Sample records for increased tlr4 expression

  1. Budesonide increases TLR4 and TLR2 expression in Treg lymphocytes of allergic asthmatics.

    PubMed

    Pace, Elisabetta; Di Sano, Caterina; Ferraro, Maria; Bruno, Andreina; Caputo, Valentina; Gallina, Salvatore; Gjomarkaj, Mark

    2015-06-01

    Reduced innate immunity responses as well as reduced T regulatory activities characterise bronchial asthma. In this study the effect of budesonide on the expression of TLR4 and TLR2 in T regulatory lymphocyte sub-population was assessed. TLR4 and TLR2 expression in total peripheral blood mononuclear cells (PBMC), in CD4+/CD25+ and in CD4+/CD25- was evaluated, by flow cytometric analysis, in mild intermittent asthmatics (n = 14) and in controls (n = 11). The in vitro effects of budesonide in modulating: TLR4 and TLR2 expression in controls and in asthmatics; IL-10 expression and cytokine release (IL-6 and TNF-α selected by a multiplex assay) in asthmatics were also explored. TLR4 and TLR2 were reduced in total PBMC from asthmatics in comparison to PBMC from controls. CD4+CD25+ cells expressed at higher extent TLR2 and TLR4 in comparison to CD4+CD25- cells. Budesonide was able to increase the expression of TLR4, TLR2 and IL-10 in CD4+/CD25 highly+ cells from asthmatics. TLR4 ligand, LPS induced Foxp3 expression. Budesonide was also able to reduce the release of IL-6 and TNF-α by PBMC of asthmatics. Budesonide potentiates the activity of Treg by increasing TLR4, TLR2 and IL-10 expression. This event is associated to the decreased release of IL-6 and TNF-α in PBMC treated with budesonide. These findings shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors

    PubMed Central

    Fukata, Masayuki; Hernandez, Yasmin; Conduah, Daisy; Cohen, Jason; Chen, Anli; Breglio, Keith; Goo, Tyralee; Hsu, David; Xu, Ruliang; Abreu, Maria T.

    2009-01-01

    Patients with ulcerative colitis are at increased risk for developing colorectal cancer. We have shown that TLR4 is over-expressed in human colitis-associated cancer (CAC) and that mice deficient in TLR4 are markedly protected against colitis-associated neoplasia. We wished to elucidate the specific contributions of TLR4 signaling by myeloid cells and colonic epithelial cells (CEC) in colitis-associated tumorigenesis. TLR4-deficient mice or wild-type littermates (WT) were transplanted with bone marrow (BM) cells: TLR4-/- BM→WT mice (TLR4-expressing CEC) and WT BM→TLR4-/- mice (TLR4-expressing myeloid cells). Colitis-associated neoplasia was induced by azoxymethane (AOM 7.3mg/kg) injection and two cycles of dextran sodium sulfate (DSS) treatment. The number and size of dysplastic lesions were greater in TLR4-/- BM→WT mice than in WT BM→TLR4-/- mice (P<0.005). Histologically, TLR4-/- BM→WT mice had greater numbers of mucosal neutrophils and macrophages compared to WT BM→TLR4-/- mice. The chemokines KC and CCL2, important in recruitment of neutrophils and macrophages, respectively, were induced in mice expressing TLR4 in CEC rather than the myeloid compartment. The lamina propria infiltrate of mice expressing TLR4 in CEC was characterized by macrophages expressing Cox-2. Moreover, mice expressing TLR4 in CEC rather than the myeloid compartment had increased production of amphiregulin and EGFR activation. These findings indicate that TLR4 signaling on CEC is necessary for recruitment and activation of Cox-2 expressing macrophages and increasing the number and size of dysplastic lesions. Our results implicate innate immune signaling on CEC as a key regulator of a tumor-promoting microenvironment. PMID:19229991

  3. The effect of lipopolysaccharides on the expression of CD14 and TLR4 in rat Kupffer cells.

    PubMed

    Feng, Jun-Ming; Shi, Jing-Quan; Liu, You-Sheng

    2003-05-01

    To assess the effect of lipopolysaccharides (LPS) on the expression of CD14 and TLR4 in rat Kupffer cells (KCs). In rat KCs induced by LPS, the changes of CD14 and TLR4 expression were measured by RT-PCR and immunohistochemistry, and the expressions of TNF-alphamRNA, IL-6mRNA or the concentrations of TNF-alpha, IL-6 were estimated by in situ hybridization, radioimmunoassay, and others. The expressions of CD14 and TLR4 in KCs induced by LPS were markedly increased in a dose-dependent manner (10 mg/L-1 microg/L) or in a time-dependent manner (0.5 h-24 h), with the peaked expression of CD14 at 3-6 hours. The expressions of CD14 and TLR4 in KCs stimulated by the active mediators from KCs which had been exposed to LPS for 1 hour were obviously increased. There is a close relationship between LPS or the active mediators from KCs induced by LPS and the expressions of CD14, TLR4. It is implied that the increase of TLR4, CD14 expression may be induced by LPS within 1-3 hours, and further increase of TLR4, CD14 expression may be correlated with the cytokines produced by KCs.

  4. Profibrotic Effect of Interleukin-18 in HK-2 Cells Is Dependent on Stimulation of the Toll-like Receptor 4 (TLR4) Promoter and Increased TLR4 Expression*

    PubMed Central

    Meldrum, Kirstan K.; Zhang, Hongji; Hile, Karen L.; Moldower, Lyle L.; Dong, Zizheng; Meldrum, Daniel R.

    2012-01-01

    IL-18 is an important mediator of obstruction-induced renal fibrosis and tubular epithelial cell injury independent of TGF-β1 activity. We sought to determine whether the profibrotic effect of IL-18 is mediated through Toll-like receptor 4 (TLR4). Male C57BL6 wild type and mice transgenic for human IL-18-binding protein were subjected to left unilateral ureteral obstruction versus sham operation. The kidneys were harvested 1 week postoperatively and analyzed for IL-18 production and TLR4 expression. In a separate arm, renal tubular epithelial cells (HK-2) were directly stimulated with IL-18 in the presence or absence of a TLR4 agonist, TLR4 antagonist, or TLR4 siRNA knockdown. Cell lysates were analyzed for TLR4, α-smooth muscle actin, and E-cadherin expression. TLR4 promotor activity, as well as AP-1 activation and the effect of AP-1 knockdown on TLR4 expression, was evaluated in HK-2 cells in response to IL-18 stimulation. The results demonstrate that IL-18 induces TLR4 expression during unilateral ureteral obstruction and induces TLR4 expression in HK-2 cells via AP-1 activation. Inhibition of TLR4 or knockdown of TLR4 gene expression in turn prevents IL-18-induced profibrotic changes in HK-2 cells. These results suggest that IL-18 induces profibrotic changes in tubular epithelial cells via increased TLR4 expression/signaling. PMID:23027874

  5. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    PubMed

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  6. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema

    PubMed Central

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C.; Ifedigbo, Emeka; Washko, George R.; Ryter, Stefan W.

    2012-01-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS. PMID:22983353

  7. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    PubMed

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  8. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis

    PubMed Central

    Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.

    2010-01-01

    Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704

  9. Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    PubMed Central

    Tadema, Henko; Abdulahad, Wayel H.; Stegeman, Coen A.; Kallenberg, Cees G. M.; Heeringa, Peter

    2011-01-01

    Introduction Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. Methods Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. Results In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4+ monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. Conclusions In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation. PMID:21915309

  10. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2 , 5-HT3 , 5-HT4 and 5-HT7 receptor antagonists reduced or blocked the contractile response evoked by 5-HT. We postulate that TLR2 and TLR4 modulate the serotonin contractile motor response in mouse colon in an opposing manner by modifying the expression of several serotonin receptors. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  11. [Effects of lipopolysaccharides from various Porphyromonas on the expression of CD14 and TLRs in mouse osteoblast].

    PubMed

    Jia, Ge; Xue, Ming; Li, Ren; Lv, You; Qiu, Li-hong

    2011-12-01

    To observe the effect of lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) and Porphyromonas gingivals(P.g) on the expression of CD14 and TLRs in osteoblast. MC3T3-E1 cells were stimulated with 10μg/mL P.e-LPS and P.g-LPS. The change of CD14,TLR2 and TLR4 mRNA was observed at different time point (0,1,3,6,12,24h) using RT-PCR,and the expression of CD14,TLR2 and TLR4 protein was measured by flow cytometry at 24-hour. Statistical analysis was performed using one-way ANOVA and Dunnett t test with SPSS11.0 software package. MC3T3-E1 cells were stimulated with 10μg/mL P.e-LPS for 1h,the expression of CD14 and TLR4 mRNA increased significantly. There was no increase of TLR2 mRNA with stimulation of P.e-LPS. The CD14,TLR2 and TLR4 mRNA expression increased significantly after stimulation with 10μg/mL P.g-LPS. Flow cytometry showed that CD14 and TLR4 protein increased significantly after stimulation with 10μg/mL P.e-LPS. CD14,TLR2 and TLR4 protein increased significantly after treatment with 10μg/mL P.g-LPS. CD14,TLR4 receptors are involved in P.e-LPS effect and CD14,TLR2 and TLR4 receptors are involved in P.g-LPS effect in mouse osteoblast.

  12. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated bymore » hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel mechanism for regulation of TLR4 expression upon hypoxic stress and provide a therapeutic target for chronic diseases related to hypoxic stress.« less

  13. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis

    PubMed Central

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.

    2016-01-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  14. Toll-Like Receptor 4 Mediates Hemorrhagic Transformation After Delayed Tissue Plasminogen Activator Administration in In Situ Thromboembolic Stroke.

    PubMed

    García-Culebras, Alicia; Palma-Tortosa, Sara; Moraga, Ana; García-Yébenes, Isaac; Durán-Laforet, Violeta; Cuartero, Maria I; de la Parra, Juan; Barrios-Muñoz, Ana L; Díaz-Guzmán, Jaime; Pradillo, Jesús M; Moro, María A; Lizasoain, Ignacio

    2017-06-01

    Hemorrhagic transformation is the main complication of revascularization therapies after stroke. Toll-like receptor 4 (TLR4) is implicated in cerebral damage and inflammation in stroke. This study was designed to determine the role of TLR4 in hemorrhagic transformation development after tissue plasminogen activator (tPA) administration. Mice expressing (TLR4 +/+ ) or lacking functional TLR4 (TLR4 - /- ) were subjected to middle cerebral artery occlusion using an in situ thromboembolic model by thrombin injection into the middle cerebral artery, and tPA (10 mg/kg) was administered 20 minutes or 3 hours after ischemia. Infarct size, hemorrhages, IgG extravasation, matrix metalloproteinase 9 expression, and neutrophil infiltration were assessed 24 hours after ischemia. In TLR4 +/+ , early reperfusion (tPA at 20 minutes) resulted infarct volume, whereas late recanalization (tPA at 3 hours) did not modify lesion size and increased the rate of the most severe hemorrhages. In TLR4 - /- mice, both early and late reperfusion did not modify lesion size. Importantly, late tPA administration did not result in worse hemorrhages and in an increased bleeding area as occurred in TLR4 +/+ group. In TLR4 - /- animals, late reperfusion produced a lesser increase in matrix metalloproteinase 9 expression when compared with TLR4 +/+ animals. Our results demonstrate TLR4 involvement in hemorrhagic transformation induced by delayed tPA administration, very likely by increasing matrix metalloproteinase 9 expression. © 2017 American Heart Association, Inc.

  15. The expression of Toll-like receptors 2, 4, 5, 7 and 9 in Merkel cell carcinoma.

    PubMed

    Jouhi, Lauri; Koljonen, Virve; Böhling, Tom; Haglund, Caj; Hagström, Jaana

    2015-04-01

    We sought to clarify whether the expression of toll-like receptors (TLR) in Merkel cell carcinoma (MCC) is linked to tumor and patient characteristics, especially the presence of Merkel cell polyoma virus (MCV). The study comprised of 128 patients with data on Merkel cell polyomavirus (MCV) status and clinical features were included in the study. Immunohistochemistry for TLR expression was performed on tissue microarray (TMA) slides. TLR 2, 4, 5, 7 and 9 expression was noted in most of the tumor specimens. Decreased expression of TLR 9 correlated strongly with MCV positivity. Cytoplasmic TLR 2 expression correlated with small tumor size, while nuclear TLR 2 and TLR 5 expressions with larger tumors. Increased nuclear TLR 4 expression and decreased TLR 7 expression were associated with older age. TLR 2, 4, 5, 7 and 9 appear to reflect certain clinicopathological variables and prognostic markers of MCC tumors. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. [Studies on the correlation between the expression of Toll-like receptor 4 and the synovitis of the temporomandibular joint in rats].

    PubMed

    Kong, Jingjing; Wu, Qingting; Wang, Xiaohui; Yang, Yingying; Lin, Xuefen; Ji, Ping

    2014-08-01

    To investigate the expression of the Toll-like receptor-4 (TLR-4) in temporo-mandibular joint synovitis in rats, and to discuss the correlation between the expression of TLR-4 and the synovitis. Sixty male wistar rats were randomly divided into five groups, 12 each. Group A was the control group in which the rats were given normal diet.In Group B, the rats' bilateral masseter muscles were cut off (masseter resection group). In Group C, An cast metal crown were bonded on the mandibular right first molar of each rat (occlusal interference group). In Group D, occlusal pad were bonded on maxillary molars of each rat (occlusal dimension increase group). In Group E, rats' bilateral masseter muscles were re-sected and occlusal pads were bonded on their maxillary molars (masseter resection and occlusal dimension increase group). Pathological changes of synovium were observed using hematoxylin and eosin (HE) stains and pathology scores were evaluated. The expression of TLR- 4 were determined by immunohistochemical stains, and the expression of TLR-4 mRNA were determined by real-time PCR. The correlation between the expression of TLR-4, TLR-4 mRNA and the pathological score were analyzed using Spearman analysis. The pathological scores of Group A-E were 0.5 ± 0.5, 2.5 ± 1.0, 2.7 ± 1.0, 3.0 ± 0.9, 5.3 ± 1.2 respectively. The expression of TLR-4 were (3.2 ± 1.5)%, (16.± 2.6)%, (15.8 ± 2.1)%, (17.5 ± 2.4)%, (38.2 ± 4.4) %. The expression of TLR-4 mRNA were 1.07 ± 0.09, 2.12 ± 0.33, 2.07 ± 0.29, 2.17 ± 0.34, 4.53 ± 0.46. Compared with group A, groups B- E showed significant higher pathology score (P < 0.05) and increased expression of both TLR-4 (P < 0.05) and TLR-4 mRNA (P < 0.05). An significant positive correlation was found between the expression of TLR- 4 and the pathology score (r = 0.785, P < 0.05), and between the expression of TLR- 4 mRNA and the pathology score (r = 0.720, P < 0.05). TLR-4 may be closely associated with the development of the synovitis of TMJ of rats.

  17. The role of Toll-like receptor 2 and 4 in gingival tissues of chronic periodontitis subjects with type 2 diabetes.

    PubMed

    Promsudthi, A; Poomsawat, S; Limsricharoen, W

    2014-06-01

    Diabetes is one important risk factor of chronic periodontitis. However, the roles of toll-like receptor (TLR) 2 and TLR4, which are implicated in the inflammatory process in both chronic periodontitis and diabetes, have not been studied. This study aimed to determine whether TLR2 and TLR4 might be involved in the relationship between chronic periodontitis and diabetes by examining TLR2 and TLR4 expression in gingival tissues from subjects with chronic periodontitis without diabetes (CP) and with diabetes (CP+DM) and from periodontally healthy subjects without diabetes (PH) and with diabetes (PH+DM). Gingival tissues were collected from 23 CP subjects, 21 CP+DM subjects, 22 PH subjects and 20 PH+DM subjects. The expression of TLR2 and TLR4 in gingival tissues was determined using an immunohistochemical method. In gingival epithelium, staining patterns and intensity levels of TLR2 and TLR4 expression were studied. In connective tissues, the percentages of TLR2- and TLR4-positive cells were calculated. The intensity levels and the percentages of positive cells were statistically analyzed. Chronic periodontitis or diabetes showed no significant effect on TLR2 expression in the oral epithelium. However, diabetes increased the expression of TLR2 in sulcular epithelium and changed the pattern of TLR2 expression in gingival epithelium. Chronic periodontitis decreased the expression of TLR4 in gingival epithelium. In connective tissue under sulcular epithelium, CP+DM subjects showed statistically significant higher percentages of TLR2- and TLR4-positive cells compared with PH and PH+DM subjects. Our results suggest that hyperglycemia and chronic periodontitis had effects on TLR2 and TLR4 expression in gingival tissue. The differences in TLR2 and TLR4 expression could contribute to a greater inflammatory response, leading to periodontal disease initiation and progression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon

    PubMed Central

    Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I

    2017-01-01

    Background Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Aim Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. Methods We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Results Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Conclusions Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role. PMID:29774159

  19. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I; Mesonero, José E

    2018-04-01

    Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role.

  20. Toll-Like Receptor-4 Mediates Neuronal Apoptosis Induced by Amyloid β-Peptide and the Membrane Lipid Peroxidation Product 4-Hydroxynonenal

    PubMed Central

    Tang, Sung-Chun; Lathia, Justin D.; Selvaraj, Pradeep K.; Jo, Dong-Gyu; Mughal, Mohamed R.; Cheng, Aiwu; Siler, Dominic A.; Markesbery, William R.; Arumugam, Thiruma V.; Mattson, Mark. P.

    2008-01-01

    The innate immune system senses the invasion of pathogenic microorganisms and tissue injury through Toll-like receptors (TLR), a mechanism thought to be limited to immune cells. We recently found that neurons express several TLRs, and that the levels of TLR2 and TLR4 are increased in neurons in response to energy deprivation. Here we report that TLR4 expression increases in neurons when exposed to amyloid β-peptide (Aβ1-42) or the lipid peroxidation product 4-hydroxynonenal (HNE). Neuronal apoptosis triggered by Aβ and HNE was mediated by jun N-terminal kinase (JNK); neurons from TLR4 mutant mice exhibited reduced JNK and caspase-3 activation and were protected against apoptosis induced by Aβ and HNE. Levels of TLR4 were decreased in inferior parietal cortex tissue specimens from end-stage AD patients compared to aged-matched control subjects, possibly as the result of loss of neurons expressing TLR4. Our findings suggest that TLR4 signaling increases the vulnerability of neurons to Aβ and oxidative stress in AD, and identify TLR4 as a potential therapeutic target for AD. PMID:18586243

  1. Expression of toll-like receptors 2 and 4 and CD14 during differentiation of HL-60 cells induced by phorbol 12-myristate 13-acetate and 1 alpha, 25-dihydroxy-vitamin D(3).

    PubMed

    Li, Changlin; Wang, Yibing; Gao, Li; Zhang, Jingsong; Shao, Jie; Wang, Shengnian; Feng, Weiguo; Wang, Xingyu; Li, Minglie; Chang, Zongliang

    2002-01-01

    Macrophages form a crucial bridge between the innate and adaptive immune response. One of their most important functions is to recognize infectious microorganisms. Toll-like receptors (TLRs) are key elements in pathogen recognition, and among them, TLR2 and TLR4 are most discussed. However, expression patterns of TLRs during myeloid cell differentiation to macrophage are unknown. In this study, we examined differentiation in the model human myeloid cell line, HL-60, treated with phorbol 12-myristate 13-acetate (PMA) or VitD(3). Expression of TLR2, TLR4, and CD14 were measured by reverse transcription-PCR, RNase protection assay, and fluorescence-activated cell sorter assays. After treatment by PMA (1, 10, and 100 nM) for 12, 24, and 48 h, expression of TLR2 and CD14 mRNA was increased in a time- and dose-dependent manner. However, VitD(3) only induced expression of CD14 but not TLR2 in HL-60 cells. TLR4 was expressed constitutively before differentiation and increased slightly after that. Thus, PMA-mediated differentiation of HL-60 cells to macrophages is associated largely with TLR2 expression and, to a much lesser extent, with TLR4. Furthermore, up-regulation of TLR2 and CD14 mRNA expression by PMA was abrogated by a protein kinase C inhibitor, Calphostine C, suggesting the up-regulation of TLR2 and CD14 mRNA is dependent on the activation of protein kinase C. Coexpression of CD14/TLR2 and/or CD14/TLR4 may be essential but not sufficient for the production of tumor necrosis factor-alpha in response to lipopolysaccharide in our system.

  2. [Effect of CD-14 and toll like receptors on the expression of interleukin-6 induced by lipopolysaccharides of Porphyromonas endodontalis].

    PubMed

    Jia, Ge; Qiu, Li-Hong; Li, Ren; Lü, You; Yu, Ya-Qiong; Zhong, Ming

    2011-09-01

    To evaluate the effect of cluster of differentiation 14 (CD-14) and Toll like receptors (TLR) on the expression of interleukin-6 (IL-6) mRNA induced by Porphyromonas endodontalis (Pe) lipopolysaccharides (LPS). MC3T3-E1 cells were treated with 10 mg/L Pe-LPS for different hours, and the cells uninvolved by anything as the blank group. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-liked immunosorbent assay (ELISA). The expression of CD-14, TLR-2 and TLR-4 mRNA was observed at different time point (0 - 24 h) by RT-PCR. The protein of CD-14, TLR-2 and TLR-4 was analyzed with a flow cytometer. MC3T3-E1 cells were pretreated with anti-CD-14, anti-TLR-2 and anti-TLR-4 antibody for 1 h, and then cells were stimulated with 10 mg/L Pe-LPS for 6 h. The expression of IL-6 mRNA was examined by RT-PCR. Statistical analysis was performed using one-way ANOVA Dunnett-t test with SPSS 11.0 software package. The IL-6 mRNA and proteins increased significantly after treatment with Pe-LPS. When MC3T3-E1 cells treated by Pe-LPS for 6 h, the expression of proteins soared from (11.696 ± 0.672) ng/L to (36.534 ± 0.574) ng/L (P < 0.01); In the control group, the CD-14 and TLR-4 mRNA are ambly-expression, and the ratios of CD-14 and TLR-4 positive cells were (39.038 ± 3.131)% and (11.438 ± 0.385)% respectively in MC3T3-E1. After treatment by Pe-LPS, the expression of CD-14 and TLR-4 mRNA increased significantly, and the ratios of CD-14 and TLR-4 positive cells markedly increased to (62.407 ± 1.800)% and (21.367 ± 2.271)%. TLR-2 expression did not change apparently after Pe-LPS treatment. The expression of IL-6 mRNA was partly inhibited by anti-CD-14 or anti-TLR-4 antibody, but not by TLR-2. Pe-LPS can induce the expression of IL-6 in osteoblast MC3T3-E1 through CD-14 and TLR-4, but not TLR-2.

  3. Toll-Like Receptor 4 in Paraventricular Nucleus Mediates Visceral Hypersensitivity Induced by Maternal Separation

    PubMed Central

    Tang, Hui-Li; Zhang, Gongliang; Ji, Ning-Ning; Du, Lei; Chen, Bin-Bin; Hua, Rong; Zhang, Yong-Mei

    2017-01-01

    Neonatal maternal separation (MS) is a major early life stress that increases the risk of emotional disorders, visceral pain perception and other brain dysfunction. Elevation of toll-like receptor 4 (TLR4) signaling in the paraventricular nucleus (PVN) precipitates early life colorectal distension (CRD)-induced visceral hypersensitivity and pain in adulthood. The present study aimed to investigate the role of TLR4 signaling in the pathogenesis of postnatal MS-induced visceral hypersensitivity and pain during adulthood. The TLR4 gene was selectively knocked out in C57BL/10ScSn mice (Tlr4-/-). MS was developed by housing the offspring alone for 6 h daily from postnatal day 2 to day 15. Visceral hypersensitivity and pain were assessed in adulthood. Tlr4+/+, but not Tlr4-/-, mice that had experienced neonatal MS showed chronic visceral hypersensitivity and pain. TLR4 immunoreactivity was observed predominately in microglia in the PVN, and MS was associated with an increase in the expression of protein and/or mRNA levels of TLR4, corticotropin-releasing factor (CRF), CRF receptor 1 (CRFR1), tumor necrosis factor-α, and interleukin-1β in Tlr4+/+ mice. These alterations were not observed in Tlr4-/- mice. Local administration of lipopolysaccharide, a TLR4 agonist, into the lateral cerebral ventricle elicited visceral hypersensitivity and TLR4 mRNA expression in the PVN, which could be prevented by NBI-35965, an antagonist to CRFR1. The present results indicate that neonatal MS induces a sensitization and upregulation of microglial TLR4 signaling activity, which facilitates the neighboring CRF neuronal activity and, eventually, precipitates visceral hypersensitivity in adulthood. Highlights (1)Neonatal MS does not induce chronic visceral hypersensitivity and pain in Tlr4-/- mice.(2)Neonatal MS increases the expression of TLR4 mRNA, CRF protein and mRNA, CRFR1 protein, TNF-α protein, and IL-1β protein in Tlr4+/+ mice.(3)TLR4 agonist LPS (i.c.v.) elicits visceral hypersensitivity and TLR4 mRNA expression in the PVN. PMID:28611665

  4. Toll-like receptor 4 increases intestinal permeability through up-regulation of membrane PKC activity in alcoholic steatohepatitis.

    PubMed

    Li, Xin; Wang, Chen; Nie, Jiao; Lv, Dong; Wang, Tianyi; Xu, Youqing

    2013-09-01

    Intestinal hyperpermeability is a causal factor for the development of alcoholic endotoxemia and steatohepatitis. However, the mechanisms governing this link remain unknown. The purpose of this study was to determine whether toll-like receptor 4 (TLR4) is involved in ethanol's deleterious effects on the intestinal barrier. Caco-2 cells were incubated in vitro with 1-10% ethanol. The results indicated that ethanol had a dose-dependent effect in increasing TLR4 expression and intercellular permeability. Then the effects of TLR4 on protein kinase C (PKC) and the intercellular junction protein occludin were assessed with and without pretreatment with a TLR4 inhibitor. The results indicated that TLR4 increased nonspecific PKC activity and reduced the expression of phosphorylated occludin in the membrane, which increased intercellular permeability. These effects were prevented by pretreatment with TLR4 mAb. Wild-type C57BL/6 mice were fed an ethanol or isocaloric liquid diet for 6 weeks. Hepatitis was diagnosed by the presence of an associated elevated blood endotoxin level. Chronic ethanol treatment significantly elevated blood endotoxin levels, intestinal permeability, and the expression of TLR4 in the ileum and colon. Moreover, ethanol exposure reduced the distribution of phosphorylated occludin in the intestinal epithelium because of PKC activation. In conclusion, chronic ethanol exposure induces a high response of TLR4 to lipopolysaccharide (LPS), and TLR4 increases intestinal permeability through down-regulation of phosphorylated occludin expression in the intestinal epithelial barrier, accompanied by membrane PKC hyperactivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin.

    PubMed

    Yuan, Xiaoling; Hu, Tao; He, Hanwen; Qiu, Huan; Wu, Xuan; Chen, Jingxian; Wang, Minmin; Chen, Cheng; Huang, Shenghai

    2018-02-10

    Respiratory syncytial virus (RSV) infects the central nervous system, resulting in neurological symptoms. However, the precise underlying pathogenic mechanisms have not been elucidated. In the present study, the infectivity of RSV on N2a neuronal cells and the possible roles of Toll-like receptor 4 (TLR4) and nucleolin (C23) during RSV infection were investigated. We compared two experimental groups (infected and non-infected) and monitored the RSV viral titers in the culture supernatant by a viral plaque assay. We also inspected the morphology of the nucleus in infected N2a cells. We measured the level of RSV F protein and studied its co-localization with TLR4 and nucleolin using immunofluorescence assays and laser confocal microscopy. The potential interaction of RSV F protein with TLR4 and nucleolin was examined by coimmunoprecipitation. The expression changes of TLR4, nucleolin, TLR3 and TLR7 proteins in N2a cells and IL-6 and TNF-α in the culture supernatant were investigated by Western Blot analysis and ELISA assay. Changes in neuronal cell apoptosis status was examined by flow cytometry. The results demonstrated prolific RSV infection of N2a cells, which triggered a decrease of NeuN protein expression, coinciding with an increase of nuclear lesions, F protein expression, RSV viral titers, and late apoptotic levels of N2a cells. RSV infection induced co-localization of RSV F protein with TLR4 and nucleolin, which could potentially lead to a direct interaction. Furthermore, it was found that TLR4 and nucleolin levels increased early after infection and decreased subsequently, whereas TLR3 and TLR7 expression increased throughout RSV infection. The RSV Long strain can prolifically infect N2a neuronal cells, modulating the expression of TLR4 and nucleolin, as well as TLR3, TLR7 and their downstream inflammatory factors, and inducing the co-localization of the RSV F protein with TLR4 and nucleolin.

  6. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide.

    PubMed

    Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R

    2013-09-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.

  7. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich

    PubMed Central

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress. PMID:26053067

  8. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich.

    PubMed

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress.

  9. Functional Toll-like Receptor 4 Overexpression in Papillary Thyroid Cancer by MAPK/ERK-Induced ETS1 Transcriptional Activity.

    PubMed

    Peyret, Victoria; Nazar, Magalí; Martín, Mariano; Quintar, Amado A; Fernandez, Elmer A; Geysels, Romina C; Fuziwara, Cesar S; Montesinos, María M; Maldonado, Cristina A; Santisteban, Pilar; Kimura, Edna T; Pellizas, Claudia G; Nicola, Juan P; Masini-Repiso, Ana M

    2018-05-01

    Emerging evidence suggests that unregulated Toll-like receptor (TLR) signaling promotes tumor survival signals, thus favoring tumor progression. Here, the mechanism underlying TLR4 overexpression in papillary thyroid carcinomas (PTC) mainly harboring the BRAF V600E mutation was studied. TLR4 was overexpressed in PTC compared with nonneoplastic thyroid tissue. Moreover, paired clinical specimens of primary PTC and its lymph node metastasis showed a significant upregulation of TLR4 levels in the metastatic tissues. In agreement, conditional BRAF V600E expression in normal rat thyroid cells and mouse thyroid tissue upregulated TLR4 expression levels. Furthermore, functional TLR4 expression was demonstrated in PTC cells by increased NF-κB transcriptional activity in response to the exogenous TLR4-agonist lipopolysaccharide. Of note, The Cancer Genome Atlas data analysis revealed that BRAF V600E -positive tumors with high TLR4 expression were associated with shorter disease-free survival. Transcriptomic data analysis indicated a positive correlation between TLR4 expression levels and MAPK/ERK signaling activation. Consistently, chemical blockade of MAPK/ERK signaling abrogated BRAF V600E -induced TLR4 expression. A detailed study of the TLR4 promoter revealed a critical MAPK/ERK-sensitive Ets-binding site involved in BRAF V600E responsiveness. Subsequent investigation revealed that the Ets-binding factor ETS1 is critical for BRAF V600E -induced MAPK/ERK signaling-dependent TLR4 gene expression. Together, these data indicate that functional TLR4 overexpression in PTCs is a consequence of thyroid tumor-oncogenic driver dysregulation of MAPK/ERK/ETS1 signaling. Implications: Considering the participation of aberrant NF-κB signaling activation in the promotion of thyroid tumor growth and the association of high TLR4 expression with more aggressive tumors, this study suggests a prooncogenic potential of TLR4 downstream signaling in thyroid tumorigenesis. Mol Cancer Res; 16(5); 833-45. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Toll like receptor 4: A novel signaling pathway during renal fibrogenesis

    PubMed Central

    Campbell, Matthew T.; Hile, Karen L; Zhang, Hongji; Asanuma, Hiroshi; Vanderbrink, Brian A.; Rink, Richard R.; Meldrum, Kirstan K.

    2010-01-01

    Background The toll like receptor (TLR) family serves an important regulatory role in the innate immune system, and recent evidence has implicated TLR signaling in the pro-inflammatory response of a variety of endogenous and exogenous stimuli within the kidney. The role of TLR signaling in fibrotic renal injury; however, remains unknown. Materials and Methods C3H/HeJ TLR4 hyporesponsive mice (TLR4Lps-d) or WT controls (C3H/Heou/J) underwent either sham operation or 1 week of unilateral ureteral obstruction (UUO). The kidneys were harvested and tissues were analyzed for TLR4 expression (Western Blot; RTPCR), E-cadherin and α-SMA expression (Western Blot), fibroblast accumulation (fibroblast specific protein (FSP-1+) staining), renal fibrosis (collagen I RTPCR, total collagen assay, Masson's trichrome staining), cytokine gene expression (tumor necrosis factor-α (TNF-α) and transforming growth factor-beta1 (TGF-β1) RTPCR), and pSMAD2 and integrin α1 expression (Western Blot). Results Mice with intact TLR4 signaling demonstrate a significant increase in TLR4 expression, α-SMA expression, fibroblast accumulation, collagen deposition, and interstitial fibrosis, and a significant decrease in E-cadherin expression in response to UUO. TLR4 deficient mice; however, exhibit a significant reduction in obstruction-induced α-SMA expression, fibroblast accumulation, and renal fibrosis, with preservation of E-cadherin expression. TLR4's influence on fibroblast accumulation and renal fibrosis occurred independent of any alterations in TNF-α,TGF-β1, or pSMAD2 expression, but did involve alterations integrin α1 expression. Conclusion TLR4 appears to be a significant mediator of fibrotic renal injury. While TLR4 signaling is recognized as a critical component of the innate immune response, this is the first study to demonstrate a novel role for TLR4 in renal fibroblast accumulation and tubulointerstitial fibrosis. PMID:20089260

  11. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells.

    PubMed

    Sun, Ying; Shu, Rong; Li, Chao-Lun; Zhang, Ming-Zhu

    2010-10-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Toll-like receptors (TLRs), which could recognize microbial pathogens, are important components in the innate and adaptive immune systems. Both qualitatively and quantitatively distinct immune responses might result from different bacteria stimulation and the triggering of different TLRs. This study explores the interaction of Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) with TLR2 and TLR4. We studied the gene expression changes of TLR2 and TLR4 and cytokine production (interleukin-1β, -6, -8, -10, and tumor necrosis factor-alpha) in human periodontal ligament cells (HPDLCs) stimulated with heat-killed bacteria or P. gingivalis lipopolysaccharide (LPS) in the presence or absence of monoclonal antibodies to TLR2 or TLR4 (anti-TLR2/4 mAb). Both test bacteria and 10 microg/ml P. gingivalis LPS treatment increased the gene expression of TLR2 and TLR4 and cytokine production in HPDLCs. In addition, these upregulations could be blocked by anti-TLR2/4 mAb. However, the expression of TLR4 mRNA in HPDLCs stimulated with 1 microg/ml P. gingivalis LPS was not increased. No differences were found in the cytokine production caused by 1 microg/ml P. gingivalis LPS treatment in the presence or absence of anti-TLR4 mAb. These patterns of gene expression and cytokine production indicate that Gram-negative periodontal bacteria or their LPS might play a role in triggering TLR2 and/or TLR4, and be of importance for the immune responses in periodontitis.

  12. Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer.

    PubMed

    Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I; Reis, Henning; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2011-12-01

    The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Toll-like Receptor 4 Variant D299G Induces Features of Neoplastic Progression in Caco-2 Intestinal Cells and Is Associated With Advanced Human Colon Cancer

    PubMed Central

    Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I.; Reis, Henning; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke

    2012-01-01

    Background & Aims The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. Methods We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Results Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. Conclusions TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis. PMID:21920464

  14. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice.

    PubMed

    Wahid, Hanan H; Dorian, Camilla L; Chin, Peck Yin; Hutchinson, Mark R; Rice, Kenner C; Olson, David M; Moldenhauer, Lachlan M; Robertson, Sarah A

    2015-10-01

    An inflammatory response is instrumental in the physiological process of parturition but the upstream signals initiating inflammation are undefined. Because endogenous ligands for Toll-like receptor 4 (TLR4) are released in late gestation, we hypothesized that on-time labor requires TLR4 signaling, to trigger a cytokine and leukocyte response and accelerate the parturition cascade. In pregnant TLR4-deficient (Tlr4-/-) mice, average gestation length was extended by 13 hours and increased perinatal mortality was seen compared with wild-type controls. Quantification of cytokine and uterine activation gene expression showed that late gestation induction of Il1b, Il6, Il12b, and Tnf expression seen in control placenta and fetal membranes was disrupted in Tlr4-/- mice, and accompanied by a transient delay in expression of uterine activation genes, including prostaglandin F receptor, oxytocin receptor, and connexin-43. Leukocyte populations were altered before birth in TLR4-deficient females, with fewer neutrophils and macrophages in the placenta, and fewer dendritic cells and more regulatory T cells in the myometrium. Administration of TLR4 ligand lipopolysaccharide to pregnant wild-type mice induced cytokine expression and fetal loss, whereas Tlr4-/- pregnancies were protected. The small molecule TLR4 antagonist (+)-naloxone increased mean duration of gestation by 16 hours in wild-type mice. Collectively, these data demonstrate that TLR4 is a key upstream regulator of the inflammatory response acting to drive uterine activation and control the timing of labor. Because causal pathways for term and preterm labor converge with TLR4, interventions to manipulate TLR4 signaling may have therapeutic utility for women at risk of preterm labor, or in postterm pregnancy.

  15. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice

    PubMed Central

    Wahid, Hanan H.; Dorian, Camilla L.; Chin, Peck Yin; Hutchinson, Mark R.; Rice, Kenner C.; Olson, David M.; Moldenhauer, Lachlan M.

