C H 2 domain of the mAb. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Preferential stabilization of newly formed dendritic spines in motor cortex during manual skill learning predicts performance gains, but not memory endurance.

    PubMed

    Clark, Taylor A; Fu, Min; Dunn, Andrew K; Zuo, Yi; Jones, Theresa A

    2018-07-01

    Previous findings that skill learning is associated with the formation and preferential stabilization of new dendritic spines in cortex have raised the possibility that this preferential stabilization is a mechanism for lasting skill memory. We investigated this possibility in adult mice using in vivo two-photon imaging to monitor spine dynamics on superficial apical dendrites of layer V pyramidal neurons in motor cortex during manual skill learning. Spine formation increased over the first 3 days of training on a skilled reaching task, followed by increased spine elimination. A greater proportion of spines formed during the first 3 training days were lost if training stopped after 3, compared with 15 days. However, performance gains achieved in 3 training days persisted, indicating that preferential new spine stabilization was non-essential for skill retention. Consistent with a role in ongoing skill refinement, the persistence of spines formed early in training strongly predicted performance improvements. Finally, while we observed no net spine density change on superficial dendrites, the density of spines on deeper apical branches of the same neuronal population was increased regardless of training duration, suggestive of a potential role in the retention of the initial skill memory. Together, these results indicate dendritic subpopulation-dependent variation in spine structural responses to skill learning, which potentially reflect distinct contributions to the refinement and retention of newly acquired motor skills. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Improved pharmacokinetics of mercaptopurine afforded by a thermally robust hemihydrate.

    PubMed

    Kersten, Kortney M; Matzger, Adam J

    2016-04-18

    Structural and thermal data were obtained for a novel hemihydrate of 6-mercaptopurine. The hemihydrate shows increased solubility and bioavailability when compared to the monohydrate form, better stability against conversion in aqueous media than the anhydrate form, and a dehydration temperature of 240 °C, the highest of any known hydrate crystal.

  18. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication.

    PubMed

    Xiao, Shaoliang; Gao, Runan; Gao, LiKun; Li, Jian

    2016-01-20

    This work was aimed at fabricating and characterizing poly(vinyl alcohol) films that were reinforced by nanofibrillated corn husk celluloses using a combination of chemical pretreatments and ultrasonication. The obtained nanofibrillated celluloses (NFCs) possessed a narrow width ranging from 50 to 250 nm and a high aspect ratio (394). The crystalline type of NFC was cellulose I type. Compared with the original corn husks, the NCF crystallinity and thermal stability increased due to the removal of the hemicelluloses and lignin. PVA films containing different NFC concentrations (0.5%, 1%, 3%, 5%, 7% and 9%, w/w, dry basis) were examined. The 1% PVA/NFC reinforced films exhibited a highly visible light transmittance of 80%, and its tensile strength and the tensile strain at break were increased by 1.47 and 1.80 times compared to that of the pure PVA film, respectively. The NFC with high aspect ratio and high crystallinity is beneficial to the improvement of the mechanical strength and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    PubMed

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  20. Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling

    DOE PAGES

    Galan, Hitos; Zarzana, Christopher A.; Wilden, Andreas; ...

    2015-09-15

    The stability against gamma radiation of MeTODGA (methyl tetraoctyldiglycolamide) and Me2TODGA (dimethyl tetraoctyldiglycolamide), derivatives from the well-known extractant TODGA (N,N,N',N';-tetraoctyldiglycolamide), were studied and compared. Solutions of MeTODGA and Me2TODGA in alkane diluents were subjected to 60Co γ-irradiation in the presence and absence of nitric acid and analyzed using LC-MS to determine their rates of radiolytic concentration decrease, as well as to identify radiolysis products. The results of product identification from three different laboratories are compared and found to be in good agreement. The diglycolamide (DGA) concentrations decreased exponentially with increasing absorbed dose. The MeTODGA degradation rate constants (dose constants) weremore » uninfluenced by the presence of nitric acid, but the acid increased the rate of degradation for Me2TODGA. The degradation products formed by irradiation are also initially produced in greater amounts in acid-contacted solution, but products may also be degraded by continued radiolysis. As a result, the identified radiolysis products suggest that the weakest bonds are those in the diglycolamide center of these molecules.« less

  1. Quality and storability of chicken nuggets formulated with green banana and soybean hulls flours.

    PubMed

    Kumar, Vinay; Biswas, Ashim Kumar; Sahoo, Jhari; Chatli, Manish Kumar; Sivakumar, S

    2013-12-01

    The present study was envisaged to investigate the effect of green banana (GBF) and soybean hulls flours (SHF) on the physicochemical characteristics, colour, texture and storage stability of chicken meat nuggets. The addition of GBF and SHF in the nugget formulations was effective in sustaining desired cooking yield and emulsion stability besides nutritional benefits. Protein and fat contents were decreased (p > 0.05), but fibers and ash contents was increased (p < 0.05) amongst treatments. The flour formulated samples were lighter (L* value) less dark (a*) than control. Textural values were affected significantly. On storage, samples with GBF showed lower pH (p > 0.05%) than control and treatments. Lipid oxidation products, however, unaffected (p > 0.05) but increased in all samples over storage time. Flour treatments showed a positive impact in respect to microbiological quality, however, sensory evaluation indicated comparable scores for all attributes at all times. So, incorporation of GBF and SHF in the formulation could improve the quality and storage stability of chicken nuggets.

  2. Influence of implant diameter in the displacement of dental implants in trabecular bovine bone under a static lateral load: experimental results and computational modeling.

    PubMed

    Engelke, Wilfried; Decco, Oscar A; Cura, Andrea C; Maldonado, Isai; Crippa, Federico G

    2014-12-01

    Primary stability and micromovement of dental implants depend on structural properties of the surrounding bone and on implant dimension and design. The purpose of this study was to provide objective data for the influence of implant diameter on the displacement of titanium screw implants. Ninety Semados implants (length 15 mm, diameter 3.25, 3.75, and 4.5 mm; Bego, Bremen, Germany) were inserted in trabecular bone specimens. All implants were inserted with a torque up to 30 N·cm and loaded horizontally with 10, 20, and 30 N for 2 seconds. All implants showed primary stability. With increasing force, a gradual increase of micromovement was observed (Kruskal-Wallis test, P = 0.000). No significant differences were found (Kruskal-Wallis test, P = 0.148) comparing different diameters for every force. Variation of the diameter of standard implants between 3.25 and 4.5 mm does not seem to influence the primary stability in trabecular bone specimen. Differences between experimental and computational results may be due to the simplification used when modeling.

  3. Martensite Formation in Partially and Fully Austenitic Plain Carbon Steels

    NASA Astrophysics Data System (ADS)

    van Bohemen, S. M. C.; Sietsma, J.

    2009-05-01

    The progress of martensite formation in plain carbon steels Fe-0.46C, Fe-0.66C, and Fe-0.80C has been investigated by dilatometry. It is demonstrated that carbon enrichment of the remaining austenite due to intercritical annealing of Fe-0.46C and Fe-0.66C does not only depress the start temperature for martensite, but also slows the progress of the transformation with temperature compared to full austenitization. In contrast, such a change of kinetics is not observed when the remaining austenite of lean-Si steel Fe-0.80C is stabilized due to a partial transformation to bainite, which suggests that the stabilization is not of a chemical but of a mechanical nature. The growth of bainite and martensite is accompanied by a shape change at the microstructural scale, which leads to plastic deformation and thus strengthening of the surrounding austenite. Based on this stabilizing mechanism, the athermal transformation kinetics is rationalized by balancing the increase in driving force corresponding to a temperature decrease with the increase in strain energy required for the formation of martensite in the strengthened remaining austenite.

  4. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    PubMed Central

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  5. Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries.