    2015-01-01

    An inflammatory response is instrumental in the physiological process of parturition but the upstream signals initiating inflammation are undefined. Because endogenous ligands for Toll-like receptor 4 (TLR4) are released in late gestation, we hypothesized that on-time labor requires TLR4 signaling, to trigger a cytokine and leukocyte response and accelerate the parturition cascade. In pregnant TLR4-deficient (Tlr4−/−) mice, average gestation length was extended by 13 hours and increased perinatal mortality was seen compared with wild-type controls. Quantification of cytokine and uterine activation gene expression showed that late gestation induction of Il1b, Il6, Il12b, and Tnf expression seen in control placenta and fetal membranes was disrupted in Tlr4−/− mice, and accompanied by a transient delay in expression of uterine activation genes, including prostaglandin F receptor, oxytocin receptor, and connexin-43. Leukocyte populations were altered before birth in TLR4-deficient females, with fewer neutrophils and macrophages in the placenta, and fewer dendritic cells and more regulatory T cells in the myometrium. Administration of TLR4 ligand lipopolysaccharide to pregnant wild-type mice induced cytokine expression and fetal loss, whereas Tlr4−/− pregnancies were protected. The small molecule TLR4 antagonist (+)-naloxone increased mean duration of gestation by 16 hours in wild-type mice. Collectively, these data demonstrate that TLR4 is a key upstream regulator of the inflammatory response acting to drive uterine activation and control the timing of labor. Because causal pathways for term and preterm labor converge with TLR4, interventions to manipulate TLR4 signaling may have therapeutic utility for women at risk of preterm labor, or in postterm pregnancy. PMID:26151355

  16. Transcript profiling of pattern recognition receptors in a semi domesticated breed of buffalo, Toda, of India.

    PubMed

    Vignesh, A R; Dhanasekaran, S; Raj, G Dhinakar; Balachandran, C; Pazhanivel, N; Sreekumar, C; Tirumurugaan, K G; Raja, A; Kumanan, K

    2012-06-15

    The primary objective of this study was to assess the expression profile and levels of toll-like receptor (TLR) mRNAs in the spleen, lung, mediastinal lymph node (MLN), jejunum, rectum, skin and peripheral blood mononuclear cells (PBMC) of Toda and Murrah buffalos. Spleen and PBMC had increased expression of TLR mRNAs 2, 4, 5, 6, 8, 9 and 10; lung had increased expression of TLR mRNAs 2, 4, 5, 6 and 8, MLN TLR mRNA 6, 9, 10 and decrease in TLR 3 and 7 mRNAs in skin. No significant differences were observed in the expression levels of any of the TLR mRNA in jejunum and rectum. Toda buffaloes showed significantly higher expression levels of TLR 9 mRNA in MLN, TLR mRNAs 1, 5, 6, 9 and 10 in skin and TLR mRNAs 2, 4, 7 and 9 in PBMC than Murrah buffaloes living in the vicinity. Toda and Murrah buffaloes were inoculated with TLR5 (flagellin) and TLR9 (CpG ODN) ligands in vivo and expression levels of the respective TLRs analyzed 12h later. Following CpG inoculation, Toda buffaloes had significantly higher levels of TLR 9 mRNA expression but not in Murrah. However, flagellin induction did not increase TLR 5 mRNA expression in both these breeds. Histological sections of the skin were made and infiltrating cell clusters were graded and quantified. Following CpG inoculation, Toda buffaloes showed higher numbers of infiltrating grade 1 and grade 3 cell clusters while Murrah showed lower numbers of infiltrating grade 1 cells as compared to mock-inoculated skin sections. Flagellin treatment revealed no significant differences in infiltrating cell clusters in both the breeds. The results have shown differential expression of TLR mRNAs in various tissues between two divergent buffalo breeds with the highest difference in TLR expression profile seen in the skin, the largest portal of entry of pathogens, of Toda. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. TLR4 Signaling via NANOG Cooperates With STAT3 to Activate Twist1 and Promote Formation of Tumor-initiating Stem-like Cells in Livers of Mice

    PubMed Central

    Kumar, Dinesh Babu Uthaya; Chen, Chia-Lin; Liu, Jian-Chang; Feldman, Douglas E.; Sher, Linda S.; French, Samuel; DiNorcia, Joseph; French, Samuel W.; Naini, Bita V.; Junrungsee, Sunhawit; Agopian, Vatche Garen; Zarrinpar, Ali; Machida, Keigo

    2015-01-01

    BACKGROUND & AIMS Obesity and alcohol consumption contribute to steatohepatitis, which increases risk for hepatitis C virus (HCV)-associated hepatocellular carcinomas (HCCs). Mice Hepatocytes that express HCV-NS5A in liver upregulate expression of Toll-like receptor-4 (TLR4), and develop liver tumors containing tumor-initiating stem-like cells (TICs) that express NANOG. We investigated whether the TLR4 signals to NANOG to promote development of TICs and tumorigenesis in mice placed on Western diet high in cholesterol and saturated fat (HCFD). METHODS We expressed HCV-NS5A from a transgene (NS5A Tg) in Tlr4−/− (C57Bl6/10ScN), and wild type control mice. Mice were fed a HCFD for 12 months. TICs were identified and isolated based on being CD133+, CD49f+, and CD45-. We obtained 142 paraffin-embedded sections of different stage HCCs and adjacent non-tumor areas from the same patients, and performed gene expression, immunofluorescence, and immunohistochemical analyses. RESULTS A higher proportion of NS5A Tg mice developed liver tumors (39%) than mice that did not express HCV NS5A following the HCFD (6%); only 9% of Tlr4−/− NS5A Tg mice fed HCFD developed liver tumors. Livers from NS5A Tg mice fed the HCFD had increased levels of TLR4, NANOG, pSTAT3, and TWIST1 proteins, and increases in Tlr4, Nanog, Stat3, and Twist1 mRNAs. In TICs from NS5A Tg mice. NANOG and pSTAT3 directly interacts to activate expression of Twist1. Levels of TLR4, NANOG, pSTAT3, and TWIST were increased in HCC compared with non-tumor tissues from patients. CONCLUSIONS HCFD and HCV-NS5A together stimulated TLR4-NANOG and the OB-R-pSTAT3 signaling pathways resulting in liver tumorigenesis through an exaggerated mesenchymal phenotype with prominent Twist1-expressing TICs. PMID:26582088

  18. Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells.

    PubMed

    Hsiao, Chih-Cheng; Chen, Po-Han; Cheng, Cheng-I; Tsai, Ming-Shian; Chang, Chih-Yang; Lu, Shang-Chieh; Hsieh, Ming-Chu; Lin, Yu-Chun; Lee, Po-Huang; Kao, Ying-Hsien

    2015-11-01

    Toll-like receptor-4 (TLR4) is known to influence growth and migration of hepatocellular tumors; however, its role in hepatoblastoma remains poorly understood. This study investigated the regulatory role of TLR4 in proliferation and chemoresistance of HepG2 hepatoblastoma cells. Treatment with lipopolysaccharide (LPS), a TLR4 agonist, was found to significantly upregulate TLR4 expression in HepG2 cells, but not in malignant Huh-7 and Sk-Hep1 hepatocellular carcinoma cells. Additionally, IL-6 enhanced LPS-induced TLR4 upregulation. LPS-stimulated TLR4 activation increased proliferation, nitric oxide synthase (NOS) expression, and NO production in HepG2 cells. Chemotherapeutic agents, cisplatin and doxorubicin, effectively inhibited TLR4 expression in HepG2 cells. Characterization of LPS-induced signaling activation and blockade with kinase inhibitors revealed the involvement of Akt and MAPK pathways in LPS-enhanced NO release from, and proliferation of HepG2 cells. Mechanistically, gene modifications as a result of TLR4 transfection and siRNA-mediated knockdown further demonstrated a crucial role for TLR4 in the regulation of NOS expression, cell proliferation, and chemoresistance in HepG2 cells. These findings suggest that targeting TLR4 expression and its cognate signaling may modulate proliferation and chemosensitivity in hepatoblastoma cells and serve as a potential therapeutic target. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide

    PubMed Central

    Nanchal, Rahul; Audi, Said; Konduri, G. Ganesh; Medhora, Meetha

    2013-01-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo. PMID:24618542

  20. Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens

    PubMed Central

    Zhao, Guiping; Zheng, Maiqing; Li, Peng; Wang, Huihua; Zhu, Yun; Chen, Jilan; Wen, Jie

    2012-01-01

    Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1. PMID:22438967

  1. NOD2 Modulates Serotonin Transporter and Interacts with TLR2 and TLR4 in Intestinal Epithelial Cells.

    PubMed

    Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Castro, Marta; Arias, Maykel A; Alcalde, Ana I; Mesonero, José Emilio

    2018-06-15

    Serotonin (5-HT) is a chief modulator of intestinal activity. The effects of 5-HT depend on its extracellular availability, which is mainly controlled by serotonin transporter (SERT), expressed in enterocytes. On the other hand, innate immunity, mediated by Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), is known to control intestinal microbiota and maintain intestinal homeostasis. The dysregulation of the intestinal serotonergic system and innate immunity has been observed in inflammatory bowel diseases (IBD), the incidence of which has severely increased all over the world. The aim of the present study, therefore, was to analyze the effect of NOD2 on intestinal SERT activity and expression, as well as to study the crosstalk of NOD2 with TLR2 and TLR4. Intestinal epithelial cell line Caco-2/TC7 was used to analyze SERT activity and SERT, NOD2, TLR2 and TLR4 molecular expression by real-time PCR and western blotting. Moreover, intestinal tract (ileum and colon) from mice deficient in TLR2, TLR4 or TLR2/4 receptors was used to test the interdependence of NOD2 with these TLR receptors. NOD2 activation inhibits SERT activity in Caco-2/TC7 cells, mainly due to the decrement of SERT molecular expression, with RIP2/RICK being the intracellular pathway involved in this effect. This inhibitory effect on SERT would yield an increment of extracellular 5-HT availability. In this sense, 5-HT strongly inhibits NOD2 expression. In addition, NOD2 showed greater interdependence with TLR2 than with TLR4. Indeed, NOD2 expression significantly increased in both cells treated with TLR2 agonists and the intestinal tract of Tlr2-/- mice. It may be inferred from our data that NOD2 could play a role in intestinal pathophysiology not only through its inherent innate immune role but also due to its interaction with other receptors as TLR2 and the modulation of the intestinal serotonergic system decreasing SERT activity and expression. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Toll-Like Receptor 4 Mediates Methamphetamine-Induced Neuroinflammation through Caspase-11 Signaling Pathway in Astrocytes

    PubMed Central

    Du, Si-Hao; Qiao, Dong-Fang; Chen, Chuan-Xiang; Chen, Si; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing

    2017-01-01

    Methamphetamine (METH) is an amphetamine-typed stimulant drug that is increasingly being abused worldwide. Previous studies have shown that METH toxicity is systemic, especially targeting dopaminergic neurons in the central nervous system (CNS). However, the role of neuroinflammation in METH neurotoxicity remains unclear. We hypothesized that Toll-like receptor 4 (TLR4) and Caspase-11 are involved in METH-induced astrocyte-related neuroinflammation. We tested our hypothesis by examining the changes of TLR4 and Caspase-11 protein expression in primary cultured C57BL/6 mouse astrocytes and in the midbrain and striatum of mice exposed to METH with western blot and double immunofluorescence labeling. We also determined the effects of blocking Caspase-11 expression with wedelolactone (a specific inhibitor of Caspase-11) or siRNA on METH-induced neuroinflammation in astrocytes. Furthermore, we determined the effects of blocking TLR4 expression with TAK-242 (a specific inhibitor of TLR4) or siRNA on METH-induced neuroinflammation in astrocytes. METH exposure increased Caspase-11 and TLR4 expression both in vitro and in vivo, with the effects in vitro being dose-dependent. Inhibition of Caspase-11 expression with either wedelolactone or siRNAs reduced the expression of inflammasome NLRP3 and pro-inflammatory cytokines. In addition, blocking TLR4 expression inhibited METH-induced activation of NF-κB and Caspase-11 in vitro and in vivo, suggesting that TLR4-Caspase-11 pathway is involved in METH-induced neuroinflammation. These results indicate that Caspase-11 and TLR4 play an important role in METH-induced neuroinflammation and may be potential gene targets for therapeutics in METH-caused neurotoxicity. PMID:29311802

  3. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophsmore » taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K-Akt and NF-κB signaling pathways. - Highlights: • In hyperplastic pituitaries, LPS triggered the lactotroph cell proliferation and IL-6 release. • Functional Toll-like receptor 4 (TLR4) is expressed at the plasma membrane of tumoral lactotrophs. • Increases in TLR4 and CD14 intracellular expression levels were detected after an LPS challenge. • The proliferative stimulation and IL-6 release involved the PI3K-Akt pathway and NF-κB activation. • 17β-estradiol attenuated the LPS-evoked tumoral lactotroph proliferation and IL-6 secretion.« less

  4. Blood-stage malaria of Plasmodium chabaudi induces differential Tlr expression in the liver of susceptible and vaccination-protected Balb/c mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Alomar, Suliman; Abdel-Baki, Abdel Azeem S; Delic, Denis; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2016-05-01

    Protective vaccination induces self-healing of otherwise lethal blood-stage infections of Plasmodium chabaudi malaria. Here, we investigate mRNA expression patterns of all 12 members of the Toll-like receptor (Tlr) gene family in the liver, a major effector organ against blood-stage malaria, during lethal and vaccination-induced self-healing infections of P. chabaudi in female Balb/c mice. Gene expression microarrays reveal that all 12 Tlr genes are constitutively expressed, though at varying levels, and specifically respond to infection. Protective vaccination does not affect constitutive expression of any of the 12 Tlr genes but leads to differential expression (p < 0.05) of seven Tlrs (1, 2, 4, 7, 8, 12, and 13) in response to malaria. Quantitative PCR substantiates differential expression at p < 0.01. There is an increased expression of Tlr2 by approximately five-fold on day 1 post-infection (p.i.) and Tlr1 by approximately threefold on day 4 p.i.. At peak parasitemia on day 8 p.i., none of the 12 Tlrs display any differential expression. After peak parasitemia, towards the end of the crisis phase on day 11 p.i., expression of Tlrs 1, 4, and 12 is increased by approximately four-, two-, and three-fold, respectively, and that of Tlr7 is decreased by approximately two-fold. Collectively, our data suggest that though all 12 members of the Tlr gene family are specifically responsive to malaria in the liver, not only Tlr2 at the early stage of infection but also the Tlrs 1, 4, 7, and 12 towards the end of crisis phase are critical for vaccination-induced resolution and survival of otherwise lethal blood-stage malaria.

  5. Boxb mediate BALB/c mice corneal inflammation through a TLR4/MyD88-dependent signaling pathway in Aspergillus fumigatus keratitis.

    PubMed

    Liu, Min; Li, Cui; Zhao, Gui-Qiu; Lin, Jing; Che, Cheng-Ye; Xu, Qiang; Wang, Qian; Xu, Rui; Niu, Ya-Wen

    2018-01-01

    To investigate whether high-mobility group box 1 (HMGB1) Boxb exacerbates BALB/c mice corneal immune responses and inflammatory through the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)-dependent signaling pathway in Aspergillus fumigatus ( A. fumigatus ) keratitis. The mice corneas were pretreated with phosphate buffer saline (PBS), Boxb before A. fumigatus infection. The abdominal cavity extracted macrophages were pretreated with PBS, Boxb, TLR4 inhibitor (CLI-095), Dimethyl sulfoxide (DMSO) separately before A. fumigatus hyphae stimulation. HMGB1 was detected in normal and infected mice corneas and macrophages by real-time reverse transcriptase polymerase chain reaction (RT-PCR), the TLR4, MyD88, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) were detected by Western blot and PCR. In BALB/c mice corneas, the expressions of TLR4, HMGB1, IL-1β, TNF-α were increased after A. fumigatus infection. While pretreatment with Boxb significantly increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α compared with PBS control after infection. In BALB/c mice abdominal cavity extracted macrophages, pretreatment with Boxb increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α, while pretreatment with CLI-095 and Boxb significantly decreased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α. In A. fumigatus keratitis, Boxb play a pro-inflammatory role in corneal anti-fungi immune response through the HMGB1-TLR4-MyD88 signal pathway.

  6. The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease.

    PubMed

    Mariucci, Giuseppina; Pagiotti, Rita; Galli, Francesco; Romani, Luigina; Conte, Carmela

    2018-04-01

    Toll-like receptors (TLRs) may have a role in Parkinson's disease (PD). In this study, we aimed at investigating the dopaminergic cell loss and alpha-synuclein (α-SYN) expression in TLR4-deficient mice (TLR4 -/- ) acutely exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a pharmacological PD model. TLR4 ablation restrained the number of dopaminergic neurons in the substantia nigra (SN), as assessed by tyrosine hydroxylase (TH) protein expression. Intriguingly, TLR4 -/- mice showed massive α-SYN protein accumulation in the midbrain along with high α-SYN mRNA levels in cerebral cortex, striatum, hippocampus, and cerebellum. Contrary to expectations, the high levels of α-SYN do not correlate with greater dopaminergic neuronal loss. The levels of nigral α-SYN protein in TLR4 -/- mice further, but not significantly, increased during MPTP treatment. Contrariwise, MPTP treatment significantly induced the mRNA expression of α-SYN in examined brain regions of WT and TLR4 -/- mice. Protein levels of GATA2, a transcription factor proposed to control α-SYN gene expression, did not change in TLR4 -/- mice at baseline and after MPTP treatment. These findings suggest a role for TLR4 in mediating dopaminergic cell loss and in the constitutive expression of brain α-SYN. However, further exploration is needed in order to establish the actual role of α-SYN in the relative absence of TLR4.

  7. LPS enhances TLR4 expression and IFN‑γ production via the TLR4/IRAK/NF‑κB signaling pathway in rat pulmonary arterial smooth muscle cells.

    PubMed

    Wang, Pengyan; Han, Xuhui; Mo, Biwen; Huang, Guojin; Wang, Changming

    2017-09-01

    The aim of the present study was to investigate the role of the Toll‑like receptor (TLR)4 signaling pathway in cellular response to lipopolysaccharide (LPS) in rat pulmonary artery smooth muscle cells (PASMCs). Chronic obstructive pulmonary disease (COPD) rats were established with passive inhaling cigarette smoke plus injection of LPS. The TLR4 protein in lung tissues was determined with immunohistochemical staining and protein levels of the components of the TLR4 pathway in PASMCs were analyzed with western blotting. The production of interferon (IFN)‑γ upon LPS stimulation in PASMCs was measured with ELISA. TLR4 expression in lung tissue from COPD rats was increased obviously compared with that in normal group. LPS enhances TLR4 expression in rat PASMCs and induced production of IFN‑γ dramatically. LPS treatment resulted in increased phosphor‑interleukin‑1 receptor‑associated kinase (IRAK), IκB and IκB kinase, as well as the total protein of nuclear factor (NF)‑κB p65. TLR4 inhibitor TAK‑242, IRAK1/4 inhibitor and NF‑κB inhibitor Bay 117082 were capable of suppressing the effects of LPS. TLR4 signaling pathway is functional in PASMCs, and may be involved in the inflammatory response during the pathogenesis of COPD.

  8. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis

    PubMed Central

    2016-01-01

    Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease. PMID:27795867

  9. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke.

    PubMed

    Bruno, A; Cipollina, C; Di Vincenzo, S; Siena, L; Dino, P; Di Gaudio, F; Gjomarkaj, M; Pace, E

    2017-09-05

    Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Altered Toll-like receptor expression and function in HPV-associated oropharyngeal carcinoma

    PubMed Central

    Tobouti, Priscila Lie; Bolt, Robert; Radhakrishnan, Raghu; de Sousa, Suzana Cantanhede Orsini Machado; Hunter, Keith D.

    2018-01-01

    Toll-like receptors (TLRs) have been widely investigated due to their importance in the inflammatory response and possible links to tumor promotion/regression and prognosis. In cancers with an infective etiology, such as human papillomavirus (HPV)-associated Oropharyngeal Squamous Cell Carcinoma (OPSCC), TLR responses may be activated and play a role in tumorigenesis. Our aim was to assess the expression of all TLRs in OPSCC cell lines (both HPV+ and HPV–) by qPCR, Western Blot and flow cytometry and assess their response to TLR ligands lipopolysaccharide (LPS), LPS ultra-pure (LPS-UP) and peptidoglycan (PGN) by analyzing IL-8 and IL-6 production. We also immunostained 61 OPSCC tissue samples with anti-TLR4. Results showed lower TLR1 and TLR6 mRNA expression and higher TLR9 protein expression in HPV+ when compared to HPV–OPSCC cells. TLR4 expression did not vary by HPV status in OPSCC cells, but TLR4 expression was significantly lower in HPV+OPSCC tissues. After stimulation with PGN, only one cell line (HPV+) did not secrete IL-6 or IL-8. Furthermore, HPV+OPSCC lines showed no IL-6 or IL-8 production on treatment with LPS/LPS-UP. The data suggest changes in TLR4 signaling in HPV+OPSCC, since we have shown lower tissue expression of TLR4 and no pro-inflammatory response after stimulation with LPS and LPS-UP. Also, it suggests that OPSCC may respond to HPV infection by increased expression of TLR9. This study demonstrates differences in expression and function of TLRs in OPSCC, which are dependent on HPV status, and may indicate subversion of the innate immune response by HPV infection. PMID:29416610

  11. Demodex canis targets TLRs to evade host immunity and induce canine demodicosis.

    PubMed

    Kumari, P; Nigam, R; Choudhury, S; Singh, S K; Yadav, B; Kumar, D; Garg, S K

    2018-03-01

    Widespread incidence of Demodex mites throughout the mammalian class and occasional serious and fatal outcomes in dogs warrant an insight into the host-parasite interface especially. Therefore, this study was aimed to unravel the interplay between innate immune response and canine demodicosis. The dogs diagnosed to have natural clinical demodicosis were allocated into two groups; dogs with localized demodicosis (LD) and with generalized demodicosis (GD). The expression of toll-like receptors (TLRs) 2, 4 and 6 genes in peripheral blood mononuclear cells of these dogs was quantified by real-time PCR. Significantly increased TLR2 gene expression, while significantly diminished TLR4 and TLR6 gene expressions were observed in demodicosed dogs (LD and GD) as compared with the healthy ones. Even the expression of TLR2 gene was found to differ significantly between the dogs with LD and GD. Therefore, it can be inferred that clinical demodicosis in dogs is coupled with an up-regulation of TLR2 and down-regulation of TLR4 and TLR6 gene expressions. Overexpression of TLR2 gene might be responsible for Demodex-induced clinical manifestations, while TLR4 and TLR6 gene down-regulations could be the paramount strategy of Demodex mites to elude the host-immune interface. © 2017 John Wiley & Sons Ltd.

  12. Sex-specific signaling through Toll-Like Receptors 2 and 4 contributes to survival outcome of Coxsackievirus B3 infection in C57Bl/6 mice

    PubMed Central

    2012-01-01

    Background Coxsackievirus B3 (CVB3) induces myocarditis, an inflammatory heart disease, which affects men more than women. Toll-like receptor (TLR) signaling has been shown to determine the severity of CVB3-induced myocarditis. No direct role for signaling through TLR2 had been shown in myocarditis although published studies show that cardiac myosin is an endogenous TLR2 ligand and stimulates pro-inflammatory cytokine expression by dendritic cells in vitro. The goal of this study is to determine which TLRs show differential expression in CVB3 infected mice corresponding to male susceptibility and female resistance in this disease. Methods Male and female C57Bl/6 mice were infected with 102 PFU CVB3 and killed on day 3 or 6 post infection. Hearts were evaluated for virus titer, myocardial inflammation, and TLR mRNA expression by PCR array and microarray analysis. Splenic lymphocytes only were evaluated by flow cytometry for the number of TLR+/CD3+, TLR+/CD4+, TLR+F4/80+ and TLR+/CD11c+ subpopulations and the mean fluorescence intensity to assess upregulation of TLR expression on these cells. Mice were additionally treated with PAM3CSK4 (TLR2 agonist) or ultrapure LPS (TLR4 agonist) on the same day as CVB3 infection or 3 days post infection to confirm their role in myocarditis susceptibility. Results Despite equivalent viral titers, male C57Bl/6 mice develop more severe myocarditis than females by day 6 after infection. Microarray analysis shows a differential expression of TLR2 at day 3 with female mice having higher levels of TLR2 gene expression compared to males. Disease severity correlates to greater TLR4 protein expression on splenic lymphocytes in male mice 3 days after infection while resistance in females correlates to preferential TLR2 expression, especially in spleen lymphocytes. Treating male mice with PAM reduced mortality from 55% in control CVB3 infected animals to 10%. Treating female mice with LPS increased mortality from 0% in control infected animals to 60%. Conclusion CVB3 infection causes an up-regulation of TLR2 in female and of TLR4 in male mice and this differential expression between the sexes contributes to disease resistance of females and susceptibility of males. While previous reports demonstrated a pathogenic role for TLR4 this is the first report that TLR2 is preferentially up-regulated in CVB3 infected female mice or that signaling through this TLR directly causes myocarditis resistance. PMID:23241283

  13. Melanocytes and melanin represent a first line of innate immunity against Candida albicans.

    PubMed

    Tapia, Cecilia V; Falconer, Maryanne; Tempio, Fabián; Falcón, Felipe; López, Mercedes; Fuentes, Marisol; Alburquenque, Claudio; Amaro, José; Bucarey, Sergio A; Di Nardo, Anna

    2014-07-01

    Melanocytes are dendritic cells located in the skin and mucosae that synthesize melanin. Some infections induce hypo- or hyperpigmentation, which is associated with the activation of Toll-like receptors (TLRs), especially TLR4. Candida albicans is an opportunist pathogen that can switch between blastoconidia and hyphae forms; the latter is associated with invasion. Our objectives in this study were to ascertain whether C. albicans induces pigmentation in melanocytes and whether this process is dependent on TLR activation, as well as relating this with the antifungal activity of melanin as a first line of innate immunity against fungal infections. Normal human melanocytes were stimulated with C. albicans supernatants or with crude extracts of the blastoconidia or hyphae forms, and pigmentation and TLR2/TLR4 expression were measured. Expression of the melanosomal antigens Melan-A and gp100 was examined for any correlation with increased melanin levels or antifungal activity in melanocyte lysates. Melanosomal antigens were induced earlier than cell pigmentation, and hyphae induced stronger melanization than blastoconidia. Notably, when melanocytes were stimulated with crude extracts of C. albicans, the cell surface expression of TLR2/TLR4 began at 48 h post-stimulation and peaked at 72 h. At this time, blastoconidia induced both TLR2 and TLR4 expression, whereas hyphae only induced TLR4 expression. Taken together, these results suggest that melanocytes play a key role in innate immune responses against C. albicans infections by recognizing pathogenic forms of C. albicans via TLR4, resulting in increased melanin content and inhibition of infection. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype.

    PubMed

    Rosciszewski, Gerardo; Cadena, Vanesa; Murta, Veronica; Lukin, Jeronimo; Villarreal, Alejandro; Roger, Thierry; Ramos, Alberto Javier

    2018-05-01

    Astrocytes react to brain injury with a generic response known as reactive gliosis, which involves activation of multiple intracellular pathways including several that may be beneficial for neuronal survival. However, by unknown mechanisms, reactive astrocytes can polarize into a proinflammatory phenotype that induces neurodegeneration. In order to study reactive gliosis and astroglial polarization into a proinflammatory phenotype, we used cortical devascularization-induced brain ischemia in Wistar rats and primary astroglial cell cultures exposed to oxygen-glucose deprivation (OGD). We analyzed the profile of TLR4 expression and the consequences of its activation by gain- and loss-of-function studies, and the effects produced by the activation of triggering receptor expressed on myeloid cells-2 (TREM-2), a negative regulator of TLR4 signaling. Both OGD exposure on primary astroglial cell cultures and cortical devascularization brain ischemia in rats induced TLR4 expression in astrocytes. In vivo, astroglial TLR4 expression was specifically observed in the ischemic penumbra surrounding necrotic core. Functional studies showed that OGD increased the astroglial response to the TLR4 agonist lipopolysaccharide (LPS), and conversely, TLR4 knockout primary astrocytes had impaired nuclear factor kappa-B (NF-κB) activation when exposed to LPS. In gain-of-function studies, plasmid-mediated TLR4 over-expression exacerbated astroglial response to LPS as shown by sustained NF-κB activation and increased expression of proinflammatory cytokines IL-1β and TNFα. TREM-2 expression, although present in naïve primary astrocytes, was induced by OGD, LPS, or high-mobility group box 1 protein (HMGB-1) exposure. TREM-2 activation by antibody cross-linking or the overexpression of TREM-2 intracellular adaptor, DAP12, partially suppressed LPS-induced NF-κB activation in purified astrocytic cultures. In vivo, TREM-2 expression was observed in macrophages and astrocytes located in the ischemic penumbra. While TREM-2+ macrophages were abundant at 3 days post-lesion (DPL) in the ischemic core, TREM-2+ astrocytes persisted in the penumbra until 14DPL. This study demonstrates that TLR4 expression increases astroglial sensitivity to ligands facilitating astrocyte conversion towards a proinflammatory phenotype, and that astroglial TREM-2 modulates this response reducing the downstream NF-κB activation. Therefore, the availability of TLR4 and TREM-2 ligands in the ischemic environment may control proinflammatory astroglial conversion to the neurodegenerative phenotype.

  15. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I.

    PubMed

    Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu

    2016-12-01

    To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all P<0.05). After IFN-γ treatment, the expressions of TLR4, HMGB1, MHC-I, TNF-α and IL-6 in PBMCs significantly increased (all P<0.05). The treatment of anti-TLR4, anti-HMGB1 and anti-MHC-I could significantly downregulate the expression of MHC-I (all P<0.05). In addition, anti-TLR4 and anti-HMGB1 significantly reduced the expression of TNF-α and IL-6 (all P<0.05). The TLR4-HMGB1 signaling pathway affects the process of autoimmune myositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons.

    PubMed

    Calvo-Rodríguez, María; de la Fuente, Carmen; García-Durillo, Mónica; García-Rodríguez, Carmen; Villalobos, Carlos; Núñez, Lucía

    2017-01-31

    Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer's disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca 2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Ca 2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca 2+ ] and on apoptosis as well as on expression of TLR4. LPS increases cytosolic [Ca 2+ ] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca 2+ responses and neuron cell death. Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer's disease, enhance TLR4 expression as well as LPS-induced Ca 2+ responses and neuron cell death in rat hippocampal neurons aged in vitro.

  17. TLR-4 polymorphisms and leukocyte TLR-4 expression in febrile UTI and renal scarring.

    PubMed

    Bayram, Meral Torun; Soylu, Alper; Ateş, Halil; Kızıldağ, Sefa; Kavukçu, Salih

    2013-09-01

    In this study, we aimed to determine the relation of TLR-4 Asp299Gly and Thr399Ile polymorphisms and monocyte/neutrophil TLR-4 expression to febrile urinary tract infection (UTI) and renal scar development in children. The study was performed in children with a history of febrile UTI. Patients with and without renal scarring were classified as group 1 and group 2, respectively, while the control cases in our previous study were used as the control group (group 3). All three groups were compared for the rate of TLR-4 Asp299Gly and Thr399Ile polymorphisms, and for basal and lipopolysaccharide-stimulated monocyte/neutrophil TLR-4 expression levels. There were 168 patients (86 in group 1, 82 in group 2) and 120 control cases. Monocyte/neutrophil TLR-4 expression levels were similar in groups 1 and 2. However, both groups had lower TLR-4 expression than group 3. The rate of TLR-4 Asp299Gly polymorphism was not different in all groups. TLR-4 Thr399Ile polymorphism was higher in groups 1 and 2 than in group 3 (14.0, 12.2, and 2.0 %, respectively), while group 1 and group 2 were not different. Furthermore, monocyte TLR-4 expression level was lower in those having TLR-4 Thr399Ile polymorphism than in those without this polymorphism. Patients with febrile UTI had more frequent TLR-4 Thr399Ile polymorphism and lower monocyte/neutrophil TLR-4 expression. These findings indicate that children carrying TLR-4 Thr399Ile polymorphism and/or having low level of monocyte/neutrophil TLR-4 expression have a tendency to develop febrile UTI. However, we could not show the association of TLR-4 polymorphisms and of TLR-4 expression level to renal scarring.

  18. Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: an in vivo and in vitro study.

    PubMed

    Ju, X-H; Xu, H-J; Yong, Y-H; An, L-L; Jiao, P-R; Liao, M

    2014-09-01

    Global warming is a challenge to animal health, because of increased heat stress, with subsequent induction of immunosuppression and increased susceptibility to disease. Toll-like receptors (TLR) are pattern recognition receptors that act as sentinels of pathogen invasion and tissue damage. Ligation of TLRs results in a signaling cascade and production of inflammatory cytokines, which eradicate pathogens and maintain the health of the host. We hypothesized that the TLR signaling pathway plays a role in immunosuppression in heat-stressed pigs. We explored the changes in the expression of TLR2, TLR4 and the concentration of acute inflammatory cytokines, such as IL-2, IL-8, IL-12 and IFN-γ in Bama miniature pigs subjected to 21 consecutive days of heat stress, both in vitro and in vivo models. The results showed that heat stress induced the upregulation of cortisol in the plasma of pigs (P<0.05); TLR4 mRNA was elevated, but IL-2 was reduced in peripheral blood mononuclear cells (PBMC, P<0.05). The white blood cell count and the percentage of granulocytes (eosinophilic+basophilic) decreased significantly in heat-stressed pigs (P<0.05). In the in vitro model (PBMC heat shocked for 1 h followed by a 9 h recovery period), TLR2 and TLR4 mRNA expression also increased, as did the concentration of IL-12 in supernatants. However, IFN-γ was significantly reduced in PBMC culture supernatants (P<0.05). We concluded that a consecutive heat stress period elevated the expression of TLR2 and TLR4 in PBMC and increased the plasma levels of inflammatory cytokines. These data indicate that TLR activation and dysregulation of cytokine expression in response to prolonged heat stress may be associated with immunosuppression and increased susceptibility to antigenic challenge in Bama miniature pigs.

  19. Effects of RNA interference-mediated silencing of toll-like receptor 4 gene on proliferation and apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells: An in vitro study.

    PubMed

    Gao, Xiao-Ling; Yang, Jiao-Jiao; Wang, Shu-Juan; Chen, Yan; Wang, Bei; Cheng, Er-Jing; Gong, Jian-Nan; Dong, Yan-Ting; Liu, Dai; Wang, Xiang-Li; Huang, Ya-Qiong; An, Dong-Dong

    2018-06-22

    Breast cancer is known as the most prevalent cancer in women worldwide, and has an undeniable negative impact on public health, both physically, and mentally. This study aims to investigate the effects of toll-like receptor 4 (TLR4) gene silencing on proliferation and apoptosis of human breast cancer cells to explore for a new theoretical basis for its treatment. TLR4 small interference RNA (siRNA) fragment recombinant plasmids were constructed, including TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3. Human breast cancer MCF-7 and MDA-MB-231 cells were assigned into blank, negative control (NC), TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3 groups. MCF-7 and MDA-MB-231 cell growth was detected by MTT assay. Apoptosis and cell cycle were determined by flow cytometry. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were conducted to determine the expression of TLR4, CDK4, cyclin D1, Livin, Bcl-2, p53, c-FLIP, and caspase-3. In comparison with the NC and blank groups, the TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3 groups showed decreased the expression of TLR4, inhibited proliferation of MCF-7 and MDA-MB-231 cells and promoted MCF-7 and MDA-MB-231 cell apoptosis, and the cells were blocked in G1 phase. In comparison with the NC and blank groups, in the TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3 groups, siRNA-TLR4 significantly increased expression of p53 and caspase-3 in MCF-7 and MDA-MB-231 cells, while it decreased the expressions of CDK4, cyclinD1, Livin, Bal-2, and c-FLIP. The study demonstrates that TLR4 gene silencing inhibits proliferation and induces apoptosis of MCF-7 and MDA-MB-231 cells. © 2018 Wiley Periodicals, Inc.

  20. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    PubMed

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism may be a new and novel approach for the treatment and management of neuroinflammation in long-term mechanically ventilated patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingbing, E-mail: wangxingbing91@hotmail.com; Cheng, Qiansong; Li, Lailing

    Bone marrow derived-mesenchymal stromal cells (BM-MSCs) are multipotent, nonhematopoietic progenitors in a hematopoietic microenvironment and indispensable for regulating hematopoiesis. Several studies have reported that toll-like receptors (TLRs) are expressed in mesenchymal stromal cells (MSCs) to modulate their biological functions. In this study, we investigated the possible role(s) of TLRs in mediating the hematopoiesis-supporting role of human BM-MSCs. Human BM-MSCs were analyzed for mRNA expression of TLR1-10 by reverse transcription-polymerase chain reaction. TLR1-6, but not TLR7-10 were expressed by BM-MSCs. The protein expression of TLR2 and TLR4 was also confirmed by flow cytometry. We further explored the role of TLR2 andmore » TLR4 in mediating the capacity of BM-MSCs to support the proliferation and differentiation of CD34{sup +} hematopoietic stem/progenitor cells obtained from cord blood. BM-MSCs increased proliferation of CD34{sup +} cells and promoted the differentiation towards the myeloid lineage 7 or 14 days after co-culture, as well as colony formation by those cells and the production of interleukin 1 (IL-1), IL-8, IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF, if MSCs had been stimulated with TLR2 agonist (PAM{sub 3}CSK{sub 4}) or TLR4 agonist (LPS). Interestingly, although these effects were elevated in a different degree, a synergistic effect was not observed in BM-MSCs co-stimulated with PAM{sub 3}CSK{sub 4} and LPS. Together, our findings suggest that TLR2 and TLR4 signaling may indirectly regulate hematopoiesis by modulating BM-MSCs' functions. The increased hematopoietic proliferation and differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production of BM-MSCs.« less

  2. Ozone Enhances Pulmonary Innate Immune Response to a Toll-Like Receptor–2 Agonist

    PubMed Central

    Oakes, Judy L.; O’Connor, Brian P.; Warg, Laura A.; Burton, Rachel; Hock, Ashley; Loader, Joan; LaFlamme, Daniel; Jing, Jian; Hui, Lucy; Schwartz, David A.

    2013-01-01

    Previous work demonstrated that pre-exposure to ozone primes innate immunity and increases Toll-like receptor–4 (TLR4)–mediated responses to subsequent stimulation with LPS. To explore the pulmonary innate immune response to ozone exposure further, we investigated the effects of ozone in combination with Pam3CYS, a synthetic TLR2/TLR1 agonist. Whole-lung lavage (WLL) and lung tissue were harvested from C57BL/6 mice after exposure to ozone or filtered air, followed by saline or Pam3CYS 24 hours later. Cells and cytokines in the WLL, the surface expression of TLRs on macrophages, and lung RNA genomic expression profiles were examined. We demonstrated an increased WLL cell influx, increased IL-6 and chemokine KC (Cxcl1), and decreased macrophage inflammatory protein (MIP)-1α and TNF-α in response to Pam3CYS as a result of ozone pre-exposure. We also observed the increased cell surface expression of TLR4, TLR2, and TLR1 on macrophages as a result of ozone alone or in combination with Pam3CYS. Gene expression analysis of lung tissue revealed a significant increase in the expression of genes related to injury repair and the cell cycle as a result of ozone alone or in combination with Pam3CYS. Our results extend previous findings with ozone/LPS to other TLR ligands, and suggest that the ozone priming of innate immunity is a general mechanism. Gene expression profiling of lung tissue identified transcriptional networks and genes that contribute to the priming of innate immunity at the molecular level. PMID:23002100

  3. Divergent expression of bacterial wall sensing Toll-like receptors 2 and 4 in colorectal cancer.

    PubMed

    Paarnio, Karoliina; Väyrynen, Sara; Klintrup, Kai; Ohtonen, Pasi; Mäkinen, Markus J; Mäkelä, Jyrki; Karttunen, Tuomo J

    2017-07-14

    To characterize the expression of toll-like receptors (TLR) 2 and 4 in colorectal cancer (CRC) and in normal colorectal mucosa. We analysed tissue samples from a prospective series of 118 unselected surgically treated patients with CRC. Sections from formalin fixed, paraffin embedded specimens were analysed for TLR2 and TLR4 expression by immunohistochemistry. Two independent assessors evaluated separately expression at the normal mucosa, at the invasive front and the bulk of the carcinoma, and in the lymph node metastases when present. Expression levels in different locations were compared and their associations with clinicopathological features including TNM-stage and the grade of the tumour and 5-year follow-up observations were analysed. Normal colorectal epithelium showed a gradient of expression of both TLR2 and TLR4 with low levels in the crypt bases and high levels in the surface. In CRC, expression of both TLRs was present in all cases and in the major proportion of tumour cells. Compared to normal epithelium, TLR4 expression was significantly weaker but TLR2 expression stronger in carcinoma cells. Weak TLR4 expression in the invasive front was associated with distant metastases and worse cancer-specific survival at 5 years. In tumours of the proximal colon the cancer-specific survival at 5 years was 36.9% better with strong TLR4 expression as compared with those with weak expression ( P = 0.044). In contrast, TLR2 expression levels were not associated with prognosis. Tumour cells in the lymph node metastases showed higher TLR4 expression and lower TLR2 expression than cells in primary tumours. Tumour cells in CRC show downregulation of TLR4 and upregulation of TLR2. Low expression of TLR4 in the invasive front predicts poor prognosis and metastatic disease.

  4. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury.

    PubMed

    Li, Ying; Korgaonkar, Akshata A; Swietek, Bogumila; Wang, Jianfeng; Elgammal, Fatima S; Elkabes, Stella; Santhakumar, Vijayalakshmi

    2015-02-01

    Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    PubMed

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increased TLR4 and TREM-1 expression on monocytes and neutrophils in preterm birth: further evidence of a proinflammatory state.

    PubMed

    Yan, Huan; Li, Hong; Zhu, Linlin; Gao, Junjun; Li, Pengyun; Zhang, Zhan

    2018-03-25

    Increased inflammation is considered as a risk factor and a promoter of preterm birth (PTB). Monocytes and neutrophils are the main sources of cytokines in the early inflammatory phase. So far, very few studies have indicated CD14/TLR4 and TREM-1 on the monocytes and neutrophils as important targets in PTB. TLR4 and TREM-1 on CD14 + maternal and cord blood monocytes and neutrophils were detected using flow cytometry in 48 normal term women, 48 PTB with chorioamnionitis (CCA) women, and 40 PTB without CCA women. In the fetal membranes, mRNA and protein levels of the CD14/TLR4-TREM-1 signaling pathway, CD14, TLR4, NF-κBp65, and TREM-1 were analyzed by qRT-PCR and western blot. ELISA was further used to detect TLR4 and TREM-1 levels in maternal and cord serums. Compared with the normal term and PTB without CCA women, we found that (1) TLR4 and TREM-1 levels on CD14 + maternal and cord blood monocytes and neutrophils in the PTB with CCA group were elevated (p < .001); (2) the protein and mRNA expressions of CA14, TLR4, NF-κBp65, and TREM-1 of the PTB with CCA group were upregulated (p < .001); (3) Maternal and cord serum concentrations of TLR4 and TREM-1 in the PTB with CCA group were greater (p < .001). The high levels of TLR4 and TREM-1 surface expression were observed on CD14 + maternal and cord blood monocyte and neutrophils, confirming their proinflammatory profiles in PTB with CCA. TLR4 and TREM-1 on monocyte and neutrophils might have a role in infection-related PTB.