    PubMed

    Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A; Sann, Joachim; Zeier, Wolfgang G; Janek, Jürgen

    2016-10-05

    The interfacial stability of solid electrolytes at the electrodes is crucial for an application of all-solid-state batteries and protected electrodes. For instance, undesired reactions between sodium metal electrodes and the solid electrolyte form charge transfer hindering interphases. Due to the resulting large interfacial resistance, the charge transfer kinetics are altered and the overvoltage increases, making the interfacial stability of electrolytes the limiting factor in these systems. Driven by the promising ionic conductivities of Na 3 PS 4 , here we explore the stability and viability of Na 3 PS 4 as a solid electrolyte against metallic Na and compare it to that of Na-β″-Al 2 O 3 (sodium β-alumina). As expected, Na-β″-Al 2 O 3 is stable against sodium, whereas Na 3 PS 4 decomposes with an increasing overall resistance, making Na-β″-Al 2 O 3 the electrolyte of choice for protected sodium anodes and all-solid-state batteries.

  6. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    PubMed

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  7. Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine.

    PubMed

    Cui, Jian-Dong; Zhang, Si; Sun, Li-Mei

    2012-06-01

    Cross-linked enzyme aggregates of phenylalanine ammonia lyase (PAL-CLEAs) from Rhodotorula glutinis were prepared. The effects of the type of aggregating agent, its concentration, and that of cross-linking agent were studied. PAL-CLEAs production was most effective using ammonium sulfate (40 % saturation), followed by cross-linking for 1 h with 0.2 % (v/v) glutaraldehyde. Moreover, the storage and operational stability of the resulting PAL-CLEAs were also investigated. Compared to the free enzyme, the PAL-CLEAs exhibited the expected increased stability of the enzyme against various deactivating conditions such as pH, temperature, denaturants, and organic solvents and showed higher storage stability than its soluble counterpart. Additionally, the reusability of PAL-CLEAs with respect to the biotransformation of L-phenylalanine was evaluated. PAL-CLEAs could be recycled at least for 12 consecutive batch reactions without dramatic activity loss, which should dramatically increase the commercial potential of PAL for synthesis of L: -phenylalanine. To the best of our knowledge, this is the first report of immobilization of PAL as cross-linked enzyme aggregates.

  8. Comparative study of resist stabilization techniques for metal etch processing

    NASA Astrophysics Data System (ADS)

    Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.

    1999-06-01

    This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.

  9. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1). This suggests that swelling phases promote their stability. Swelling phases and organic C decreased for greater intensities of disaggregation. These results and the SEM images taken at different disaggregation intensities indicate that when increasing disaggregation intensity above 5 J mL-1, the recovered material consists on sand particles covered by physical coatings of illite and kaolinite. Our results show that different clay minerals have different contribution to soil aggregation. Swelling phases are especially important for water-stable aggregates formation, whereas illite and kaolinite can either contribute to aggregation or been coated to sand grains in "mineral aggregates", without porosity and organic C protection capability. In conclusion, soils with large proportion of swelling clay minerals have greater potential for carbon storage by occlusion in aggregates and greater resistance to erosion. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 62: 141-163.

  10. Biomechanical Measures During Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury After Anterior Cruciate Ligament Reconstruction and Return to Sport

    PubMed Central

    Paterno, Mark V.; Schmitt, Laura C.; Ford, Kevin R.; Rauh, Mitchell J.; Myer, Gregory D.; Huang, Bin; Hewett, Timothy E.

    2016-01-01

    Background Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non–anterior cruciate ligament–injured athletes. Hypotheses Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Study Design Cohort study (prognosis); Level of evidence, 2. Methods Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Results Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Conclusion Altered neuromuscular control of the hip and knee during a dynamic landing task and postural stability deficits after ACLR are predictors of a second anterior cruciate ligament injury after an athlete is released to return to sport. PMID:20702858

  11. Changes in implant stability using different site preparation techniques: twist drills versus piezosurgery. A single-blinded, randomized, controlled clinical trial.

    PubMed

    Stacchi, Claudio; Vercellotti, Tomaso; Torelli, Lucio; Furlan, Fabio; Di Lenarda, Roberto

    2013-04-01

    The objective of the present investigation was to longitudinally monitor stability changes of implants inserted using traditional rotary instruments or piezoelectric inserts, and to follow their variations during the first 90 days of healing. A randomized, controlled trial was conducted on 20 patients. Each patient received two identical, adjacent implants in the upper premolar area: the test site was prepared with piezosurgery, and the control site was prepared using twist drills. Resonance frequency analysis measurements were taken by a blinded operator on the day of surgery and after 7, 14, 21, 28, 42, 56, and 90 days. At 90 days, 39 out of 40 implants were osseointegrated (one failure in the control group). Both groups showed an initial decrease in mean implant stability quotient (ISQ) values: a shift in implant stability to increasing ISQ values occurred after 14 days in the test group and after 21 days in the control group. The lowest mean ISQ value was recorded at 14 days for test implants (97.3% of the primary stability) and at 21 days for the control implants (90.8% of the primary stability). ISQ variations with respect to primary stability differed significantly between the two groups during the entire period of observation: from day 14 to day 42, in particular, the differences were extremely significant (p < .0001). All 39 implants were in function successfully at the visit scheduled 1 year after insertion. The findings from this study suggest that ultrasonic implant site preparation results in a limited decrease of ISQ values and in an earlier shifting from a decreasing to an increasing stability pattern, when compared with the traditional drilling technique. From a clinical point of view, implants inserted with the piezoelectric technique demonstrated a short-term clinical success similar to those inserted using twist drills. © 2011 Wiley Periodicals, Inc.

  12. Two-Relaxation-Time Lattice Boltzmann Method for Advective-Diffusive-Reactive Transport

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.

    2016-12-01

    The lattice Boltzmann method (LBM) has been applied to study a wide range of reactive transport in porous and fractured media. The single-relaxation-time (SRT) LBM, employing single relaxation time, is the most popular LBM due to its simplicity of understanding and implementation. Nevertheless, the SRT LBM may suffer from numerical instability for small value of the relaxation time. By contrast, the multiple-relaxation-time (MRT) LBM, employing multiple relaxation times, can improve the numerical stability through tuning the multiple relaxation times, but the complexity of implementing this method restricts its applications. The two-relaxation-time (TRT) LBM, which employs two relaxation times, combines the advantages of SRT and MRT LBMs. The TRT LBM can produce simulations with better accuracy and stability than the SRT one, and is easier to implement than the MRT one. This work evaluated the numerical accuracy and stability of the TRT method by comparing the simulation results with analytical solutions of Gaussian hill transport and Taylor dispersion under different advective velocities. The accuracy generally increased with the tunable relaxation time τ, and the stability first increased and then decreased as τ increased, showing an optimal TRT method emerging the best numerical stability. The free selection of τ enabled the TRT LBM to simulate the Gaussian hill transport and Taylor dispersion under relatively high advective velocity, under which the SRT LBM suffered from numerical instability. Finally, the TRT method was applied to study the contaminant degradation by chemotactic microorganisms in porous media, which acted as a reprehensive of reactive transport in this study, and well predicted the evolution of microorganisms and degradation of contaminants for different transport scenarios. To sum up, the TRT LBM produced simulation results with good accuracy and stability for various advective-diffusive-reactive transport through tuning the relaxation time τ, illustrating its potential to study various biogeochemical behaviors in the subsurface environment.

  13. A comparison between stabilization exercises and pelvic floor muscle training in women with pelvic organ prolapse.

    PubMed

    Özengin, Nuriye; Ün Yıldırım, Necmiye; Duran, Bülent

    2015-03-01

    This study aimed to compare the effectiveness of stabilization exercises and pelvic floor muscle training in women with stage 1 and 2 pelvic organ prolapse. In a total 38 women with pelvic organ prolapse whose average age was 45.60 years, pelvic floor muscles were evaluated with electromyography, and prolapse with pelvic organ prolapse quantification system, and the quality of life with prolapse quality of life questionnaire. Afterwards, the subjects were divided into two groups; stabilization exercise group (n=19) and pelvic floor muscle training group (n=19). Stabilization exercise group were given training for 8 weeks, 3 times a week. Pelvic floor muscle training group were given eight-week home exercises. Each group was assessed before training and after eight weeks. An increase was found in the pelvic muscle activation response in the 2 groups (p≤0.05). There was no difference in EMG activity values between the groups (p>0.05). A difference was found in the values Aa, Ba and C in subjects of each group (p≤0.05), and the TVL, Ap, Bp and D values of subjects in pelvic floor muscle training group (p≤0.05) in the before and after pelvic organ prolapse quantification system assessment, however, no difference was found between the groups (p≤0.05). A positive difference was found in the effect of prolapse sub parameter in each of the two groups, and in general health perception sub parameter in subjects of stabilization exercise group (p<0.05) in the prolapse quality of life questionnaire. It was concluded that both training programs increased the pelvic floor muscle strength, provided a decline in prolapse stages. Stabilization exercise has increased general health perception unlike home training, thus, these exercises can be added to the treatment of women with prolapse.