  7. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle.

    PubMed

    Hussey, Sophie E; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-03-01

    Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3, p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of inhibitor of kappa Bα (p = 0.09). The muscle content of most diacylglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin resistance in humans. ClinicalTrials.gov NCT01740817.

  8. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle

    PubMed Central

    Hussey, Sophie E.; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, José de Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-01-01

    Aims/hypothesis Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Methods Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic–hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Results Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3,p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of nuclear factor of light polypeptide gene enhancer in B cells inhibitor α (p = 0.09). The muscle content of most diacyglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. Conclusions/interpretation A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin resistance in humans. PMID:24337154

  9. Toll-like Receptor 2 Signalling and the Lysosomal Machinery in Barrett's Esophagus.

    PubMed

    Verbeek, Romy E; Siersema, Peter D; Vleggaar, Frank P; Ten Kate, Fiebo J; Posthuma, George; Souza, Rhonda F; de Haan, Judith; van Baal, Jantine W P M

    2016-09-01

    Inflammation plays an important role in the development of esophageal adenocarcinoma and its metaplastic precursor lesion, Barrett's esophagus. Toll-like receptor (TLR) 2 signalling and lysosomal function have been linked to inflammation-associated carcinogenesis. We examined the expression of TLR2 in the esophagus and the effect of long-term TLR2 activation on morphological changes and expression of factors involved in lysosomal function in a Barrett's esophagus epithelium cell line. TLR2 expression in normal squamous esophagus, reflux esophagitis, Barrett's esophagus and esophageal adenocarcinoma biopsies was assessed with Q-RT-PCR, in situ hybridization and immunohistochemistry. Barrett's esophagus epithelium cells (BAR-T) were incubated with acid and bile salts in the presence or absence of the TLR2 agonist Pam3CSK4 for a period up to 4 weeks. Morphological changes were assessed with electron microscopy, while Q-RT-PCR was used to determine the expression of lysosomal enzymes (Cathepsin B and C) and factors involved in endocytosis (LAMP-1 and M6PR) and autophagy (LC3 and Rab7). TLR2 was expressed in normal squamous esophagus, reflux esophagitis, Barrett's esophagus but was most prominent in esophageal adenocarcinoma. Long-term TLR2 activation in acid and bile salts exposed BAR-T cells resulted in more and larger lysosomes, more mitochondria and increased expression of LAMP-1, M6PR, Cathepsin B and C when compared to BAR-T cells incubated with acid and bile salts but no TLR2 agonist. Factors associated with autophagy (LC3 and Rab7) expression remained largely unchanged. Activation of TLR2 in acid and bile salts exposed Barrett epithelium cells resulted in an increased number of mitochondria and lysosomes and increased expression of lysosomal enzymes and factors involved in endocytosis.

  10. Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus

    PubMed Central

    Cao, Zhi; Zheng, Minping; Lv, Huifang; Guo, Kangkang; Zhang, Yanming

    2018-01-01

    The Toll-like receptors (TLRs) of the innate immune system provide the host with the ability to detect and respond to viral infections. The present study aimed to investigate the mRNA and protein expression levels of TLR2, 3, 4 and 7 in porcine tissues upon infection with the highly virulent Shimen strain of classical swine fever virus (CSFV). Reverse transcription-quantitative polymerase chain reaction was used to detect the mRNA expression levels of CSFV and TLR, whereas western blotting was used to detect the expression levels of TLR proteins. In addition, tissues underwent histological examination and immunohistochemistry to reveal the histopathological alterations associated with highly virulent CSFV infection and to detect TLR antigens. Furthermore, porcine monocyte-derived macrophages (pMDMs) were prestimulated with peptidoglycan from Staphylococcus aureus (PGN-SA), polyinosinic-polycytidylic acid [poly (I:C)], lipopolysaccharide from Escherichia coli 055:B5 (LPS-B5) or imiquimod (R837) in order to analyze the association between TLR expression and CSFV replication. Following stimulation for 12 h (with TLR-specific ligands), cells were infected with CSFV Shimen strain. The results revealed that the expression levels of TLR2 and TLR4 were increased in the lung and kidney, but were decreased in the spleen and lymph nodes in response to CSFV. TLR3 was strongly expressed in the heart and slightly upregulated in the spleen in response to CSFV Shimen strain infection, and TLR7 was increased in all examined tissues in the presence of CSFV. Furthermore, R837 and LPS-B5 exerted inhibitory effects on CSFV replication in pMDMs, whereas PGN-SA and poly(I:C) had no significant effect. These findings highlight the potential role of TLR expression in the context of CSFV infection. PMID:29568891

  11. Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7.

    PubMed

    Karpov, V; Ilarraza, R; Catalli, A; Kulka, M

    2018-01-01

    Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.

  12. Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice.

    PubMed

    Kaur, Sandeep; Mukhopadhyay, C S; Sethi, R S

    2016-11-01

    Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice. In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 µg/animal. The lung tissues were processed for real time and immunohistochemical studies. LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control. Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect.

  13. Elevated Muscle TLR4 Expression and Metabolic Endotoxemia in Human Aging

    PubMed Central

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Garduño, Jose de Jesus; Galeana, Joaquin Joya; Li, Jinqi; Zamarripa, Frank; Lancaster, Jack L.; Mohan, Sumathy; Hussey, Sophie

    2015-01-01

    Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia. PMID:24846769

  14. Differential Alteration in Intestinal Epithelial Cell Expression of Toll-Like Receptor 3 (TLR3) and TLR4 in Inflammatory Bowel Disease

    PubMed Central

    Cario, Elke; Podolsky, Daniel K.

    2000-01-01

    Initiation and perpetuation of the inflammatory intestinal responses in inflammatory bowel disease (IBD) may result from an exaggerated host defense reaction of the intestinal epithelium to endogenous lumenal bacterial flora. Intestinal epithelial cell lines constitutively express several functional Toll-like receptors (TLRs) which appear to be key regulators of the innate response system. The aim of this study was to characterize the expression pattern of TLR2, TLR3, TLR4, and TLR5 in primary intestinal epithelial cells from patients with IBD. Small intestinal and colonic biopsy specimens were collected from patients with IBD (Crohn's disease [CD], ulcerative colitis [UC]) and controls. Non-IBD specimens were assessed by immunofluorescence histochemistry using polyclonal antibodies specific for TLR2, TLR3, TLR4, and TLR5. Primary intestinal epithelial cells (IEC) of normal mucosa constitutively expressed TLR3 and TLR5, while TLR2 and TLR4 were only barely detectable. In active IBD, the expression of TLR3 and TLR4 was differentially modulated in the intestinal epithelium. TLR3 was significantly downregulated in IEC in active CD but not in UC. In contrast, TLR4 was strongly upregulated in both UC and CD. TLR2 and TLR5 expression remained unchanged in IBD. These data suggest that IBD may be associated with distinctive changes in selective TLR expression in the intestinal epithelium, implying that alterations in the innate response system may contribute to the pathogenesis of these disorders. PMID:11083826

  15. [TLR-4 involvement in pyroptosis of mice with pulmonary inflammation infected by Actinobacillus pleuropneumoniae].

    PubMed

    Hu, Peipei; Huang, Fushen; Niu, Junchao; Tang, Zhaoshan

    2015-05-04

    Pyroptosis is a caspase-1 dependent programmed cell death and involves pathogenesis of infectious diseases by releasing many pro-inflammatory cytokines to induced inflammation. TLR-4 plays an important role in mediating pathogenesis of some infectious diseases. In this study, we detected the expression of TLR-4 and some molecules (e. g caspase-1, TNF-α, IL-1β, IL-6, IL-18 ) related with pyroptosis to determine its involvement and mechanisms of pulmonary inflammation in mice infected by A. pleuropneumoniae. Mice were intranasally infected by A. pleuropneumoniae and killed 48 hours post infection. Pulmonary gross lesion and histological pathology by H-E were observed. Expression levels of caspase-1 , caspase-3, TNF-α, IL-1β, IL-6, IL-18, and TLR-4 in lung of mice were detected by RT-PCR and qPCR. Serious pulmonary hemorrhage and inflammation in infected mice were observed. Expression levels of caspase-1, caspase-3, TNF-α, IL-1β, IL-6, IL-18 and TLR-4 increased, and expression levels of caspase-3 were not changed in lung of infected mice. TLR-4 might be involved in pulmonary inflammation of mice infected by A. pleuropneumoniae. After induced by activated TLR-4 some cells in this lesion expressed pro-inflammatory cytokines. These cytokines would induce pulmonary inflammation. This lesion might involve pyroptosis with caspase-1 expression.

  16. Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children.

    PubMed

    Grissell, Terry V; Chang, Anne B; Gibson, Peter G

    2007-04-01

    Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.

  17. Toll like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rat

    PubMed Central

    Bomfim, Gisele F.; Dos Santos, Rosangela A.; Oliveira, Maria Aparecida; Giachini, Fernanda R.; Akamine, Eliana H.; Tostes, Rita C.; Fortes, Zuleica B.; Webb, R. Clinton; Carvalho, Maria Helena C.

    2014-01-01

    Activation of Toll-like receptors (TLR) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of cardiovascular diseases. Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study we hypothesize that inhibition of TLR4 decreases blood pressure and improves vascular contractility in resistance arteries from spontaneously hypertensive rats (SHR). TLR4 protein expression in mesenteric resistance arteries was higher in 15 weeks-old SHR than in same age Wistar controls or in 5 weeks-old SHR. In order to decrease activation of TLR4, 15 weeks-old SHR and Wistar rats were treated with anti-TLR4 antibody or non-specific IgG control antibody for 15 days (1µg per day, i.p.). Treatment with anti-TLR4 decreased mean arterial pressure as well as TLR4 protein expression in mesenteric resistance arteries and interleukin-6 (IL-6) serum levels from SHR when compared to SHR treated with IgG. No changes in these parameters were found in Wistar treated rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to noradrenaline compared to IgG-treated-SHR. Inhibition of cyclooxygenase-1 (Cox) and Cox-2, enzymes related to inflammatory pathways, decreased noradrenaline responses only in mesenteric resistance arteries of SHR treated with IgG. Cox-2 expression and thromboxane A2 release were decreased in SHR treated with anti-TLR4 compared with IgG-treated-SHR. Our results suggest that TLR4 activation contributes to increased blood pressure, low grade inflammation and plays a role in the augmented vascular contractility displayed by SHR. PMID:22233532

  18. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    PubMed Central

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  19. Whole cigarette smoke increased the expression of TLRs, HBDs, and proinflammory cytokines by human gingival epithelial cells through different signaling pathways.

    PubMed

    Semlali, Abdelhabib; Witoled, Chmielewski; Alanazi, Mohammed; Rouabhia, Mahmoud

    2012-01-01

    The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, -4 and -6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health.

  20. Whole Cigarette Smoke Increased the Expression of TLRs, HBDs, and Proinflammory Cytokines by Human Gingival Epithelial Cells through Different Signaling Pathways

    PubMed Central

    Semlali, Abdelhabib; Witoled, Chmielewski; Alanazi, Mohammed; Rouabhia, Mahmoud

    2012-01-01

    The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, −4 and −6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health. PMID:23300722

  1. Resveratrol increases phagocytosis and lipopolysaccharide-induced interleukin-1β production, but decreases surface expression of Toll-like receptor 2 in THP-1 monocytes.

    PubMed

    Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H

    2018-02-01

    THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.

  2. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization.

    PubMed

    Ji, Jie; Upadhyay, Swapna; Xiong, Xiaomiao; Malmlöf, Maria; Sandström, Thomas; Gerde, Per; Palmberg, Lena

    2018-05-02

    Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 μg/cm 2 aerosolized DEP using XposeALI ® . Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage markers (IL10, IL4, IL13, MRC1, MRC2). The cellular interaction of PBEC with MQ in response to DEP plays a pivotal role for MQ phenotypic alteration towards M2-subtypes, thereby promoting an efficient resolution of the inflammation. Furthermore, this study highlighted the fact that cell-cell interaction using multicellular ALI-models combined with an in vivo-like inhalation exposure system is critical in better mimicking the airway physiology compared with traditional cell culture systems.

  3. Mechanism of Activation of Enteric Nociceptive Neurons via Interaction of TLR4 and TRPV1 Receptors.

    PubMed

    Filippova, L V; Fedorova, A V; Nozdrachev, A D

    2018-03-01

    Evidence obtained by immunohistochemical double labeling and confocal laser scanning microscopy suggests that capsaicin, a ligand of the TRPV1 nociceptive vanilloid receptor, increases the number of TLR4-positive neurons in the rat colon myenteric plexus. In colitis caused by trinitrobenzene sulfonate, an increase in TRPV1 expression was more significant in both plexuses. Specific inhibitor of the TLR4 (C34) pattern-recognition receptor reduces TRPV1 expression in enteric neurons of both intact rats and rats with induced acute colitis. Thus, stimulation of nociceptive neurons by means of direct activation of their receptors of innate immunity (TLR4) is one of the possible mechanisms underlying the visceral pain in bacterial invasion and inflammatory bowel diseases.

  4. Toll-like receptor (TLR)-4 mediates anti-β2GPI/β2GPI-induced tissue factor expression in THP-1 cells

    PubMed Central

    Zhou, H; Yan, Y; Xu, G; Zhou, B; Wen, H; Guo, D; Zhou, F; Wang, H

    2011-01-01

    Our previous study demonstrated that annexin A2 (ANX2) on cell surface could function as a mediator and stimulate tissue factor (TF) expression of monocytes by anti-β2-glycoprotein I/β2-glycoprotein I complex (anti-β2GPI/β2GPI). However, ANX2 is not a transmembrane protein and lacks the intracellular signal transduction pathway. Growing evidence suggests that Toll-like receptor 4 (TLR-4) might act as an ‘adaptor’ for intracellular signal transduction in anti-β2GPI/β2GPI-induced TF expressing cells. In the current study, we investigated the roles of TLR-4 and its related molecules, myeloid differentiation protein 2 (MD-2) and myeloid differentiation factor 88 (MyD88), in anti-β2GPI/β2GPI-induced TF expressing human monocytic-derived THP-1 (human acute monocytic leukaemia) cells. The relationship of TLR-4 and ANX2 in this process was also explored. Along with TF, expression of TLR-4, MD-2 and MyD88 in THP-1 cells increased significantly when treated by anti-β2GPI (10 µg/ml)/β2GPI (100 µg/ml) complex. The addition of paclitaxel, which competes with the MD-2 ligand, could inhibit the effects of anti-β2GPI/β2GPI on TLR-4, MD-2, MyD88 and TF expression. Both ANX2 and TLR-4 in THP-1 cell lysates could bind to β2GPI that had been conjugated to a column (β2GPI-Affi-Gel). Furthermore, TLR-4, MD-2, MyD88 and TF expression was remarkably diminished in THP-1 cells infected with ANX2-specific RNA interference (RNAi) lentivirus (LV-RNAi-ANX2), in spite of treatment with a similar concentration of anti-β2GPI/β2GPI complex. These results indicate that TLR-4 and its signal transduction pathway contribute to anti-β2GPI/β2GPI-induced TF expression in THP-1 cells, and the effects of TLR-4 with ANX2 are tightly co-operative. PMID:21091668

  5. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells

    PubMed Central

    Pace, Elisabetta; Ferraro, Maria; Siena, Liboria; Melis, Mario; Montalbano, Angela M; Johnson, Malcolm; Bonsignore, Maria R; Bonsignore, Giovanni; Gjomarkaj, Mark

    2008-01-01

    Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke. The main goal of this study was to explore the effects of cigarette smoke extracts (CSE) on Toll-like receptor (TLR) expression and activation in a human bronchial epithelial cell line (16-HBE). The CSE increased the expression of TLR4 and the lipopolysaccharide (LPS) binding, the nuclear factor-κB (NF-κB) activation, the release of interleukin-8 (IL-8) and the chemotactic activity toward neutrophils. It did not induce TLR2 expression or extracellular signal-regulated signal kinase 1/2 (ERK1/2) activation. The LPS increased the expression of TLR4 and induced both NF-κB and ERK1/2 activation. The combined exposure of 16-HBE to CSE and LPS was associated with ERK activation rather than NF-κB activation and with a further increase of IL-8 release and of chemotactic activity toward neutrophils. Furthermore, CSE decreased the constitutive interferon-inducible protein-10 (IP-10) release and counteracted the effect of LPS in inducing both the IP-10 release and the chemotactic activity toward lymphocytes. In conclusion, cigarette smoke, by altering the expression and the activation of TLR4 via the preferential release of IL-8, may contribute to the accumulation of neutrophils within the airways of smokers. PMID:18217953

  6. Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice

    PubMed Central

    Kaur, Sandeep; Mukhopadhyay, C. S.; Sethi, R. S.

    2016-01-01

    Aim: Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice. Materials and Methods: In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 µg/animal. The lung tissues were processed for real time and immunohistochemical studies. Results: LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control. Conclusion: Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect. PMID:27956782

  7. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzmann, Nicole; Salamon, Achim; Fiedler, Tomas

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation ofmore » adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.« less

  8. β2-glycoprotein I, lipopolysaccharide and endothelial TLR4: three players in the two hit theory for anti-phospholipid-mediated thrombosis.

    PubMed

    Raschi, Elena; Chighizola, Cecilia B; Grossi, Claudia; Ronda, Nicoletta; Gatti, Rita; Meroni, Pier Luigi; Borghi, M Orietta

    2014-12-01

    The thrombogenic effect of β2-glycoprotein I (β2GPI)-dependent anti-phospholipid antibodies (aPL) in animal models was found to be LPS dependent. Since β2GPI behaves as LPS scavenger, LPS/β2GPI complex was suggested to account for in vitro cell activation through LPS/TLR4 involvement being LPS the actual bridge ligand between β2GPI and TLR4 at least in monocytes/macrophages. However, no definite information is available on the interaction among β2GPI, LPS and endothelial TLR4 in spite of the main role of endothelial cells (EC) in clotting. To analyse at the endothelial level the need of LPS, we investigated the in vitro interaction of β2GPI with endothelial TLR4 and we assessed the role of LPS in such an interaction. To do this, we evaluated the direct binding and internalization of β2GPI by confocal microscopy in living TLR4-MD2 transfected CHO cells (CHO/TLR4-MD2) and β2GPI binding to CHO/TLR4-MD2 cells and human umbilical cord vein EC (HUVEC) by flow cytometry and cell-ELISA using anti-β2GPI monoclonal antibodies in the absence or presence of various concentrations of exogenous LPS. To further investigate the role of TLR4, we performed anti-β2GPI antibody binding and adhesion molecule up-regulation in TLR4-silenced HUVEC. Confocal microscopy studies show that β2GPI does interact with TLR4 at the cell membrane and is internalized in cytoplasmic granules in CHO/TLR4-MD2 cells. β2GPI binding to CHO/TLR4-MD2 cells and HUVEC is also confirmed by flow cytometry and cell-ELISA, respectively. The interaction between β2GPI and TLR4 is confirmed by the reduction of anti-β2GPI antibody binding and by the up-regulation of E-selectin or ICAM-1 by TLR4 silencing in HUVEC. β2GPI binding is not affected by LPS at concentrations comparable to those found in both β2GPI and antibody preparations. Only higher amount of LPS that can activate EC and up-regulate TLR4 expression are found to increase the binding. Our findings demonstrate that β2GPI interacts directly with TLR4 expressed on EC, and that such interaction may contribute to β2GPI-dependent aPL-mediated EC activation. At variance of monocytic cells, we also showed a threshold effect for the action of LPS, that is able to enhance anti-β2GPI antibody EC binding only at cell activating concentrations, shown to increase TLR4 expression. This in vitro model may explain why LPS behaves as a second hit increasing the expression of β2GPI in vascular tissues and triggering aPL-mediated thrombosis in experimental animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis

    PubMed Central

    Moshiri, Mona; Dallal, Mohammad Mehdi Soltan; Rezaei, Farhad; Douraghi, Masoumeh; Sharifi, Laleh; Noroozbabaei, Zahra; Gholami, Mehrdad; Mirshafiey, Abbas

    2017-01-01

    Objectives Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis (SesE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards SesE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with SesE. Methods HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with SesE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Results Treatment with L. acidophilus inhibited SesE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with SesE was significantly higher than that in cells infected with SesE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to SesE by influencing TLR2 and TLR4 expression. Conclusion Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by SesE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect. PMID:28443224

  10. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis.

    PubMed

    Moshiri, Mona; Dallal, Mohammad Mehdi Soltan; Rezaei, Farhad; Douraghi, Masoumeh; Sharifi, Laleh; Noroozbabaei, Zahra; Gholami, Mehrdad; Mirshafiey, Abbas

    2017-02-01

    Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis ( Se sE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards Se sE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with Se sE. HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with Se sE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Treatment with L. acidophilus inhibited Se sE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with Se sE was significantly higher than that in cells infected with Se sE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to Se sE by influencing TLR2 and TLR4 expression. Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by Se sE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect.

  11. Decreased expression of Toll-like receptor 4 and 5 during progression of prostate transformation in transgenic adenocarcinoma of mouse prostate mice.

    PubMed

    Han, Ju-Hee; Park, Jong-Hwan; Kim, Bo-Yeon; Chang, Seo-Na; Kim, Tae-Hyoun; Park, Jae-Hak; Kim, Dong-Jae

    2015-01-01

    Chronic inflammation has been considered an important risk factor for development of prostate cancer. Toll-like receptors (TLRs) recognize microbial moieties or endogenous molecules and play an important role in the triggering and promotion of inflammation. In this study, we examined whether expression of TLR4 and TLR5 was associated with progression of prostate transformation in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The expression of TLR4 and TLR5 was evaluated by immunohistochemisty in formalin-fixed paraffin-embedded prostate tissue from wild-type (WT) and TRAMP mice. Normal prostate tissue from WT mice showed strong expression of TLR4 and TLR5. However, TLR4 expression in the prostate tissue from TRAMP mice gradually decreased as pathologic grade became more aggressive. TLR5 expression in the prostate tissue from TRAMP mice also decreased in low-grade prostate intraepithelial neoplasia (PIN), high-grade PIN and poorly differentiated adenocarcinoma. Overall, our results suggest that decreased expression of TLR4 and TLR5 may contribute to prostate tumorigenesis.

  12. A tissue microarray study of toll-like receptor 4, decoy receptor 3, and external signal regulated kinase 1/2 expressions in astrocytoma.

    PubMed

    Lin, Chih-Kung; Ting, Chun-Chieh; Tsai, Wen-Chiuan; Chen, Yuan-Wu; Hueng, Dueng-Yuan

    2016-01-01

    Decoy receptor 3 (DcR3) functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor family. It is highly expressed in many tumors and its expression can be regulated by the MAPK/ERK signaling pathway and ERK is a vital member of this pathway. Toll-like receptor 4 (TLR4) is expressed on immune cells. Increased TLR4 expression has been associated with various types of cancers. The study was conducted to investigate the expression of DcR3, ERK1/2, and TLR4 in astrocytomas and evaluate if they are validating markers for discriminating glioblastoma from anaplastic astrocytoma in limited surgical specimen. Expression of DcR3, ERK1/2, and TLR4 was determined by immunohistochemical staining of tissue microarray from 48 paraffin-embedded tissues. A binary logistic regression method was used to generate functions that discriminate between anaplastic astrocytomas and glioblastomas. The expression of TLR4 and DcR3 was significantly higher in glioblastomas than in anaplastic astrocytomas. DcR3 could discriminate anaplastic astrocytomas from glioblastomas with high sensitivity (93.8%), specificity (90%), and accuracy (92.3%). Our results suggest that DcR3 may be a useful marker for discriminating anaplastic astrocytomas from glioblastomas.

  13. Systemic Sympathoexcitation Was Associated with Paraventricular Hypothalamic Phosphorylation of Synaptic CaMKIIα and MAPK/ErK.

    PubMed

    Ogundele, Olalekan M; Rosa, Fernando A; Dharmakumar, Rohan; Lee, Charles C; Francis, Joseph

    2017-01-01

    Systemic administration of adrenergic agonist (Isoproterenol; ISOP) is known to facilitate cardiovascular changes associated with heart failure through an upregulation of cardiac toll-like receptor 4 (TLR4). Furthermore, previous studies have shown that cardiac tissue-specific deletion of TLR4 protects the heart against such damage. Since the autonomic regulation of systemic cardiovascular function originates from pre-autonomic sympathetic centers in the brain, it is unclear how a systemically driven sympathetic change may affect the pre-autonomic paraventricular hypothalamic nuclei (PVN) TLR4 expression. Here, we examined how change in PVN TLR4 was associated with alterations in the neurochemical cytoarchitecture of the PVN in systemic adrenergic activation. After 48 h of intraperitoneal 150 mg/kg ISOP treatment, there was a change in PVN CaMKIIα and MAPK/ErK expression, and an increase in TLR4 in expression. This was seen as an increase in p-MAPK/ErK, and a decrease in synaptic CaMKIIα expression in the PVN ( p < 0.01) of ISOP treated mice. Furthermore, there was an upregulation of vesicular glutamate transporter (VGLUT 2; p < 0.01) and a decreased expression of GABA in the PVN of Isoproterenol (ISOP) treated WT mice ( p < 0.01). However, after a PVN-specific knockdown of TLR4, the effect of systemic administration of ISOP was attenuated, as indicated by a decrease in p-MAPK/ErK ( p < 0.01) and upregulation of CaMKIIα ( p < 0.05). Additionally, loss of inhibitory function was averted while VGLUT2 expression decreased when compared with the ISOP treated wild type mice and the control. Taken together, the outcome of this study showed that systemic adrenergic activation may alter the expression, and phosphorylation of preautonomic MAPK/ErK and CaMKIIα downstream of TLR4. As such, by outlining the roles of these kinases in synaptic function, we have identified the significance of neural TLR4 in the progression, and attenuation of synaptic changes in the pre-autonomic sympathetic centers.

  14. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Expression of Toll-Like Receptors 2 and 4 and Related Cytokines in Patients with Hepatic Cystic and Alveolar Echinococcosis

    PubMed Central

    Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Apaer, Shadike; Zhang, Heng; Aierken, Amina; Li, Yu-Peng; Lin, Ren-Yong; Zhao, Jin-Ming; Zhang, Jin-Hui; Wen, Hao

    2015-01-01

    Several studies have demonstrated the important role of Toll-like receptors in various parasitic infections. This study aims to explore expression of Toll-like receptors (TLRs) and related cytokines in patients with human cystic echinococcosis (CE) and alveolar echinococcosis (AE). 78 subjects including AE group (N = 28), CE group (N = 22), and healthy controls (HC, N = 28) were enrolled in this study. The mRNA expression levels of TLR2 and TLR4 in blood and hepatic tissue and plasma levels related cytokines were detected by using ELISA. Median levels of TLR2 mRNA in AE and CE groups were significantly elevated as compared with that in healthy control group. Median levels of TLR4 expression were increased in AE and CE. Plasma concentration levels of IL-5, IL-6, and IL-10 were slightly increased in AE and CE groups compared with those in HC group with no statistical differences (p > 0.05). The IL-23 concentration levels were significantly higher in AE and CE groups than that in HC subjects with statistical significance. The increased expression of TLR2 and IL-23 might play a potential role in modulating tissue infiltrative growth of the parasite and its persistence in the human host. PMID:26635448

  16. Evaluation of murine lung epithelial cells (TC-1 JHU-1) line to develop Th2-promoting cytokines IL-25/IL-33/TSLP and genes Tlr2/Tlr4 in response to Aspergillus fumigatus.

    PubMed

    Khosravi, A R; Shokri, H; Hassan Al-Heidary, S; Ghafarifar, F

    2018-03-07

    The aims of this study were to determine the role of live and heat-killed Aspergillus fumigatus conidia in releasing interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP) and to express Toll-like receptor (Tlr)2 and Tlr4 genes. Murine lung epithelial cells were incubated with live and heat-killed A. fumigatus conidia at 37°C for 6, 24 and 48h. After treatments, ELISA was performed to measure the concentrations of IL-25, IL-33 and TSLP in the supernatants. Quantitative real-time PCR (qPCR) was performed to assess the expression levels of Tlr2 and Tlr4 genes. The concentrations of IL-25 and IL-33 significantly increased after exposure to live and heat-killed conidia for various times when compared with untreated control (P<0.05). The secretion of TSLP at different concentrations of heat-killed conidia was significantly higher than both live conidia and untreated control (P<0.05). qRT-PCR results indicated a up-regulation from 1.08 to 3.60-fold for Tlr2 gene expression and 1.20 to 1.80-fold for Tlr4 gene expression exposed to heat-killed conidia. A. fumigatus has a potential ability to stimulate murine lung epithelial cells to produce IL-25/IL-33/TSLP, as well as to express Tlr2/Tlr4 genes, indicating an important role of lung epithelial cells in innate immune responses to A. fumigatus interaction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. STATUS OF THE SYSTEM OF SIGNALING PATTERN RECOGNITION RECEPTORS OF MONOCYTES AND GRANULOCYTES IN COSMONAUTS' PERIPHERAL BLOOD BEFORE AND AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION.

    PubMed

    Ponomarev, S A; Berendeeva, T A; Kalinin, S A; Muranova, A V

    The system of signaling pattern recognition receptors was studied in 8 cosmonauts aged 35 to 56 years before and after (R+) long-duration missions to the International space station. Peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll- like (TLR) receptors localized as on cell surface (TLR1, TLR2, TLR4, TLR5, TLR6), so inside cells (TLR3, TLR8, TLR9). In parallel, serum concentrations of TLR2 (HSP60) and TLR4 ligands (HSP70, HMGB1) were measured. The results of investigations showed growth of HSP60, HSP70 and HMGB1 concentrations on R+1. In the;majority of cosmonauts increases in endogenous ligands were followed by growth in the number of both monocytes and granulocytes that express TLR2 1 TLR4. This consistency gives ground to assume that changes in the system of signaling pattern recognition receptors can stem .from the predominantly endogenous ligands' response to the effects of long-duration space flight on human organism.

  18. Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts.

    PubMed

    Erdinest, Nir; Aviel, Gal; Moallem, Eli; Anteby, Irene; Yahalom, Claudia; Mechoulam, Hadas; Ovadia, Haim; Solomon, Abraham

    2014-02-04

    Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation.

  19. Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts

    PubMed Central

    2014-01-01

    Background Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). Methods The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). Results The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. Conclusions HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation. PMID:24491080

  20. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging.

    PubMed

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Garduño, Jose de Jesus; Galeana, Joaquin Joya; Li, Jinqi; Zamarripa, Frank; Lancaster, Jack L; Mohan, Sumathy; Hussey, Sophie; Musi, Nicolas

    2015-02-01

    Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Innate immune reactivity of the liver in rats fed a choline-deficient L-amino-acid-defined diet.

    PubMed

    Kawaratani, Hideto; Tsujimoto, Tatsuhiro; Kitazawa, Toshiyuki; Kitade, Mitsuteru; Yoshiji, Hitoshi; Uemura, Masahito; Fukui, Hiroshi

    2008-11-21

    To investigate the innate immune reactivity of tumor necrosis factor-alpha (TNF-alpha), Toll-like receptor 4 (TLR4), and CD14 in the liver of non-alcoholic steatohepatitis (NASH) model rats. Male F344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet. The rats were killed after 4 or 8 wk of the diet, and their livers were removed for immunohistochemical investigation and RNA extraction. The liver specimens were immunostained for TNF-alpha, TLR4, and CD14. The gene expressions of TNF-alpha, TLR4, and CD14 were determined by reverse-transcriptase polymerase chain reaction (RT-PCR). Kupffer cells were isolated from the liver by Percoll gradient centrifugation, and were then cultured to measure TNF-alpha production. The serum and liver levels of TNF-alpha in the CDAA-fed rats increased significantly as compared with the control group, as did the immunohistochemical values and gene expressions of TNF-alpha, TLR4, and CD14 with the progression of steatohepatitis. TNF-alpha production from the isolated Kupffer cells of the CDAA-fed rats was elevated by lipopolysaccharide stimulation. The expressions of TNF-alpha, TLR4, and CD14 increased in the NASH model, suggesting that TLR4 and CD14-mediated endotoxin liver damage may also occur in NASH.

  2. Synthesis of Toll-like receptor 4 in Kupffer cells and its role in alcohol-induced liver disease.

    PubMed

    Zuo, Guoqing; Gong, Jianping; Liu, Chang'an; Wu, Chuanxin; Li, Shengwei; Dai, Lili

    2003-02-01

    To observe the synthesis of Toll-like receptor (TLR) 4 protein and its mRNA expression in Kupffer cells (KCs) and evaluate the role of TLR 4 in liver injury to rats through alcohol-induced liver disease. Twenty-eight Wistar rats were divided into two groups: ethanol-fed (group E) and control (group C). Group E rats were given ethanol at a dose of 5 - 12 g x kg(-1) x d(-1), while group C received dextrose. Animals from both groups were killed at 4 and 8 weeks. The KCs were isolated and synthesis of TLR 4 protein was determined by laser scanning confocal microscopy. TLR 4 mRNA expression in KCs was determined by reverse transcription polymerase chain reaction (RT-PCR) analysis. The levels of endotoxin, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in plasma were determined. Changes in liver pathology were observed. Laser scanning confocal microscopy showed that the intensity of fluorescence of TLR 4 protein in group E was stronger than group C. Ethanol administration led to a significant increase in TLR 4 mRNA expression in group E compared with group C (P < 0.05). The concentrations of plasma endotoxin, TNF-alpha and IL-6 were higher in group E than in group C (P < 0.05). Liver sections from rats in group E demonstrated marked pathological changes. Ethanol administration can lead to the synthesis of TLR 4 protein and its gene expression in KCs, indicating that TLR 4 may play a major role in the development of alcohol-induced liver injury.

  3. Expression of Toll-like Receptor 2 and 4 in Peripheral Blood Neutrophil Cells from Patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Tripathi, Prashant Mani; Kant, Surya; Yadav, Ravi Shanker; Kushwaha, Ram Awadh Singh; Prakash, Ved; Rizvi, Sayed Husian Mustafa; Parveen, Arshiya; Mahdi, Abbas Ali; Ahmad, Iqbal

    2017-01-01

    Objectives Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. Preliminary studies have evaluated the association between innate immunity including Toll-like receptors (TLRs) and airway samples of patients with COPD. The role of TLRs in peripheral blood neutrophils is poorly understood. Hence, this study aimed to investigate the role of TLR2 and TLR4 in peripheral blood neutrophils of COPD patients. Methods A total of 101 COPD cases and an equal number of healthy controls participated in this case-control study. Peripheral blood neutrophils were isolated from all participants and cultured for 24 hours through lipopolysaccharide (LPS) stimulation. The gene expressions of TLR2 and TLR4 were assessed by real-time polymerase chain reaction. The protein levels of interleukin (IL)-8 and matrix metalloproteinase (MMP)-9 were measured in neutrophils cell culture supernatants using enzyme-linked immunosorbent assay (ELISA). Results The levels of IL-8 and MMP-9 were significantly higher in patients with COPD compared to healthy controls. Similarly, the gene expression of TLR2 and TLR4 were increased in LPS stimulated peripheral blood neutrophils of patients with COPD. Smoke pack years was positively correlated with IL-8 levels and negatively correlated with forced expiratory volume in the first second % (r = -0.33; p = 0.023) and FEV1/forced vital capacity (FVC) (r = -0.27; p = 0.011). Conclusions The increased expression of TLR2 and TLR4 suggests its role in disease pathogenesis of COPD. Smoke pack years was negatively associated with spirometric parameters in COPD patients. This may help to predict the smokers without COPD who risk developing the condition in the future. PMID:29218124

  4. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy.

    PubMed

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Abreu, Maria T; Norenberg, Michael D

    2014-03-01

    Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents. © 2013 International Society for Neurochemistry.

  5. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats.

    PubMed

    Ohno, Kouhei; Kuno, Atsushi; Murase, Hiromichi; Muratsubaki, Shingo; Miki, Takayuki; Tanno, Masaya; Yano, Toshiyuki; Ishikawa, Satoko; Yamashita, Tomohisa; Miura, Tetsuji

    2017-12-01

    Acute kidney injury (AKI) after acute myocardial infarction (MI) worsens the prognosis of MI patients. Although type 2 diabetes mellitus (DM) is a major risk factor of AKI after MI, the underlying mechanism remains unclear. Here, we examined the roles of renal Toll-like receptors (TLRs) in the impact of DM on AKI after MI. MI was induced by coronary artery ligation in Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a rat DM model, and Long-Evans-Tokushima-Otsuka (LETO) rats, nondiabetic controls. Sham-operated rats served as no-MI controls. Renal mRNA levels of TLR2 and myeloid differentiation factor 88 (MyD88) were significantly higher in sham-operated OLETF rats than in sham-operated LETO rats, although levels of TLR1, TLR3, and TLR4 were similar. At 12 h after MI, protein levels of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney were elevated by 5.3- and 4.0-fold, respectively, and their mRNA levels were increased in OLETF but not LETO rats. The increased KIM-1 and NGAL expression levels after MI in the OLETF kidney were associated with upregulated expression of TLR1, TLR2, TLR4, MyD88, IL-6, TNF-α, chemokine (C-C motif) ligand 2, and transforming growth factor-β 1 and also with activation of p38 MAPK, JNK, and NF-κB. Cu-CPT22, a TLR1/TLR2 antagonist, administered before MI significantly suppressed MI-induced upregulation of KIM-1, TLR2, TLR4, MyD88, and chemokine (C-C motif) ligand 2 levels and activation of NF-κB, whereas NGAL levels and IL-6 and TNF-α expression levels were unchanged. The results suggest that DM increases the susceptibility to AKI after acute MI by augmented activation of renal TLRs and that TLR1/TLR2-mediated signaling mediates KIM-1 upregulation after MI. NEW & NOTEWORTHY This is the first report to demonstrate the involvement of Toll-like recpetors (TLRs) in diabetes-induced susceptibility to acute kidney injury after acute myocardial infarction. We propose that the TLR1/TLR2 heterodimer may be a new therapeutic target for the prevention of acute kidney injury in diabetic patients. Copyright © 2017 the American Physiological Society.

  6. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.

    PubMed

    Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.

  7. Interactions of Notch1 and TLR4 signaling pathways in DRG neurons of in vivo and in vitro models of diabetic neuropathy.

    PubMed

    Chen, Tianhua; Li, Hao; Yin, Yiting; Zhang, Yuanpin; Liu, Zhen; Liu, Huaxiang

    2017-11-02

    Understanding the interactions between Notch1 and toll-like receptor 4 (TLR4) signaling pathways in the development of diabetic peripheral neuropathy may lead to interpretation of the mechanisms and novel approaches for preventing diabetic neuropathic pain. In the present study, the interactions between Notch1 and TLR4 signaling pathways were investigated by using dorsal root ganglion (DRG) from diabetic neuropathic pain rats and cultured DRG neurons under high glucose challenge. The results showed that high glucose induced not only Notch1 mRNA, HES1 mRNA, and TLR4 mRNA expression, but also Notch1 intracellular domain (NICD1) and TLR4 protein expression in DRG neurons. The proportion of NICD1-immunoreactive (IR) and TLR4-IR neurons in DRG cultures was also increased after high glucose challenge. The above alterations could be partially reversed by inhibition of either Notch1 or TLR4 signaling pathway. Inhibition of either Notch1 or TLR4 signaling pathway could improve mechanical allodynia and thermal hyperalgesia thresholds. Inhibition of Notch1 or TLR4 signaling also decreased tumor necrosis factor-α (TNF-α) levels in DRG from diabetic neuropathic rats. These data imply that the interaction between Notch1 and TLR4 signaling pathways is one of the important mechanisms in the development or progression of diabetic neuropathy.

  8. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Toll-like receptor 4 signaling is associated with upregulated NADPH oxidase expression in peripheral T cells of children with autism.

    PubMed

    Nadeem, Ahmed; Ahmad, Sheikh F; Bakheet, Saleh A; Al-Harbi, Naif O; Al-Ayadhi, Laila Y; Attia, Sabry M; Zoheir, Khairy M A

    2017-03-01

    Autism spectrum disorders (ASD) affect millions of children worldwide, and are characterized by impairment in social interaction and communication, and specific repetitive behavioral patterns. Growing evidence highlights a role of toll-like receptors (TLRs) in the pathogenesis of ASD. Specifically, TLR-4 activation has been shown to be associated with increased pro-inflammatory cytokines as well as autistic symptoms in offspring. NADPH oxidase (NOX-2) derived reactive oxygen species (ROS) have also been shown to play pathogenic role under inflammatory conditions. However, the role of TLR-4 in the regulation of NOX-2 derived ROS has not been explored in ASD, particularly in T cells. Therefore, this study explored TLR-4 and NOX-2 related signaling in peripheral T cells of ASD patients (n=35) and age-matched typically developing children (n=30). In this study, we find that ASD individuals have increased TLR-4 expression on T cells which is associated with increased NOX-2 expression and ROS generation as compared to typically developing children. Moreover, activation of TLR-4 on T cells by lipopolysaccharide (LPS) in vitro leads to enhanced generation of NOX-2 derived ROS via nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway. These data support a link between T cell TLR-4 activation and NOX-2/ROS upregulation in ASD patients. Our study has implications in the context of neuroinflammation observed in ASD patients as ROS may lead to amplification and perpetuation of inflammation both in the periphery and central nervous system. Our data also suggest that therapeutic targeting of TLR-4 signaling may lead to reduction in inflammation of ASD patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Distinct Dictation of Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality via Triggering TLR3 and TLR4 Signal Pathways

    PubMed Central

    Uyangaa, Erdenebelig; Kim, Seong Bum; Kim, Jin Hyoung; Kim, Bum Seok; Kim, Koanhoi; Eo, Seong Kug

    2014-01-01

    Japanese encephalitis (JE) is major emerging neurologic disease caused by JE virus. To date, the impact of TLR molecules on JE progression has not been addressed. Here, we determined whether each TLR modulates JE, using several TLR-deficient mouse strains (TLR2, TLR3, TLR4, TLR7, TLR9). Surprisingly, among the tested TLR-deficient mice there were contrasting results in TLR3−/− and TLR4−/− mice, i.e. TLR3−/− mice were highly susceptible to JE, whereas TLR4−/− mice showed enhanced resistance to JE. TLR3 ablation induced severe CNS inflammation characterized by early infiltration of inflammatory CD11b+Ly-6Chigh monocytes along with profoundly increased viral burden, proinflammatory cytokine/chemokine expression as well as BBB permeability. In contrast, TLR4−/− mice showed mild CNS inflammation manifested by reduced viral burden, leukocyte infiltration and proinflammatory cytokine expression. Interestingly, TLR4 ablation provided potent in vivo systemic type I IFN innate response, as well as ex vivo type I IFN production associated with strong induction of antiviral PRRs (RIG-I, MDA5), transcription factors (IRF-3, IRF-7), and IFN-dependent (PKR, Oas1, Mx) and independent ISGs (ISG49, ISG54, ISG56) by alternative activation of IRF3 and NF-κB in myeloid-derived DCs and macrophages, as compared to TLR3−/− myeloid-derived cells which were more permissive to viral replication through impaired type I IFN innate response. TLR4 ablation also appeared to mount an enhanced type I IFN innate and humoral, CD4+ and CD8+ T cell responses, which were mediated by altered immune cell populations (increased number of plasmacytoid DCs and NK cells, reduced CD11b+Ly-6Chigh monocytes) and CD4+Foxp3+ Treg number in lymphoid tissue. Thus, potent type I IFN innate and adaptive immune responses in the absence of TLR4 were closely coupled with reduced JE lethality. Collectively, these results suggest that a balanced triggering of TLR signal array by viral components during JE progression could be responsible for determining disease outcome through regulating negative and positive factors. PMID:25188232

  11. Toll-like receptor 4 contributes to chronic itch, alloknesis and spinal astrocyte activation in male mice

    PubMed Central

    Liu, Tong; Han, Qingjian; Chen, Gang; Huang, Ya; Zhao, Lin-Xia; Berta, Temugin; Gao, Yong-Jing; Ji, Ru-Rong

    2016-01-01

    Increasing evidence suggests that Toll-like receptor 4 (TLR4) contributes importantly to spinal cord glial activation and chronic pain sensitization; however, its unique role in acute and chronic itch is unclear. In this study, we investigated the involvement of TLR4 in acute and chronic itch models in male mice using both transgenic and pharmacological approaches. Tlr4−/− mice exhibited normal acute itch induced by compound 48/80 and chloroquine, but these mice showed substantial reductions in scratching in chronic itch models of dry skin, induced by acetone and diethyether followed by water (AEW), contact dermatitis, and allergic contact dermatitis on the neck. Intrathecal (spinal) inhibition of TLR4 with lipopolysaccharide Rhodobacter sphaeroides (LPS-RS) did not affect acute itch but suppressed AEW-induced chronic itch. Compound 48/80 and AEW also produced robust alloknesis, a touch-elicited itch in wild-type mice, which was suppressed by intrathecal LPS-RS and Tlr4−/− deletion. AEW induced persistent upregulation of Tlr4 mRNA and increased TLR4 expression in GFAP-expressing astrocytes in spinal cord dorsal horn. AEW also induced TLR4-dependent astrogliosis (GFAP upregulation) in spinal cord. Intrathecal injection of astroglial inhibitor L-α-aminoadipate reduced AEW-induced chronic itch and alloknesis without affecting acute itch. Spinal TLR4 was also necessary for AEW-induced chronic itch in the cheek model. Interestingly, scratching plays an essential role in spinal astrogliosis, since AEW-induced astrogliosis was abrogated by putting Elizabethan Collars on the neck to prevent scratching the itchy skin. Our findings suggest that spinal TLR4 signaling is important for spinal astrocyte activation and astrogliosis that may underlie alloknesis and chronic itch. PMID:26645545

  12. [Effect of resveratrol on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment].

    PubMed

    Lv, Jia-Shu; Jiang, Xue-Wei; Zhang, Yan; Zhen, Lei

    2017-02-01

    Through a study of the molecular mechanism of the effect of resveratrol(RSV) on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment, the therapeutic effect and molecular mechanism of resveratrol on periodontitis in patients with diabetes mellitus was investigated. Gingival epithelial cells were cultured in vitro; according to the way of action, the cultured cells were divided into control group, high glucose group(HG) and HG+RSV group. The mRNA expression of TLR4 was detected by PCR; The third generation of gingival epithelial cells were pre-treated with or without RSV for 24 h under high glucose conditions, and subsequently treated with LPS at 100 ng/mL for 2 h. ELISA was used to detect the secretion of IL-1 beta, IL-6, IL-8 and TNF- alpha; the activation of TLR4 downstream signaling molecules NF-κB p65, p38 MAPK, and STAT3 was determined by Western blot. SPSS17.0 software package was used for statistical analysis. RSV could reverse the increase of TLR4 level in gingival epithelial cells in high glucose medium.LPS markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in GECs cultured in high glucose medium, which was partly blocked in the presence of RSV. Furthermore, Western blot results showed that RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. RSV reduces inflammatory cytokine secretion in gingival epithelial cells, through negative regulation of TLR4 signaling pathway.

  13. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced Toll-like receptor 4 (TLR4) activity via 67 kDa laminin receptor (67LR) in 3T3-L1 adipocytes.

    PubMed

    Bao, Suqing; Cao, Yanli; Zhou, Haicheng; Sun, Xin; Shan, Zhongyan; Teng, Weiping

    2015-03-18

    Obesity-related insulin resistance is associated with chronic systemic low-grade inflammation, and toll-like receptor 4 (TLR4) regulates inflammation. We investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin and TLR4 signaling in adipocytes. Inflammation was induced in adipocytes by lipopolysaccharide (LPS). An antibody against the 67 kDa laminin receptor (67LR, to which EGCG exclusively binds) was used to examine the effect of EGCG on TLR4 signaling, and a TLR4/MD-2 antibody was used to inhibit TLR4 activity and to determine the insulin sensitivity of differentiated 3T3-L1 adipocytes. We found that EGCG dose-dependently inhibited LPS stimulation of adipocyte inflammation by reducing inflammatory mediator and cytokine levels (IKKβ, p-NF-κB, TNF-α, and IL-6). Pretreatment with the 67LR antibody prevented EGCG inhibition of inflammatory cytokines, decreased glucose transporter isoform 4 (GLUT4) expression, and inhibited insulin-stimulated glucose uptake. TLR4 inhibition attenuated inflammatory cytokine levels and increased glucose uptake by reversing GLUT4 levels. These data suggest that EGCG suppresses TLR4 signaling in LPS-stimulated adipocytes via 67LR and attenuates insulin-stimulated glucose uptake associated with decreased GLUT4 expression.

  14. Lipopolysaccharide and toll-like receptor 4 in dogs with congenital portosystemic shunts.

    PubMed

    Tivers, M S; Lipscomb, V J; Smith, K C; Wheeler-Jones, C P D; House, A K

    2015-12-01

    Surgical attenuation of a congenital portosystemic shunt (CPSS) results in increased portal vein perfusion, liver growth and clinical improvement. Portal lipopolysaccharide (LPS) is implicated in liver regeneration via toll-like receptor (TLR) 4 mediated cytokine activation. The aim of this study was to investigate factors associated with LPS in dogs with CPSS. Plasma LPS concentrations were measured in the peripheral and portal blood using a limulus amoebocyte lysate (LAL) assay. LPS concentration was significantly greater in the portal blood compared to peripheral blood in dogs with CPSS (P = 0.046) and control dogs (P = 0.002). LPS concentrations in the peripheral (P = 0.012) and portal (P = 0.005) blood of dogs with CPSS were significantly greater than those of control dogs. The relative mRNA expression of cytokines and TLRs was measured in liver biopsies from dogs with CPSS using quantitative PCR. TLR4 expression significantly increased following partial CPSS attenuation (P = 0.020). TLR4 expression was significantly greater in dogs that tolerated complete CPSS attenuation (P = 0.011) and those with good portal blood flow on pre-attenuation (P = 0.004) and post-attenuation (P = 0.015) portovenography. Serum interleukin (IL)-6 concentration was measured using a canine specific ELISA and significantly increased 24 h following CPSS attenuation (P < 0.001). Portal LPS was increased in dogs with CPSS, consistent with decreased hepatic clearance. TLR4 mRNA expression was significantly associated with portal blood flow and increased following surgery. These findings support the concept that portal LPS delivery is important in the hepatic response to surgical attenuation. Serum IL-6 significantly increased following surgery, consistent with LPS stimulation via TLR4, although this increase might be non-specific. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cell type-specific regulatory effects of glucocorticoids on cutaneous TLR2 expression and signalling.

    PubMed

    Su, Qi; Pfalzgraff, Anja; Weindl, Günther

    2017-07-01

    Glucocorticoids (GCs) induce Toll-like receptor (TLR) 2 expression and synergistically upregulate TLR2 with pro-inflammatory cytokines or bacteria. These paradoxical effects have drawn attention to the inflammatory initiating or promoting effects of GCs, as GC treatment can provoke inflammatory skin diseases. Here, we aimed to investigate the regulatory effects of GCs in human skin cells of different epidermal and dermal layers. We found that Dex induced TLR2 expression mainly in undifferentiated and less in calcium-induced differentiated keratinocytes but not in HaCaT cells or fibroblasts, however, Dex reduced TLR1/6 expression. Stimulation with Dex under inflammatory conditions further increased TLR2 but not TLR1 or TLR6 levels in keratinocytes. Increased ligand-induced interaction of TLR2 with MyD88 and expression of the adaptor protein TRAF6 indicated enhanced TLR2 signalling, whereas TLR2/1 or TLR2/6 signalling was not increased in Dex-pretreated keratinocytes. GC-increased TLR2 expression was negatively regulated by JNK MAPK signalling when stimulated with Propionibacterium acnes. Our results provide novel insights into the molecular mechanisms of glucocorticoid-mediated expression and function of TLR2 in human skin cells and the understanding of the mechanisms of corticosteroid side effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Guan-Lin; Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Wu, Jing-Yiing

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well asmore » MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.« less

  17. S-ADENOSYLMETHIONINE PREVENTS THE UP REGULATION OF TOLL-LIKE RECEPTOR (TLR) SIGNALING CAUSED BY CHRONIC ETHANOL FEEDING IN RATS

    PubMed Central

    Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; French, Samuel W

    2011-01-01

    Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrified at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe. PMID:21276439

  18. S100A8 contributes to postoperative cognitive dysfunction in mice undergoing tibial fracture surgery by activating the TLR4/MyD88 pathway.

    PubMed

    Lu, Shun-Mei; Yu, Chan-Juan; Liu, Ya-Hua; Dong, Hong-Quan; Zhang, Xiang; Zhang, Su-Su; Hu, Liu-Qing; Zhang, Feng; Qian, Yan-Ning; Gui, Bo

    2015-02-01

    Neuro-inflammation plays a key role in the occurrence and development of postoperative cognitive dysfunction (POCD). Although S100A8 and Toll-like receptor 4 (TLR4) have been increasingly recognized to contribute to neuro-inflammation, little is known about the interaction between S100A8 and TLR4/MyD88 signaling in the process of systemic inflammation that leads to neuro-inflammation. Firstly, we demonstrated that C57BL/6 wide-type mice exhibit cognitive deficit 24h after the tibial fracture surgery. Subsequently, increased S100A8 and S100A9 expression was found in the peripheral blood mononuclear cells (PBMCs), spleen, and hippocampus of C57BL/6 wide-type mice within 48h after the surgery. Pre-operative administration of S100A8 antibody significantly inhibited hippocampal microgliosis and improved cognitive function 24h after the surgery. Secondly, we also observed TLR4/MyD88 activation in the PBMCs, spleen, and hippocampus after the surgery. Compared with those in their corresponding wide-type mice, TLR4(-/-) and MyD88(-/-) mice showed lower immunoreactive area of microglia in the hippocampal CA3 region after operation. TLR4 deficiency also led to reduction of CD45(hi)CD11b(+) cells in the brain and better performance in both Y maze and open field test after surgery, suggesting a new regulatory mechanism of TLR4-dependent POCD. At last, the co-location of S100A8 and TLR4 expression in spleen after operation suggested a close relationship between them. On the one hand, S100A8 could induce TLR4 activation of CD11b(+) cells in the blood and hippocampus via intraperitoneal or intracerebroventricular injection. On the other hand, TLR4 deficiency conversely alleviated S100A8 protein-induced hippocampal microgliosis. Furthermore, the increased expression of S100A8 protein in the hippocampus induced by surgery sharply decreased in both TLR4 and MyD88 genetically deficient mice. Taken together, these data suggest that S100A8 exerts pro-inflammatory effect on the occurrence and development of neuro-inflammation and POCD by activating TLR4/MyD88 signaling in the early pathological process of the postoperative stage. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling

    PubMed Central

    Liu, Wei; Wu, Yuan-Hao; Zhang, Lei; Xue, Bin; Wang, Yi; Liu, Bin; Liu, Xiao-Ya; Zuo, Fang; Yang, Xiao-Yan; Chen, Fu-Yu; Duan, Ran; Cai, Yue; Zhang, Bo; Ji, Yang

    2018-01-01

    This study investigated whether microRNA-146a (miR-146a) mediating TLR4/NF-κB pathway affected proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes from 12 RA patients (RA-FLSs). FLSs in the logarithmic growth phase were assigned into the control, miR-146a mimic miR-146a inhibitor, Tak-242 (treated with TLR4/NF-κB pathway inhibitor) and mimic + lipopolysaccharide (LPS) groups. Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry. The expression of miR-146a, TLR4/NF-κB pathway-related proteins and cytokines were determined by RT-qPCR, western blotting and ELISA, and the release of NO by Greiss reaction. RA rat models were constructed and the primary cells were classified into the control, negative control (NC), miR-146a mimic, miR-146a inhibitor, Tak-242, mimic + LPS, and TLR4 groups. Immunohistochemistry was used to detect the expression of proliferating cell nuclear antigen (PCNA) and intercellular adhesion molecular-1 (ICAM-1). The results showed that miR-146a levels were lower in RA-FLSs than control fibroblasts. miR-146a mimic and Tak-242 decreased RA-FLS proliferation and increased RA-FLS apoptosis, while miR-146a inhibitor had an opposite trend. miR-146a mimic and Tak-242 also decreased expression of TLR4, NF-κB, IL-1β, IL-6, IL-8, IL-17, COX-2, MMP-3, Seprase, and iNOS, as well as reduced NO level in RA-FLSs while miR-146a inhibitor and TLR4 increased them. TLR4 and NF-κB levels and the positive rates of PCNA and ICAM-1 expressions were lower in RA-FLSs from RA rats given miR-146a mimic from control or miR-146a inhibitor-treated rats. These results suggest that miR-146a inhibits the proliferation and inflammatory response of RA-FLSs by down-regulating TLR4/NF-κB pathway.

  20. Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics.

    PubMed

    Koch, Andrea; Knobloch, Jürgen; Dammhayn, Cathrin; Raidl, Maria; Ruppert, Andrea; Hag, Haitham; Rottlaender, Dennis; Müller, Katja; Erdmann, Erland

    2007-11-01

    Epidemiological evidence, in vitro studies and animal models suggest that exposure to the bacterial endotoxin lipopolysaccharide (LPS) can influence the development and severity of asthma. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 and 2 responses, it is unclear whether the LPS ligand TLR 4 is expressed on CD4(+) and CD8(+) T-lymphocytes and if so, whether LPS could modulate the T(H)1 or T(H)2 response in this context. The present authors have, therefore, examined the expression of TLR 4 on peripheral blood CD4(+) and CD8(+) T-lymphocytes using RT-PCR method and FACS analyses. Furthermore, the authors have studied the IL-12-induced expression of the T(H)1-associated cytokine INF-gamma and the IL-4-induced expression of the T(H)2-specific cytokine IL-5 in the presence of LPS using ELISA and compared nine atopic asthmatic subjects and eleven nonatopic normal volunteers. There was an increased anti-CD3/anti-CD28-induced IL-5 expression in T cells of asthmatics compared with normals (p<0.01). In the presence of IL-4 (10 ng/ml), there was an additional increase in IL-5 expression and this additional increase was greater in T cells of normals compared with asthmatics (p<0.05). There was an expression of INF-gamma in anti-CD3/anti-CD28-induced T-lymphocytes without differences between both groups (NS). In the presence of IL-12 (10 ng/ml), there was an increase in INF-gamma release without differences between normals and asthmatics (NS). In the presence of different concentrations of LPS (10 ng/ml, 1 mug/ml), there was a decrease in IL-4-induced IL-5 expression without differences in both groups, indicating an intact T(H)2 response to bacterial endotoxin LPS in asthma. Interestingly, LPS increased the IL-12-induced INF-gamma release in a concentration-dependent manner in T-lymphocytes of normals but this could not be found in T cells of asthmatics, indicating an impaired T(H)1 response to bacterial endotoxin LPS in asthma. In addition, there was a TLR 4 expression on CD4(+) T-lymphocytes of normals and to a lesser extent in asthmatics but this TLR 4 expression could not be found on CD8(+) T cells of both groups. In conclusion, there may be an impaired concentration-dependent LPS-induced T(H)1 rather than a T(H)2 response in allergic adult asthmatics compared with normal volunteers. One reason for this could be a reduced TLR 4 expression on CD4(+) T-lymphocytes of asthmatic subjects.

  1. Intestinal ischemia/reperfusion injury triggers activation of innate toll-like receptor 4 and adaptive chemokine programs.

    PubMed

    Watson, M J; Ke, B; Shen, X-D; Gao, F; Busuttil, R W; Kupiec-Weglinski, J W; Farmer, D G

    2008-12-01

    Ischemia/reperfusion injury (IRI) is a major problem in intestinal transplantation. Toll-like receptor 4 (TLR4) has been implicated as a possible link between the innate and adaptive immune systems, however little data exists regarding TLR4 in intestinal IRI. The goal of this study is to evaluate the involvement of TLR4 in intestinal IRI and to assess the effect on T cell related chemokine programs. C57BL6 mice underwent 100 minutes of warm intestinal ischemia by SMA clamping. Control WT mice underwent laparotomy without vascular occlusion. Separate survival and analysis groups were performed, and intestinal tissue was harvested at 1 hour, 2 hours, 4 hours, and 24 hours post-reperfusion. Analysis included histology, CD3 immunostaining, myeloperoxidase activity, Western blot, and PCR. Survival was significantly worse in the IRI group vs control (50% vs. 100%). IRI caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Myeloperoxidase activity increased in a time-dependent manner after IRI (2.71 0.25 at 1 hour, 2.92 0.25 at 2 hours, 4 0.16 at 4 hours, 5.1 0.25 at 24 hours vs 0.47 0.11 controls, P < .05). Protein expression of TLR4 followed by NF-kappaB was increased after IRI. Additionally, mRNA production of IP-10, MIP-2, MCP-1, and RANTES was increased at all time-points, as was mRNA for ICAM-1 and E-selectin. This study is the first to demonstrate increased expression of TLR4 and NF-kappaB after warm intestinal IRI. This detrimental cascade may be initiated by TLR4 via NF-kappaB signaling pathways, implicating TLR4 as a potential therapeutic target for the prevention of intestinal IRI.

  2. Benzenediamine analog FC-99 inhibits TLR2 and TLR4 signaling in peritoneal macrophage in vitro.

    PubMed

    Yang, Liu; Dou, Huan; Song, Yuxian; Hou, Yayi

    2016-01-01

    Inflammatory bowel disease (IBD) is an inflammatory disorder, characterized by abnormally increased expression of Toll-like receptors TLR2 and TLR4 in the colon and increased pro-inflammatory cytokine production by macrophages. In the present study, we explored the effect of FC-99, a novel benzenediamine analog, on dextran sulfate sodium (DSS)-induced mouse colitis and investigated its potential mechanism. The results revealed that FC-99 improved the colon morphology and the clinical parameters in DSS-induced mouse colitis. FC-99 inhibited the increase of DSS-induced T helper cells (Th) 1 and Th17 and enhanced the number of regulatory T cells (Treg) in mesenteric lymph nodes (MLN), but had no effect on Th2 cells. FC-99 also suppressed the DSS-induced secretion of interleukin (IL)-1β, IL-6, and the tumor necrosis factor (TNF)-α in the colon and hindered the infiltration of macrophages into colon lamina propria. Flow cytometric analysis also confirmed that FC-99 reduced CD11b(+)F4/80(+) colon macrophages, and down-regulated TNF-α level in situ. Moreover, FC-99 inhibited concentration-dependently the expression of TNF-α and IL-6 in vitro from mouse peritoneal macrophages, which were induced by TLR ligands: PamCSK4 and peptidoglycan (PGN, TLR2 ligand) as well as LPS (TLR4 ligand). Of note, FC-99 also suppressed the activation of TLR2 and TLR4 signaling pathways and the downstream nuclear factor-κB (NF-κB) in the DSS-induced mouse colitis. FC-99 improved the condition of DSS-induced mouse colitis by inhibiting the activation of TLR2 and TLR4 signaling pathways in macrophage. These results suggest that FC-99 may be developed as a new therapeutic drug for IBD. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress.

    PubMed

    Sindhu, Sardar; Akhter, Nadeem; Kochumon, Shihab; Thomas, Reeby; Wilson, Ajit; Shenouda, Steve; Tuomilehto, Jaakko; Ahmad, Rasheed

    2018-01-01

    Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and P<0.05 was considered significant. The adipose tissue TLR10 gene/protein expression was found to be significantly upregulated in obesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. TLR4 Gene Expression and Pro-Inflammatory Cytokines in Alzheimer's Disease and in Response to Hippocampal Deafferentation in Rodents.

    PubMed

    Miron, Justin; Picard, Cynthia; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes

    2018-01-01

    One important aspect in Alzheimer's disease pathology is the presence of chronic inflammation. Considering its role as a key receptor in the microglial innate immune system, TLR4 was shown to regulate the binding and phagocytosis of amyloid plaques by microglia in several mouse models of amyloidosis, as well as the production of pro-inflammatory cytokines. To our knowledge, TLR4 and its association with cytokines have not been thoroughly examined in the brains of subjects affected with Alzheimer's disease. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in postmortem human brains, we observed increased expression for the TLR4 and TNF genes (p = 0.001 and p = 0.025, respectively), as well as a trend for higher IL6 gene expression in the frontal cortex of AD subjects when compared to age-matched controls. Similarly, using a mouse model of hippocampal deafferentation without amyloidosis, (i.e., the entorhinal cortex lesioned mouse), we observed significant increases in the expression of both the Tlr4 (p = 0.0367 and p = 0.0193 compared to sham-lesioned mice or to the contralateral side, respectively) and Il1b (p = 0.0055 and p = 0.0066 compared to sham-lesioned mice or to the contralateral side, respectively) genes in the deafferentation phase, but not during the ensuing reinnervation process. In conclusion, we suggest that the modulation of cytokines by TLR4 is differentially regulated whether by the presence of amyloid plaques or by the ongoing deafferentation process.

  5. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    PubMed

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  6. Effect of creatine, creatinine, and creatine ethyl ester on TLR expression in macrophages.

    PubMed

    Leland, Korey M; McDonald, Thomas L; Drescher, Kristen M

    2011-09-01

    Despite the widespread availability and use of dietary supplements, minimal work has been performed to assess the potential dangers many of these supplements may have on the host's well-being, in particular the host's ability to respond to infection. One supplement extensively used by both adolescents and adults is creatine. Using Real-time PCR, we examined the impact of short-term exposure of a mouse macrophage cell line (RAW 264.7 cells) to two readily available forms of creatine used in supplements--creatine monohydrate (CR) and creatine ethyl ester (CEE) as well as the end product of creatine metabolism, creatinine (CRN), on expression of toll-like receptor-2 (TLR-2), TLR-3, TLR-4, and TLR-7. CR down-regulated TLR-2, TLR-3, TLR-4 and TLR-7 mRNA levels in RAW cells. Similar results were observed following exposure of RAW cells to CRN. Conversely CEE appears to possess immunostimulatory properties and increases expression of TLR-2, TLR-3, TLR-4, and TLR-7 in RAW cells. These data are supported by immunostaining using antibodies specific for the individual TLRs before and after exposure of RAW cells to CR, CRN, or CEE. To extend these findings, we isolated murine splenocytes and exposed the cells to CR, CEE, or CRN for 24 hours and performed immunofluorescent staining for TLR-2, TLR-3, TLR-4 and TLR-7. The results obtained from this study with primary splenocytes were consistent with the studies using RAW cells. Together, these data suggest that creatine and creatine derivatives may impact the ability of immune cells to sense a wide array of viral and bacterial pathogens. Of great interest, CRN--largely considered to be a waste product of the argenine biosynthesis pathway may also have immunosuppressive properties similar to those of CR. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Effect of creatine, creatinine, and creatine ethyl ester on TLR expression in macrophages

    PubMed Central

    Leland, Korey M.; McDonald, Thomas L.; Drescher, Kristen M.

    2011-01-01

    Despite the widespread availability and use of dietary supplements, minimal work has been performed to assess the potential dangers many of these supplements may have on the host’s well-being, in particular the host’s ability to respond to infection. One supplement extensively used by both adolescents and adults is creatine. Using Real-time PCR, we examined the impact of short-term exposure of a mouse macrophage cell line (RAW 264.7 cells) to two readily available forms of creatine used in supplements – creatine monohydrate (CR) and creatine ethyl ester (CEE) as well as the end product of creatine metabolism, creatinine (CRN), on expression of toll-like receptor-2 (TLR-2), TLR-3, TLR-4, and TLR-7. CR down-regulated TLR-2, TLR-3, TLR-4 and TLR-7 mRNA levels in RAW cells. Similar results were observed following exposure of RAW cells to CRN. Conversely CEE appears to possess immunostimulatory properties and increases expression of TLR-2, TLR-3, TLR-4, and TLR-7 in RAW cells. These data are supported by immunostaining using antibodies specific for the individual TLRs before and after exposure of RAW cells to CR, CRN, or CEE. To extend these findings, we isolated murine splenocytes and exposed the cells to CR, CEE, or CRN for 24 hours and performed immunofluorescent staining for TLR-2, TLR-3, TLR-4 and TLR-7. The results obtained from this study with primary splenocytes were consistent with the studies using RAW cells. Together, these data suggest that creatine and creatine derivatives may impact the ability of immune cells to sense a wide array of viral and bacterial pathogens. Of great interest, CRN - largely considered to be a waste product of the argenine biosynthesis pathway may also have immunosuppressive properties similar to those of CR. PMID:21575742

  8. Polymorphisms in Toll-like receptors 2 and 4 genes and their expression in chronic suppurative otitis media.

    PubMed

    Jotic, Ana; Jesic, Snezana; Zivkovic, Maja; Tomanovic, Nada; Kuveljic, Jovana; Stankovic, Aleksandra

    2015-12-01

    Toll-like receptors (TLRs) have a prominent role in inducing innate immune response. It has been suggested that regulation of TLRs is involved in the pathogenesis of chronic otitis media. TLR 2 and TLR 4 polymorphisms were connected with susceptibility to acute otitis and chronic otitis with effusion. The objective of this study was to establish expression of TLR 2 and 4 on middle ear mucosa in different types of chronic suppurative otitis media (CSOM), and the influence of gene polymorphisms TLR 2 Arg753Gln and TLR 4 Thr399Ile and Asp299Gly to susceptibility to CSOM. Middle ear mucosa and full blood samples were obtained from 85 patients with chronic suppurative otitis media with and without cholesteatoma. Control group for mucosal TLR expression consisted of 71 samples of middle ear mucosa taken from patients with otosclerosis, and control group for DNA polymorphism consisted of 100 full blood samples in healthy subjects. DNA polymorphism detection was done with restriction fragment length polymorphism in RT PCR. Expression of TLR 2 and 4 was determined with immunohistochemical staining. TLR 2 and TLR 4 expression on the middle ear mucosa was not influenced by age of the patients with chronic otitis media. Incidence of TLR 2 Arg753Gln polymorphism was significantly higher in patients with chronic otitis media, compared to control group. Significant association between TLR 2 Arg753Gln polymorphism and different types of mucosal changes in patients with chronic otitis media was established. TLR 2 and 4 expression on experimental group mucosa was significantly different compared to control group, where there was no expression (p=0.000). Strong dependence of TLR 2 and TLR 4 expression on middle ear mucosa with different mucosal changes and immunohistochemical activity after staining was detected. Certain polymorphisms in TLR genes could be indicative for susceptibility to chronic otitis media. Expression of TLR 2 and 4 on middle ear mucosa was more dependable on different types of mucosal changes and type of CSOM than on bacteria found in the specimens. This can indicate that the type of mucosal changes are closely correlated with TLRs activity in middle ear. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling.

    PubMed

    Wang, Leshan; Luo, Lv; Zhao, Weijie; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan; Wang, Lina

    2018-06-18

    Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.

  10. FBXW7 protein has dual-role as tumor suppressor and inflammatory pathway inhibitor | Center for Cancer Research

    Cancer.gov

    Toll-like receptors (TLRs) are largely responsible for inducing innate immune responses to infection. TLR4 binds lipopolysaccharide (LPS) from Gram-negative bacteria and initiates a signaling pathway to activate inflammatory responses. TLR4 plays a role in diseases such as sepsis and chronic inflammatory disorders. In tumor cells, TLR4 is involved in dampening immune surveillance, and increasing proliferation, inflammatory cytokine production, and invasive migration. Determining how TLR4 expression and signaling is regulated may enable these adverse conditions to be better managed.

  11. Amelioration of tissue fibrosis by toll-like receptor 4 knockout in murine models of systemic sclerosis.

    PubMed

    Takahashi, Takehiro; Asano, Yoshihide; Ichimura, Yohei; Toyama, Tetsuo; Taniguchi, Takashi; Noda, Shinji; Akamata, Kaname; Tada, Yayoi; Sugaya, Makoto; Kadono, Takafumi; Sato, Shinichi

    2015-01-01

    Bleomycin-induced fibrosis and the tight skin (TSK/+) mouse are well-established experimental murine models of human systemic sclerosis (SSc). Growing evidence has demonstrated the pivotal role of Toll-like receptors (TLRs) in several autoimmune inflammatory diseases, including SSc. This study was undertaken to determine the role of TLR-4 in the fibrotic processes in these murine models. We generated a murine model of bleomycin-induced SSc using TLR-4(-/-) mice and TLR-4(-/-) ;TSK/+ mice. The mechanisms by which TLR-4 contributes to pathologic tissue fibrosis were investigated in these 2 models by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and flow cytometry. Dermal and lung fibrosis was attenuated in bleomycin-treated TLR-4(-/-) mice compared with their wild-type counterparts. Inflammatory cell infiltration, expression of various inflammatory cytokines, and pathologic angiogenesis induced by bleomycin treatment were suppressed with TLR-4 deletion. Furthermore, the increased expression of interleukin-6 (IL-6) in fibroblasts, endothelial cells, and immune cells in response to bleomycin in vivo and to lipopolysaccharide in vitro was notably abrogated in the absence of TLR-4. Moreover, TLR-4 deletion was associated with alleviated B cell activation and skew toward a Th2/Th17 response against bleomycin treatment. Importantly, in TSK/+ mice, another SSc murine model, TLR-4 abrogation attenuated hypodermal fibrosis. These results indicate the pivotal contribution of TLR-4 to the pathologic tissue fibrosis of SSc murine models. Our results indicate the critical role of TLR-4 signaling in the development of tissue fibrosis, suggesting that biomolecular TLR-4 targeting might be a potential therapeutic approach to SSc. Copyright © 2015 by the American College of Rheumatology.

  12. 1,25-Dihydroxyvitamin D3 up-regulates TLR10 while down-regulating TLR2, 4, and 5 in human monocyte THP-1.

    PubMed

    Verma, Rewa; Jung, Jong Hyeok; Kim, Jae Young

    2014-05-01

    In humans, there are ten Toll-like receptors (TLRs), among which TLR10 is the only orphan receptor whose function is unknown. In this study, we examined the effects of IFN-γ, LPS and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on TLR10 expression of human monocyte THP-1 and compared them with those of other surface TLRs such as TLR2, 4 and 5 to differentiate TLR10 from other TLRs. Surface TLR10 expression on THP-1 was significantly enhanced by the addition of IFN-γ or LPS in a fashion similar to that of other TLRs. However, TLR10 expression was differentially regulated by 1,25(OH)2D3. Surface TLR10 expression on THP-1 was significantly enhanced at 24h, reaching approximately two times the control level at 48h after treatment with 100nM 1,25(OH)2D3, while that of TLR2, 4 and 5 decreased gradually in response to treatment over time. 1,25(OH)2D3 at concentrations above 1nM markedly enhanced surface TLR10 expression, but concentrations below 1nM did not. TLR10 mRNA expression was also increased by 1,25(OH)2D3. We next screened for putative binding sites of nuclear vitamin D receptor (VDR) and its counterpart RXR-α within promoter of TLR genes using a transcription factor binding site-prediction program. The results revealed that TLR10 is the only receptor among the tested TLRs that has both a VDR and RXR-α binding site within its proximal promoter. To identify possible involvement of VDR/RXR in the 1,25(OH)2D3-induced TLR10 up-regulation, we engaged the VDR synthesis inhibitor, dexamethasone, and the RXR antagonist, 1,8-dihydroxyanthraquinone. We found that TLR10 up-regulation was significantly blocked with pre-treatment of these inhibitors. These findings indicate that surface TLR10 expression is differentially regulated by 1,25(OH)2D3 and mainly regulated at the transcriptional level via VDR/RXR-α. Overall, results presented herein suggest that TLR10 functions differently from other known surface TLRs under certain circumstances. Further study using primary cells is necessary to confirm the results of the present study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Luqing

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigmentmore » epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.« less

  14. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  15. Toll-like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: role of endoplasmic reticulum stress.

    PubMed

    Masson, Gustavo S; Nair, Anand R; Dange, Rahul B; Silva-Soares, Pedro Paulo; Michelini, Lisete C; Francis, Joseph

    2015-01-01

    Toll-like receptor 4 (TLR4) signaling induces tissue pro-inflammatory cytokine release and endoplasmic reticulum (ER) stress. We examined the role of TLR4 in autonomic dysfunction and the contribution of ER stress. Our study included animals divided in 6 experimental groups: rats treated with saline (i.v., 0.9%), LPS (i.v., 10mg/kg), VIPER (i.v., 0.1 mg/kg), or 4-PBA (i.p., 10 mg/kg). Two other groups were pretreated either with VIPER (TLR4 viral inhibitory peptide) LPS + VIPER (i.v., 0.1 mg/kg) or 4-Phenyl butyric acid (4-PBA) LPS + PBA (i.p., 10 mg/kg). Arterial pressure (AP) and heart rate (HR) were measured in conscious Sprague-Dawley rats. AP, HR variability, as well as baroreflex sensitivity (BrS), was determined after LPS or saline treatment for 2 hours. Immunofluorescence staining for NeuN, Ib1a, TLR4 and GRP78 in the hypothalamic paraventricular nucleus (PVN) was performed. TNF-α, TLR4 and GRP78 protein expression in the PVN were evaluated by western blot. Plasma norepinephrine levels were determined by ELISA. Acute LPS treatment increased HR and plasma norepinephrine concentration. It also decreased HR variability and high frequency (HF) components of HR variability, as well BrS. Acute LPS treatment increased TLR4 and TNF-α protein expression in the PVN. These hemodynamic and molecular effects were partially abrogated with TLR4 blocker or ER stress inhibitor pretreatment. In addition, immunofluorescence study showed that TLR4 is co-localized with GRP78in the neurons. Further inhibition of TLR4 or ER stress was able to attenuate the LPS-induced microglia activation. TLR4 signaling promotes autonomic dysfunction, inflammation and microglia activation, through neuronal ER stress, in the PVN.

  16. Involvement of S100A8/A9-TLR4-NLRP3 Inflammasome Pathway in Contrast-Induced Acute Kidney Injury.

    PubMed

    Tan, Xuexian; Zheng, Xiaohe; Huang, Zena; Lin, Jiaqiong; Xie, Chuli; Lin, Yan

    2017-01-01

    Contrast-induced acute kidney injury (CIAKI) is a common cause of hospital-acquired acute kidney injury (AKI). S100A8/A9-TLR4-NLRP3 inflammasome pathway triggers inflammation, apoptosis and tissue injury in several AKI models. Nevertheless, the underlying mechanism of S100A8/A9-TLR4-NLRP3 inflammasome pathway in CIKAI is not clear. We aimed to investigate the possible role of S100A8/A9-TLR4-NLRP3 inflammasome in the pathophysiology of CIAKI. We treated male rats and NRK-52E cells by iopromide to establish in vivo and in vitro models of CIAKI. We collected serum and urine samples to detect renal function. We obtained kidney tissue for histological analysis and detection of protein concentration. We used inhibitor of TLR4 and NLRP3-siRNA to further testify their role in CIAKI in NRK-52E cells. Iopromide caused elevation of SCr, BUN and NGAL level, decrease of endogenous creatinine clearance, morphological injury and tubular apoptosis, enhanced IL-1β and IL-18 expression, and increased expression of S100A8/A9, TLR4 and NLRP3 inflammsome. In NRK-52E cells, iopromide caused enhanced apoptotic rates and ROS generation, which could be ameliorated by inhibitor of TLR4 and NLRP3-siRNA. Moreover, inhibition of TLR4 dampened NLRP3 expression. S100A8/A9-TLR4-NLRP3 inflammasome pathway represented a key mechanism of CI-AKI, which provided a potential therapeutic target. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Cell Surface Trafficking of TLR1 Is Differentially Regulated by the Chaperones PRAT4A and PRAT4B*

    PubMed Central

    Hart, Bryan E.; Tapping, Richard I.