  14. A comparison between stabilization exercises and pelvic floor muscle training in women with pelvic organ prolapse

    PubMed Central

    Özengin, Nuriye; Ün Yıldırım, Necmiye; Duran, Bülent

    2015-01-01

    Objective: This study aimed to compare the effectiveness of stabilization exercises and pelvic floor muscle training in women with stage 1 and 2 pelvic organ prolapse. Materials and Methods: In a total 38 women with pelvic organ prolapse whose average age was 45.60 years, pelvic floor muscles were evaluated with electromyography, and prolapse with pelvic organ prolapse quantification system, and the quality of life with prolapse quality of life questionnaire. Afterwards, the subjects were divided into two groups; stabilization exercise group (n=19) and pelvic floor muscle training group (n=19). Stabilization exercise group were given training for 8 weeks, 3 times a week. Pelvic floor muscle training group were given eight-week home exercises. Each group was assessed before training and after eight weeks. Results: An increase was found in the pelvic muscle activation response in the 2 groups (p≤0.05). There was no difference in EMG activity values between the groups (p>0.05). A difference was found in the values Aa, Ba and C in subjects of each group (p≤0.05), and the TVL, Ap, Bp and D values of subjects in pelvic floor muscle training group (p≤0.05) in the before and after pelvic organ prolapse quantification system assessment, however, no difference was found between the groups (p≤0.05). A positive difference was found in the effect of prolapse sub parameter in each of the two groups, and in general health perception sub parameter in subjects of stabilization exercise group (p<0.05) in the prolapse quality of life questionnaire. Conclusions: It was concluded that both training programs increased the pelvic floor muscle strength, provided a decline in prolapse stages. Stabilization exercise has increased general health perception unlike home training, thus, these exercises can be added to the treatment of women with prolapse. PMID:28913034

  15. Analysis of a Precambrian Resonance-Stabilized Day Length

    NASA Astrophysics Data System (ADS)

    Bartlett, B. C.; Stevenson, D. J.

    2014-12-01

    Calculations indicate the average rate of decrease of Earth's angular momentum must have been less than its present value in the past; otherwise, the Earth should have a longer day length. Existing stromatolite data suggests the Earth's rotational frequency would have been near that of the atmospheric resonance frequency toward the end of the Precambrian era, approximately 600Ma. The semidiurnal atmospheric tidal torque would have reached a maximum near this day length of 21hr. At this point, the atmospheric torque would have been comparable in magnitude but opposite in direction to the lunar torque, creating a stabilizing effect which could preserve a constant day length while trapped in this resonant state, as suggested by Zahnle and Walker (1987). We examine the hypothesis that this resonant stability was encountered and sustained for a large amount of time during the Precambrian era and was broken by a large and relatively fast increase in global temperature, possibly in the deglaciation period following a snowball event. Computational simulations of this problem were performed, indicating that a persistent increase in temperature larger than around 10K over a period of time less than 107 years will break resonance (though these values vary with Q), but that the resonant stability is not easily broken by random high-amplitude high-frequency atmospheric temperature fluctuation or other forms of thermal noise. Further work also indicates it is possible to escape resonance simply by increasing the lunar tidal torque on the much longer timescale of plate tectonics, particularly for low atmospheric Q-factors, or that resonance could have never formed in the first place, had the lunar torque been very high or Q been very low when the Earth's rotational frequency was near the atmospheric resonance frequency. However, the need to explain the present day length given the current lunar torque favors the interpretation we offer, in which Earth's length of day was stabilized for hundreds of millions of years, escaping this stability in the aftermath of a sudden global temperature change.

  16. Metabolic Cost of Lateral Stabilization during Walking in People with Incomplete Spinal Cord Injury

    PubMed Central

    Matsubara, J.H.; Wu, M.; Gordon, K.E.

    2015-01-01

    People with incomplete spinal cord injury (iSCI) expend considerable energy to walk, which can lead to rapid fatigue and limit community ambulation. Selecting locomotor patterns that enhance lateral stability may contribute to this population’s elevated cost of transport. The goal of the current study was to quantify the metabolic energy demands of maintaining lateral stability during gait in people with iSCI. To quantify this metabolic cost, we observed ten individuals with iSCI walking with and without external lateral stabilization. We hypothesized that with external lateral stabilization, people with iSCI would adapt their gait by decreasing step width, which would correspond with a substantial decrease in cost of transport. Our findings support this hypothesis. Subjects significantly (p < 0.05) decreased step width by 22%, step width variability by 18%, and minimum lateral margin of stability by 25% when they walked with external lateral stabilization compared to unassisted walking. Metabolic cost of transport also decreased significantly (p < 0.05) by 10% with external lateral stabilization. These findings suggest that this population is capable of adapting their gait to meet changing demands placed on balance. The percent reduction in cost of transport when walking with external lateral stabilization was strongly correlated with functional impairment level as assessed by subjects’ scores on the Berg Balance Scale (R = 0.778) and Lower Extremity Motor Score (R = 0.728). These relationships suggest that as functional balance and strength decrease, the amount of metabolic energy used to maintain lateral stability during gait will increase. PMID:25670651

  17. Pelvic stabilization during resistance training: its effect on the development of lumbar extension strength.

    PubMed

    Graves, J E; Webb, D C; Pollock, M L; Matkozich, J; Leggett, S H; Carpenter, D M; Foster, D N; Cirulli, J

    1994-02-01

    The purpose of this study was to evaluate and compare resistance exercise training with and without pelvic stabilization on the development of isolated lumbar extension strength. Isometric torque of the isolated lumbar extensor muscles was measured at seven positions through a 72 degree range-of-motion on 47 men and 30 women before and after 12 weeks of variable resistance lumbar extension training. Subjects were assigned to either a group that trained with pelvic stabilization (P-STAB, n = 21), a group that trained without pelvic stabilization (NO-STAB, n = 41), or a control group that did not train (n = 15). Subjects trained once a week with 8 to 12 repetitions to volitional exhaustion. The P-STAB and NO-STAB groups showed significant (p < or = 0.05) and similar increases in the weight load used for training (P-STAB = 24.1 +/- 9.4kg; NO-STAB = 19.4 +/- 11.0kg) during the 12-week training period. In contrast, posttraining isometric torque values describing isolated lumbar extension strength improved only for the P-STAB group (23.5%, p < or = 0.05) and not for the NO-STAB group (-1.2%, p > 0.05) relative to controls. These data indicate that pelvic stabilization is required to effectively train the lumbar extensor muscles. The increased training load for the NO-STAB group is probably the result of exercising the muscles involved in pelvic rotation (hamstring and buttock muscles).

  18. Increasing the stability of the articulated lorry at braking by locking the fifth wheel coupling

    NASA Astrophysics Data System (ADS)

    Skotnikov, G. I.; Jileykin, M. M.; Komissarov, A. I.

    2018-02-01

    The jackknifing of the articulated lorry is determined by the loss of stability with respect to the vertical axis of the fifth wheel coupling, which can be caused by the failure of the brake system, the displacement of the center of mass of the semitrailer or tractor from the longitudinal axis of the vehicle, the road parameters (longitudinal and transverse slopes), the difference in the friction coefficients under the sides of the articulated lorry. In this regard, the issue of creating devices that prevent the jackknifing, and their control systems is important. A method is proposed for maintaining the stability of the movement of articulated lorry when braking both on a straight line and in a turn by blocking the relative rotation of the tractor and the trailer. Blocking occurs due to the creation of a stabilizing moment in the direction opposite to the angular rate of folding. To test the developed algorithm for locking the fifth wheel coupling, a mathematical model of the spatial motion of the articulated lorry was developed, including the models of interaction of an elastic tire with a rigid terrain, suspension systems, transmission, steering, fifth-wheel coupling. The efficiency and effectiveness of the coupling locking control system is proved by comparing the results of the simulation of a straight-line braking and braking in turn. It is shown that the application of the control system significantly increases the stability of the road train.

  19. Predicting drug hydrolysis based on moisture uptake in various packaging designs.

    PubMed

    Naversnik, Klemen; Bohanec, Simona

    2008-12-18

    An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.

  20. Comparison of N-terminal modifications on neurotensin(8-13) analogues correlates peptide stability but not binding affinity with in vivo efficacy.

    PubMed

    Orwig, Kevin S; Lassetter, McKensie R; Hadden, M Kyle; Dix, Thomas A

    2009-04-09

    Neurotensin(8-13) and two related analogues were used as model systems to directly compare various N-terminal peptide modifications representing both commonly used and novel capping groups. Each N-terminal modification prevented aminopeptidase cleavage but surprisingly differed in its ability to inhibit cleavage at other sites, a phenomenon attributed to long-range conformational effects. None of the capping groups were inherently detrimental to human neurotensin receptor 1 (hNTR1) binding affinity or receptor agonism. Although the most stable peptides exhibited the lowest binding affinities and were the least potent receptor agonists, they produced the largest in vivo effects. Of the parameters studied only stability significantly correlated with in vivo efficacy, demonstrating that a reduction in binding affinity at NTR1 can be countered by increased in vivo stability.

  1. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes

    PubMed Central

    Bucher, Thomas; Clodt, Juliana I.; Grabowski, Andrej; Hein, Martin; Filiz, Volkan

    2017-01-01

    Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time. PMID:29258193

  2. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes.

    PubMed

    Bucher, Thomas; Clodt, Juliana I; Grabowski, Andrej; Hein, Martin; Filiz, Volkan

    2017-12-16

    Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.

  3. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking

    PubMed Central

    2011-01-01

    Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241

  4. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    PubMed

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α < .05). Both solutions contained 5% NaOCl. One milliliter of the standard and the stabilized solution consumed 4.0 mL and 13.7 mL of a 0.1-mol/L HCl solution before they reached a pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Stabilization of Proteins by Polymer Conjugation via ATRP

    DTIC Science & Technology

    2008-08-31

    to increase their solubility and utility in organic solvents and to increase their stability in body. Protein-initiated ATRP would enable us to... Solvent solubilization, therapeutic proteins, hydrophilic polymers, protein stabilization Lance Mabus, Jason Berberich, Bhalchandra Lele, Virginia Depp... solvents and to increase their stability in body. Protein-initiated ATRP would enable us to overcome many problems in conventional technology that

  6. Enzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae.

    PubMed

    Kobayashi, Jyumpei; Sasaki, Daisuke; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-15

    Oxidized glutathione (GSSG) is the preferred form for industrial mass production of glutathione due to its high stability compared with reduced glutathione (GSH). In our previous study, over-expression of the mitochondrial thiol oxidase ERV1 gene was the most effective for high GSSG production in Saccharomyces cerevisiae cells among three types of different thiol oxidase genes. We improved Erv1 enzyme activity for oxidation of GSH and revealed that S32 and N34 residues are critical for the oxidation. Five engineered Erv1 variant proteins containing S32 and/or N34 replacements exhibited 1.7- to 2.4-fold higher in vitro GSH oxidation activity than that of parental Erv1, whereas the oxidation activities of these variants for γ-glutamylcysteine were comparable. According to three-dimensional structures of Erv1 and protein stability assays, S32 and N34 residues interact with nearby residues through hydrogen bonding and greatly contribute to protein stability. These results suggest that increased flexibility by amino acid replacements around the active center decrease inhibitory effects on GSH oxidation. Over-expressions of mutant genes coding these Erv1 variants also increased GSSG and consequently total glutathione production in S. cerevisiae cells. Over-expression of the ERV1 S32A gene was the most effective for GSSG production in S. cerevisiae cells among the parent and other mutant genes, and it increased GSSG production about 1.5-fold compared to that of the parental ERV1 gene. This is the first study demonstrating the pivotal effects of S32 and N34 residues to high GSH oxidation activity of Erv1. Furthermore, in vivo validity of Erv1 variants containing these S32 and N34 replacements were also demonstrated. This study indicates potentials of Erv1 for high GSSG production.

  7. Computational simulations assessment of mutations impact on streptokinase (SK) from a group G streptococci with enhanced activity - insights into the functional roles of structural dynamics flexibility of SK and stabilization of SK-μplasmin catalytic complex.

    PubMed

    Kazemi, Faegheh; Arab, Seyed Shahriar; Mohajel, Nasir; Keramati, Malihe; Niknam, Niloofar; Aslani, Mohammad Mehdi; Roohvand, Farzin

    2018-05-28

    Streptokinase (SK), a plasminogen activator (PA) that converts inactive plasminogen (Pg) to plasmin (Pm), is a protein secreted by groups A, C, and G streptococci (GAS, GCS, and GGS, respectively), with high sequence divergence and functional heterogeneity. While roles of some residual changes in altered SK functionality are shown, the underlying structural mechanisms are less known. Herein, using computational approaches, we analyzed the conformational basis for the increased activity of SK from a GGS (SKG132) isolate with four natural residual substitutions (Ile33Phe, Arg45Gln, Asn228Lys, Phe287Ile) compared to the standard GCS (SKC). Using the crystal structure of SK.Pm catalytic complex as main template SKC.μPm catalytic complex was modeled through homology modeling process and validated by several online validation servers. Subsequently, SKG132.μPm structure was constructed by altering the corresponding residual substitutions. Results of three independent MD simulations showed increased RMSF values for SKG132.μPm, indicating the enhanced structural flexibility compared to SKC.μPm, specially in 170 and 250 loops and three regions: R1 (149-161), R2 (182-215) and R3 (224-229). In parallel, the average number of Hydrogen bonds in 170 loop, R2 and R3 (especially for Asn228Lys) of SKG132 compared to that of the SKC was decreased. Accordingly, residue interaction networks (RINs) analyses indicated that Asn228Lys might induce more level of structural flexibility by generation of free Lys256, while Phe287Ile and Ile33Phe enhanced the stabilization of the SKG132.μPm catalytic complex. These results denoted the potential role of the optimal dynamic state and stabilized catalytic complex for increased PA potencies of SK as a thrombolytic drug.

  8. Analytical stability criteria for the Caledonian Symmetric Four and Five Body Problems

    NASA Astrophysics Data System (ADS)

    Steves, Bonnie; Shoaib Afridi, Mohammad; Sweatman, Winston

    2017-06-01

    Analytical studies of the stability of three or more body gravitational systems are difficult because of the greater number of variables involved with the increasing number of bodies and the limitation of 10 integrals that exist in the gravitational n-body problem. Utilisation of symmetries or the neglecting of the masses of some of the bodies compared to others can simplify the dynamical problem and enable global analytical stability solutions to be derived. These symmetric and restricted few body systems with their analytical stability criterion can then provide useful information on the stability of the general few body system when near symmetry or the restricted situation. Even with symmetrical reductions, analytical stability derivations for four and five body problems are rare. In this paper, we develop an analytical stability criterion for the Caledonian Symmetric Five Body Problem (CS5BP) , a dynamically symmetrical planar problem with two pairs of equal masses and a fifth mass located at the centre of mass. Sundman’s inequality is applied to derive boundary surfaces to the allowed real motion of the system. This enables the derivation of a stability criterion valid for all time for the hierarchical stability of the CS5BP and its subset the Caledonian Symmetric Four Body Problem (CSFBP), where the central mass is taken to be equal to zero. We show that the hierarchical stability depends solely on the Szebehely constant C0, which is a function of the total energy H and angular momentum c. The critical value Ccrit at which the system becomes hierarchically stable for all time depends only on the two mass ratios of the symmetric five body system. We then explore the effect on the stability of the whole system of adding an increasing massive central body. It is shown both analytically and numerically that all CS5BPs and CSFBPs of different mass ratios are hierarchically stable if C0 > 0.0659 and C0 > 0.0465, respectively. The Caledonian Symmetric Four and Five Body gravitational models are relevant to the study of the stability and evolution of symmetric quadruple/quintuple stellar clusters and symmetric exoplanetary systems of two planets orbiting a binary/triplet of stars.