    2012-01-01

    The subcellular localization of Toll-like receptors (TLRs) is critical to their ability to function as innate immune sensors of microbial infection. We previously reported that an I602S polymorphism of human TLR1 is associated with aberrant trafficking of the receptor to the cell surface, loss of responses to TLR1 agonists, and differential susceptibility to diseases caused by pathogenic mycobacteria. Through an extensive analysis of receptor deletion and point mutants we have discovered that position 602 resides within a short 6 amino acid cytoplasmic region that is required for TLR1 surface expression. This short trafficking motif, in conjunction with the adjacent transmembrane domain, is sufficient to direct TLR1 to the cell surface. A serine at position 602 interrupts this trafficking motif and prevents cell surface expression of TLR1. Additionally, we have found that ER-resident TLR chaperones, PRAT4A and PRAT4B, act as positive and negative regulators of TLR1 surface trafficking, respectively. Importantly, either over-expression of PRAT4A or knock-down of PRAT4B rescues cell surface expression of the TLR1 602S variant. We also report that IFN-γ treatment of primary human monocytes derived from homozygous 602S individuals rescues TLR1 cell surface trafficking and cellular responses to soluble agonists. This event appears to be mediated by PRAT4A whose expression is strongly induced in human monocytes by IFN-γ. Collectively, these results provide a mechanism for the differential trafficking of TLR1 I602S variants, and highlight the distinct roles for PRAT4A and PRAT4B in the regulation of TLR1 surface expression. PMID:22447933

  18. Molecular pathways mediating differential responses to lipopolysaccharide between human and baboon arterial endothelial cells.

    PubMed

    Shi, Qiang; Cox, Laura A; Glenn, Jeremy; Tejero, Maria E; Hondara, Vida; Vandeberg, John L; Wang, Xing Li

    2010-02-01

    1. Vascular inflammation plays a critical role in atherogenesis. Previously, we showed that baboon arterial endothelial cells (BAEC) were hyporesponsive to lipopolysaccharide (LPS) compared with human arterial endothelial cells (HAEC). 2. In the present study, we investigated mechanisms underlying differential responses between HAEC and BAEC to tumour necrosis factor (TNF)-alpha and LPS. 3. Both HAEC and BAEC responded similarly to TNF-alpha. However, BAEC showed retarded responses to LPS in expression of E-selectin, intercellular adhesion molecule-1, monocyte chemotactic protein-1 and interleukin-8 (P < 0.05). These changes were confirmed at the mRNA level. Tumour necrosis factor-alpha activated nuclear factor-kappaB members such as p50, p52, p65, c-rel and RelB in both HAEC and BAEC. In contrast, LPS activated p50 and p65 only in HAEC. Using microarray assays, we found that TNF receptor-associated factor 2 (TRAF-2), TNF receptor superfamily, member 1A-associated via death domain (TRADD) and nuclear factors such as nuclear factor of kappa in B-cells inhibitor, alpha (NFKBIA) and nuclear factor of kappa in B-cells inhibitor, beta (NFKBIB) were upregulated by LPS only in HAEC. Although the baseline expression of Toll-like receptor (TLR) 4 was low in both HAEC and BAEC, TNF-alpha activated TLR4 expression in both cell types. Although LPS increased TLR4 expression only in HAEC, human and baboon peripheral blood mononuclear cells exhibited similar TLR4 expression and response to LPS. Transfecting BAEC with TLR4/myeloid differentiation protein-2 overexpression vector conferred BAEC responsiveness to LPS. 4. The findings of the present study indicate that an altered TLR4 system may be responsible for the resistance of baboon endothelial cells to LPS. Given the importance of TLR4 in human immune responses and vascular diseases, the natural resistance of baboons to LPS/TLR4-initiated inflammation could make the baboon a valuable animal model in which to study how inflammation affects atherogenesis.

  19. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  20. Characterization and functional analysis of toll-like receptor 4 in Chinese soft-shelled turtle Pelodiscus sinensis.

    PubMed

    Zhou, Yingshan; Liang, Quan; Li, Weifen; Gu, Yuanxing; Liao, Xun; Fang, Weihuan; Li, Xiaoliang

    2016-10-01

    Mammalian Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS) in initiating the innate immune responses. Early studies indicate that turtles are more resistant to LPS challenge than mammals. It remains unknown if turtles express TLR4 and why they are more resistant to LPS. In this study, TLR4 gene from Chinese soft-shelled turtle, Pelodiscus sinensis, was cloned and characterized. The full length cDNA of turtle TLR4 (tTLR4) consists of 3396 base pairs with an 2499-bp open reading frame, encoding 833 amino acids. Phylogenetic and syntenic analyses suggest that tTLR4 is to be orthologous to human TLR4. Its mRNA expression was up-regulated in spleen and blood of turtles upon Aeromonas hydrophila infection. Stimulation of turtle peripheral blood monocytes with LPS significantly upregulated tTLR4 mRNA and inflammation-related gene expression, such as Interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2). In tTLR4-expressing HEK293 cells, higher concentration of LPS exposure could enhance the activity of the NF-κB promoter, but not the INF-β promoter. Such activity required co-expression of turtle myeloid differentiation factor 2 (tMD2) and cluster of differentiation 14 (tCD14). These results provide evidence for a functional TLR4 in reptiles and, together with the syntenic analysis, support the idea that the TLR4 receptor for LPS recognition may have arisen after reptiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage.

    PubMed

    Zhang, Yan; Igwe, Orisa J

    2018-01-01

    Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Toll-like Receptor 4-mediated Endoplasmic Reticulum Stress in Intestinal Crypts Induces Necrotizing Enterocolitis*

    PubMed Central

    Afrazi, Amin; Branca, Maria F.; Sodhi, Chhinder P.; Good, Misty; Yamaguchi, Yukihiro; Egan, Charlotte E.; Lu, Peng; Jia, Hongpeng; Shaffiey, Shahab; Lin, Joyce; Ma, Congrong; Vincent, Garrett; Prindle, Thomas; Weyandt, Samantha; Neal, Matthew D.; Ozolek, John A.; Wiersch, John; Tschurtschenthaler, Markus; Shiota, Chiyo; Gittes, George K.; Billiar, Timothy R.; Mollen, Kevin; Kaser, Arthur; Blumberg, Richard; Hackam, David J.

    2014-01-01

    The cellular cues that regulate the apoptosis of intestinal stem cells (ISCs) remain incompletely understood, yet may play a role in diseases characterized by ISC loss including necrotizing enterocolitis (NEC). Toll-like receptor-4 (TLR4) was recently found to be expressed on ISCs, where its activation leads to ISC apoptosis through mechanisms that remain incompletely explained. We now hypothesize that TLR4 induces endoplasmic reticulum (ER) stress within ISCs, leading to their apoptosis in NEC pathogenesis, and that high ER stress within the premature intestine predisposes to NEC development. Using transgenic mice and cultured enteroids, we now demonstrate that TLR4 induces ER stress within Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5)-positive ISCs, resulting in crypt apoptosis. TLR4 signaling within crypts was required, because crypt ER stress and apoptosis occurred in TLR4ΔIEC-OVER mice expressing TLR4 only within intestinal crypts and epithelium, but not TLR4ΔIEC mice lacking intestinal TLR4. TLR4-mediated ER stress and apoptosis of ISCs required PERK (protein kinase-related PKR-like ER kinase), CHOP (C/EBP homologous protein), and MyD88 (myeloid differentiation primary response gene 88), but not ATF6 (activating transcription factor 6) or XBP1 (X-box-binding protein 1). Human and mouse NEC showed high crypt ER stress and apoptosis, whereas genetic inhibition of PERK or CHOP attenuated ER stress, crypt apoptosis, and NEC severity. Strikingly, using intragastric delivery into fetal mouse intestine, prevention of ER stress reduced TLR4-mediated ISC apoptosis and mucosal disruption. These findings identify a novel link between TLR4-induced ER stress and ISC apoptosis in NEC pathogenesis and suggest that increased ER stress within the premature bowel predisposes to NEC development. PMID:24519940

  3. Toll-like receptor 4-mediated endoplasmic reticulum stress in intestinal crypts induces necrotizing enterocolitis.

    PubMed

    Afrazi, Amin; Branca, Maria F; Sodhi, Chhinder P; Good, Misty; Yamaguchi, Yukihiro; Egan, Charlotte E; Lu, Peng; Jia, Hongpeng; Shaffiey, Shahab; Lin, Joyce; Ma, Congrong; Vincent, Garrett; Prindle, Thomas; Weyandt, Samantha; Neal, Matthew D; Ozolek, John A; Wiersch, John; Tschurtschenthaler, Markus; Shiota, Chiyo; Gittes, George K; Billiar, Timothy R; Mollen, Kevin; Kaser, Arthur; Blumberg, Richard; Hackam, David J

    2014-04-04

    The cellular cues that regulate the apoptosis of intestinal stem cells (ISCs) remain incompletely understood, yet may play a role in diseases characterized by ISC loss including necrotizing enterocolitis (NEC). Toll-like receptor-4 (TLR4) was recently found to be expressed on ISCs, where its activation leads to ISC apoptosis through mechanisms that remain incompletely explained. We now hypothesize that TLR4 induces endoplasmic reticulum (ER) stress within ISCs, leading to their apoptosis in NEC pathogenesis, and that high ER stress within the premature intestine predisposes to NEC development. Using transgenic mice and cultured enteroids, we now demonstrate that TLR4 induces ER stress within Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5)-positive ISCs, resulting in crypt apoptosis. TLR4 signaling within crypts was required, because crypt ER stress and apoptosis occurred in TLR4(ΔIEC-OVER) mice expressing TLR4 only within intestinal crypts and epithelium, but not TLR4(ΔIEC) mice lacking intestinal TLR4. TLR4-mediated ER stress and apoptosis of ISCs required PERK (protein kinase-related PKR-like ER kinase), CHOP (C/EBP homologous protein), and MyD88 (myeloid differentiation primary response gene 88), but not ATF6 (activating transcription factor 6) or XBP1 (X-box-binding protein 1). Human and mouse NEC showed high crypt ER stress and apoptosis, whereas genetic inhibition of PERK or CHOP attenuated ER stress, crypt apoptosis, and NEC severity. Strikingly, using intragastric delivery into fetal mouse intestine, prevention of ER stress reduced TLR4-mediated ISC apoptosis and mucosal disruption. These findings identify a novel link between TLR4-induced ER stress and ISC apoptosis in NEC pathogenesis and suggest that increased ER stress within the premature bowel predisposes to NEC development.

  4. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury

    PubMed Central

    2014-01-01

    Background Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI. Methods Neurological function, brain water content and cytokine levels were tested in TLR4-/- mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation. Results The protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4-/- mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and neuron co-culture following treatment with curcumin after LPS stimulation. LPS increased TLR4 immunoreactivity and morphological activation in microglia and increased neuronal apoptosis, whereas curcumin normalized this upregulation. The increased protein levels of TLR4, MyD88 and NF-κB in microglia were attenuated by curcumin treatment. Conclusions Our results suggest that post-injury, curcumin administration may improve patient outcome by reducing acute activation of microglia/macrophages and neuronal apoptosis through a mechanism involving the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages in TBI. PMID:24669820

  5. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo.

    PubMed

    Woodward, Nicholas C; Levine, Morgan C; Haghani, Amin; Shirmohammadi, Farimah; Saffari, Arian; Sioutas, Constantinos; Morgan, Todd E; Finch, Caleb E

    2017-04-14

    Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003-1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution.

  6. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR(2) ) is involved in vascular function.

    PubMed

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR(2) and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR(2) activating peptide (AP) was used as a PAR(2) agonist. Aortas harvested from TLR4(-/-) mice were also used to characterize the PAR(2) response. PAR(2) , but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR(2) AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR(2) AP-induced vasorelaxation and PAR(2) AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4(-/-) mice, the expression of PAR(2) was reduced and the PAR(2) AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Cross-talk between PAR(2) and TLR4 contributes to vascular homeostasis. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  7. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR2) is involved in vascular function

    PubMed Central

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Background and Purpose Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR2 and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Experimental Approach Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR2 activating peptide (AP) was used as a PAR2 agonist. Aortas harvested from TLR4–/– mice were also used to characterize the PAR2 response. Key Results PAR2, but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR2AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR2AP-induced vasorelaxation and PAR2AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4–/– mice, the expression of PAR2 was reduced and the PAR2AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Conclusions and Implications Cross-talk between PAR2 and TLR4 contributes to vascular homeostasis. PMID:22957757

  8. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells.

    PubMed

    Guan, Xiao-Feng; Chen, Qing-Jie; Zuo, Xiao-Cong; Guo, Ren; Peng, Xiang-Dong; Wang, Jiang-Lin; Yin, Wen-Jun; Li, Dai-Yang

    2017-01-01

    With the rapid development of imaging diagnosis and interventional therapy, contrast media (CM) are widely used in clinics. However, contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure accounting for 10-12% of all causes of hospital-acquired renal failure. Recent study found that inflammation may participate in the pathogenesis of CIN, but the role of it remains unclear. HK-2 cells were treated with Iohexol, Urografin, and mannitol. Two types of CM increased the release of HMGB1 in cell supernatant accompanied by increased expression of TLR2 and CXCR4. Iohexol and Urografin also caused a significant increase in NF-κB followed by the release of IL-6 and MCP-1. To clarify the role of HMGB1, TLR2, and CXCR4, glycyrrhizin, anti-TLR2-IgG, and AMD3100 were used to inhibit HMGB1, TLR2, and CXCR4, respectively. Significant decrease in the expression of TLR2, CXCR4, nuclear NF-κB, and the release of IL-6 and MCP-1 were observed. These results indicate that TLR2 and CXCR4 signaling are involved in CM-induced HK-2 cell injury model in an HMGB1-dependent pathway, which may provide a new target for the prevention and the treatment of CIN.

  9. Down-regulation of Toll-like Receptor TLR4 Is Associated with HPV DNA Integration in Penile Carcinoma.

    PubMed

    Damasdi, Miklos; Kovacs, Krisztina; Farkas, Nelli; Jakab, Ferenc; Kovacs, Gyula

    2017-10-01

    Development of penile cancers is attributed to HPV-related carcinogenesis. Our aim was to analyze HPV positivity and TLR4, p16 ink4a and p53 expression. HPV presence was assessed with virus-specific TaqMan PCR and HPV Genotyping Test in 31 penile cancers. Immunohistochemistry was carried out on tissue microarray. TLR4 expression was detected in 4 of the 16 HPV positive and 13 of the 15 HPV negative tumors. We found a significant inverse correlation between HPV positivity and TLR4 expression (p=0.0006). Ten of the 16 HPV-positive but none of the 15 HPV-negative tumors expressed p16INK4a. A significant correlation was seen between p53 expression and lack of HPV DNA (p=0.0191) as well as between TLR4 and p53 expression (p=0.0198) in penile cancers. Our findings suggest a protective role of TLR4 expression against HPV DNA integration and the viral and non-viral carcinogenesis of penile cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuehai; Huang, Ziyang, E-mail: huangziyang666@126.com; Lu, Huixia

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-}more » mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti-dsDNA antibody. Therefore, the TLR4 signal pathway may participate in maintaining the balance of splenocyte apoptosis and autoantibody production in ApoE{sup -/-} mice.« less

  11. The Effect of Elevated Intra-Abdominal Pressure on TLR4 Signaling in Intestinal Mucosa and on Intestinal Bacterial Translocation in a Rat.

    PubMed

    Strier, Adam; Kravarusic, Dragan; Coran, Arnold G; Srugo, Isaac; Bitterman, Nir; Dorfman, Tatiana; Pollak, Yulia; Matter, Ibrahim; Sukhotnik, Igor

    2017-02-01

    Recent evidence suggests that elevated intra-abdominal pressure (IAP) may adversely affect the intestinal barrier function. Toll-like receptor 4 (TLR-4) is responsible for the recognition of bacterial endotoxin or lipopolysaccharide and for initiation of the Gram-negative septic shock syndrome. The objective of the current study was to determine the effects of elevated IAP on intestinal bacterial translocation (BT) and TLR-4 signaling in intestinal mucosa in a rat model. Male Sprague-Dawley rats were randomly assigned to one of two experimental groups: sham animals (Sham) and IAP animals who were subjected to a 15 mmHg pressure pneumoperitoneum for 30 minutes. Rats were sacrificed 24 hours later. BT to mesenteric lymph nodes, liver, portal vein blood, and peripheral blood was determined at sacrifice. TLR4-related gene and protein expression (TLR-4; myeloid differentiation factor 88 [Myd88] and TNF-α receptor-associated factor 6 [TRAF6]) expression were determined using real-time PCR, western blotting, and immunohistochemistry. Thirty percent of sham rats developed BT in the mesenteric lymph nodes (level I) and 20% of control rats developed BT in the liver and portal vein (level II). abdominal compartment syndrome (ACS) rats demonstrated an 80% BT in the lymph nodes (Level I) and 40% BT in the liver and portal vein (Level II). Elevated BT was accompanied by a significant increase in TLR-4 immunostaining in jejunum (51%) and ileum (35.9%), and in a number of TRAF6-positive cells in jejunum (2.1%) and ileum (24.01%) compared to control animals. ACS rats demonstrated a significant increase in TLR4 and MYD88 protein levels compared to control animals. Twenty-four hours after the induction of elevated IAP in a rat model, increased BT rates were associated with increased TLR4 signaling in intestinal mucosa.

  12. Hydroxysafflor Yellow A Attenuates Neuron Damage by Suppressing the Lipopolysaccharide-Induced TLR4 Pathway in Activated Microglial Cells.

    PubMed

    Lv, Yanni; Qian, Yisong; Ou-Yang, Aijun; Fu, Longsheng

    2016-11-01

    Microglia activation initiates a neurological deficit cascade that contributes to substantial neuronal damage and impairment following ischemia stroke. Toll-like receptor 4 (TLR4) has been demonstrated to play a critical role in this cascade. In the current study, we tested the hypothesis that hydroxysafflor yellow A (HSYA), an active ingredient extracted from Flos Carthami tinctorii, alleviated inflammatory damage, and mediated neurotrophic effects in neurons by inducing the TLR4 pathway in microglia. A non-contact Transwell co-culture system comprised microglia and neurons was treated with HSYA followed by a 1 mg/mL lipopolysaccharide (LPS) stimulation. The microglia were activated prior to neuronal apoptosis, which were induced by increasing TLR4 expression in the activated microglia. However, HSYA suppressed TLR4 expression in the activated microglia, resulting in less neuronal damage at the early stage of LPS stimulation. Western blot analysis and immunofluorescence indicated that dose-dependently HSYA down-regulated TLR4-induced downstream effectors myeloid differentiation factor 88 (MyD88), nuclear factor kappa b (NF-κB), and the mitogen-activated protein kinases (MAPK)-regulated proteins c-Jun NH2-terminal protein kinase (JNK), protein kinase (ERK) 1/2 (ERK1/2), p38 MAPK (p38), as well as the LPS-induced inflammatory cytokine release. However, HSYA up-regulated brain-derived neurotrophic factor (BDNF) expression. Our data suggest that HSYA could exert neurotrophic and anti-inflammatory functions in response to LPS stimulation by inhibiting TLR4 pathway-mediated signaling.

  13. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    PubMed

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers

    PubMed Central

    Yajing, Sun; Arain, Muhammad Asif; Weifen, Li; Ping, Li; Bloch, Dost Muhammad; Wenhua, Liu

    2017-01-01

    The present study was designed to evaluate the effects of Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) on intestinal epithelial Toll like receptors (TLR), and Cytokine expression response to understand the intestinal epithelial innate immune mechanism in broilers. A total of 300 birds (Sanhuang broilers) were allotted into three groups (n = 100) and each divided into five replications (n = 20). Control group (Ctr) birds were fed basal diet, broilers in experimental groups received (1×108cfu/kg feed) Sb and Bs respectively in addition to basal diet for 72 days. The result showed significant increase in mRNA expression level of TLR2, TLR4 and TLR15. Down streaming MyD88, TRAF6, TAB2 and NF-κB mRNA level noted higher, in the jejunum and ileum as compared to control group. Meanwhile, IL-6, TNFα, IL-10, TGF-β expression levels showed high expression in the jejunum of Sb and Bs groups. IL-10 expression level increased in the ileum and IL-6, TNFα, IL-10 and TGF-β expression levels increased in the jejunum of Sb group. Levels of IL-1 β, IL-17, and IL-4, increased merely in Sb group. Ileal cytokines IL-1β, IL-17 and IL-4concentration were noted higher in Sb group, and IL-1β, and IL-4 levels were up-regulated in Bs group. The results indicated that the INF-γ and IL-8 level decreased in Sb and BS groups. Serum IgA and sIgA level increased in both treatment groups. Our findings illustrated that S. boulardii and B. subtilis B10 may have a role to induce mucosal immunity by activating the TLRs and cytokines expressions in broilers. PMID:28319123

  15. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers.

    PubMed

    Rajput, Imran Rashid; Ying, Huang; Yajing, Sun; Arain, Muhammad Asif; Weifen, Li; Ping, Li; Bloch, Dost Muhammad; Wenhua, Liu

    2017-01-01

    The present study was designed to evaluate the effects of Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) on intestinal epithelial Toll like receptors (TLR), and Cytokine expression response to understand the intestinal epithelial innate immune mechanism in broilers. A total of 300 birds (Sanhuang broilers) were allotted into three groups (n = 100) and each divided into five replications (n = 20). Control group (Ctr) birds were fed basal diet, broilers in experimental groups received (1×108cfu/kg feed) Sb and Bs respectively in addition to basal diet for 72 days. The result showed significant increase in mRNA expression level of TLR2, TLR4 and TLR15. Down streaming MyD88, TRAF6, TAB2 and NF-κB mRNA level noted higher, in the jejunum and ileum as compared to control group. Meanwhile, IL-6, TNFα, IL-10, TGF-β expression levels showed high expression in the jejunum of Sb and Bs groups. IL-10 expression level increased in the ileum and IL-6, TNFα, IL-10 and TGF-β expression levels increased in the jejunum of Sb group. Levels of IL-1 β, IL-17, and IL-4, increased merely in Sb group. Ileal cytokines IL-1β, IL-17 and IL-4concentration were noted higher in Sb group, and IL-1β, and IL-4 levels were up-regulated in Bs group. The results indicated that the INF-γ and IL-8 level decreased in Sb and BS groups. Serum IgA and sIgA level increased in both treatment groups. Our findings illustrated that S. boulardii and B. subtilis B10 may have a role to induce mucosal immunity by activating the TLRs and cytokines expressions in broilers.

  16. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage.

    PubMed

    Gu, Yan; Zhang, Yun; Bi, Yang; Liu, Jingjing; Tan, Bin; Gong, Min; Li, Tingyu; Chen, Jie

    2015-10-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of infant mortality and neurological disability in children. Many studies have demonstrated that mesenchymal stem cell (MSC) transplantation facilitates the restoration of the biological function of injured tissue following HIBD via immunomodulation. This study aimed to elucidate the mechanisms by which MSCs mediate immunomodulation via the key effectors Toll-like receptor 2 (TLR2) and interleukin-10 (IL-10). We showed that TLR2 expression in the brain of HIBD rats was upregulated following HIBD and that MSC transplantation suppressed the expression of TLR2 and the release of IL-10, thereby alleviating the learning-memory deficits of HIBD rats. Following treatment with the specific TLR2 agonist Pam3CSK4 to activate TLR2, learning-memory function became further impaired, and the levels of nuclear factor kappa B (NFκB) and Bax expression and IL-10 release were significantly increased compared with those in HIBD rats that did not receive Pam3CSK4. In vitro, we found that MSC co-culture downregulated TLR2/NFκB signaling and repressed Bax expression and IL-10 secretion in oxygen and glucose deprivation (OGD)-injured adrenal pheochromocytoma (PC12) cells. Furthermore, NFκB and Bax expression and IL-10 release were enhanced following Pam3CSK4 treatment and were decreased following siTLR2 treatment in OGD-injured PC12 cells in the presence or absence of MSCs. Our data indicate that TLR2 is involved in HIBD and that MSCs decrease apoptosis and improve learning-memory function in HIBD rats by suppressing the TLR2/NFκB signaling pathway via a feedback mechanism that reduces IL-10 release. These findings strongly suggest that MSC transplantation improves HIBD via the inhibition of the TLR2/NFκB pathway.

  17. Association of Toll-like receptor 4 with hepatitis A virus infection in Assam.

    PubMed

    Kashyap, P; Deka, M; Medhi, S; Dutta, S; Kashyap, K; Kumari, N

    Hepatitis A virus (HAV) which causes liver disease is recognized by Toll-like receptors (TLRs) through the viral nucleic acid, initiating the host defense response. The study aims to analyze the role of TLR4 rs11536889 polymorphism in the pathogenesis of hepatitis A cases from Assam. There was significant correlation between TLR4 SNP G/C (rs11536889) and between acute viral hepatitis (AVH) A cases and controls. The correlation of the 3 different genotypes GG, GC and CC of TLR4 rs11536889 with the TLR4 mRNA expression level in all the HAV cases groups have been found to be statistically significant (p <0.001). TLR4 expression was most significantly upregulated in the acute HAV cases, HAV with cholestasis cases and even the HAV caused fulminant hepatitis failure (FHF) cases with the CC genotype of TLR4 rs11536889. The upregulation is mostly seen in the cases with the CC genotype of TLR4 rs11536889 and thus indicates that the mutant variant of TLR4 rs11536899 (CC) may have an effect on the expression of TLR4 at the transcription level. Our study did not show any significant association between AVH and HAV caused FHF (p = 0.32, OR = 0; p = 0.59, OR = 2.06 at 95% CI) among the genotypes GG, GC and CC. Our data suggest that TLR4 gene polymorphism rs11536889 may play a prominent role in HAV disease susceptibility and TLR4 expression in population from Assam.

  18. Inhibition of toll-like receptor 3-4 with ethanolic extract of propolis on innate immunity in diabetes mellitus mice (Mus musculus)

    NASA Astrophysics Data System (ADS)

    Pristiwanto, Bambang; Soewondo, A.; Sumitro, Sutiman B.; Rifa'i, Muhaimin

    2017-05-01

    One of the most significant problems today is to treat the effects of metabolic diseases, such as diabetes. Thus, this study evaluated the ability of an ethanolic extract of propolis (EEP) to reduce inflammation in diabetes treatment. The used mice with STZ-induced diabetes mellitus (SID) and the expression of Toll-Like Receptor 3-4 was analyzed in their innate immunity cells. The SID mice had a higher TLR 3-4 expression compared with the healthy control group. Treatment of EEP in SID using three different doses significantly decreased the number of B cells with TLR 3-4 expression. This suggesting that EEP treatment decreases TLR3 & TLR4 expression on innate immunity (especially B cells) from over expression in SID which can affect the acute inflammatory and aggravate the diabetes condition. Even relatively low doses of propolis extract can decrease TLR3 and TLR4 expressed by B cell.

  19. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy.

    PubMed

    Yu, Ruichao; Bo, Hong; Villani, Vincenzo; Spencer, Philip J; Fu, Ping

    2016-01-01

    There is increasing evidence showing that innate immune responses and inflammatory processes play an important role in the development and progression of diabetic nephropathy (DN). The potential effect of innate immunity in the early stage of DN is still unclear. Toll-Like-Receptor 4 (TLR4) is vigorously involved in the progress of kidney diseases in a sterile environment. The activation of the interleukin 17 (IL-17) pathway produces inflammatory cytokines, appearing in various kidney diseases. Unfortunately the relationship between TLR4 and IL-17 has not been investigated in diabetic nephropathy to date. The aim of this study is to investigate whether mammalian target of rapamycin (mTOR) inhibition may be dependent on TLR4 signaling and the pro-inflammatory factor IL-17 to delay the progression of DN. Streptozotocin (STZ)-induced diabetic rats were randomly assigned to 3 experimental groups: a diabetic nephropathy group (DN, n = 6); and a diabetic nephropathy treated with rapamycin group (Rapa, n = 6) and a control group (Control, n =6). Body weight, fasting blood sugar, and 24h urine albumin were assessed at week 2, week 4 and week 8. Renal tissues were harvested for H&E, PAS staining, as well as an immunohistochemistry assay for TLR4 and IL-17. TLR4 quantitative expression was measured by Western-Blot analysis and RT-PCR. Our results demonstrated that the expression of both TLR4 and IL-17 were upregulated in early stage DN and reduced by rapamycin. TLR4 and IL-17 both increased and positively related to 24h urinary albumin and kidney/weight ratio. However, neither TLR4 nor IL-17 made a significant difference on fasting blood sugar. Taken together, our results confirm and extend previous studies identifying the significance of the TLR4 and Th17 pathways in development of early stage DN. Furthermore, we suggest this overexpression of TLR4 might be involved in the immunopathogenesis of DN through activation of Th17 cells. Rapamycin may attenuate DN via reduction of the TLR4 signaling pathway and Th17 cells signaling. Although the underlying mechanisms need to be explored, the observed increase of TLR4 and IL-17 during the early stages of DN and their suppression with rapamycin treatment suggest the importance of TLR4 and IL-17 in DN pathophysiology. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ying; Liu, Jin; Liu, Yang

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed thatmore » TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.« less

  1. Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis.

    PubMed

    Singh, Joy Carmelina Indira; Cruickshank, Sheena Margaret; Newton, Darren James; Wakenshaw, Louise; Graham, Anne; Lan, Jinggang; Lodge, Jeremy Peter Alan; Felsburg, Peter John; Carding, Simon Richard

    2005-03-01

    The interleukin-2-deficient (IL-2(-/-)) mouse model of ulcerative colitis was used to test the hypothesis that colonic epithelial cells (CEC) directly respond to bacterial antigens and that alterations in Toll-like receptor (TLR)-mediated signaling may occur during the development of colitis. TLR expression and activation of TLR-mediated signaling pathways in primary CEC of healthy animals was compared with CEC in IL-2(-/-) mice during the development of colitis. In healthy animals, CEC expressed functional TLR, and in response to the TLR4 ligand LPS, proliferated and secreted the cytokines IL-6 and monocyte chemoattractant protein-1 (MCP-1). However, the TLR-responsiveness of CEC in IL-2(-/-) mice was different with decreased TLR4 responsiveness and augmented TLR2 responses that result in IL-6 and MCP-1 secretion. TLR signaling in CEC did not involve NF-kappaB (p65) activation with the inhibitory p50 form of NF-kappaB predominating in CEC in both the healthy and inflamed colon. Development of colitis was, however, associated with the activation of MAPK family members and upregulation of MyD88-independent signaling pathways characterized by increased caspase-1 activity and IL-18 production. These findings identify changes in TLR expression and signaling during the development of colitis that may contribute to changes in the host response to bacterial antigens seen in colitis.

  2. Effects of a traditional Chinese medicine, Longdanxiegan formula granule, on Toll-like receptor pathway in female guinea pigs with recurrent genital herpes.

    PubMed

    Kuang, Lin; Deng, Yihui; Liu, Xiaodan; Zou, Zhixiang; Mi, Lan

    2016-04-01

    The aim of the present study was to investigate the effects of Longdanxiegan formula granule (LDXGFG), a Chinese traditional medicine on Toll-like receptor (TLR) pathway in recurrent genital herpes. An experimental recurrent genital herpes model was constructed using herpes guinea pig model. The effect of LDXGFG on expression levels of TLR pathway genes were detected using real-time polymerase chain reaction. Furthermore, the dendritic cells and Langerhans cells were isolated and the TLR pathway genes of these cells were assayed after LDXGFG treatment. The result suggested two different expression patterns of TLR pathway genes in genital herpes and recurrent genital herpes, including upregulated genes and downregulated genes. TLR1, TLR4, TLR6, TLR7, TLR8, TLR9, and TLR10 showed a significant decrease while, TLR2, TLR3, and TLR5 increased in genital herpes and recurrent genital herpes guinea pigs. Meanwhile, the downregulated genes in genital herpes and recurrent genital herpes were stimulated by LDXGFG. By contrast, the upregulated genes decreased significantly after LDXGFG treatment. In both dendritic cells and Langerhans cells, the TLR pathway genes exhibited same pattern: the LDXGFG corrected the abnormal expression of TLR pathway genes. The present results suggest that LDXGFG is an alternative, inexpensive, and lasting-effect medicine for herpes simplex virus 2 infection. Copyright © 2016. Published by Elsevier B.V.

  3. Glutamine attenuates the inhibitory effect of methotrexate on TLR signaling during intestinal chemotherapy-induced mucositis in a rat

    PubMed Central

    2014-01-01

    Toll-like receptor 4 (TLR-4) is crucial in maintaining intestinal epithelial homeostasis, participates in a vigorous signaling process and heightens inflammatory cytokine output. The objective of this study was to determine the effects of glutamine (GLN) on TLR-4 signaling in intestinal mucosa during methotrexate (MTX)-induced mucositis in a rat. Male Sprague–Dawley rats were randomly assigned to one of four experimental groups of 8 rats each: 1) control rats; 2) CONTR-GLN animals were treated with oral glutamine given in drinking water (2%) 48 hours before and 72 hours following vehicle injection; 3) MTX-rats were treated with a single IP injection of MTX (20 mg/kg); and 4) MTX-GLN rats were pre-treated with oral glutamine similar to group B, 48 hours before and 72 hours after MTX injection. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. The expression of TLR-4, MyD88 and TRAF6 in the intestinal mucosa was determined using real time PCR, Western blot and immunohistochemistry. MTX-GLN rats demonstrated a greater jejunal and ileal mucosal weight and mucosal DNA, greater villus height in ileum and crypt depth and index of proliferation in jejunum and ileum, compared to MTX animals. The expression of TLR-4 and MyD88 mRNA and protein in the mucosa was significantly lower in MTX rats versus controls animals. The administration of GLN increased significantly the expression of TLR-4 and MyD88 (vs the MTX group). In conclusion, treatment with glutamine was associated with up-regulation of TLR-4 and MyD88 expression and a concomitant decrease in intestinal mucosal injury caused by MTX-induced mucositis in a rat. PMID:24742067

  4. Leptospira santorosai Serovar Shermani detergent extract induces an increase in fibronectin production through a Toll-like receptor 2-mediated pathway.

    PubMed

    Tian, Ya-Chung; Hung, Cheng-Chieh; Li, Yi-Jung; Chen, Yung-Chang; Chang, Ming-Yang; Yen, Tzung-Hai; Hsu, Hsiang-Hao; Wu, Mai-Szu; Phillips, Aled; Yang, Chih-Wei

    2011-03-01

    Leptospirosis can activate inflammatory responses through Toll-like receptors (TLRs) and may cause renal tubulointerstitial fibrosis characterized by the accumulation of extracellular matrix (ECM). We have previously demonstrated that Leptospira santorosai serovar Shermani detergent extract stimulates ECM accumulation in vitro. The aim of this study was to examine the mechanistic basis of these previous observations and, in particular, to examine the potential involvement of TLRs. The addition of serovar Shermani detergent extract led to an increase in fibronectin gene expression and production. Inhibition of TLR2 but not TLR4 expression abrogated serovar Shermani detergent extract-mediated increases in fibronectin production. This response was also blocked by the knockdown of the gene expression of the TLR2 downstream transducers myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). Serovar Shermani detergent extract also activated nuclear factor-κB, and its inhibition by curcumin-attenuated serovar Shermani detergent extract induced increases in fibronectin production. These effects were also mimicked by the specific TLR2 agonist, Pam(3)CsK(4), a response that was also abrogated by the knockdown of MyD88 and TRAF6. Similarly, the administration of live leptospires to cells also induced fibronectin production that was blocked by inhibition of TLR2 and MyD88 expression. In conclusion, serovar Shermani detergent extract can induce fibronectin production through the TLR2-associated cascade, providing evidence of an association between TLRs and leptospirosis-mediated ECM deposition.

  5. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways

    PubMed Central

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  6. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    PubMed

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p < .05) and ameliorated the contrast-induced acute kidney injury (p < .05) and significantly reduced Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (Myd88), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression and relative mRNA expression levels (p < .05) and significantly decreased expression levels of downstream inflammatory factors (p < .05). Different atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  7. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination.

    PubMed

    Polycarpou, Anastasia; Holland, Martin J; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L; Willcocks, Sam; Lockwood, Diana N J

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates "non-specific" protection to the human immune system.

  8. Gadolinium compounds signaling through TLR4 and TLR7 in normal human macrophages: establishment of a proinflammatory phenotype and implications for the pathogenesis of nephrogenic systemic fibrosis.

    PubMed

    Wermuth, Peter J; Jimenez, Sergio A

    2012-07-01

    Nephrogenic systemic sibrosis is a progressive disorder occurring in some renal insufficiency patients exposed to gadolinium-based contrast agents (GdBCA). Previous studies demonstrated that the GdBCA Omniscan upregulated several innate immunity pathways in normal differentiated human macrophages, induced rapid nuclear localization of the transcription factor NF-κB, and increased the expression and production of numerous profibrotic/proinflammatory cytokines, chemokines, and growth factors. To further examine GdBCA stimulation of the innate immune system, cultured human embryonic kidney 293 cells expressing one of seven different human TLRs or one of two human nucleotide-binding oligomerization domain-like receptors were exposed in vitro for 24 h to various GdBCA. The signaling activity of each compound was evaluated by its ability to activate an NF-κB-inducible reporter gene. Omniscan and gadodiamide induced strong TLR4- and TLR7-mediated reporter gene activation. The other Gd compounds examined failed to induce reporter gene activation. TLR pathway inhibition using chloroquine or an inhibitor of IL-1R-associated kinases 1 and 4 in normal differentiated human macrophages abrogated Omniscan-induced gene expression. Omniscan and gadodiamide signaling via TLRs 4 and 7 resulted in increased production and expression of numerous proinflammatory/profibrotic cytokines, chemokines, and growth factors, including CXCL10, CCL2, CCL8, CXCL12, IL-4, IL-6, TGF-β, and vascular endothelial growth factor. These observations suggest that TLR activation by environmental stimuli may participate in the pathogenesis of nephrogenic systemic fibrosis and of other fibrotic disorders including systemic sclerosis.

  9. Increased Expression Profile and Functionality of TLR6 in Peripheral Blood Mononuclear Cells and Hepatocytes of Morbidly Obese Patients with Non-Alcoholic Fatty Liver Disease.

    PubMed

    Arias-Loste, María Teresa; Iruzubieta, Paula; Puente, Ángela; Ramos, David; Santa Cruz, Carolina; Estébanez, Ángel; Llerena, Susana; Alonso-Martín, Carmen; San Segundo, David; Álvarez, Lorena; López Useros, Antonio; Fábrega, Emilio; López-Hoyos, Marcos; Crespo, Javier

    2016-11-10

    Current evidence suggests that gut dysbiosis drives obesity and non-alcoholic fatty liver disease (NAFLD) pathogenesis. Toll-like receptor 2 (TLR2) and TLR6 specifically recognize components of Gram-positive bacteria. Despite the potential implications of TLR2 in NAFLD pathogenesis, the role of TLR6 has not been addressed. Our aim is to study a potential role of TLR6 in obesity-related NAFLD. Forty morbidly obese patients undergoing bariatric surgery were prospectively studied. Cell surface expression of TLR2 and TLR6 was assessed on peripheral blood mononuclear cells (PBMCs) by flow cytometry. Freshly isolated monocytes were cultured with specific TLR2/TLR6 agonists and intracellular production of cytokines was determined by flow-cytometry. In liver biopsies, the expression of TLR2 and TLR6 was analyzed by immunohistochemistry and cytokine gene expression using RT-qPCR. TLR6 expression in PBMCs from non-alcoholic steatohepatitis (NASH) patients was significantly higher when compared to those from simple steatosis. The production of pro-inflammatory cytokines in response to TLR2/TLR6 stimulation was also significantly higher in patients with lobular inflammation. Hepatocyte expression of TLR6 but not that of TLR2 was increased in NAFLD patients compared to normal liver histology. Deregulated expression and activity of peripheral TLR6 in morbidly obese patients can mirror the liver inflammatory events that are well known drivers of obesity-related NASH pathogenesis. Moreover, TLR6 is also significantly overexpressed in the hepatocytes of NAFLD patients compared to their normal counterparts. Thus, deregulated TLR6 expression may potentiate TLR2-mediated liver inflammation in NAFLD pathogenesis, and also serve as a potential peripheral biomarker of obesity-related NASH.

  10. A Single Nucleotide Polymorphism in 3′-Untranslated Region Contributes to the Regulation of Toll-like Receptor 4 Translation*

    PubMed Central

    Sato, Kayo; Yoshimura, Atsutoshi; Kaneko, Takashi; Ukai, Takashi; Ozaki, Yukio; Nakamura, Hirotaka; Li, Xinyue; Matsumura, Hiroyoshi; Hara, Yoshitaka; Ogata, Yorimasa

    2012-01-01

    We have previously shown that a single nucleotide polymorphism rs11536889 in the 3′-untranslated region (UTR) of TLR4 was associated with periodontitis. In this study the effects of this single nucleotide polymorphism on Toll-like receptor (TLR) 4 expression were investigated. Monocytes from subjects with the C/C genotype expressed higher levels of TLR4 on their surfaces than those from subjects with the other genotypes. Peripheral blood mononuclear cells (PBMCs) from the C/C and G/C subjects secreted higher levels of IL-8 in response to lipopolysaccharide (LPS), a TLR4 ligand, than the cells from the G/G subjects. However, there was no significant difference in TLR4 mRNA levels in PBMCs from the subjects with each genotype. After stimulation with tripalmitoylated CSK4 (Pam3CSK4), TLR4 mRNA levels increased in PBMCs from both the C/C and G/G subjects, whereas TLR4 protein levels increased in PBMCs from the C/C but not G/G subjects. Transient transfection of a series of chimeric luciferase constructs revealed that a fragment of 3′-UTR containing rs11536889 G allele, but not C allele, suppressed luciferase activity induced by LPS or IL-6. Two microRNAs, hsa-miR-1236 and hsa-miR-642a, were predicted to bind to rs11536889 G allele. Inhibition of these microRNAs reversed the suppressed luciferase activity. These microRNA inhibitors also up-regulated endogenous TLR4 protein on THP-1 cells (the G/G genotype) after LPS stimulation. Furthermore, mutant microRNAs that bind to the C allele inhibited the luciferase activity of the construct containing the C allele. These results indicate that genetic variation of rs11536889 contributes to translational regulation of TLR4, possibly by binding to microRNAs. PMID:22661708

  11. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  12. Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.

    PubMed

    Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel

    2009-12-01

    Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.

  13. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling.

    PubMed

    de Almeida Chuffa, Luiz Gustavo; de Moura Ferreira, Grazielle; Lupi, Luiz Antonio; da Silva Nunes, Iseu; Fávaro, Wagner José

    2018-01-17

    Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC. Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses. Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response. Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin could be considered an important therapeutic strategy against OC cells based on signaling pathways activated by TLR4.

  14. The endotoxin/toll-like receptor-4 axis mediates gut microvascular dysfunction associated with post-prandial lipidemia

    PubMed Central

    2013-01-01

    Background Postprandial lipidemia is important in the development of coronary artery disease (CAD). Consumption of a meal high in monounsaturated fat was correlated with acute impairment of endothelial function. However, the mechanisms underlying impaired endothelial function in the postprandial state have not yet been elucidated. The effects of polyunsaturated fat (corn oil) and monounsaturated fat (olive oil) on vascular dysfunction in intestinal postcapillary venules and arterioles were examined in wild-type (WT) mice, mice genetically deficient in TLR4 (TLR4-/-) and mice pre-treated with antibiotics by intravital microscopy which was performed 1.0, 1.5, 2.0, 2.5 hours after oil administration. After intravital microscopy, samples of jejunum were therefore collected to test TLR4, pNF-kB p65 and SIRT1 protein expression by western blotting. Results Our findings showed that feeding mono-unsaturated olive oil or polyunsaturated corn oil promoted leukocyte and platelet trafficking in the gut microvasculature, and impaired endothelium-dependent arteriolar vasodilator responses during postprandial lipidemia. The expression of TLR4, pNF-kB p65 was significantly increased in mice gavaged with olive oil at 2 h and was significantly reduced in mice gavaged for 7 days with antibiotics and in TLR4 knockout (TLR4-/-) mice. At the same time, SIRT1 protein expression is diminished by feeding olive oil for 2 h, a phenomenon that is attenuated in mice pre-treated with antibiotics and in TLR4-/- mice. Corn oil treated mice exhibited a pattern of response similar to olive oil. Conclusions Dietary oils may be negative regulators of SIRT1 which activate the innate immune response through the endotoxin/TLR4 axis. Our findings establish a link between innate immunity (i.e. the endotoxin/TLR4 axis) and epigenetic controls mediated by SIRT1 in the genesis of diet associated vascular stress. PMID:24219792

  15. TLR2 and TLR4 expression in peripheral blood mononuclear cells of patients with chronic cystic echinococcosis and its relationship with IL-10.

    PubMed

    Shan, J-Y; Ji, W-Z; Li, H-T; Tuxun, T; Lin, R-Y; Wen, H

    2011-12-01

    This study aims at relating Toll-like receptors (TLR) and human systemic cytokines in patients with chronic cystic echinococcosis (CE). By real-time fluorescent quantitative reverse-transcription polymerase chain reaction, we measured the expression level of TLR2 and TLR4 mRNA in peripheral blood mononuclear cells (PBMCs), and using ELISA, we detected the cytokines IFN-γ, IL-12p70, IL-10, IL-4 and IL-17A from 34 chronic CE cases (four patients with biliary leakage; four patients with secondary location including three in lung and one in bone) and 22 healthy controls (HC). TLR2 and TLR4 mRNA expression were significantly higher in the CE group (P<0·05); levels of serum IL-10, IL-4 and IL-12p70 in patients with CE were significantly higher than those in controls (P<0·05). There were no differences in IFN-γ and IL-17A levels between the CE group and the HC group (P>0·05). In the patients with CE, positive correlations were noted between the expression of TLR2 and the serum level of IL-10, as well as between the expression of TLR4 and the serum level of IL-10. Our findings supported the hypothesis that during chronic CE infection, altered TLR expression might be involved in the cytokine modulation, which allowed the parasite to escape host immunosurveillance and promoted chronic infection. © 2011 Blackwell Publishing Ltd.

  16. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity.

    PubMed

    Balan, Irina; Warnock, Kaitlin T; Puche, Adam; Gondre-Lewis, Marjorie C; Aurelian, Laure

    2018-03-01

    Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABA A receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Coenzyme Q10 supplementation downregulates the increase of monocytes expressing toll-like receptor 4 in response to 6-day intensive training in kendo athletes.

    PubMed

    Shimizu, Kazuhiro; Kon, Michihiro; Tanimura, Yuko; Hanaoka, Yukichi; Kimura, Fuminori; Akama, Takao; Kono, Ichiro

    2015-06-01

    This study examined changes in toll-like receptor 4 (TLR-4)-expressing monocytes and lymphocyte subpopulations in response to continuous intensive exercise training in athletes, as well as the effect of coenzyme Q10 (CoQ10) supplementation on these changes. Eighteen male elite kendo athletes in Japan were randomly assigned to a CoQ10-supplementation group (n = 9) or a placebo-supplementation group (n = 9) using a double-blind method. Subjects in the CoQ10 group took 300 mg CoQ10 per day for 20 days. Subjects in the placebo group took the same dosage of placebo. All subjects practiced kendo 5.5 h per day for 6 consecutive days during the study period. Blood samples were collected 2 weeks before training, on the first day (day 1), third day (day 3), and fifth day of training (day 5), and 1 week after the training period (post-training) to ascertain TLR-4(+)/CD14(+) monocyte and lymphocyte subpopulations (CD3(+), CD4(+), CD8(+), CD28(+)/CD4(+), CD28(+)/CD8(+), and CD56(+)/CD3(-) cells) using flow cytometry analysis. The group × time interaction for TLR-4(+)/CD14(+) cells did not reach significance (p = 0.08). Within the CoQ10 group, the absolute number of TLR-4(+)/CD14(+) cells was significantly higher only at day 5. The placebo group showed a significant increase in the absolute number of TLR-4(+)/CD14(+) cells at day 3, day 5, and post-training (p < 0.05). There was no significant group × time interaction for any lymphocyte subpopulation. CD3(+), CD8(+), and CD56(+)/CD3(-) cells were significantly reduced at day 3 in both groups (p < 0.05). In conclusion, CoQ10 supplementation might downregulate the increase of TLR-4-expressing monocytes in response to continuous strenuous exercise training in kendo athletes.

  18. Changes in cosmonauts' innate immunity after the long-term space flights

    NASA Astrophysics Data System (ADS)

    Ponomarev, Sergey; Rykova, Marina; Boris, Morukov; Berendeeva, Tatiana; Antropova, Evgeniya

    It’s well known that the immune system is exposed to adverse influence during the space flight. For the purpose of finding out the character of similar changes in innate immunity using the flow cytometry research was spent an estimation of some key parameters characterizing a condition of natural resistance system of 8 cosmonauts before and after the long-term space flights, such as expression of Toll-like receptors (TLR2, TLR4, TLR6), adhesion molecules (CD54, CD24, CD11b, CD18), an Fc-receptor (CD16), a scavenger-receptor (CD36), a mannose receptor (CD206. Furthermore using enzyme-linked immunosorbent assay the level of the main TLR4 and TLR6 ligand - heat-shock protein 70 (HSP70) was explored. Also we defined the level of cytokine production after the lipopolysaccharide (LPS) monocyte activation in vitro. The study was conducted for 60 days before the flight, as well as at 1 and 7 days after the completion of the space missions. We found no reliable changes in the content of monocytes expressing on their surface in CD54, CD24, CD11b, CD18, CD1 and CD206. But the level of TLR2+, TLR4+, TLR6+ monocytes in all 8 cosmonauts was significantly increased on the 1 day after landing compared with the baseline values. At the same time we saw the significant increase of HSP70 in the cosmonauts’ serum on the 1 day after landing compared also with the baseline values. In spite of the increased TLR4+ monocyte level on the 1 day after landing, the LPS-induced cytokine production in the same period in cell cultures in vitro was lower than before flights. Moreover, this negative trend persisted at 7 day after the completion of long-term space missions. Such a dynamics can reflect an exhaustion of innate immunity reserve possibilities which in turn may lead to increase the infection and autoimmune diseases.

  19. Disruption of blood-brain barrier integrity in postmortem alcoholic brain: preclinical evidence of TLR4 involvement from a binge-like drinking model.

    PubMed

    Rubio-Araiz, Ana; Porcu, Francesca; Pérez-Hernández, Mercedes; García-Gutiérrez, Mª Salud; Aracil-Fernández, María Auxiliadora; Gutierrez-López, María Dolores; Guerri, Consuelo; Manzanares, Jorge; O'Shea, Esther; Colado, María Isabel

    2017-07-01

    Inflammatory cytokines and reactive oxygen species are reported to be involved in blood-brain barrier (BBB) disruption. Because there is evidence that ethanol (EtOH) induces release of free radicals, cytokines and inflammatory mediators we examined BBB integrity and matrix metalloproteinase (MMP) activity in postmortem human alcoholic brain and investigated the role of TLR4 signaling in BBB permeability in TLR4-knockout mice under a binge-like EtOH drinking protocol. Immunohistochemical studies showed reduced immunoreactivity of the basal lamina protein, collagen-IV and of the tight junction protein, claudin-5 in dorsolateral prefrontal cortex of alcoholics. There was also increased MMP-9 activity and expression of phosphorylated ERK1/2 and p-38. Greater number of CD45+ IR cells were observed associated with an enhanced neuroinflammatory response reflected by increased GFAP and Iba-1 immunostaining. To further explore effects of high EtOH consumption on BBB integrity we studied TLR4-knockout mice exposed to the drinking in the dark paradigm. Repetitive EtOH exposure in wild-type mice decreased hippocampal expression of laminin and collagen-IV and increased IgG immunoreactivity, indicating IgG extravasation. Western blot analysis also revealed increased MyD88 and p-ERK1/2 levels. None of these changes was observed in TLR4-knockout mice. Collectively, these findings indicate that chronic EtOH increases degradation of tight junctions and extracellular matrix in postmortem human brain and induces a neuroinflammatory response associated with activation of ERK1/2 and p-38 and greater MMP-9 activity. The EtOH-induced effects on BBB impairment are not evident in the hippocampus of TLR4-knockout mice, suggesting the involvement of TLR4 signaling in the underlying mechanism leading to BBB disruption in mice. © 2016 Society for the Study of Addiction.

  20. High-Mobility Group Box 1 Inhibits Gastric Ulcer Healing through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products

    PubMed Central

    Nadatani, Yuji; Watanabe, Toshio; Tanigawa, Tetsuya; Ohkawa, Fumikazu; Takeda, Shogo; Higashimori, Akira; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-01-01

    High-mobility group box 1 (HMGB1) was initially discovered as a nuclear protein that interacts with DNA as a chromatin-associated non-histone protein to stabilize nucleosomes and to regulate the transcription of many genes in the nucleus. Once leaked or actively secreted into the extracellular environment, HMGB1 activates inflammatory pathways by stimulating multiple receptors, including Toll-like receptor (TLR) 2, TLR4, and receptor for advanced glycation end products (RAGE), leading to tissue injury. Although HMGB1’s ability to induce inflammation has been well documented, no studies have examined the role of HMGB1 in wound healing in the gastrointestinal field. The aim of this study was to evaluate the role of HMGB1 and its receptors in the healing of gastric ulcers. We also investigated which receptor among TLR2, TLR4, or RAGE mediates HMGB1’s effects on ulcer healing. Gastric ulcers were induced by serosal application of acetic acid in mice, and gastric tissues were processed for further evaluation. The induction of ulcer increased the immunohistochemical staining of cytoplasmic HMGB1 and elevated serum HMGB1 levels. Ulcer size, myeloperoxidase (MPO) activity, and the expression of tumor necrosis factor α (TNFα) mRNA peaked on day 4. Intraperitoneal administration of HMGB1 delayed ulcer healing and elevated MPO activity and TNFα expression. In contrast, administration of anti-HMGB1 antibody promoted ulcer healing and reduced MPO activity and TNFα expression. TLR4 and RAGE deficiency enhanced ulcer healing and reduced the level of TNFα, whereas ulcer healing in TLR2 knockout (KO) mice was similar to that in wild-type mice. In TLR4 KO and RAGE KO mice, exogenous HMGB1 did not affect ulcer healing and TNFα expression. Thus, we showed that HMGB1 is a complicating factor in the gastric ulcer healing process, which acts through TLR4 and RAGE to induce excessive inflammatory responses. PMID:24244627

  1. High-mobility group box 1 inhibits gastric ulcer healing through Toll-like receptor 4 and receptor for advanced glycation end products.

    PubMed

    Nadatani, Yuji; Watanabe, Toshio; Tanigawa, Tetsuya; Ohkawa, Fumikazu; Takeda, Shogo; Higashimori, Akira; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-01-01

    High-mobility group box 1 (HMGB1) was initially discovered as a nuclear protein that interacts with DNA as a chromatin-associated non-histone protein to stabilize nucleosomes and to regulate the transcription of many genes in the nucleus. Once leaked or actively secreted into the extracellular environment, HMGB1 activates inflammatory pathways by stimulating multiple receptors, including Toll-like receptor (TLR) 2, TLR4, and receptor for advanced glycation end products (RAGE), leading to tissue injury. Although HMGB1's ability to induce inflammation has been well documented, no studies have examined the role of HMGB1 in wound healing in the gastrointestinal field. The aim of this study was to evaluate the role of HMGB1 and its receptors in the healing of gastric ulcers. We also investigated which receptor among TLR2, TLR4, or RAGE mediates HMGB1's effects on ulcer healing. Gastric ulcers were induced by serosal application of acetic acid in mice, and gastric tissues were processed for further evaluation. The induction of ulcer increased the immunohistochemical staining of cytoplasmic HMGB1 and elevated serum HMGB1 levels. Ulcer size, myeloperoxidase (MPO) activity, and the expression of tumor necrosis factor α (TNFα) mRNA peaked on day 4. Intraperitoneal administration of HMGB1 delayed ulcer healing and elevated MPO activity and TNFα expression. In contrast, administration of anti-HMGB1 antibody promoted ulcer healing and reduced MPO activity and TNFα expression. TLR4 and RAGE deficiency enhanced ulcer healing and reduced the level of TNFα, whereas ulcer healing in TLR2 knockout (KO) mice was similar to that in wild-type mice. In TLR4 KO and RAGE KO mice, exogenous HMGB1 did not affect ulcer healing and TNFα expression. Thus, we showed that HMGB1 is a complicating factor in the gastric ulcer healing process, which acts through TLR4 and RAGE to induce excessive inflammatory responses.

  2. Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation.

    PubMed

    He, YingYing; Lawlor, Nathan T; Newburg, David S

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2'-fucosyllactose attenuate TLR4 signaling; 3'-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. © 2016 American Society for Nutrition.

  3. Human Milk Components Modulate Toll-Like Receptor–Mediated Inflammation12

    PubMed Central

    He, YingYing; Lawlor, Nathan T

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2′-fucosyllactose attenuate TLR4 signaling; 3′-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. PMID:26773018

  4. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination

    PubMed Central

    Polycarpou, Anastasia; Holland, Martin J.; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L.; Willcocks, Sam; Lockwood, Diana N. J.

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates “non-specific” protection to the human immune system. PMID:27458573

  5. Customized laboratory TLR4 and TLR2 detection method from peripheral human blood for early detection of doxorubicin-induced cardiotoxicity.

    PubMed

    Pop-Moldovan, A L; Trofenciuc, N-M; Dărăbanţiu, D A; Precup, C; Branea, H; Christodorescu, R; Puşchiţă, M

    2017-05-01

    Cancer treatments can have significant cardiovascular adverse effects that can cause cardiomyopathy and heart failure with reduced survival benefit and considerable decrease in the use of antineoplastic therapy. The purpose of this study is to assess the role of TLR2 and TLR4 gene expression as an early marker for the risk of doxorubicin-induced cardiomyopathy in correlation with early diastolic dysfunction in patients treated with doxorubicin. Our study included 25 consecutive patients who received treatment with doxorubicin for hematological malignancies (leukemia, lymphomas or multiple myeloma), aged 18-65 years, with a survival probability>6 months and with left ventricular ejection fraction>50%. Exclusion criteria consisted of the following: previous anthracycline therapy, previous radiotherapy, history of heart failure or chronic renal failure, atrial fibrillation, and pregnancy. In all patients, in fasting state, a blood sample was drawn for the assessment of TLR2 and TLR4 gene expression. Gene expression was assessed by quantitative reverse transcription PCR (qRT-PCR) using blood collection, RNA isolation, cDNA reverse transcription, qRT-PCR and quantification of the relative expression. At enrollment, all patients were evaluated clinically; an ECG and an echocardiography were performed. The average amount of gene expression units was 0.113 for TLR4 (range 0.059-0.753) and 0.218 for TLR2 (range 0.046-0.269). The mean mRNA extracted quantity was 113 571 ng/μl. As for the diastolic function parameters, criteria for diastolic dysfunction were present after 6 months in 16 patients (64%). In these patients, the mean values for TLR4 were 0.1198625 and for TLR2 were 0.16454 gene expression units. As for the diastolic function parameters, criteria for diastolic dysfunction were present after 6 months in 16 patients (64%). In these patients, the mean value for TLR2 was 0.30±0.19 and for TLR4 was 0.15±0.04. The corresponding values for the patients who did not develop diastolic dysfunction were 0.16±0.07 for TLR2 (P=0.01) and 0.11±0.10 for TLR4 (P=0.2). Our study suggests that TLR4 and TLR2 expression is higher in patients under doxorubicin therapy who develop diastolic dysfunction. This may suggest a predisposition to myocardial involvement, a higher sensitivity to doxorubicin cardiac effects.

  6. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that supplementation with melatonin may have a protective effect on AP by modulating TLR4/NF-ĸB signaling in the pulp and in pulp cells. PMID:25755829

  7. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less

  8. Expression profiling and functional analysis of Toll-like receptors in primary healthy human nasal epithelial cells shows no correlation and a refractory LPS response.

    PubMed

    van Tongeren, J; Röschmann, K I L; Reinartz, S M; Luiten, S; Fokkens, W J; de Jong, E C; van Drunen, C M

    2015-01-01

    Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors. Expression levels of the different TLRs on primary nasal epithelial cells from healthy donors derived from inferior turbinates was determined by RT-PCR. Functionality of the TLRs was determined by stimulation with the respective ligand and evaluation of released mediators by Luminex ELISA. Primary nasal epithelial cells express different levels of TLR1-6 and TLR9. We were unable to detect mRNA of TLR7, TLR8 and TLR10. Stimulation with Poly(I:C) resulted in a significant increased secretion of IL-4, IL-6, RANTES, IP-10, MIP-1β, VEGF, FGF, IL-1RA, IL-2R and G-CSF. Stimulation with PGN only resulted in significant increased production of IL-6, VEGF and IL-1RA. Although the expression of TLR4 and co-stimulatory molecules could be confirmed, primary nasal epithelial cells appeared to be unresponsive to stimulation with LPS. Furthermore, we observed huge individual differences in TLR agonist-induced mediator release, which did not correlate with the respective expression of TLRs. Our data suggest that nasal epithelium seems to have developed a delicate system of discrimination and recognition of microbial patterns. Hypo-responsiveness to LPS could provide a mechanism to dampen the inflammatory response in the nasal mucosa in order to avoid a chronic inflammatory response. Individual, differential expression of TLRs on epithelial cells and functionality in terms of released mediators might be a crucial factor in explaining why some people develop allergies to common inhaled antigens, and others do not.

  9. Toll-like receptor 4 gene polymorphism modulates phenotypic expression in patients with hereditary hemochromatosis.

    PubMed

    Krayenbuehl, Pierre-Alexandre; Hersberger, Martin; Truninger, Kaspar; Müllhaupt, Beat; Maly, Friedrich E; Bargetzi, Mario; Schulthess, Georg

    2010-07-01

    Clinical penetrance of hereditary hemochromatosis is highly variable. We hypothesized that it might be modified by factors involved in the cellular immune response, such as toll-like receptors (TLRs) or nucleotide oligomerization domain proteins (NODs). Clinical expression of hemochromatosis was assessed as a function of TLR4, TLR9, and NOD2 polymorphisms in 99 homozygous carriers of the HFE C282Y mutation with mild-to-severe iron overload. Thirteen (13%) of the 99 hemochromatosis patients were heterozygous for a TLR4 Asp299Gly polymorphism and 86 (87%) were TLR4 wild-type-only carriers. Clinical expression of hemochromatosis was observed more frequently in carriers of the TLR4 polymorphism (100%) than in TLR4 wild-type carriers (56%, P = 0.002). This was based on higher prevalences of liver disease (92 vs. 45%, P = 0.002) and arthropathy of metacarpophalangeal joints (69 vs. 35%, P = 0.018) in TLR4 polymorphism carriers. The finding was strengthened by the strong association of TLR4 polymorphism with liver fibrosis in the subgroup of 52 patients who underwent a liver biopsy (P = 0.011). The TLR4 polymorphism did, however, not correlate with body iron overload. The study results remained significant in multiple regression analyses after excluding possible confounding effects, such as age, sex, alcohol, or meat intake, and in the subgroup of 84 patients presenting as the first members of their families. TLR4 Asp299Gly polymorphism modulates clinical expression in patients with hereditary hemochromatosis. The polymorphism does not correlate with iron overload suggesting that TLR4 plays a role in an inflammatory process arising from toxic effects of iron accumulation.

  10. [Expressions and significance of TLR2 and TLR4 in Kupffer cells of tree shrews chronically infected with hepatitis B virus].

    PubMed

    Ruan, Ping; Yang, Chun; Su, Jianjia; Ou, Chao; Cao, Ji; Luo, Chengpiao; Tang, Yanping; Qin, Hong; Sun, Wen; Li, Yuan

    2014-07-01

    To investigate the mRNA expression levels of Toll-like receptors 2 (TLR2) and TLR4 in Kupffer cells of tree shrews that were chronically infected with hepatitis B virus (HBV), and the effects of these receptors on the function of Kupffer cells. The tree shrews were divided into tree shrews proved with chronic HBV infection, tree shrews suspected with chronic HBV infection, and normal control tree shrews without hepatitis B vaccination. The samples of serum and liver biopsy were collected periodically, and the levels of HBV DNA in serum and liver tissues were detected by fluorescence-based quantitative real-time PCR (qRT-PCR). Meanwhile, Kupffer cells were isolated from the biopsied liver tissues, and then purified and primarily cultured. Afterwards, qRT-PCR was applied to detect the mRNA expression levels of TLR2, TLR4 and TNF-α in the Kupffer cells. Cell migration assay and lysosome-specific fluorescent probe were adopted to analyze the effects of TLR2 and TLR4 on the migration capacity of Kupffer cells and the quantity of lysosomes in these cells. The mRNA expression levels of TLR2 and TLR4 in tree shrews proved with chronic HBV infection were lower than those in the ones suspected with chronic HBV infection and normal controls without hepatitis B vaccination (P<0.05), and these expression levels were all negatively correlated with the level of HBV DNA in liver tissues of the animals (P<0.05), but were positively correlated with the number of migrated Kupffer cells, the density of lysosomes and the mRNA expression level of TNF-α (P<0.05). TLR2 and TLR4 in Kupffer cells may play important roles in the chronic process of hepatic pathological changes in tree shrews infected with HBV through their influence on the function of Kupffer cells.

  11. CD14 and TLR4 are expressed early in tammar (Macropus eugenii) neonate development.

    PubMed

    Daly, Kerry A; Lefévre, Christophe; Nicholas, Kevin; Deane, Elizabeth; Williamson, Peter

    2008-04-01

    Marsupials are born in a relatively underdeveloped state and develop during a period of intensive maturation in the postnatal period. During this period, the young marsupial lacks a competent immune system, but manages to survive despite the potential of exposure to environmental pathogens. Passive immune transfer via the milk is one well-recognised strategy to compensate the neonate, but there also may be innate immune mechanisms in place. In this study, CD14 and Toll-like receptor 4 (TLR4), integral molecular components of pathogen recognition, were identified and characterised for the first time in a marsupial, the tammar wallaby (Macropus eugenii). Functional motifs of tammar CD14 and the toll/interleukin receptor (TIR) domain of TLR4 were highly conserved. The lipopolysaccharide (LPS) binding residues and the TLR4 interaction site of CD14 were conserved in all marsupials. The TIR signalling domain had 84% identity within marsupials and 77% with eutherians. Stimulation of adult tammar leukocytes resulted in the induction of a biphasic pattern of CD14 and TLR4 expression, and coincided with increased production of the pro-inflammatory cytokine TNF-alpha. Differential patterns of expression of CD14 and TLR4 were observed in tammar pouch young early in development, suggesting that early maturation of the innate immune system in these animals may have developed as an immune survival strategy to protect the marsupial neonate from exposure to microbial pathogens.

  12. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    PubMed

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  13. Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet.

    PubMed

    Strekalova, Tatyana; Evans, Matthew; Costa-Nunes, Joao; Bachurin, Sergey; Yeritsyan, Naira; Couch, Yvonne; Steinbusch, Harry M W; Eleonore Köhler, S; Lesch, Klaus-Peter; Anthony, Daniel C

    2015-08-01

    An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Adoptive transfer of T regulatory cells inhibits lipopolysaccharide-induced inflammation in fetal brain tissue in a late-pregnancy preterm birth mouse model.

    PubMed

    Wang, Fan; Xiao, Mi; Chen, Ru-Juan; Lin, Xiao-Jie; Siddiq, Muhammad; Liu, Li

    2017-02-01

    To evaluate the effect of regulatory T cells (Tregs) on the inflammation resulting from lipopolysaccharide (LPS) challenge in prenatal brain tissue, Tregs isolated from pregnant mice were transferred into model mice, and the expression levels of fork head family transcription factor (Foxp3), interleukin-6 (IL-6), CD68 (a marker of microglia), and toll-like receptor 4 (TLR-4) were assessed in the fetal brain tissue. Foxp3, IL-6, and TLR-4 expression were detected by polymerase chain reaction and Western blot; CD68 expression level was detected using immunochemical analysis. Foxp3, IL-6, TLR-4, and CD68 expressions in fetal brain were significantly induced by maternal LPS administration, and the increased expression levels were markedly reduced by adoptive transfer of Tregs. Maternal LPS exposure significantly induced inflammation in perinatal brain tissue, and Tregs negatively regulated this LPS-induced inflammation. © 2016 International Federation for Cell Biology.

  15. Toll-like receptor 4 protects against stress-induced ulcers via regulation of glucocorticoid production in mice.

    PubMed

    Wang, Liang; Luo, Pengfei; Zhang, Fang; Zhang, Yuelu; Wang, Xingtong; Chang, Fei; Zhang, Yuechan; Tang, Hongtai; Xia, Zhaofan

    2017-01-01

    Stress-induced gastric ulcer is an important life-threatening condition, while the molecular basis of its development is incompletely understood. Toll-like receptor 4 (TLR4), an innate immune pattern recognition receptor, can induce pro-inflammatory transcription, aggravating a stress ulcer. The present study found that TLR4 played a protective role in a mouse model of water immersion (23 °C) restraint stress. Wild-type (WT) and TLR4 -/- male mice were respectively divided into five groups (5 per group), and exposed to the stressor for 0, 0.5, 1, 2, or 4 hours. Gastric ulcer index, determined post mortem, increased with time in both types of mice but was greater in TLR4 -/- mice. Furthermore, increased serum cortisol and corticosterone concentrations were observed in WT mice only, and such increases were detected only in WT mice 4 h after lipopolysaccharide (LPS) treatment (2 mg/kg, intraperitoneal injection). Moreover, the administration of cortisol alleviated the gastric injury in TLR4 -/- mice. Western blotting showed expression in the adrenal of P450scc (CYP11A1), the first rate-limiting enzyme in the synthesis of steroids, was increased 4 h after water immersion restraint stress or LPS treatment in WT mice, but was conversely decreased in TLR4 -/- mice after either stressor. Furthermore, in adrenal glands of TLR4 -/- mice, structural distortion of mitochondria (which contain CYP11A1) was found with electron microscopy, and lack of lipid-storing droplets was found using light microscopy on adrenal cryosections stained with Oil red O. These data indicate that TLR4 plays a protective role in stress-induced gastric ulcer that is exerted via impacting synthesis of glucocorticoid in the adrenal gland.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yunliang; Wu, Congshan; Ma, Jianxia, E-mail: yz_mjx@163.com

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGFmore » was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.« less

  17. Cotransfection of DC with TLR4 and MART-1 RNA induces MART-1-specific responses.

    PubMed

    Abdel-Wahab, Zeinab; Cisco, Robin; Dannull, Jens; Ueno, Tomio; Abdel-Wahab, Omar; Kalady, Matthew F; Onaitis, Mark W; Tyler, Douglas S; Pruitt, Scott K

    2005-04-01

    Cotransfection of dendritic cells (DC) with MART-1 and constitutively active TLR4 (caTLR4) RNA enhances the maturation of DC. Immature DC were cotransfected with RNA constructs encoding MART-1 and caTLR4, and CTL responses were analyzed. Cotransfection of DC with MART-1 + caTLR4 enhanced the expression of CD80 and CD83 surface markers and increased the secretion of cytokines IL-6, IL-12, and TNFalpha. Neither the native nor the A27L-modified MART-1 RNA could induce significant DC maturation or cytokine secretion. More importantly, DC cotransfected with caTLR4 + MART-1 RNA induced MART-1-specific CTL responses of a higher magnitude than DC transfected with either the native or A27L MART-1 RNA. When the MART-1 RNA-transfected DC were treated with DC-maturing cytokines, the induced CTL were less frequent and less lytic than those induced with MART-1 + caTLR4. A 2- to 100-fold increase in MART-1 tetramer+ cells and 2- to 10-fold increases in IFNgamma secretion and cytotoxicity were seen in CTL induced with MART-1 + caTLR4 compared to CTL induced with either MART-1 or A27L RNA. CTL induced with the mixed RNA displayed high percentages of CD8+ cells coexpressing CD45RA, CD56, and 2B4 antigens. Transfection with caTLR4 alone induced DC maturation, but did not induce lytic CTL, suggesting that CTL responses were induced solely by MART-1 epitopes. caTLR4 increases the CTL-inducing capacity of DC generating a lytic response specific for the accompanying antigen. These results demonstrate the possibility of enhancing the immunogenicity of the native MART-1 and other RNA derived from weakly immunogenic tumors in DC-based immunotherapy.

  18. Involvement of toll-like receptor 2 and 4 in association between dyslipidemia and osteoclast differentiation in apolipoprotein E deficient rat periodontium

    PubMed Central

    2013-01-01

    Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061

  19. Antitumor Activity of Portulaca Oleracea L. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling.

    PubMed

    Zhao, Rui; Zhang, Tao; Ma, Baoling; Li, Xing

    2017-01-01

    Abstarct We have previously shown that Portulaca oleracea L. polysaccharide (POL-P3b) possesses the ability to inhibit cervical cancer cell growth in vitro and in vivo. In this study, we explored how toll-like receptor 4 (TLR4) signaling correlated with the antitumor mechanism of POL-P3b. Western blotting was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using enzyme-linked immunosorbent assay (ELISA) kits. The effects of POL-P3b on the proliferation and apoptosis in HeLa cells were determined by WST-8 assay and Hoechst 33342/propidium iodide (PI) assay. Our results demonstrated that lipopolysaccharide (LPS) binding to TLR4 on tumor cells could enhance HeLa cell proliferation and increase the expression of TLR4 and the downstream molecules. Treating HeLa cells with POL-P3b could decrease the proliferation of HeLa cells, and upregulate Bax level and downregulate Bcl-2 level in a concentration-dependent manner. In addition, POL-P3b inhibited the protein expression levels of TLR4, MyD88, TRAF6, Activator Protein-1 (AP-1) and nuclear factor-κB (NF-κB) subunit P65 in HeLa cells. Furthermore, POL-P3b also reduced the production of cytokine/chemokine. Taken together, the present work suggested the antitumor mechanism of POL-P3b by downregulating TLR4 downstream signaling pathway and inducing cell apoptosis. Our results may provide direct evidence to suggest that POL-P3b should be considered as a potent nutrient supplement for oncotherapy.

  20. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking.

    PubMed

    Vetreno, Ryan P; Qin, Liya; Crews, Fulton T

    2013-11-01

    Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation. © 2013.

  1. Glucose-Based Peritoneal Dialysis Fluids Downregulate Toll-Like Receptors and Trigger Hyporesponsiveness to Pathogen-Associated Molecular Patterns in Human Peritoneal Mesothelial Cells▿

    PubMed Central

    Wu, Jun; Yang, Xiao; Zhang, Yun-Fang; Wang, Ya-Ning; Liu, Mei; Dong, Xiu-Qing; Fan, Jin-Jin; Yu, Xue-Qing

    2010-01-01

    The objective of this study was to investigate the effects of glucose-based peritoneal dialysis (PD) fluids and icodextrin-based PD fluids on the expression of Toll-like receptor 2 (TLR2)/TLR4 and subsequent ligand-induced mitogen-activated protein kinase (MAPK) and NF-κB signaling and tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) mRNA expression in human peritoneal mesothelial cells (HPMCs). A human peritoneal mesothelial cell line (HMrSV5) was stimulated with glucose-based and icodextrin-based peritoneal dialysis fluids. Cell viability was assessed using MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide]. TLR2/TLR4 expression was determined by real-time PCR, Western blotting, and an immunofluorescence assay. In addition, cells were pretreated with different PD solutions and then incubated with Pam3CSK4 or lipopolysaccharide (LPS), and the degrees of MAPK and NF-κB activation were reflected by detecting the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and p65, using a Western blot method. TNF-α and IL-1β mRNA expression was measured by real-time PCR. Glucose-based peritoneal dialysis fluids suppressed the expression of TLR2 and TLR4 proteins in HPMCs. Challenge of cells with either Pam3CSK4 or LPS resulted in impaired TNF-α and IL-1β production. Moreover, reduced TLR2 and TLR4 levels in glucose-based peritoneal dialysis solution-treated mesothelial cells were accompanied by reduced p42/44 (ERK1/2), JNK, p38 MAPK, and NF-κB p65 phosphorylation upon TLR ligand engagement. No significant changes in MAPK and NF-κB signaling and TNF-α and IL-1β mRNA expression were observed in icodextrin-based PD solution-treated mesothelial cells. Glucose-based PD solution, but not icodextrin-based PD solution, downregulates expression of TLR2/TLR4 by human peritoneal mesothelial cells and triggers hyporesponsiveness to pathogen-associated molecular patterns. PMID:20200188

  2. Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis.

    PubMed

    Abdi, Jahangir; Mutis, Tuna; Garssen, Johan; Redegeld, Frank A

    2014-01-01

    In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells.

  3. Increase in peripheral blood mononuclear cell Toll-like receptor 2/3 expression and reactivity to their ligands in a cohort of patients with wet age-related macular degeneration

    PubMed Central

    Zhu, Yi; Liang, Liang; Qian, Dan; Yu, Hongsong; Yang, Peizeng; Lei, Bo

    2013-01-01

    Purpose To investigate Toll-like receptor (TLR) expression and reactivity in patients with the wet form age-related macular degeneration (AMD). Methods Blood samples were collected from 25 patients with wet AMD and 25 age-matched healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated with Ficoll-Hypaque density gradient centrifugation. Expression of TLR1 to TLR10 mRNAs in PBMCs from 15 patients with wet AMD and 15 controls was assessed with real-time PCR. TLR2 and TLR3 protein levels in PBMCs from six patients with wet AMD and six controls were measured with flow cytometry. After PBMCs were stimulated with peptidoglycan (PGN) and poly(I:C), the specific ligands of TLR2 and TLR3, cytokines interleukin-6 (IL-6), IL-8, VEGF, and monocyte chemoattractant protein-1 (MCP-1) production in 11 patients with wet AMD and 11 controls were assessed. Results TLR2 and TLR3 mRNA and protein expression in the PBMCs of the patients with wet AMD was significantly higher than that in the controls. However, the difference in TLR1 and TLR4–10 mRNA expression between the two groups was not significant. The PBMCs of the patients with wet AMD produced more IL-6 and IL-8 proteins than the controls in response to PGN, a ligand for TLR2, and more IL-6 protein than the controls in response to poly(I:C), the ligand for TLR3. However, there was no significant difference in vascular endothelial growth factor and monocyte chemoattractant protein-1 production between the wet AMD group and the control group when the PBMCs were stimulated with PGN or poly(I:C). Conclusions Our data suggested that upregulation of TLR2 and TLR3 may be associated with the pathogenesis of wet AMD. PMID:23946637

  4. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture.