  9. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    PubMed

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  10. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  11. The influence of hip abductor muscle performance on dynamic postural stability in females with patellofemoral pain.

    PubMed

    Lee, Szu-Ping; Souza, Richard B; Powers, Christopher M

    2012-07-01

    Hip abductors play an important role in maintaining trunk and pelvis stability during unipedal tasks. The purpose of the study was to compare postural stability between individuals with patellofemoral pain (PFP) and pain-free controls. A secondary purpose was to evaluate the effect of a hip stabilizing brace on postural stability. Twenty females with PFP (27.3±6.3 years) and 19 controls (26.1±4.5 years) participated. Each subject performed a unipedal step-down balance task with the stance leg on a force platform from which center of pressure (COP) excursion was recorded. Quantitative COP excursion patterns (mean and peak displacements) were used as measures of postural stability. For subjects with PFP, postural stability also was quantified following the application of a hip stabilizing brace. Hip abductor strength was significantly lower in PFP group compared to the control group (1.39±0.4 vs. 1.62±0.26 N/kg-BW, p=0.046). Peak and mean medial-lateral COP displacements during the balance task were greater in the PFP group (39.8±6.7 vs. 24.3±3.8 mm, p<0.001; 24.7±16.3 vs. 13.5±4.4 mm, p=0.005). Application of the hip stabilizing brace reduced the peak and mean COP displacement (39.8±6.7 vs. 24.7±4.7 mm, p<0.001; 24.7±16.3 vs. 16.8±15.1 mm, p=0.02). Our results demonstrate that females with PFP exhibit impaired medial-lateral postural stability when compared to control subjects. Application of a hip stabilizing brace significantly improved stability to a level comparable to the controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparative evaluation of sodium hypochlorite and microwave disinfection on dimensional stability of denture bases.

    PubMed

    Nirale, Rutuja Madhukarrao; Thombre, Ram; Kubasad, Girish

    2012-02-01

    To compare the effect of sodium hypochlorite and microwave disinfection on the dimensional stability of denture bases without and with relining. A brass die was prepared by simulating an edentulous maxillary arch. It was used to fabricate 1.5 mm and 3 mm of thickness denture bases (n = 40). The 1.5 mm of thickness-specimens (n = 20) were relined with 1.5 mm of autopolymerizing relining resin. Five holes were prepared over crest of ridge of brass die with intimately fitting stainless steel pins which were transferred to the intaglio surface of specimens during fabrication of denture bases. For calculation of dimensional changes in denture bases, differences between the baseline area before and after disinfection of the specimens were used. The denture bases without and with relining were divided into 2 groups (each n = 20). Data were analyzed using student paired 't' and unpaired 't' test. Microwave disinfection produces significant shrinkage in both denture bases without relining (t = 17.16; P<.001) and with relining (t = 14.9; P<.001). Denture bases without relining showed more shrinkage when compared with relined denture bases after microwave disinfection (t = 6.09; P<.001). The changes in dimensional stability after sodium hypochlorite disinfection were not significant for both denture bases without relining (t = 2.19; P=.056) and denture bases with relining (t = 2.17; P=.058). Microwave disinfection leads to increased shrinkage of denture bases without and with relining. Chemical disinfection with sodium hypochlorite seems to be a safer method of disinfection with regards to physical properties such as changes in dimensional stability.

  13. International comparative evaluation of knee replacement with fixed or mobile-bearing posterior-stabilized prostheses.

    PubMed

    Graves, Stephen; Sedrakyan, Art; Baste, Valborg; Gioe, Terence J; Namba, Robert; Martínez Cruz, Olga; Stea, Susanna; Paxton, Elizabeth; Banerjee, Samprit; Isaacs, Abby J; Robertsson, Otto

    2014-12-17

    Posterior-stabilized total knee prostheses were introduced to address instability secondary to loss of posterior cruciate ligament function, and they have either fixed or mobile bearings. Mobile bearings were developed to improve the function and longevity of total knee prostheses. In this study, the International Consortium of Orthopaedic Registries used a distributed health data network to study a large cohort of posterior-stabilized prostheses to determine if the outcome of a posterior-stabilized total knee prosthesis differs depending on whether it has a fixed or mobile-bearing design. Aggregated registry data were collected with a distributed health data network that was developed by the International Consortium of Orthopaedic Registries to reduce barriers to participation (e.g., security, proprietary, legal, and privacy issues) that have the potential to occur with the alternate centralized data warehouse approach. A distributed health data network is a decentralized model that allows secure storage and analysis of data from different registries. Each registry provided data on mobile and fixed-bearing posterior-stabilized prostheses implanted between 2001 and 2010. Only prostheses associated with primary total knee arthroplasties performed for the treatment of osteoarthritis were included. Prostheses with all types of fixation were included except for those with the rarely used reverse hybrid (cementless tibial and cemented femoral components) fixation. The use of patellar resurfacing was reported. The outcome of interest was time to first revision (for any reason). Multivariate meta-analysis was performed with linear mixed models with survival probability as the unit of analysis. This study includes 137,616 posterior-stabilized knee prostheses; 62% were in female patients, and 17.6% had a mobile bearing. The results of the fixed-effects model indicate that in the first year the mobile-bearing posterior-stabilized prostheses had a significantly higher hazard ratio (1.86) than did the fixed-bearing posterior-stabilized prostheses (95% confidence interval, 1.28 to 2.7; p = 0.001). For all other time intervals, the mobile-bearing posterior-stabilized prostheses had higher hazard ratios; however, these differences were not significant. Mobile-bearing posterior-stabilized prostheses had an increased rate of revision compared with fixed-bearing posterior-stabilized prostheses. This difference was evident in the first year. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  14. The effects of horse riding simulation exercise on muscle activation and limits of stability in the elderly.

    PubMed

    Kim, Seong-Gil; Lee, Jung-Ho

    2015-01-01

    This study aimed to investigate the effect of horse riding simulation (HRS) on balance and trunk muscle activation as well as to provide evidence of the therapeutic benefits of the exercise. Thirty elderly subjects were recruited from a medical care hospital and randomly divided into an experimental and a control group. The experimental group performed the HRS exercise for 20 min, 5 times a week, for 8 weeks, and conventional therapy was also provided as usual. The muscle activation and limits of stability (LOS) were measured. The LOS significantly increased in the HRS group (p<0.05) but not in the control group (p>0.05). The activation of all muscles significantly increased in the HRS group. However, in the control group, the muscle activations of the lateral low-back (external oblique and quadratus lumborum) and gluteus medius (GM) significantly decreased, and there was no significant difference in other muscles. After the intervention, the LOS and all muscle activations significantly increased in the HRS group compared with the control group. The results suggest that the HRS exercise is effective for reducing the overall risk of falling in the elderly. Thus, it is believed that horse riding exercise would help to increase dynamic stability and to prevent elderly people from falling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Foreign Aid: Are We Increasing Stability

    DTIC Science & Technology

    2016-12-01

    ARE WE INCREASING STABILITY ? by Jeffrey Chenard Chad Thibodeau December 2016 Thesis Co-Advisors: Robert Burks Timothy Warren THIS PAGE......to determine the probability of internal conflict. The results of the research show that the USG is not increasing stability through reducing

  16. Study on Stability Analysis and Monitoring Technology of Deep Concave Open-Pit Mine Slope

    NASA Astrophysics Data System (ADS)

    Xue, Dinglong; Ren, Fenghua; Li, Yuan

    2018-05-01

    In this paper, using the FLAC3D software to establish the numerical model of the rock slope in the south of Washan stope and to compare and verify with the monitoring result, reference is made to the original engineering and hydrogeological data of Washan stope. The results show that the stability of the South slope is mainly affected by the dominant structural plane, and the potential slip surface and the dominant structure surface are the same. During the recovery period of -120m platform residual mine, the disturbance stress is increasing but the overall amplitude is small and the slope is relatively stable.

  17. Coated Porous Si for High Performance On-Chip Supercapacitors

    NASA Astrophysics Data System (ADS)

    Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.

    2014-11-01

    High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.

  18. Effects of graphite fiber stability on the properties of PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Alston, W. B.; Vannucci, R. D.

    1979-01-01

    The effect of the stability of graphite fibers on composite properties after exposure in air at 600 F was investigated. Composites were fabricated from PMR-15 and PMR-2 monomer solutions, using HTS-2 and Celion 6000 graphite fibers as the reinforcement. The effect of long-term exposure in air at 600 F on composite weight loss and mechanical properties was determined. These composites exhibited a significantly increased lifetime at that temperature compared to composites fabricated from HTS fiber sold prior to 1975. The effect of the PMR-15 and PMR-II resin compositions on long-term composite performance at 600 F is also discussed.

  19. International comparative evaluation of fixed-bearing non-posterior-stabilized and posterior-stabilized total knee replacements.

    PubMed

    Comfort, Thomas; Baste, Valborg; Froufe, Miquel Angel; Namba, Robert; Bordini, Barbara; Robertsson, Otto; Cafri, Guy; Paxton, Elizabeth; Sedrakyan, Art; Graves, Stephen

    2014-12-17

    Differences in survivorship of non-posterior-stabilized compared with posterior-stabilized knee designs carry substantial economic consequences, especially with limited health-care resources. However, these comparisons have often been made between relatively small groups of patients, often with short-term follow-up, with only small differences demonstrated between the groups. The goal of this study is to compare the outcomes of non-posterior-stabilized and posterior-stabilized total knee arthroplasties with use of a unique collaboration of multiple established knee arthroplasty registries. A distributed health data network was developed by the International Consortium of Orthopaedic Registries and was used in this study to reduce barriers to participation (such as security, propriety, legal, and privacy issues) compared with a centralized data warehouse approach. The study included only replacements in osteoarthritis patients who underwent total knee procedures involving fixed-bearing devices from 2001 to 2010. The outcome of interest was time to first revision. On average, not resurfacing showed a more harmful effect than resurfacing did when posterior-stabilized and non-posterior-stabilized knee replacements were compared, while the risk of revision for posterior-stabilized compared with non-posterior-stabilized knees was highest in year zero to one, followed by year one to two, years eight through ten, and years two through eight. Posterior-stabilized knees did significantly worse than non-posterior-stabilized knees did when the patella was not resurfaced. This difference was most pronounced in the first two years (year zero to one: hazard ratio [HR] = 2.15, 95% confidence interval [CI] = 1.56 to 2.95, p < 0.001; year one to two: HR = 1.61, 95% CI = 1.48 to 1.75, p < 0.001). When the patella was resurfaced, posterior-stabilized knees did significantly worse than non-posterior-stabilized knees did. This was again most pronounced in the first two years (year zero to one: HR = 1.75, 95% CI = 1.27 to 2.42, p = 0.001; year one to two: HR = 1.31, 95% CI = 1.19 to 1.45, p < 0.001). There was a reduced risk of revision with a patient age of more than sixty-five years (HR = 0.57, 95% CI = 0.55 to 0.60, p < 0.001). We found that fixed non-posterior-stabilized total knee arthroplasty performed better with or without patellar resurfacing than did fixed posterior-stabilized total knee arthroplasty. This effect was most pronounced in the first two years. The risk of revision for posterior-stabilized total knee arthroplasties was reduced with patellar resurfacing. Also, a patient age of more than sixty-five years and female gender reduced the risk of revision. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  20. Impact of reduced tillage and organic inputs on aggregate stability and earthworm community in a Breton context in France

    NASA Astrophysics Data System (ADS)

    Paillat, Louise; Menasseri, Safya; Busnot, Sylvain; Roucaute, Marc; Benard, Yannick; Morvan, Thierry; Pérès, Guénola

    2017-04-01

    Soil aggregate stability, which refers to the ability of soil aggregates to resist breakdown when disruptive forces are applied (water, wind), is a good indicator of the sensitivity of soil to crusting and erosion and is a relevant indicator for soil stability. Within soil parameters which affect soil stability, organic matter is one of the main important by functioning as bonding agent between mineral soil particles, but soil organisms such as microorganisms and earthworms are also recognized as efficient agents. However the relationship between earthworms, fungal hyphae and aggregation is still unclear. In order to assess the influence of these biological agents on aggregate dynamics, we have combined a field study and a laboratory experiment. On a long term experiment trial in Brittany, SOERE PRO-EFELE, we have studied the effect of reduced tillage (vs. conventional tillage) combined to organic inputs (vs. mineral inputs) on earthworm community and soil stability. Aggregate stability was measured at different perturbations intensities: fast wetting (FW), slow wetting (SW) and mechanical breakdown (MB). This study showed that after 4 years of experiments, reduced tillage and organic inputs enhanced aggregate stability. Earthworms modulated aggregation process: endogeics reduced FW stability (mechanical binding by hyphae) and anecics increased SW stability (aggregate interparticular cohesion and hydrophobicity). Some precisions were provided by the laboratory experiment, using microcosms, which compared casts of the endogeic Aporectodea c. caliginosa (NCCT) and the anecic Lumbricus terrestris (LT). The presumed hyphae fragmentation by endogeics could not be highlight in NCCT casts. Nevertheless, hyphae were more abundant and C content and aggregate stability were higher in LT casts corroborating the positive contribution of anecics to aggregate stability.

  1. Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens.

    PubMed

    Giannenas, Ilias; Bonos, Eleftherios; Skoufos, Ioannis; Tzora, Athina; Stylianaki, Ioanna; Lazari, Diamanto; Tsinas, Anastasios; Christaki, Efterpi; Florou-Paneri, Panagiota

    2018-06-06

    1. This feeding trial investigated the effects of herbal feed additives on performance of broiler chickens, jejunal and caecal microbiota, jejunal morphology, and meat chemical composition and oxidative stability during refrigerated storage. 2. In a 42 days trial, 320 one-day-old broiler chickens were randomly allocated to four groups with four replicate pens each containing 20 chicks. The control group was fed maize-soybean-based diets. The diets of the other three groups were supplemented with herbal feed additives: HRB1 with Stresomix TM (0.5 g/kg feed); HRB2 with Ayucee TM (1.0 g/kg feed); HRB3 with Salcochek Pro TM (1.0 g/kg feed). The GC/MS analysis of the feed additives showed that the major components of HRB1 were β-caryophyllene (14.4%) and menthol (9.8%); HRB2 were n-hexadecanoic acid (14.22%) and β-caryophyllene (14.4%) and HRB3 were menthol (69.6%) and clavicol methyl ether (13.9%). 3. Intestinal samples were taken at 42 d to determine bacterial populations (total aerobe counts, Lactobacilli, and Escherichia coli) and perform gut morphology analysis. Meat samples were analysed for chemical composition and oxidative stability under storage. 4. The HRB1 group had improved (P<0.05) body weight gain and tended to have improved (0.05≤P<0.10) feed conversion ratio, compared to the control group. Jejunum lactic acid bacteria counts were increased (P<0.001) in groups HRB1 and HRB3, compared to the control group, whereas caecal lactic acid bacteria counts tended to increase (0.05≤ P< 0.10) in group HRB1, compared to the control group. Breast meat fat content tended to be lower (0.05≤ P< 0.10) in group HRB1. Meat oxidative stability was improved (P<0.001) and jejunum villus height, crypt depth and goblet cells numbers were increased (P<0.001) in all three herbal supplemented groups, compared to the control. 5. In conclusion, herbal feed additives may be able to improve both growth performance and antioxidant activity of broiler chickens, based on their phenolic compound content.