    PubMed

    Zhou, Panpan; Liu, Zilin; Li, Xue; Zhang, Bing; Wang, Xiaoyuan; Lan, Jing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-09-16

    While the conventional two-dimensional (2D) culture protocol is well accepted for the culture of mesenchymal stem cells (MSCs), this method fails to recapitulate the in vivo native three-dimensional (3D) cellular microenvironment, and may result in phenotypic changes, and homing and migration capacity impairments. MSC preparation in 3D culture systems has been considered an attractive preparatory and delivery method recently. We seeded human umbilical cord-derived MSCs (hUCMSCs) in a 3D culture system with porcine acellular dermal matrix (PADM), and investigated the phenotypic changes, the expression changes of some important receptors, including Toll-like receptors (TLRs) and C-X-C chemokine receptor type 4 (CXCR4) when hUCMSCs were transferred from 2D to 3D systems, as well as the alterations in in vivo homing and migration potential. It was found that the percentage of CD105-positive cells decreased significantly, whereas that of CD34- and CD271-positive cells increased significantly in 3D culture, compared to that in 2D culture. The mRNA and protein expression levels of TLR2, TLR3, TLR4, TLR6, and CXCR4 in hUCMSCs were increased significantly upon culturing with PADM for 3 days, compared to the levels in 2D culture. The numbers of migratory 3D hUCMSCs in the heart, liver, spleen, and bone marrow were significantly greater than the numbers of 2D hUCMSCs, and the worst migration occurred in 3D + AMD3100 (CXCR4 antagonist) hUCMSCs. These results suggested that 3D culture of hUCMSCs with PADM could alter the phenotypic characteristics of hUCMSCs, increase their TLR and CXCR4 expression levels, and promote their migratory and homing capacity in which CXCR4 plays an important role. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    PubMed

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Gut microbial products regulate murine gastrointestinal motility via Toll-like Receptor 4 signaling

    PubMed Central

    Anitha, Mallappa; Vijay-Kumar, Matam; Sitaraman, Shanthi V.; Gewirtz, Andrew T.; Srinivasan, Shanthi

    2012-01-01

    Background & Aims Altered gastrointestinal motility is associated with significant morbidity and health care costs. Toll-like receptors regulate intestinal homeostasis. We examined the roles of Toll-like receptor (TLR)4 signaling in survival of enteric neurons and gastrointestinal motility. Methods We assessed changes in intestinal motility by assessing stool frequency, bead expulsion, and isometric muscle recordings of colonic longitudinal muscle strips from mice that do not express TLR4 (Tlr4Lps-d or TLR4−/−) or Myd88 (Myd88−/−), in wild-type germ-free mice or wild-type mice depleted of the microbiota, and in mice with neural crest-specific deletion of Myd88 (Wnt1Cre+/−/Myd88fl/fl). We studied the effects of the TLR4 agonist lipopolysaccharide (LPS) on survival of cultured, immortalized fetal enteric neurons (IM-FEN) and enteric neuronal cells isolated from wild-type and Tlr4Lps-d mice at embryonic day 13.5. Results There was a significant delay in gastrointestinal motility and reduced numbers of nitrergic neurons in TLR4Lps-d, TLR4−/−, and Myd88−/− mice, compared with wild-type mice. A similar phenotype was observed in germ-free mice, mice depleted of intestinal microbiota, and Wnt1Cre+/−/Myd88fl/fl mice. Incubation of enteric neuronal cells with LPS led to activation of the transcription factor NF-κB and increased cell survival. Conclusions Interactions between enteric neurons and microbes increases neuron survival and gastrointestinal motility in mice. LPS activation of TLR4 and NF-κB appears to promote survival of enteric neurons. Factors that regulate TLR4 signaling by neurons might be developed to alter gastrointestinal motility. PMID:22732731

  7. Key Role of CD36 in Toll-Like Receptor 2 Signaling in Cerebral Ischemia

    PubMed Central

    Abe, Takato; Shimamura, Munehisa; Jackman, Katherine; Kurinami, Hitomi; Anrather, Josef; Zhou, Ping; Iadecola, Costantino

    2010-01-01

    Background and Purpose Toll-like receptors (TLRs) and the scavenger receptor CD36 are key molecular sensors for the innate immune response to invading pathogens. However, these receptors may also recognize endogenous “danger signals” generated during brain injury, such as cerebral ischemia, and trigger a maladaptive inflammatory reaction. Indeed, CD36 and TLR2 and 4 are involved in the inflammation and related tissue damage caused by brain ischemia. Because CD36 may act as a coreceptor for TLR2 heterodimers (TLR2/1 or TLR2/6), we tested whether such interaction plays a role in ischemic brain injury. Methods The TLR activators FSL-1 (TLR2/6), Pam3 (TLR2/1), or lipopolysaccharide (TLR4) were injected intracerebroventricularly into wild-type or CD36-null mice, and inflammatory gene expression was assessed in the brain. The effect of TLR activators on the infarct produced by transient middle cerebral artery occlusion was also studied. Results The inflammatory response induced by TLR2/1 activation, but not TLR2/6 or TLR4 activation, was suppressed in CD36-null mice. Similarly, TLR2/1 activation failed to increase infarct volume in CD36-null mice, whereas TLR2/6 or TLR4 activation exacerbated postischemic inflammation and increased infarct volume. In contrast, the systemic inflammatory response evoked by TLR2/6 activation, but not by TLR2/1 activation, was suppressed in CD36-null mice. Conclusions In the brain, TLR2/1 signaling requires CD36. The cooperative signaling of TLR2/1 and CD36 is a critical factor in the inflammatory response and tissue damage evoked by cerebral ischemia. Thus, suppression of CD36-TLR2/1 signaling could be a valuable approach to minimize postischemic inflammation and the attendant brain injury. PMID:20360550

  8. [Effect of Endomorphin-1 on Maturation and Expression of TLR4 in Peripheral Blood Dendritic Cells Induced by High Glucose].

    PubMed

    Liu, Chuan-Miao; Yang, Tian-Hua; Huang, Min; Zhou, Cheng; Li, Yong-Hai; Li, Zheng-Hong

    2018-06-01

    To investigate the effects of endomorphin-1 (EM-1) on the maturation phenotype, cytokine secretion, T cell proliferation and TLR4 expression in human peripheral blood dendritic cells (PBDCs) stimulated and induced by high glucose, and to explore the regulatory mechanism of EM-1 on DC immune function. Peripheral blood mononuclear cells (PBMNCs) were induced into immature dendritic cells (imDCs). The high glucose was used as the stimulating factor, and the EM-1 was used as the interventional factor. Then, the experiments were divided into normal glucose group (NG group), high glucose group (HG group), high glucose plus EM-1 group (EM group) and high glucose plus EM-1 and naloxone group (Nal group), respectively. The PBDC's phenotype changes were detected by flow cytometry; ELISA was used to detect the changes of cytokines secreted by PBDCs co-cultured with autologous lymphocytes; CFSE was used to detect the proliferation of T lymphocytes. TLR4 expression on PBDC surface was detected by RT-PCR. Compared with HG group, the expression of PBDC surface molecules CD86, CCR7 and CD36 was up-regulated in EM group (P<0.01), while the change of CD83 expression was not statistically significant. However, IL-12 and IL-10 secreted by PBDCs and the proliferation index of T-lymphocytes stimulated by PBDCs were both decreased in EM group. Compared with EM group, the expression of CD86, CCR7 and CD36 was decreased in Nal group (P<0.01), while the expression of CD83 was almost unchanged (P>0.05). T-lymphocyte proliferation index was increased very significantly in Nal group (P<0.01). The gray ratio of TLR4 in HG group was higher than that in NG group, while the gray ratio in EM group's was very significantly lower than that in HG group's (P<0.01). These results indicate that the high glucose can promote the expression of PBDC TLR4, while the EM-1 inhibits the expression of TLR4. EM-1 up-regulates the expression of PBDC surface molecules CD86, CCR7 and CD36 stimulated and induced by high glucose, but inhibites the induction of PBDC to maturity by high glucose. And the secreted inflammatory cytokines IL-12 and IL-10 inhibites the proliferation of T lymphocytes derived from PBDCs, while naloxone inhibites the effect of EM-1. EM-1 inhibites the expression of TLR4 on PBDC surface induced by high glucose.

  9. Frontline Science: HIV infection of Kupffer cells results in an amplified proinflammatory response to LPS.

    PubMed

    Mosoian, Arevik; Zhang, Lumin; Hong, Feng; Cunyat, Francesc; Rahman, Adeeb; Bhalla, Riti; Panchal, Ankur; Saiman, Yedidya; Fiel, M Isabel; Florman, Sander; Roayaie, Sasan; Schwartz, Myron; Branch, Andrea; Stevenson, Mario; Bansal, Meena B

    2017-05-01

    End-stage liver disease is a common cause of non-AIDS-related mortality in HIV + patients, despite effective anti-retroviral therapies (ARTs). HIV-1 infection causes gut CD4 depletion and is thought to contribute to increased gut permeability, bacterial translocation, and immune activation. Microbial products drain from the gut into the liver via the portal vein where Kupffer cells (KCs), the resident liver macrophage, clear translocated microbial products. As bacterial translocation is implicated in fibrogenesis in HIV patients through unclear mechanisms, we tested the hypothesis that HIV infection of KCs alters their response to LPS in a TLR4-dependent manner. We showed that HIV-1 productively infected KCs, enhanced cell-surface TLR4 and CD14 expression, and increased IL-6 and TNF-α expression, which was blocked by a small molecule TLR4 inhibitor. Our study demonstrated that HIV infection sensitizes KCs to the proinflammatory effects of LPS in a TLR4-dependent manner. These findings suggest that HIV-1-infected KCs and their dysregulated innate immune response to LPS may play a role in hepatic inflammation and fibrosis and represent a novel target for therapy. © Society for Leukocyte Biology.

  10. NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors.

    PubMed

    Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Plaza, Miguel A; Arias, Maykel; Alcalde, Ana I; Mesonero, José E

    2018-05-01

    Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation. © 2017 Wiley Periodicals, Inc.

  11. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    PubMed

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis.

  12. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis. PMID:23072373

  13. The TLR2 Antagonist Staphylococcal Superantigen-Like Protein 3 Acts as a Virulence Factor to Promote Bacterial Pathogenicity in vivo.

    PubMed

    Koymans, Kirsten J; Goldmann, Oliver; Karlsson, Christofer A Q; Sital, Wiedjai; Thänert, Robert; Bisschop, Adinda; Vrieling, Manouk; Malmström, Johan; van Kessel, Kok P M; de Haas, Carla J C; van Strijp, Jos A G; Medina, Eva

    2017-01-01

    Toll-like receptor (TLR) signaling is important in the initiation of immune responses and subsequent instigation of adaptive immunity. TLR2 recognizes bacterial lipoproteins and plays a central role in the host defense against bacterial infections, including those caused by Staphylococcus aureus. Many studies have demonstrated the importance of TLR2 in murine S. aureus infection. S. aureus evades TLR2 activation by secreting two proteins, staphylococcal superantigen-like protein 3 (SSL3) and 4 (SSL4). In this study, we demonstrate that antibodies against SSL3 and SSL4 are found in healthy individuals, indicating that humans are exposed to these proteins during S. aureus colonization or infection. To investigate the TLR2-antagonistic properties of SSL3 and SSL4, we compared the infection with wild-type and SSL3/4 knockout S. aureus strains in an intravenous murine infection model. Direct evaluation of the contribution of SSL3/4 to infection pathogenesis was hindered by the fact that the SSLs were not expressed in the murine system. To circumvent this limitation, an SSL3-overproducing strain (pLukM-SSL3) was generated, resulting in constitutive expression of SSL3. pLukM-SSL3 exhibited increased virulence compared to the parental strain in a murine model that was found to be TLR2 dependent. Altogether, these data indicate that SSL3 contributes to S. aureus virulence in vivo. © 2017 S. Karger AG, Basel.

  14. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes

    PubMed Central

    Köllisch, Gabriele; Kalali, Behnam Naderi; Voelcker, Verena; Wallich, Reinhard; Behrendt, Heidrun; Ring, Johannes; Bauer, Stefan; Jakob, Thilo; Mempel, Martin; Ollert, Markus

    2005-01-01

    Toll-like receptors (TLRs) are important pattern recognition molecules that activate the nuclear factor (NF)-κB pathway leading to the production of antimicrobial immune mediators. As keratinocytes represent the first barrier against exogenous pathogens in human skin, we investigated their complete functional TLR1–10 expression profile. First, reverse transcription–polymerase chain reaction (PCR) analysis revealed a very similar pattern of TLR mRNA expression when comparing freshly isolated human epidermis and cultured primary human keratinocytes. Thus, further experiments were carried out with primary keratinocytes in comparison with the spontaneously immortalized human keratinocyte cell line HaCaT. The quantitative expression of TLR1–10 mRNA in real-time PCR of primary human keratinocytes and HaCaT cells was analysed. Both cell types constitutively expressed TLR2, TLR3, TLR5, and to a lesser extent TLR10. TLR4 was only found in HaCaT cells, TLR1 to a higher degree in primary keratinocytes. In line with this, LPS induced mRNA expression of CD14 and TLR4 only in HaCaT cells. After stimulation with various TLR ligands, the NF-κB-activated chemokine interleukin-8 (IL-8) was measured. In primary keratinocytes and HaCaT cells the TLR3 ligand poly (I:C) was the most potent stimulator of IL-8 secretion. The TLR ligands peptidoglycan, Pam3Cys and flagellin which bind to TLR2, TLR1/TLR2 heterodimer, and TLR5, respectively, also induced IL-8 secretion, whereas no IL-8 was induced by LPS, R-848, loxoribine and cytosine guanine dinucleotide-containing oligodeoxynucleotide. A corresponding pattern was found in the RelA NF-κB translocation assay after ligand stimulation of primary keratinocytes. These studies provide substantial evidence for a functional TLR expression and signalling profile of normal human keratinocytes contributing to the antimicrobial defence barrier of human skin. PMID:15804290

  15. Non-Essential Role for TLR2 and Its Signaling Adaptor Mal/TIRAP in Preserving Normal Lung Architecture in Mice

    PubMed Central

    Ruwanpura, Saleela M.; McLeod, Louise; Lilja, Andrew R.; Brooks, Gavin; Dousha, Lovisa F.; Seow, Huei J.; Bozinovski, Steven; Vlahos, Ross; Hertzog, Paul J.; Anderson, Gary P.; Jenkins, Brendan J.

    2013-01-01

    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr4−/− mice by 6 months of age, the lungs of Tlr2−/− mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr4−/− mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal−/− mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal−/− mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr4−/− mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema. PMID:24205107

  16. RNA recognition by human TLR8 can lead to autoimmune inflammation

    PubMed Central

    Gong, Mei; Cepika, Alma-Martina; Xu, Zhaohui; Tripodo, Claudio; Bennett, Lynda; Crain, Chad; Quartier, Pierre; Cush, John J.; Pascual, Virginia; Coffman, Robert L.; Barrat, Franck J.

    2013-01-01

    Studies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels. Mice with relatively low expression levels survived and bred successfully but had increased susceptibility to collagen-induced arthritis, and the levels of huTLR8 correlated with proinflammatory cytokines in the joints of the animals. At the cellular level, huTLR8 signaling exerted a DC-intrinsic effect leading to up-regulation of co-stimulatory molecules and subsequent T cell activation. A pathogenic role for TLR8 in human diseases was suggested by its increased expression in patients with systemic arthritis and the correlation of TLR8 expression with the elevation of IL-1β levels and disease status. We found that the consequence of self-recognition via TLR8 results in a constellation of diseases, strikingly distinct from those related to TLR7 signaling, and points to specific inflammatory diseases that may benefit from inhibition of TLR8 in humans. PMID:24277153

  17. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture.

    PubMed

    Yang, S; Tamai, R; Akashi, S; Takeuchi, O; Akira, S; Sugawara, S; Takada, H

    2001-04-01

    An analog of 1alpha,25-dihydroxyvitamin D3, 22-oxyacalcitriol (OCT), differentiated human monocytic THP-1 and U937 cells to express membrane CD14 and rendered the cells responsive to bacterial cell surface components. Both THP-1 and U937 cells expressed Toll-like receptor 4 (TLR4) on the cell surface and TLR4 mRNA in the cells, irrespective of OCT treatment. In contrast, OCT-treated U937 cells scarcely expressed TLR2 mRNA, while OCT-treated THP-1 cells expressed this transcript. Muramyldipeptide (MDP) by itself exhibited only a weak ability to induce secretion of inflammatory cytokines such as interleukin-8 (IL-8) in the OCT-differentiated THP-1 cells but showed marked synergistic effects with Salmonella lipopolysaccharide (LPS) or lipoteichoic acid (LTA) from Staphylococcus aureus, both of which exhibited strong activities. Combinatory stimulation with LPS plus LTA did not show a synergistic effect on OCT-differentiated THP-1 cells. Similar results were observed in OCT-differentiated U937 cells, although combination experiments were carried out only with MDP plus LPS. Anti-CD14 monoclonal antibody (MAb) MY4, anti-TLR4 MAb HTA125, and the synthetic lipid A precursor LA-14-PP almost completely inhibited the IL-8-inducing activities of LTA as well as LPS on OCT-treated THP-1 cells, but these treatments increased MDP activity. OCT-treated THP-1 cells primed with MDP exhibited enhanced production of IL-8 upon stimulation with LPS, while the cells primed with LPS showed no change in production upon stimulation with MDP. MDP up-regulated mRNA expression of an adapter molecule to TLRs, MyD88, to an extent similar to that for LPS in OCT-treated THP-1 cells. These findings suggested that LTA as well as LPS activated human monocytic cells in a CD14- and TLR4-dependent manner, whereas MDP exhibited activity in a CD14-, TLR4-, and probably TLR2-independent manner and exhibited synergistic and priming effects on the cells for cytokine production in response to various bacterial components.

  18. Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation.

    PubMed

    Camandola, Simonetta; Mattson, Mark P

    2017-07-01

    Immune and inflammatory pathways play important roles in the pathogenesis of metabolic disorders. This study investigated the role of toll-like receptor 4 (TLR4) in orosensory detection of dietary lipids and sugars. Taste preferences of TLR4 knockout (KO) and wild-type (WT) male mice under a standard and a high-fat, high-sugar diet were assessed with two-bottle tests. Gene expression of taste signaling molecules was analyzed in the tongue epithelium. The role of TLR4 in food intake and weight gain was investigated in TLR4 KO and WT mice fed a high-fat and high-sugar diet for 12 weeks. Compared to WT mice, TLR4 KO mice showed reduced preference for lipids, sugars, and umami in a two-bottle preference test. The altered taste perception was associated with decreased levels of key taste regulatory molecules in the tongue epithelium. TLR4 KO mice on a high-fat and high-sugar diet consumed less food and drink, resulting in diminished weight gain. TLR4 signaling promotes ingestion of sugar and fat by a mechanism involving increased preference for such obesogenic foods. © 2017 The Obesity Society.

  19. Interleukin 17A and Toll-like Receptor 4 in Patients with Arterial Hypertension.

    PubMed

    Simundic, Tihana; Jelakovic, Bojan; Dzumhur, Andrea; Turk, Tajana; Sahinovic, Ines; Dobrosevic, Blazenka; Takac, Boris; Barbic, Jerko

    2017-01-01

    Immune responses are involved in arterial hypertension. An observational cross-sectional case control study was conducted to estimate the association between Toll-like receptor 4 (TLR4) expression and interleukin (IL)-17A serum levels in patients with controlled and non-controlled hypertension. We have enrolled 105 non-complicated otherwise healthy hypertensive patients: 53 with well-controlled blood pressure and 52 non-controlled. TLR4 peripheral monocytes expression and serum IL-17A levels were determined by flow cytometry and ELISA, respectively. Non-controlled patients exhibited higher TLR4 expression than well-controlled (25.60 vs. 21.99, P=0.011). TLR4 expression was lower in well-controlled patients who were prescribed beta blockers (18.9 vs. 22.6, P=0.005) and IL-17A concentration was higher in patients using diuretics in either group (1.41 vs. 2.01 pg/ml, P<0.001; well-controlled 1.3 vs. 1.8 pg/ml, P= 0.023; non-controlled 1.6 vs. 2.3 pg/ml, P=0.001). Correlation between IL-17A concentration and hypertension duration was observed in non-controlled patients (Spearman correlation coefficient . ρ=0.566, P<0.001) whereas in well-controlled patients a correlation was found between hypertension duration and TLR4 expression (ρ=0.322, P=0.020). Arterial hypertension stimulates the immune response regardless of blood pressure regulation status. Prolonged hypertension influences peripheral monocyte TLR4 expression and IL-17A serum levels. Anti-hypertensive drugs have different immunomodulatory effects: diuretics are associated with higher IL-17A concentration and beta-blockers with lower TLR4 expression. © 2017 The Author(s)Published by S. Karger AG, Basel.

  20. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis.

    PubMed

    Sun, Jun-Yi; Li, Dong-Ling; Dong, Yan; Zhu, Chun-Hui; Liu, Jin; Li, Jue-Dan; Zhou, Tao; Gou, Jian-Zhong; Li, Ang; Zang, Wei-Jin

    2016-07-01

    Periodontitis is a severe inflammatory response, leading to characteristic periodontal soft tissue destruction and alveolar bone resorption. Baicalin possesses potent anti-inflammatory activity; however, it is still unclear whether baicalin regulates toll-like receptor (TLR) 2/4 expression and downstream signaling during the process of periodontitis. In this study, the cervical area of the maxillary second molars of rats was ligated and inoculated with Porphyromonas gingivalis (P. gingivalis) for 4weeks to induce periodontitis. Some rats with periodontitis were treated intragastrically with baicalin (50, 100 or 200mg/kg/day) or vehicle for 4weeks. Compared with the sham group, the levels of TLR2, TLR4 and MyD88 expression and the p38 MAPK and NF-κB activation were up-regulated in the experimental periodontitis group (EPG), accompanied by marked alveolar bone loss and severe inflammation. Treatment with 100 or 200mg/kg/day baicalin dramatically reduced the alveolar bone loss, the levels of HMGB1, TNF-α, IL-1β, and MPO expression, and the numbers of inflammatory infiltrates in the gingival tissues. Importantly, treatment with 100 or 200mg/kg/day baicalin mitigated the periodontitis-up-regulated TLR2, TLR4 and MyD88 expression, and the p38 MAPK and NF-κB activation. Hence, the blockage of the TLR2 and TLR4/MyD88/p38 MAPK/NF-κB signaling by baicalin may contribute to its anti-inflammatory effects in rat model of periodontitis. In conclusion, these novel findings indicate that baicalin inhibits the TLR2 and TLR4 expression and the downstream signaling and mitigates inflammatory responses and the alveolar bone loss in rat experimental periodontitis. Therefore, baicalin may be a potential therapeutic agent for treatment of periodontitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. TLR9 deficiency breaks tolerance to RNA-associated antigens and upregulates TLR7 protein in Sle1 mice.

    PubMed

    Celhar, Teja; Yasuga, Hiroko; Lee, Hui-Yin; Zharkova, Olga; Tripathi, Shubhita; Thornhill, Susannah I; Lu, Hao K; Au, Bijin; Lim, Lina H K; Thamboo, Thomas P; Akira, Shizuo; Wakeland, Edward K; Connolly, John E; Fairhurst, Anna-Marie

    2018-04-24

    Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of Systemic Lupus Erythematosus (SLE). While multiple studies support a dependency on TLR7 for disease development, genetic ablation of TLR9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. The present study was designed to examine the suppressive role of TLR9 in the development of severe lupus. We crossed Sle1 lupus-prone mice with TLR9-deficient mice to generate Sle1TLR9 -/- . These mice were aged and evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total immunoglobulin profiles, kidney dendritic cell (DC) function and TLR7 protein expression. Young mice were used for functional B cell studies, immunoglobulin profiling and TLR7 expression. Sle1TLR9 -/- mice developed severe disease similar to TLR9-deficient MRL and Nba2 models. Sle1TLR9 -/- B cells produced more class-switched antibodies and the autoantibody repertoire was skewed towards RNA-containing antigens. GN in these mice was associated with DC infiltration and purified Sle1TLR9 -/- renal DCs were more efficient at TLR7-dependent antigen presentation and expressed higher levels of TLR7 protein. Importantly, this increase in TLR7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. The increase in TLR7-reactive immune complexes (IC) and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9 -/- mice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Serine Lipids of Porphyromonas gingivalis Are Human and Mouse Toll-Like Receptor 2 Ligands

    PubMed Central

    Clark, Robert B.; Cervantes, Jorge L.; Maciejewski, Mark W.; Farrokhi, Vahid; Nemati, Reza; Yao, Xudong; Anstadt, Emily; Fujiwara, Mai; Wright, Kyle T.; Riddle, Caroline; La Vake, Carson J.; Salazar, Juan C.; Finegold, Sydney

    2013-01-01

    The total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/− mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced by P. gingivalis that likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate. PMID:23836823

  3. Differential regulation of IL-23 production in M1 macrophages by TIR8/SIGIRR through TLR4- or TLR7/8-mediated signaling.

    PubMed

    Yamaguchi, Rui; Sakamoto, Arisa; Yamamoto, Takatoshi; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2017-11-01

    Cross-talks between toll-like receptors (TLRs) including various negative regulatory mechanisms are many unknown. We investigated the differential mechanism of IL-23 production in M1 macrophages by single immunoglobulin interleukin-1 receptor-related (SIGIRR) molecule through TLR4 or TLR7/8. IL-12p40 production by M1 macrophages pretreated with human neutrophil elastase (HNE) was synergistically enhanced IL-12p40, but not IL-23 production, after exposure to lipopolysaccharide (LPS). LPS (a TLR4 agonist) induced a slight increase of IL-23 production, while Resiquimod (a TLR7/8 agonist) significantly enhanced IL-23 production. Expression of SIGIRR protein, a negative regulator of TLR4, was higher in M1 macrophages than in monocytes. Interestingly, SIGIRR siRNA induced a slight increment of IL-23 production after exposure of macrophages to LPS, while IL-23 production in response to Resiquimod was significantly upregulated by SIGIRR siRNA. Silencing SIGIRR enhanced IRF4 protein level determined by western blotting or ELISA. IRF4 siRNA dramatically restored IL-23 production after exposure to Resiquimod in macrophages transfected with SIGIRR siRNA. In conclusion, production of IL-23 is differentially regulated in M1 macrophages by SIGIRR through TLR4- or TLR7/8-mediated signaling. SIGIRR is both a negative regulator of TLR4 and a positive regulator of TLR7/8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dynamic Toll-like receptor expression predicts outcome of sclerotherapy for lymphatic malformations with OK-432 in children.

    PubMed

    Reismann, Marc; Ghaffarpour, Nader; Luvall, Ethel; Jirmo, Adan C; Winqvist, Ola; Radtke, Josephine; Wester, Tomas; Claesson, Gösta

    2014-03-01

    Sclerotherapy with OK-432 is recommended as a first-line treatment for lymphatic malformations. However, 40% of patients show poor response, defined by involution to <50% of the original size. It has been suggested that the OK-432 effect is highly dependent on the Toll-like receptor (TLR) 4-dependent expression of TLR7 in antigen-presenting cells. We hypothesized that the ability for TLR expression in monocytes after treatment with the TLR4-ligand lipopolysaccharide (LPS) can be used to predict successful OK-432 treatment. Blood was taken from children with low responder (LR, n = 6) and high responder (HR, n = 5) of previous OK-432 treatment. Monocytes were stimulated with LPS for 20 h. TLR expression was analyzed with fluorescence-activated cell sorting (mean fluorescence intensity). The level of significance was P ≤ 0.05. The mean age of patients in the HR group was 1.4 ± 0.9 y and in the LR group 2.8 ± 2.9 y (P = 0.31). The mean TLR4 upregulation after LPS stimulation in the HR group was significantly higher than in the LR group (factor 3.6 versus factor 1 compared with nonstimulated controls; P = 0.037). The mean TLR7 expression did not show significant differences between the groups. Dynamic TLR4 expression represents most probably a predictive parameter for the treatment of lymphatic malformations with OK-432 and should be further investigated. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wenwen; Zheng, Xuexing; Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathwaysmore » using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.« less

  6. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Xu, Ling; Gong, Changguo; Li, Guangming; Wei, Jue; Wang, Ting; Meng, Wenying; Shi, Min; Wang, Yugang

    2018-05-01

    Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.

  7. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE-/- mice as well as smooth muscle cells.

    PubMed

    Wang, Zhaojun; Wang, Zhongqun; Zhu, Jie; Long, Xinguang; Yan, Jinchuan

    2018-02-01

    Background and objectives Vascular calcification is a common complication in atherosclerosis. Accumulating evidence showed that Toll-like receptors (TLRs) mediate pro-inflammatory and atherosclerosis. Recent studies demonstrated that vascular calcification is one of the detrimental effects of vitamin K (Vit K) antagonists. However, the effects of Vit K on the expression of TLR2 and 4 and intimal calcification in artery remained unidentified. Methods and results Eighteen ApoE -/- mice were randomly divided into model group, Vit K-treated group, and control group. The mice of model and Vit K-treated group were fed with high-fat diet, while control group mice were fed with normal diet. Mice of Vit K-treated group were administered orally with vitamin K2 (40 mg.kg -1 .day -1 ) for 12 weeks. Twelve weeks later the aortic sections of mice were acquired and stained with hematoxylin and eosin and von Kossa, respectively. Calcium content and activity of alkaline phosphatase (ALP) at aortic tissues were measured. The expression levels of TLR2 and TLR4 in aorta sections were detected by immunohistochemisty and RT-PCR, respectively. The effects of Vit K on cellular calcification were further studied in A7r5 SMCs. Results demonstrated that high-fat diet induced typical atherosclerosis with intimal calcification in ApoE -/- mice, while in Vit K-treated group atherosclerosis and calcium deposits were not serious; Vit K2 also inhibited cellular calcification in A7r5 SMCs. Quantitative analysis showed that calcium and ALP activity at aortic tissues in the Vit K-treated mice were significantly lower than that of the model group ( P < 0.01); Compared to the control group, the expression levels of TLR2 and TLR4 in the model group were significantly higher ( P < 0.05), while in Vit K-treated group the levels of TLR2 and 4 were significantly lower than that in the model group. Furthermore, the content of calcium was positively related to the expression levels of TLR2 and TLR4 mRNA at aortic tissues ( r = 0.77 and r = 0.79, respectively, both P < 0.001). Conclusion VitK2 can inhibit intimal calcification of aortic artery induced by high-fat diet in ApoE -/- mice and A7r5 SMCs calcification induced by β-sodium glycerophosphate, and meanwhile can reduce the expression of TLR2 and TLR4. These results suggested that the effects of VitK2 on vascular calcification may be associated with the expression of TLR2 and TLR4.

  8. Toll-like Receptor 4 Mediates Fat, Sugar and Umami Taste Preference, and Food Intake and Body Weight Regulation

    PubMed Central

    Camandola, Simonetta; Mattson, Mark P.

    2017-01-01

    Objective Immune and inflammatory pathways play important roles in the pathogenesis of metabolic disorders. In the present study we investigate the role of TLR4 in orosensory detection of dietary lipids and sugars. Methods Taste preferences of TLR4 knockout (KO) and wild type (WT) male mice under standard, and high fat and high sugar diets were assessed with 2-bottle tests. Gene expression of taste signaling molecules was analyzed in the tongue epithelium The role of TLR4 in food intake, and weigh gain was investigated in TLR4 KO and WT mice fed a high fat and high sugar diet for 12 weeks. Results Compared to WT mice TLR4 KO mice showed reduced preference for lipids, sugars, and umami in 2-bottle preference test. The altered taste perception was associated with decreased levels of key taste regulatory molecules in the tongue epithelium. TLR4 KO mice on a high fat and high sugar diet consumed less food and drink, resulting in diminished weight gain. Conclusions TLR4 signaling promotes ingestion of sugar and fat by a mechanism involving increased preference for such obesogenic foods. PMID:28500692

  9. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    PubMed

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. MyD88 and TLR4 Expression in Epithelial Ovarian Cancer

    PubMed Central

    Block, Matthew S.; Vierkant, Robert A.; Rambau, Peter F.; Winham, Stacey J.; Wagner, Philipp; Traficante, Nadia; Tołoczko, Aleksandra; Tiezzi, Daniel G.; Taran, Florin Andrei; Sinn, Peter; Sieh, Weiva; Sharma, Raghwa; Rothstein, Joseph H.; Cajal, Teresa Ramón y; Paz-Ares, Luis; Oszurek, Oleg; Orsulic, Sandra; Ness, Roberta B.; Nelson, Gregg; Modugno, Francesmary; Menkiszak, Janusz; McGuire, Valerie; McCauley, Bryan M.; Mack, Marie; Lubiński, Jan; Longacre, Teri A.; Li, Zheng; Lester, Jenny; Kennedy, Catherine J.; Kalli, Kimberly R.; Jung, Audrey Y.; Johnatty, Sharon E.; Jimenez-Linan, Mercedes; Jensen, Allan; Intermaggio, Maria P.; Hung, Jillian; Herpel, Esther; Hernandez, Brenda Y.; Hartkopf, Andreas D.; Harnett, Paul R.; Ghatage, Prafull; García-Bueno, José M.; Gao, Bo; Fereday, Sian; Eilber, Ursula; Edwards, Robert P.; de Sousa, Christiani B.; de Andrade, Jurandyr M.; Chudecka-Głaz, Anita; Chenevix-Trench, Georgia; Cazorla, Alicia; Brucker, Sara Y.; Alsop, Jennifer; Whittemore, Alice S.; Steed, Helen; Staebler, Annette; Moysich, Kirsten B.; Menon, Usha; Koziak, Jennifer M.; Kommoss, Stefan; Kjaer, Susanne K.; Kelemen, Linda E.; Karlan, Beth Y.; Huntsman, David G.; Høgdall, Estrid; Gronwald, Jacek; Goodman, Marc T.; Gilks, Blake; García, María José; Fasching, Peter A.; de Fazio, Anna; Deen, Suha; Chang-Claude, Jenny; Candido dos Reis, Francisco J.; Campbell, Ian G.; Brenton, James D.; Bowtell, David D.; Benítez, Javier; Pharoah, Paul D.P.; Köbel, Martin; Ramus, Susan J.; Goode, Ellen L.

    2018-01-01

    Objective To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. Patients and Methods We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). Results Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01–1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29–0.84] and 0.44 [0.21–0.89], respectively; P=.009 and P=.02, respectively). Conclusion Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes. PMID:29502561

  11. MyD88 and TLR4 Expression in Epithelial Ovarian Cancer.

    PubMed

    Block, Matthew S; Vierkant, Robert A; Rambau, Peter F; Winham, Stacey J; Wagner, Philipp; Traficante, Nadia; Tołoczko, Aleksandra; Tiezzi, Daniel G; Taran, Florin Andrei; Sinn, Peter; Sieh, Weiva; Sharma, Raghwa; Rothstein, Joseph H; Ramón Y Cajal, Teresa; Paz-Ares, Luis; Oszurek, Oleg; Orsulic, Sandra; Ness, Roberta B; Nelson, Gregg; Modugno, Francesmary; Menkiszak, Janusz; McGuire, Valerie; McCauley, Bryan M; Mack, Marie; Lubiński, Jan; Longacre, Teri A; Li, Zheng; Lester, Jenny; Kennedy, Catherine J; Kalli, Kimberly R; Jung, Audrey Y; Johnatty, Sharon E; Jimenez-Linan, Mercedes; Jensen, Allan; Intermaggio, Maria P; Hung, Jillian; Herpel, Esther; Hernandez, Brenda Y; Hartkopf, Andreas D; Harnett, Paul R; Ghatage, Prafull; García-Bueno, José M; Gao, Bo; Fereday, Sian; Eilber, Ursula; Edwards, Robert P; de Sousa, Christiani B; de Andrade, Jurandyr M; Chudecka-Głaz, Anita; Chenevix-Trench, Georgia; Cazorla, Alicia; Brucker, Sara Y; Alsop, Jennifer; Whittemore, Alice S; Steed, Helen; Staebler, Annette; Moysich, Kirsten B; Menon, Usha; Koziak, Jennifer M; Kommoss, Stefan; Kjaer, Susanne K; Kelemen, Linda E; Karlan, Beth Y; Huntsman, David G; Høgdall, Estrid; Gronwald, Jacek; Goodman, Marc T; Gilks, Blake; García, María José; Fasching, Peter A; de Fazio, Anna; Deen, Suha; Chang-Claude, Jenny; Candido Dos Reis, Francisco J; Campbell, Ian G; Brenton, James D; Bowtell, David D; Benítez, Javier; Pharoah, Paul D P; Köbel, Martin; Ramus, Susan J; Goode, Ellen L

    2018-03-01

    To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively). Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression.

    PubMed

    Zhang, Shanshan; Zou, Jun; Li, Peiyang; Zheng, Xiumei; Feng, Dan

    2018-01-17

    Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE -/- ) mice by inhibiting TLR4 expression. ApoE -/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.

  13. Lipopolysaccharide Stimulates p62-Dependent Autophagy-Like Aggregate Clearance in Hepatocytes

    PubMed Central

    Deng, Meihong; Sun, Qian; Loughran, Patricia; Billiar, Timothy R.; Scott, Melanie J.

    2014-01-01

    Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NFκB transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress. PMID:24683544

  14. Lipopolysaccharide stimulates p62-dependent autophagy-like aggregate clearance in hepatocytes.

    PubMed

    Chen, Christine; Deng, Meihong; Sun, Qian; Loughran, Patricia; Billiar, Timothy R; Scott, Melanie J

    2014-01-01

    Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NF κ B transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress.

  15. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  16. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hodaka; Umemoto, Tomio; Kawano, Mikihiko

    Saturated fatty acids (SFAs) activate toll-like receptor 4 (TLR4) signal transduction in macrophages and are involved in the chronic inflammation accompanying obesity. High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) produce anti-inflammatory effects via reverse cholesterol transport. However, the underlying mechanisms by which HDL and apoA-I inhibit inflammatory responses in adipocytes remain to be determined. Here we examined whether palmitate increases the translocation of TLR4 into lipid rafts and whether HDL and apoA-I inhibit inflammation in adipocytes. Palmitate exposure (250 μM, 24 h) increased interleukin-6 and tumor necrosis factor-α gene expressions and translocation of TLR4 into lipid rafts in 3T3-L1 adipocytes. Pretreatment withmore » HDL and apoA-I (50 μg/mL, 6 h) suppressed palmitate-induced inflammatory cytokine expression and TLR4 translocation into lipid rafts. Moreover, HDL and apoA-I inhibited palmitate-induced phosphorylation of nuclear factor-kappa B. HDL showed an anti-inflammatory effect via ATP-binding cassette transporter G1 and scavenger receptor class B, member 1, whereas apoA-I showed an effect via ATP-binding cassette transporter A1. These results demonstrated that HDL and apoA-I reduced palmitate-potentiated TLR4 trafficking into lipid rafts and its related inflammation in adipocytes via these specific transporters. - Highlights: • Palmitate induces TLR4 translocation into lipid rafts in 3T3-L1 adipocytes. • Raft disruption by MβCD inhibits lipid raft formation. • HDL and apoA-I inhibit palmitate-induced translocation of TLR4 into lipid rafts. • Anti-inflammatory effects of HDL and apoA-I occur via specific transporters.« less

  17. Mycobacterium indicus pranii (MIP) mediated host protective intracellular mechanisms against tuberculosis infection: Involvement of TLR-4 mediated signaling.

    PubMed

    Das, Shibali; Chowdhury, Bidisha Paul; Goswami, Avranil; Parveen, Shabina; Jawed, Junaid; Pal, Nishith; Majumdar, Subrata

    2016-12-01

    Mycobacterium tuberculosis infection inflicts the disease Tuberculosis (TB), which is fatal if left untreated. During M. tuberculosis infection, the pathogen modulates TLR-4 receptor down-stream signaling, indicating the possible involvement of TLR-4 in the regulation of the host immune response. Mycobacterium indicus pranii (MIP) possesses immuno-modulatory properties which induces the pro-inflammatory responses via induction of TLR-4-mediated signaling. Here, we observed the immunomodulatory properties of MIP against tuberculosis infection. We have studied the detailed signaling mechanisms employed by MIP in order to restore the host immune response against the in vitro tuberculosis infection. We observed that in infected macrophages MIP treatment significantly increased the TLR-4 expression as well as activation of its downstream signaling, facilitating the activation of P38 MAP kinase. MIP treatment was able to activate NF-κB via involvement of TLR-4 signaling leading to the enhanced pro-inflammatory cytokine and NO generation in the infected macrophages and generation of protective immune response. Therefore, we may suggest that, TLR4 may represent a novel therapeutic target for the activation of the innate immune response during Tuberculosis infection. Copyright © 2016. Published by Elsevier Ltd.

  18. [Changes of FoxP3, CD4(+)CD25(+) regulatory T cells, TLR2 and TLR9 in children with infectious mononucleosis].

    PubMed

    Wang, Qiang; Wang, Zuo-Feng; Cao, Mei; Wang, Zhi-Ying

    2013-04-01

    The aim of this study was to investigate the effects of TLR2, TLR9, CD4(+)CD25(+) regulatory T cells (Treg) and transcription factor FoxP3 in the pathogenesis of children with infectious mononucleosis (IM). Thirty-five acute IM patients admitted in our hospital from April 2010 to January 2011 were enrolled in this study. Thirty-five healthy subjects were taken as control. The thirty-five patients before treatment were considered as patients in acute stage, after treatment and without clinical symptom they were thought as patients in recovery stage. The expression levels of TLR2, TLR9 and FoxP3 mRNA were detected by real time PCR using SYBR Green I. The expression of T lymphocyte subset CD4(+)CD25(+) in peripheral blood mononuclear cells was detected by flow cytometry. The results showed that the relative levels of TLR2 mRNA (4.03 ± 0.56), TLR9 mRNA (8.88 ± 1.56) in peripheral blood mononuclear cells of IM patients in acute stage were significantly higher than those of the controls [TLR2 mRNA (2.22 ± 0.57), TLR9 mRNA (3.63 ± 1.30)] and IM patients in recovery stage [TLR2 mRNA (2.76 ± 0.83), TLR9 mRNA (5.34 ± 1.60)] (P < 0.01). The result of CD4(+)CD25(+) (2.38 ± 1.32%) and relative level of FoxP3 mRNA(2.82 ± 0.90) in peripheral blood mononuclear cells of IM patients in acute stage were lower than those of the control [CD4(+)CD25(+) (7.85 ± 1.97%), FoxP3 mRNA (4.65 ± 1.23) ] (P < 0.01). There was no significant difference in CD4(+)CD25(+) (6.81 ± 1.84%), FoxP3 mRNA(4.11 ± 1.37) levels between IM patients in recovery stage and the controls (P > 0.05). It is concluded that the expression of CD4(+)CD25(+)regulatory T cells is reduced, and its special transcription factor FoxP3 mRNA is down-regulated, but expression levels of TLR2 mRNA, TLR9 mRNA are up-regulated in IM patients of acute stage.