  2. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    PubMed

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming.

  3. Rotordynamic stability problems and solutions in high pressure turbocompressors

    NASA Technical Reports Server (NTRS)

    Schmied, J.

    1989-01-01

    The stability of a high pressure compressor is investigated with special regard to the self-exciting effects in oil seals and labyrinths. It is shown how to stabilize a rotor in spite of these effects and even increase its stability with increasing pressure.

  4. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions.

    PubMed

    Parthasarathi, S; Muthukumar, S P; Anandharamakrishnan, C

    2016-05-18

    Vitamin E (α-tocopherol) is a nutraceutical compound, which has been shown to possess potent antioxidant and anticancer activity. However, its biological activity may be limited by its poor bioavailability. Colloidal delivery systems have shown wide applications in the food and pharmaceutical industries to deliver lipophilic bioactive compounds. In this study, we have developed conventional and nanoemulsions of vitamin E from food grade ingredients (sunflower oil, saponin, and water) and showed the nanoemulsion formulation increased the oral bioavailability when compared to the conventional emulsion. The mean droplet diameters in the nano and conventional emulsions were 0.277 and 1.285 μm, respectively. The stability of the emulsion formulation after thermal processing, long-term storage at different temperatures, mechanical stress and in plasma was determined. The results showed that the saponin coated nanoemulsion was stable to droplet coalescence during thermal processing (30-90 °C), long-term storage and mechanical stress when compared to the conventional emulsion. The biological fate of the emulsion formulations were studied using male Wistar rats as an animal model. The emulsion droplet stability during passage through the gastrointestinal tract was evaluated by their introduction into rat stomachs. Microscopy was used to investigate the structural changes that occurred during digestion. Both the conventional emulsion and nanoemulsion formulations showed strong evidence of droplet flocculation and coalescence during in vivo digestion. The in vivo oral bioavailability study revealed that vitamin E in a nanoemulsion form showed a 3-fold increase in the AUC when compared to the conventional emulsion. The information reported in this study will facilitate the design of colloidal delivery systems using nanoemulsion formulations.

  5. Experimental analysis of insertion torques and forces of threaded and press-fit acetabular cups by means of ex vivo and in vivo measurements.

    PubMed

    Vogel, Danny; Rathay, Andreas; Teufel, Stephanie; Ellenrieder, Martin; Zietz, Carmen; Sander, Manuela; Bader, Rainer

    2017-01-01

    In THA a sufficient primary implant stability is the precondition for successful secondary stability. Industrial foams of different densities have been used for primary stability investigations. The aim of this study was to analyse and compare the insertion behaviour of threaded and press-fit cups in vivo and ex vivo using bone substitutes with various densities. Two threaded (Bicon Plus®, Trident® TC) and one press-fit cup (Trident PSL®) were inserted by orthopaedic surgeons (S1, S2) into 10, 20 and 31 pcf blocks, using modified surgical instruments allowing measurements of the insertion forces and torques. Furthermore, the insertion behaviour of two cups were analysed intraoperatively. Torques for the threaded cups increased while bone substitute density increased. Maximum insertion torques were observed for S2 with 102 Nm for the Bicon Plus® in 20 pcf blocks and 77 Nm for the Trident® TC in 31 pcf blocks, which compares to the in vivo measurement (85 Nm). The average insertion forces for the press-fit cup varied from 5.2 to 6.8 kN (S1) and 7.2-11.5 kN (S2) ex vivo. Intraoperatively an average insertion force of 8.0 kN was determined. Implantation behaviour was influenced by acetabular cup design, bone substitute and experience of the surgeon. No specific density of bone substitute could be favoured for ex vivo investigations on the implantation behaviour of acetabular cups. The use synthetic bone blocks of high density (31 pcf) led to problems regarding cup orientation and seating. Therefore, bone substitutes used should be critically scrutinized in terms of the comparability to the in vivo situation.

  6. Highly stabilized, polymer-lipid membranes prepared on silica microparticles as stationary phases for capillary chromatography

    PubMed Central

    Gallagher, Elyssia S.; Adem, Seid M.; Baker, Christopher A.; Ratnayaka, Saliya N.; Jones, Ian W.; Hall, Henry K.; Saavedra, S. Scott; Aspinwall, Craig A.

    2015-01-01

    The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2′,4′-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed > 44% increase in retention times (P < 0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance towards the development of robust membrane protein-functionalized chromatographic stationary phases. PMID:25670414

  7. Refinement of a model of repeated cerebrospinal fluid collection in conscious rats.

    PubMed

    Amen, Eva Maria; Brecheisen, Muriel; Sach-Peltason, Lisa; Bergadano, Alessandra

    2017-02-01

    The cannulation of the cisterna magna in rats for in vivo sampling of cerebrospinal fluid serves as a valuable model for studying the delivery of new drugs into the central nervous system or disease models. It offers the advantages of repeated sampling without anesthesia-induced bias and using animals as their own controls. An established model was retrospectively reviewed for the outcomes and it was hypothesized that by refining the method, i.e. by (1) implementing pathophysiological-based anesthesia and analgesia, (2) using state-of-the-art peri-operative monitoring and supportive care, (3) increasing stability of the cement-cannula assembly, and (4) selecting a more adaptable animal strain, the outcome in using the model - quantified by peri-operative mortality, survival time and stability of the implant - could be improved and could enhance animal welfare. After refinement of the technique, peri-operative mortality decreased significantly (7 animals out of 73 compared with 4 out of 322; P = 0.001), survival time increased significantly (36 ± 14 days compared with 28 ± 18 days; P < 0.001), as well as the stability of the cement-cannula assembly (47 ± 8 days of adhesion compared with 33 ± 15 days and 34 ± 13 days using two other cement types; P < 0.001). Overall, the 3R concept of Russell and Burch was successfully addressed and animal welfare was improved by (1) the reduction in the total number of animals needed as a result of lower mortality or fewer euthanizations due to technical failure, and frequent use of individual rats over a time frame; and (2) improving the scientific quality of the model.

  8. Pooled human platelet lysate versus fetal bovine serum-investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use.

    PubMed

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter V; Kirchhoff, Maria; Mathiasen, Anders Bruun; Elberg, Jens Jørgen; Andersen, Peter Stemann; Drzewiecki, Krzysztof Tadeusz; Fischer-Nielsen, Anne

    2013-09-01

    Because of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM) supplemented with either pooled human platelet lysate (pHPL) or clinical-grade fetal bovine serum (FBS) (DMEM(pHPL) versus DMEM(FBS)). ASCs from four healthy donors were cultured in either DMEM(pHPL) or DMEM(FBS), and the population doubling time (PDT) was calculated. ASCs from two of the donors were expanded in DMEM(pHPL) or DMEM(FBS) and cultured for the final week before harvesting with or without the addition of vascular endothelial growth factor. We assessed the chromosomal stability (through the use of array comparative genomic hybridization), the expression of ASC and endothelial surface markers and the differentiation and angiogenic potential of these cells. The ASCs that were cultured in pHPL exhibited a significantly shorter PDT of 29.6 h (95% confidence interval, 22.3-41.9 h) compared with those cultured in FBS, for which the PDT was 123.9 h (95% confidence interval, 95.6-176.2 h). Comparative genomic hybridization analyses revealed no chromosomal aberrations. Cell differentiation, capillary structure formation and cell-surface marker expression were generally unaffected by the type of medium supplement that was used or by the addition of vascular endothelial growth factor. We observed that the use of pHPL as a growth supplement for ASCs facilitated a significantly higher proliferation rate compared with FBS without compromising genomic stability or differentiation capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.

    PubMed

    Kimoto, Michiko; Nakamura, Mana; Hirao, Ichiro

    2016-09-06

    A new technology, genetic alphabet expansion using artificial bases (unnatural bases), has created high-affinity DNA ligands (aptamers) that specifically bind to target proteins by ExSELEX (genetic alphabet Expansion for Systematic Evolution of Ligands by EXponential enrichment). We recently found that the unnatural-base DNA aptamers can be stabilized against nucleases, by introducing an extraordinarily stable, unique hairpin DNA (mini-hairpin DNA) and by reinforcing the stem region with G-C pairs. Here, to establish this aptamer generation method, we examined the stabilization of a high-affinity anti-VEGF165 unnatural-base DNA aptamer. The stabilized aptamers displayed significantly increased thermal and nuclease stabilities, and furthermore, exhibited higher affinity to the target. As compared to the well-known anti-VEGF165 RNA aptamer, pegaptanib (Macugen), our aptamers did not require calcium ions for binding to VEGF165 Biological experiments using cultured cells revealed that our stabilized aptamers efficiently inhibited the interaction between VEGF165 and its receptor, with the same or slightly higher efficiency than that of the pegaptanib RNA aptamer. The development of cost-effective and calcium ion-independent high-affinity anti-VEGF165 DNA aptamers encourages further progress in diagnostic and therapeutic applications. In addition, the stabilization process provided additional information about the key elements required for aptamer binding to VEGF165. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    PubMed

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  11. Paracellular permeation-enhancing effect of AT1002 C-terminal amidation in nasal delivery

    PubMed Central

    Song, Keon-Hyoung; Kim, Sang-Bum; Shim, Chang-Koo; Chung, Suk-Jae; Kim, Dae-Duk; Rhee, Sang-Ki; Choi, Guang J; Kim, Chul-Hyun; Kim, Kiyoung

    2015-01-01

    Background The identification of permeation enhancers has gained interest in the development of drug delivery systems. A six-mer peptide, H-FCIGRL-OH (AT1002), is a tight junction modulator with promising permeation-enhancing activity. AT1002 enhances the transport of molecular weight markers or agents with low bioavailability with no cytotoxicity. However, AT1002 is not stable in neutral pH or after incubation under physiological conditions, which is necessary to fully uncover its permeation-enhancing effect. Thus, we increased the stability or mitigated the instability of AT1002 by modifying its terminal amino acids and evaluated its subsequent biological activity. Methods C-terminal-amidated (FCIGRL-NH2, Pep1) and N-terminal-acetylated (Ac-FCIGRL, Pep2) peptides were analyzed by liquid chromatography–mass spectrometry. We further assessed cytotoxicity on cell monolayers, as well as the permeation-enhancing activity following nasal administration of the paracellular marker mannitol. Results Pep1 was nontoxic to cell monolayers and showed a relatively low decrease in peak area compared to AT1002. In addition, administration of mannitol with Pep1 resulted in significant increases in the area under the plasma concentration–time curve and peak plasma concentration at 3.63-fold and 2.68-fold, respectively, compared to mannitol alone. In contrast, no increase in mannitol concentration was shown with mannitol/AT1002 or mannitol/Pep2 compared to the control. Thus, Pep1 increased the stability or possibly reduced the instability of AT1002, which resulted in an increased permeation-enhancing effect of AT1002. Conclusion These results suggest the potential usefulness of C-terminal-amidated AT1002 in enhancing nasal drug delivery, which may lead to the development of a practical drug delivery technology for drugs with low bioavailability. PMID:25848218

  12. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    PubMed Central

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  13. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.

  14. The effect of nanoparticle aggregation on surfactant foam stability.

    PubMed

    AlYousef, Zuhair A; Almobarky, Mohammed A; Schechter, David S

    2018-02-01

    The combination of nanoparticles (NPs) and surfactant may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic surfactants. Results showed that the concentration of surfactant and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic surfactants and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed surfactant concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the surfactant. The production of small population of flocs as a result of mixing the surfactant and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or surfactant might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.

    PubMed

    Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M

    2018-03-01

    Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Current evidence in the stability of medicines in dose administration aids: implications for patient safety.

    PubMed

    García, Estela R; Thalhauser, Stefanie; Loscertales, Hèctor R; Modamio, Pilar; Lastra, Cecilia F; Mariño, Eduardo L

    2018-06-01

    As the elderly population and polypharmacy are increasing, it is predicted that interventions to enhance medication adherence, as dose administration aids (DAA), will grow. One of the limitations of repackaging medicines into DAA is to assure the stability of medicines, and, therefore, their quality, efficacy and safety. Area covered: This article collects and summarises data of all the stability studies of repackaged medicines into DAAs. Computerized search in databases: PubMed, Google Scholar, SciELO, and reference texts related to the field (keywords: drug stability, DAAs, compliance aids, and repackaging), open access databases and guidelines. Also, it provides recommendations on the suitability of repackaging and compares them with those established. Expert opinion: Since medicines are removed from primary package, their stability can be compromised due to psychochemical characteristics of the drug substance and product, the dosage form, the type of DAA selected, the co-storage and splitting, the repackaging conditions, and the conditions of storage. This review reflects the need of more standardized stability studies to guarantee the quality of repackaged medicines. In addition, the importance of them to support the pharmacist to make the best decisions in order to maximize outcomes and minimize risks related to patients' medication when repackaging it.

  17. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    PubMed

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effects of neuromuscular electrical stimulation at different frequencies on the activations of deep abdominal stabilizing muscles.

    PubMed

    Cho, Hee Kyung; Jung, Gil Su; Kim, Eun Hyuk; Cho, Yun Woo; Kim, Sang Woo; Ahn, Sang Ho

    2016-01-01

    Low back pain is associated with transversus abdominis (TrA) dysfunction. Recently, it was proposed that Neuromuscular Electrical Stimulation (NMES) could be used to stimulate deep abdominal muscle contractions and improve lumbopelvic stability. The purpose of this study was to determine the optimal stimulation frequency required during NMES for the activation of deep abdominal muscles. Twenty healthy volunteers between the ages of 24 and 32 were included. The portable research-stimulator was applied using a 10 second contraction time, and a 10 second resting time at 20 Hz, 50 Hz, and 80 Hz. Changes in muscle thicknesses were determined for the TrA, obliquus internus (OI), and obliquus externus (OE) by real time ultrasound imaging. Significant thickness increases in the TrA, OI, and OE were observed during NMES versus the resting state (p < 0.05). Of the frequencies examined, 50 Hz NMES produced the greatest increase in TrA thickness (1.33 fold as compared with 1.22 fold at 20 Hz and 1.21 fold at 80 Hz) (p < 0.05). Our results indicate that NMES can preferentially stimulate contractions in deep abdominal stabilizing muscles. Most importantly, 50 Hz NMES produced greater muscle thickness increases than 20 or 80 Hz.

  19. Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P

    2010-03-05

    Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation ofmore » the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.« less

  20. Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters as affected by the addition of konjac and seaweed.

    PubMed

    Jiménez-Colmenero, F; Cofrades, S; López-López, I; Ruiz-Capillas, C; Pintado, T; Solas, M T

    2010-03-01

    This paper reports the effect of an edible seaweed, Sea Spaghetti (Himanthalia elongata), on the physicochemical (emulsion stability, cooking loss, colour, texture, residual nitrite and microstructure) and sensory characteristics of reduced- and low-fat, low-salt (NaCl) frankfurters prepared with konjac gel as a fat substitute. The effects on emulsion stability of substituting konjac gel for pork backfat were conditioned by the proportion of the substitution. Incorporation of a combination of Sea Spaghetti/konjac gel (accompanied by reduction in salt) increased (P<0.05) cooking loss and reduced (P<0.05) emulsion stability in the gel/emulsion systems. Incorporation of Sea Spaghetti/konjac gel produced a decrease (P<0.05) of lightness (L*) and redness (a*) values and an increase (P<0.05) of yellowness (b*) as compared to the other samples. The effect of adding seaweed on the texture parameters of low-salt frankfurters varied depending on the proportion of konjac gel used in the formulation. Morphological differences in frankfurter microstructure were observed as fat content was reduced and konjac gel increased. Incorporation of a combination of Sea Spaghetti/konjac gel caused the formation of a more heterogeneous structure, in which the seaweed was integrated in the meat protein matrix. Copyright 2009 Elsevier Ltd. All rights reserved.

Top