  19. Anti-inflammatory effect of miltirone on inflammatory bowel disease via TLR4/NF-κB/IQGAP2 signaling pathway.

    PubMed

    Wang, Hongjian; Gu, Junfei; Hou, Xuefeng; Chen, Juan; Yang, Nan; Liu, Ying; Wang, Gang; Du, Mei; Qiu, Huihui; Luo, Yi; Jiang, Ziyu; Feng, Liang

    2017-01-01

    Inflammatory bowel disease (IBD) is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. This study was conducted to evaluate the anti-inflammation effect of miltirone against IBD in vitro and in vivo, and try to explore the underlying mechanisms. Miltirone could extenuate the loss of colon length and weight caused by TNBS. Additionally, macroscopic scores and DAI were reduced significantly compared with the TNBS group. The levels of TNF-α, IL-1β, IL-6 and IL-8 were increased significantly with the induction by TNBS (100mg/kg) or LPS (0.5mg/mL). Interestingly, miltirone could down-regulate the levels of these increased pro-inflammatory factors in a dose-dependent manner both in vivo and in vitro. The protein and mRNA expressions of TLR4, MyD88, NF-κB p65 were up-regulated by TNBS or LPS stimulation. CRX-526, the TLR4 inhibitor, as well as miltirone could significantly suppress the increased protein and mRNA expressions. Miltirone could up-regulate the descreased IQGAP2 expression induced by LPS. All these revealed that the anti-inflammatory effect of miltirone on IBD may be via regulating TLR4/NF-κB/IQGAP2 signaling pathway. The findings might supply beneficial hints for the drug research to cure the IBD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Association between toll-like receptors expression and major depressive disorder.

    PubMed

    Hung, Yi-Yung; Kang, Hong-Yo; Huang, Kai-Wei; Huang, Tiao-Lai

    2014-12-15

    Accumulating evidences suggest that Toll-like receptors (TLRs) were involved in the pathophysiology of major depressive disorder. TLR4 was thought to be associated with major depressive disorder in animal model, but the others were still unknown. In order to examine TLR1-9 mRNA expression levels in peripheral blood and their relationships with the psychopathology of major depressive disorder, 30 patients with major depressive disorder were compared with 29 healthy controls. The 17-item Hamilton Depression Rating Scale (HAMD-17) was used to assess the severity of major depression. The mRNA expression levels of TLRs were examined in parallel with a housekeeping gene using real-time polymerase chain reaction (RT-PCR). Analysis of covariance with age and body mass index adjustment revealed a significantly higher expression of TLR3, 4, 5 and 7 mRNA but lower expression of TLR1 and 6 in patients with major depressive disorder as compared with healthy controls. Multiple linear regression analysis revealed that TLR4 was an independent risk factor relating to severity of major depression. These findings suggest that TLRs, especially TLR4, may be involved in the psychopathology of major depression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. S100A9 Interaction with TLR4 Promotes Tumor Growth

    PubMed Central

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  2. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    PubMed

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4 + T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4 + T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6 + CD4 + T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6 + CD4 + T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6 + CD4 + T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4 + T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6 + CD4 + T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6 + CD4 + T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  3. Risks Associated with High-Dose Lactobacillus rhamnosus in an Escherichia coli Model of Piglet Diarrhoea: Intestinal Microbiota and Immune Imbalances

    PubMed Central

    Yue, Yuan; Cai, Zheng-Xing; Lu, Qing-Ping; Zhang, Lu; Weng, Xiao-Gang; Zhang, Fan-Jian; Zhou, Dong; Yang, Jin-Cai; Wang, Jiu-Feng

    2012-01-01

    Probiotic could be a promising alternative to antibiotics for the prevention of enteric infections; however, further information on the dose effects is required. In this study, weanling piglets were orally administered low- or high-dose Lactobacillus rhamnosus ACTT 7469 (1010 CFU/d or 1012 CFU/d) for 1 week before F4 (K88)-positive Escherichia coli challenge. The compositions of faecal and gastrointestinal microbiota were recorded; gene expression in the intestines was assessed by real-time PCR; serum tumour necrosis factor-α (TNF-α) concentrations and intestinal Toll-like receptor 4 (TLR4) were detected by ELISA and immunohistochemistry, respectively. Unexpectedly, high-dose administration increased the incidence of diarrhoea before F4+ETEC challenge, despite the fact that both doses ameliorated F4+ETEC-induced diarrhoea with increased Lactobacillus and Bifidobacterium counts accompanied by reduced coliform shedding in faeces. Interestingly, L. rhamnosus administration reduced Lactobacillus and Bifidobacterium counts in the colonic contents, and the high-dose piglets also had lower Lactobacillius and Bacteroides counts in the ileal contents. An increase in the concentration of serum TNF-α induced by F4+ETEC was observed, but the increase was delayed by L. rhamnosus. In piglets exposed to F4+ETEC, jejunal TLR4 expression increased at the mRNA and protein levels, while jejunal interleukin (IL)-8 and ileal porcine β-defensins 2 (pBD2) mRNA expression increased; however, these increases were attenuated by administration of L. rhamnosus. Notably, expression of jejunal TLR2, ileal TLR9, Nod-like receptor NOD1 and TNF-α mRNA was upregulated in the low-dose piglets after F4+ETEC challenge, but not in the high-dose piglets. These findings indicate that pretreatment with a low dose of L. rhamnosus might be more effective than a high dose at ameliorating diarrhoea. There is a risk that high-dose L. rhamnosus pretreatment may negate the preventative effects, thus decreasing the prophylactic benefits against potential enteric pathogens. Our data suggest a safe threshold for preventative use of probiotics in clinical practice. PMID:22848393

  4. The Influence of Flightless I on Toll-Like-Receptor-Mediated Inflammation in a Murine Model of Diabetic Wound Healing

    PubMed Central

    Ruzehaji, Nadira; Mills, Stuart J.; Melville, Elizabeth; Arkell, Ruth; Fitridge, Robert; Cowin, Allison J.

    2013-01-01

    Impaired wound healing and ulceration represent a serious complication of both type 1 and type 2 diabetes. Cytoskeletal protein Flightless I (Flii) is an important inhibitor of wound repair, and reduced Flii gene expression in fibroblasts increased migration, proliferation, and adhesion. As such it has the ability to influence all phases of wound healing including inflammation, remodelling and angiogenesis. Flii has the potential to modulate inflammation through its interaction with MyD88 which it an adaptor protein for TLR4. To assess the effect of Flii on the inflammatory response of diabetic wounds, we used a murine model of streptozocin-induced diabetes and Flii genetic mice. Increased levels of Flii were detected in Flii transgenic murine wounds resulting in impaired healing which was exacerbated when diabetes was induced. When Flii levels were reduced in diabetic wounds of Flii-deficient mice, healing was improved and decreased levels of TLR4 were observed. In contrast, increasing the level of Flii in diabetic mouse wounds led to increased TLR4 and NF-κB production. Treatment of murine diabetic wounds with neutralising antibodies to Flii led to an improvement in healing with decreased expression of TLR4. Decreasing the level of Flii in diabetic wounds may therefore reduce the inflammatory response and improve healing. PMID:23555084

  5. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank

    2013-11-01

    Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum, respectively. Our data suggest therefore that malaria-induced epigenetic fine-tuning of Tlr6 and Tlr1 through DNA methylation of their gene promoters in the liver is critically important for initial recognition of PAMPs and, thus, for the final self-healing outcome of blood-stage infections with P. chabaudi malaria.

  6. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    PubMed

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Emerging Bordetella pertussis Strains Induce Enhanced Signaling of Human Pattern Recognition Receptors TLR2, NOD2 and Secretion of IL-10 by Dendritic Cells

    PubMed Central

    Hovingh, Elise S.; van Gent, Marjolein; Hamstra, Hendrik-Jan; Demkes, Marc; Mooi, Frits R.; Pinelli, Elena

    2017-01-01

    Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis. PMID:28076445

  8. Genome-wide characterization of Toll-like receptor gene family in common carp (Cyprinus carpio) and their involvement in host immune response to Aeromonas hydrophila infection.

    PubMed

    Gong, Yiwen; Feng, Shuaisheng; Li, Shangqi; Zhang, Yan; Zhao, Zixia; Hu, Mou; Xu, Peng; Jiang, Yanliang

    2017-12-01

    The Toll-like receptor (TLR) gene family is a class of conserved pattern recognition receptors, which play an essential role in innate immunity providing efficient defense against invading microbial pathogens. Although TLRs have been extensively characterized in both invertebrates and vertebrates, a comprehensive analysis of TLRs in common carp is lacking. In the present study, we have conducted the first genome-wide systematic analysis of common carp (Cyprinus carpio) TLR genes. A set of 27 common carp TLR genes were identified and characterized. Sequence similarity analysis, functional domain prediction and phylogenetic analysis supported their annotation and orthologies. By examining the gene copy number of TLR genes across several vertebrates, gene duplications and losses were observed. The expression patterns of TLR genes were examined during early developmental stages and in various healthy tissues, and the results showed that TLR genes were ubiquitously expressed, indicating a likely role in maintaining homeostasis. Moreover, the differential expression of TLRs was examined after Aeromons hydrophila infection, and showed that most TLR genes were induced, with diverse patterns. TLR1, TLR4-2, TLR4-3, TLR22-2, TLR22-3 were significantly up-regulated at minimum one timepoint, whereas TLR2-1, TLR4-1, TLR7-1 and TLR7-2 were significantly down-regulated. Our results suggested that TLR genes play critical roles in the common carp immune response. Collectively, our findings provide fundamental genomic resources for future studies on fish disease management and disease-resistance selective breeding strategy development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Lactobacillus johnsonii N6.2 stimulates the innate immune response through Toll-like receptor 9 in Caco-2 cells and increases intestinal crypt Paneth cell number in biobreeding diabetes-prone rats.

    PubMed

    Kingma, Sandra D K; Li, Nan; Sun, Frank; Valladares, Ricardo B; Neu, Joe; Lorca, Graciela L

    2011-06-01

    Lactobacillus johnsonii (Ljo) N6.2 has been shown to mitigate the development of type 1 diabetes when administered to diabetes-prone rats. The specific mechanisms underlying this observed response remain under investigation. The objective of this study was to assess the effect of Ljo N6.2 on mucosal inflammatory response using differentiated Caco-2 monolayers. The mRNA expression levels of CCL20, CXCL8, and CXCL10 chemokines were determined by qRT-PCR. Ljo at 10(11) CFU/L induced a strong response in all chemokines examined. To assess the specific host-signaling pathways involved, we performed RT-PCR amplification of Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors. TLR7 and TLR9 expression levels were induced 4.2- and 9-fold, respectively, whereas other TLR and nucleotide-binding oligomerization domain receptors were not modified. A similar effect was observed in Caco-2 monolayers treated with Ljo cell-free extract or purified nucleic acids (NA). Increased levels of IFN type 1 and IFN regulators Stat1 and IRF7 followed the upregulation of TLR9. Activation of TLR9 was also evidenced by increased Frizzled 5 expression in Ljo-treated Caco-2 cells and an increase in the number of Paneth cells in Ljo-fed, diabetes-prone rats. These results are in agreement with the polarizing-tolerizing mechanism recently described in which the apical stimulation of TLR9 in intestinal epithelial cells leads to a higher state of immunologic alertness. Furthermore, these results suggest that live probiotics could be, in the future, replaced with select cellular components.

  10. Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung.

    PubMed

    Fonceca, Angela M; Zosky, Graeme R; Bozanich, Elizabeth M; Sutanto, Erika N; Kicic, Anthony; McNamara, Paul S; Knight, Darryl A; Sly, Peter D; Turner, Debra J; Stick, Stephen M

    2018-01-22

    Accumulation mode particles (AMP) are formed from engine combustion and make up the inhalable vapour cloud of ambient particulate matter pollution. Their small size facilitates dispersal and subsequent exposure far from their original source, as well as the ability to penetrate alveolar spaces and capillary walls of the lung when inhaled. A significant immuno-stimulatory component of AMP is lipopolysaccharide (LPS), a product of Gram negative bacteria breakdown. As LPS is implicated in the onset and exacerbation of asthma, the presence or absence of LPS in ambient particulate matter (PM) may explain the onset of asthmatic exacerbations to PM exposure. This study aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airways disease by measuring airway inflammatory responses induced via activation of the LPS cellular receptor, Toll-like receptor 4 (TLR-4). The effects of nebulized AMP, LPS and AMP administered with LPS on lung function, cellular inflammatory infiltrate and cytokine responses were compared between wildtype mice and mice not expressing TLR-4. The presence of LPS administered with AMP appeared to drive elevated airway resistance and sensitivity via TLR-4. Augmented TLR4 driven eosinophilia and greater TNF-α responses observed in AMP-LPS treated mice independent of TLR-4 expression, suggests activation of allergic responses by TLR4 and non-TLR4 pathways larger than those induced by LPS administered alone. Treatment with AMP induced macrophage recruitment independent of TLR-4 expression. These findings suggest AMP-LPS as a stronger stimulus for allergic inflammation in the airways then LPS alone.

  11. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population.

    PubMed

    Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E

    2010-12-01

    Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Increased Atherogenesis during Streptococcus mutans Infection in ApoE-null Mice

    PubMed Central

    Kesavalu, L.; Lucas, A.R.; Verma, R.K.; Liu, L.; Dai, E.; Sampson, E.; Progulske-Fox, A.

    2012-01-01

    Streptococcus mutans, a dental caries pathogen, also causes endocarditis and is detected in atheroscelerotic plaque. We investigated the potential for an invasive strain of S. mutans, OMZ175, to accelerate plaque growth in apolipoprotein E deficient (ApoEnull) mice without and with balloon angioplasty (BA) injury, a model of restenosis. ApoEnull mice were divided into 4 groups (N = 10), 2 with and 2 without BA. One each of the BA and non-BA groups was infected with S. mutans (Sm). S. mutans DNA, plaque area, inflammatory cell invasion, and Toll-like receptor (TLR) expression were measured at 6-20 weeks post-infection. S. mutans genomic DNA was detected in the aorta, liver, spleen, and heart. Plaque growth was significantly increased in infected mice with BA (Sm+BA) vs. those in the non-infected groups (p < 0.03). Plaque size was increased after infection without BA (Sm), but did not reach significance. Aortic specimens from both S. mutans and Sm+BA groups displayed increased numbers of macrophages, and TLR4 expression was increased in BA mice. In conclusion, S. mutans infection accelerated plaque growth, macrophage invasion, and TLR4 expression after angioplasty. S. mutans may also be associated with atherosclerotic plaque growth in non-injured arteries. PMID:22262633

  13. Higher expression of galectin-3 and galectin-9 in periapical granulomas than in radicular cysts and an increased toll-like receptor-2 and toll-like receptor-4 expression are associated with reactivation of periapical inflammation.

    PubMed

    de Oliveira, Rita de Cássia Medeiros; Beghini, Marcela; Borges, Cláudia Renata Bibiano; Alves, Polyanna Miranda; de Araújo, Marcelo Sivieri; Pereira, Sanívia Aparecida de Lima; Rodrigues, Virmondes; Rodrigues, Denise Bertulucci Rocha

    2014-02-01

    Cysts and periapical granulomas are inflammatory reactions that develop in response to periapical infection by microbial species in dental root canal. It is known that toll-like receptors (TLRs) are pathogen recognition molecules and that galectins are lectins that can be associated with the inflammatory process, stimulating or inhibiting the immune system. The objective of this study was to evaluate the in situ expression of TLRs and galectins in radicular cysts and periapical granulomas. We analyzed 62 cases (30 radicular cysts, 27 periapical granulomas, and 5 control cases). Indirect immunohistochemistry was used to evaluate the expression of TLRs (TRL-2 and TLR-4) and galectins (Gal-3 and Gal-9). The expression of Gal-3 and Gal-9 was significantly higher in periapical granulomas and radicular cysts than in the control group. Similarly, both Gal-3 and Gal-9 were expressed significantly more in periapical granulomas than in radicular cysts. The expression of TLR-2 was significantly higher in periapical granulomas and radicular cysts than in the control group, and it was also significantly higher in radicular cysts with sinus tract than in the cases without sinus tract. Furthermore, the expression of TLR-4 was significantly higher in the cases of periapical granulomas with sinus tract than in the cases without sinus tract. Gal-3/Gal-9 and TLR-2/TLR-4 expression in the periapical granulomas and radicular cysts is associated with reactive periapical inflammation. Pathobiology of periapical disease is a very complex interplay of many bioactive molecules involved in immunoinflammatory responses. Up-regulation of these bioactive molecules might be an important modulator of inflammatory periapical lesions. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Toll-like receptor 5 in obesity: the role of gut microbiota and adipose tissue inflammation.

    PubMed

    Pekkala, Satu; Munukka, Eveliina; Kong, Lingjia; Pöllänen, Eija; Autio, Reija; Roos, Christophe; Wiklund, Petri; Fischer-Posovszky, Pamela; Wabitsch, Martin; Alen, Markku; Huovinen, Pentti; Cheng, Sulin

    2015-03-01

    This study aimed at establishing bacterial flagellin-recognizing toll-like receptor 5 (TLR5) as a novel link between gut microbiota composition, adipose tissue inflammation, and obesity. An adipose tissue microarray database was used to compare women having the highest (n = 4, H-TLR) and lowest (n = 4, L-TLR) expression levels of TLR5-signaling pathway genes. Gut microbiota composition was profiled using flow cytometry and FISH. Standard laboratory techniques were used to determine anthropometric and clinical variables. In vivo results were verified using cultured human adipocytes. The H-TLR group had higher flagellated Clostridium cluster XIV abundance and Firmicutes-to-Bacteroides ratio. H-TLR subjects had obese phenotype characterized by greater waist circumference, fat %, and blood pressure (P < 0.05 for all). They also had higher leptin and lower adiponectin levels (P < 0.05 for both). Six hundred and sixty-eight metabolism- and inflammation-related adipose tissue genes were differentially expressed between the groups. In vitro studies confirmed that flagellin activated TLR5 inflammatory pathways, decreased insulin signaling, and increased glycerol secretion. The in vivo findings suggest that flagellated Clostridium cluster XIV bacteria contribute to the development of obesity through distorted adipose tissue metabolism and inflammation. The in vitro studies in adipocytes show that the underlying mechanisms of the human findings may be due to flagellin-activated TLR5 signaling. © 2015 The Obesity Society.

  15. Probiotics (Lactobacillus rhamnosus R0011 and acidophilus R0052) Reduce the Expression of Toll-Like Receptor 4 in Mice with Alcoholic Liver Disease

    PubMed Central

    Hong, Meegun; Kim, Seung Woo; Han, Sang Hak; Kim, Dong Joon; Suk, Ki Tae; Kim, Yeon Soo; Kim, Myong Jo; Kim, Moon Young; Baik, Soon Koo; Ham, Young Lim

    2015-01-01

    Objective The role of lipopolysaccharide (LPS) and toll-like receptor 4 (TLR 4) in the pathogenesis of alcoholic liver disease (ALD) has been widely established. We evaluated the biological effects of probiotics (Lactobacillus rhamnosus R0011 and acidophilus R0052), KRG (Korea red ginseng), and urushiol (Rhus verniciflua Stokes) on ALD, including their effects on normal and high-fat diet in mice. Methods One hundred C57BL/6 mice were classified into normal (N) and high-fat diet (H) groups. Each group was divided into 5 sub-groups: control, alcohol, alcohol+probiotics, alcohol+KRG, and alcohol+urushiol. A liver function test, histology, electron-microscopy, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-10, and TLR 4 were evaluated and compared. Results In the N group, probiotics, KRG, and urushiol significantly reduced levels of TNF-α (12.3±5.1, 13.4±3.9, and 12.1±4.3 vs. 27.9±15.2 pg/mL) and IL-1β (108.4±39.4, 75.0±51.0, and 101.1±26.8 vs. 162.4±37.5 pg/mL), which were increased by alcohol. Alcohol-induced TLR 4 expression was reduced by probiotics and urushiol (0.7±0.2, and 0.8±0.1 vs. 1.0±0.3, p<0.001). In the H group, IL-10 was significantly increased by probiotics and KRG, compared with alcohol (25.3±15.6 and 20.4±6.2 vs. 7.6±5.6 pg/mL) and TLR 4 expression was reduced by probiotics (0.8±0.2 vs. 1.0±0.3, p = 0.007). Conclusions Alcohol-induced TLR 4 expression was down-regulated by probiotics in the normal and high-fat diet groups. Probiotics, KRG, and urushiol might be effective in the treatment of ALD by regulating the gut-liver axis. PMID:25692549

  16. Transcriptome-wide identification, molecular evolution and expression analysis of Toll-like receptor family in a Tibet fish, Gymnocypris przewalskii.

    PubMed

    Tong, Chao; Lin, Yaqiu; Zhang, Cunfang; Shi, Jianquan; Qi, Hongfang; Zhao, Kai

    2015-10-01

    Toll-like receptors (TLR) are key components of innate immunity that play significant roles in immune defense against pathogens invasion. Recent frequent outbreaks of the "white spot disease" caused by parasitic infection in farmed Tibetan fishes had resulted in great economic losses. However, to our knowledge, the roles of TLRs in mediating immune response to parasitic infection in Tibetan fishes remain to be determined. Here, we performed data-mining on a widely-farmed Tibetan fish (Gymnocypris przewalskii or Gp) transcriptome to determine the genetic variation and expression pattern of TLRs. We totally obtained 14 GpTLRs and identified 5 with a complete coding sequence. Phylogenetic analysis verified their identities and supported the classification of TLRs into six families as in other vertebrates. The TLR family motifs, such as leucine rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain, are conserved in GpTLR1-5. Selective pressure test demonstrated that all known GpTLRs are under purifying selection, except GpTLR4 underwent positive selection. Further, site model analysis suggested that 11 positively selected sites are found in LRR domain of GpTLR4. Three positively selected sites are located on outside surface of TLR4 3D structure, indicating that function of GpTLR4 may be affected. Tissue specific expression analysis showed all GpTLRs are present in gill, head-kidney and spleen but the relative abundance varied among tissues. In response to parasite Ichthyophthirius multifiliis infection, 5 GpTLR (GpTLR1, -2, -4, -9 and -20) expressions were induced. Intriguingly, GpTLR4 was significantly up-regulated in gills, while GpTLR19 and GpTLR21 unexpectedly showed no any change. In summary, these results revealed the first genomic resources of TLR family and several parasitic infection responsive TLRs in Tibetan fish. These findings provide key information for future studies aiming to understand the molecular mechanisms underlying the immune response to pathogen invasion in Tibetan fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Toll-Like Receptor Stimulation Induces Nondefensin Protein Expression and Reverses Antibiotic-Induced Gut Defense Impairment

    PubMed Central

    Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone

    2014-01-01

    Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment. PMID:24595141

  18. Toll-like receptor stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment.

    PubMed

    Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone; Chen, Lee-Wei

    2014-05-01

    Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment.

  19. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema

    2012-10-01

    Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (P<0.01) as well as in obese patients with nonalcoholic steatohepatitis (P<0.01). Furthermore, expression levels of Tnc in epididymal adipose tissue from two different mice models of obesity were significantly increased (P<0.01). TNC and TLR4 were mainly expressed by SVFC, and its expression was significantly enhanced (P<0.01) by TNF-α treatment. LPS treatment also increased mRNA levels of TNC. Moreover, the addition of exogenous TNC induced (P<0.05) TLR4 and CCL2 mRNA expression in human adipocyte cultures. These findings indicate that TNC is involved in the etiopathology of obesity via visceral adipose tissue inflammation representing a link with ECM remodeling.

  20. Pleiotropic Effects of Blastocystis spp. Subtypes 4 and 7 on Ligand-Specific Toll-Like Receptor Signaling and NF-κB Activation in a Human Monocyte Cell Line

    PubMed Central

    Teo, Joshua D. W.; MacAry, Paul A.; Tan, Kevin S. W.

    2014-01-01

    Blastocystis spp. is a common enteric stramenopile parasite that colonizes the colon of hosts of a diverse array of species, including humans. It has been shown to compromise intestinal epithelial cell barrier integrity and mediate the production of pro-inflammatory cytokines and chemokines. Mucosal epithelial surfaces, including the intestinal epithelium, are increasingly recognized to perform a vital surveillance role in the context of innate immunity, through the expression of pathogen recognition receptors, such as Toll-like receptors (TLRs). In this study, we use the human TLR reporter monocytic cell line, THP1-Blue, which expresses all human TLRs, to investigate effects of Blastocystis on TLR activation, more specifically the activation of TLR-2, -4 and -5. We have observed that live Blastocystis spp. parasites and whole cell lysate (WCL) alone do not activate TLRs in THP1-Blue. Live ST4-WR1 parasites inhibited LPS-mediated NF-κB activation in THP1-Blue. In contrast, ST7-B WCL and ST4-WR1 WCL induced pleiotropic modulation of ligand-specific TLR-2 and TLR-4 activation, with no significant effects on flagellin-mediated TLR-5 activation. Real time-qPCR analysis on SEAP reporter gene confirmed the augmenting effect of ST7-B on LPS-mediated NF-κB activation in THP1-Blue. Taken together, this is the first study to characterize interactions between Blastocystis spp. and host TLR activation using an in vitro reporter model. PMID:24551212

  1. The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand.

    PubMed

    Cassano, Jennifer M; Schnabel, Lauren V; Goodale, Margaret B; Fortier, Lisa A

    2018-01-01

    Mesenchymal stem cells (MSCs) have the therapeutic potential to treat a variety of inflammatory and degenerative disease processes, however the effects of the tissue environment on MSCs have been overlooked. Our hypothesis was that the immunomodulatory function of MSCs would be impaired by TLR4 stimulation or exposure to inflammatory macrophages, whereas their immunosuppressive properties would be enhanced by TLR3 stimulation. MSCs were exposed to polyinosinic:polycytidylic acid (poly I:C) to stimulate TLR3 receptors or lipopolysaccharide (LPS) to stimulate TLR4 receptors. MSC1 proinflammatory phenotype in human MSCs was associated with increased IL-6 and IL-8 and MSC2 regenerative phenotype was associated with increased CCL2 and CXCL10. MSC immunomodulatory function was assessed by measuring the ability of primed MSCs to suppress mitogen-stimulated T cell proliferation. Peripheral blood monocytes were isolated using CD14 MACs positive selection, differentiated into macrophages, and polarized using interferon-gamma (IFN-γ). Polarization was confirmed by increased gene expression of TNFα, CCL2, and CXCL10. Inflammatory macrophages were co-cultured with MSCs for 6h, and the resultant MSC phenotype was analyzed as described above. Both TLR3 and TLR4 priming and co-culture of MSCs with inflammatory macrophages resulted in increased expression of IL-6, CCL2, and CXCL10 in MSCs. Both TLR3 and TLR4 priming or exposure of MSCs to inflammatory macrophages significantly (p<0.05) enhanced their immunomodulatory function, demonstrated by a decrease in T cell proliferation in the presence of poly I:C primed MSCs (11%), LPS primed MSCs (7%), or MSCs exposed to inflammatory macrophages (12%), compared to unstimulated MSCs. Additionally, MHC class II positive MSCs tended to have a greater magnitude of response to priming compared to MHC class II negative MSCs. These results suggest that MSCs can be activated by a variety of inflammatory stimuli, but the recipient injured tissue bed in chronic injuries may not contain sufficient inflammatory signals to activate MSC immunomodulatory function. Enhancement of MSCs immunomodulatory function through inflammatory priming prior to clinical application might improve the therapeutic effect of MSC treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype.

    PubMed

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects

    PubMed Central

    Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J.; Musi, Nicolas

    2018-01-01

    Objective The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Research design and methods Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. Results The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. Conclusions In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals. PMID:29649324

  4. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects.

    PubMed

    Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas

    2018-01-01

    The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.

  5. Role of Toll-like receptor 4 signaling in cutaneous chronic graft-versus-host disease.

    PubMed

    Weng, Jianyu; Lai, Peilong; Geng, Suxia; Luo, Chenwei; Wu, Suijing; Ling, Wei; Deng, Chengxin; Huang, Xin; Lu, Zesheng; Du, Xin

    2015-06-01

    Cutaneous damage is one of the characterized manifestations in chronic graft-versus-host disease (cGVHD). When local effective immunity in the skin is altered to a dysimmune reaction, cutaneous injuries occur. Toll-like receptor 4 signaling is regarded as a central mediator of inflammation and organ injury. In this study, we found that TLR4 mRNA in peripheral blood from patients with cutaneous cGVHD was markedly increased compared with that from non-GVHD patients and healthy controls. In addition, NF-κB expression, TLR4 downstream signaling, and TLR4-mediated cytokines, including IL-6 and ICAM-1, were upregulated. Moreover, ICAM-1 was widely distributed in skin biopsies from patients with cutaneous cGVHD. We also found that LPS induced TLR4-mediated NF-κB activation and IL-6 and ICAM-1 secretion in human fibroblasts in vitro. Thus, TLR4, NF-κB, IL-6, and ICAM-1 contribute to the inflammatory response that occurs in cutaneous cGVHD, indicating the TLR4 pathway may be a novel target for cutaneous cGVHD therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Polymorphisms in TLR9 but not in TLR5 increase the risk for duodenal ulcer and alter cytokine expression in the gastric mucosa.

    PubMed

    Trejo-de la O, Alejandra; Torres, Javier; Sánchez-Zauco, Norma; Pérez-Rodríguez, Martha; Camorlinga-Ponce, Margarita; Flores-Luna, Lourdes; Lazcano-Ponce, Eduardo; Maldonado-Bernal, Carmen

    2015-10-01

    Colonization of the gastric mucosa by Helicobacter pylori can lead to peptic ulcer and gastric adenocarcinoma. TLRs are signaling receptors involved in the recognition of microorganisms, and polymorphisms in their genes may influence the innate and adaptive immune response to H. pylori, affecting the clinical outcomes of the infection. We assessed the association between single nucleotide polymorphisms in TLR9 and TLR5 and gastroduodenal diseases. All patients were genotyped by allelic discrimination in regions 1174C>T and 1775A>G of TLR5 and -1237T>C and 2848G>A of TLR9. The 2848A allele of TLR9 was more frequent in duodenal ulcer and showed an association of risk with this pathology. Polymorphisms in TLR5 were not found to be associated with disease. Patients with polymorphisms in TLR9 and TLR5 expressed significantly lower levels of IL-1β and TNF-α, whereas polymorphisms in TLR5 also decreased the expression of IL-6 and IL-10. Our findings suggest that 2848G>A polymorphism in TLR9 increases the risk for the development of duodenal ulcer probably by modifying the inflammatory response to H. pylori infection. This is the first study to show an association of 2848A allele of TLR9 with duodenal ulcer and with altered expression of inflammatory cytokines in the gastric mucosa. © The Author(s) 2015.

  7. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling.

    PubMed

    Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua

    2018-02-01

    Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley Periodicals, Inc.

  8. Signal-transducing mechanisms of ketamine-caused inhibition of interleukin-1{beta} gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.-L.; Chang, C.-C.; Lin, Y.-L.

    2009-10-01

    Ketamine may affect the host immunity. Interleukin-1{beta} (IL-1{beta}), IL-6, and tumor necrosis factor-{alpha} (TNF-{alpha}) are pivotal cytokines produced by macrophages. This study aimed to evaluate the effects of ketamine on the regulation of inflammatory cytokine gene expression, especially IL-1{beta}, in lipopolysaccharide (LPS)-activated murine macrophage-like Raw 264.7 cells and its possible signal-transducing mechanisms. Administration of Raw 264.7 cells with a therapeutic concentration of ketamine (100 {mu}M), LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. Exposure to 100 {mu}M ketamine decreased the binding affinity of LPS and LPS-binding protein but didmore » not affect LPS-induced RNA and protein synthesis of TLR4. Treatment with LPS significantly increased IL-1{beta}, IL-6, and TNF-{alpha} gene expressions in Raw 264.7 cells. Ketamine at a clinically relevant concentration did not affect the synthesis of these inflammatory cytokines, but significantly decreased LPS-caused increases in these cytokines. Immunoblot analyses, an electrophoretic mobility shift assay, and a reporter luciferase activity assay revealed that ketamine significantly decreased LPS-induced translocation and DNA binding activity of nuclear factor-kappa B (NF{kappa}B). Administration of LPS sequentially increased the phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK. However, a therapeutic concentration of ketamine alleviated such augmentations. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA reduced cellular TLR4 amounts and ameliorated LPS-induced RAS activation and IL-1{beta} synthesis. Co-treatment with ketamine and TLR4 siRNA synergistically ameliorated LPS-caused enhancement of IL-1{beta} production. Results of this study show that a therapeutic concentration of ketamine can inhibit gene expression of IL-1{beta} possibly through suppressing TLR4-mediated signal-transducing phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK and subsequent translocation and transactivation of NF{kappa}B.« less

  9. Hydrocortisone reduces Toll-like receptor 4 expression on peripheral CD14+ monocytes in patients undergoing percutaneous coronary intervention.

    PubMed

    Bagheri, Bahador; Sohrabi, Bahram; Movassaghpour, Ali Akbar; Mashayekhi, Simin; Garjani, Afagh; Shokri, Mehriar; Pezeshkian, Masoud; Garjani, Alireza

    2014-01-01

    Evidence from several lines of investigations suggests that Toll-like receptor 4 (TLR4) is involved in atherosclerosis as a bridge between innate and acquired immunity. Percutaneous coronary intervention (PCI) can trigger inflammation through activation of human TLR4 (hTLR4) on monocytes. Hydrocortisone as an anti-inflammatory and immuno-suppressant agent has multiple mechanisms of action. In this study, we aimed at assessing the effects of hydrocortisone on monocyte expression and activity of hTLR4 in patients underwent PCI. Blood samples were taken from a total of 71 patients with chronic stable angina who were scheduled for a PCI, before the intervention. Thirty patients received 100 mg hydrocortisone prior to the procedure. Control group was composed of 41 patients underwent PCI without receiving hydrocortisone. Blood collection was repeated 2 and 4 h after PCI. The expression of hTLR4 on the surface of CD14+ monocytes and the serum levels of TNF-α and IL-1β were measured using flowcytometry and Sandwich ELISA. Compared with controls, hydrocortisone significantly reduced monocyte expression of hTLR4 in test group (P<0.01). In addition, it had a significant effect on reduction of serum concentrations of TNF-α and IL-1β in test group in a time-dependent manner (P<0.01). In this study, hydrocortisone was able to reduce the hTLR4/CD14 positive monocytes and its related pro-inflammatory cytokines, thus it can decrease inflammatory responses following PCI.

  10. Hydrocortisone Reduces Toll-Like Receptor 4 Expression on Peripheral CD14+ Monocytes in Patients Undergoing Percutanoues Coronary Intervention

    PubMed Central

    Bagheri, Bahador; Sohrabi, Bahram; Movassaghpour, Ali Akbar; Mashayekhi, Simin; Garjani, Afagh; Shokri, Mehriar; Pezeshkian, Masoud; Garjani, Alireza

    2014-01-01

    Bacground: Evidence from several lines of investigations suggests that Toll-like receptor 4 (TLR4) is involved in atherosclerosis as a bridge between innate and acquired immunity. Percutaneous coronary intervention (PCI) can trigger inflammation through activation of human TLR4 (hTLR4) on monocytes. Hydrocortisone as an anti-inflammatory and immuno-suppressant agent has multiple mechanisms of action. In this study, we aimed at assessing the effects of hydrocortisone on monocyte expression and activity of hTLR4 in patients underwent PCI. Methods: Blood samples were taken from a total of 71 patients with chronic stable angina who were scheduled for a PCI, before the intervention. Thirty patients received 100 mg hydrocortisone prior to the procedure. Control group was composed of 41 patients underwent PCI without receiving hydrocortisone. Blood collection was repeated 2 and 4 h after PCI. The expression of hTLR4 on the surface of CD14+ monocytes and the serum levels of TNF-α and IL-1β were measured using flowcytometry and Sandwich ELISA. Results: Compared with controls, hydrocortisone significantly reduced monocyte expression of hTLR4 in test group (P<0.01). In addition, it had a significant effect on reduction of serum concentrations of TNF-α and IL-1β in test group in a time-dependent manner (P<0.01). Conclusion: In this study, hydrocortisone was able to reduce the hTLR4/CD14 positive monocytes and its related pro-inflammatory cytokines, thus it can decrease inflammatory responses following PCI. PMID:24518547

  11. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes.

    PubMed

    Passey, Samantha L; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P; Hansen, Michelle J

    2016-01-01

    Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.

  12. The possible mechanism of preterm birth associated with periodontopathic Porphyromonas gingivalis.

    PubMed

    Hasegawa-Nakamura, K; Tateishi, F; Nakamura, T; Nakajima, Y; Kawamata, K; Douchi, T; Hatae, M; Noguchi, K

    2011-08-01

    Previous studies have shown that Porphyromonas gingivalis is found in the amniotic fluid and placentae of pregnant women with some obstetric diseases. However, the biological effects of P. gingivalis on intrauterine tissues remain unclear. The aim of this study was to investigate the presence of P. gingivalis in chorionic tissues from hospitalized high-risk pregnant women, and the effects of P. gingivalis lipopolysaccharide on the production of proinflammatory molecules in human chorion-derived cells. Twenty-three subjects were selected from Japanese hospitalized high-risk pregnant women. The presence of P. gingivalis in chorionic tissues was analyzed by PCR. Cultured chorion-derived cells or Toll-like receptor-2 (TLR-2) gene-silenced chorion-derived cells were stimulated with P. gingivalis lipopolysaccharide. Real-time PCR was performed to evaluate TLR-2 and Toll-like receptor-4 (TLR-4) mRNA expression in the cells. Levels of interleukin-6 and interleukin-8 in culture supernatants of the chorion-derived cells were measured by ELISA. P. gingivalis DNA was detected in chorionic tissues from two women with threatened preterm labor, two with multiple pregnancy and two with placenta previa. Stimulation of chorion-derived cells with P. gingivalis lipopolysaccharide significantly increased TLR-2 mRNA expression, whereas TLR-4 mRNA expression was not changed. P. gingivalis lipopolysaccharide induced interleukin-6 and interleukin-8 production in chorion-derived cells, but the P. gingivalis lipopolysaccharide-induced interleukin-6 and interleukin-8 production was reduced in TLR-2 gene-silenced chorion-derived cells. Our results suggest that P. gingivalis can be detected in chorionic tissues of hospitalized high-risk pregnant women, and that P. gingivalis lipopolysaccharide induces interleukin-6 and interleukin-8 production via TLR-2 in chorion-derived cells. © 2011 John Wiley & Sons A/S.

  13. The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer.

    PubMed

    Gu, Junsheng; Sun, Ranran; Shen, Shen; Yu, Zujiang

    2015-01-01

    This study was designed to explore the influence of Toll-like receptor 4 (TLR4) agonist lipopolysaccharides (LPS) on liver cancer cell and the feasibility to perform liver cancer adjuvant therapy. Human liver cancer cell lines HepG2, H7402, and PLC/PRF/5 were taken as models, and the expression of TLRs mRNA was detected by real time-polymerase chain reaction method semiquantitatively. WST-1 method was used to detect the influence of LPS on the proliferation ability of liver cancer cells; propidium iodide (PI) single staining and Annexin V/PI double staining were used to test the influence of LPS on the cell cycle and apoptosis, respectively, on human liver cancer cell line H7402. Fluorescent quantitative polymerase chain reaction and Western blot method were used to determine the change of expression of Cyclin D1. The results demonstrated that most TLRs were expressed in liver cancer cells; stimulating TLR4 by LPS could upregulate TLR4 mRNA and the protein level, activate NF-κB signaling pathway downstream of TLR4, and mediate the generation of inflammatory factors IL-6, IL-8, and TNF-α; LPS was found to be able to strengthen the proliferation ability of liver cancer cells, especially H7402 cells; the expression of Cyclin D1 rose and H7402 cells were promoted to transit from G1 stage to S stage under the stimulation of LPS, but cell apoptosis was not affected. It was also found that LPS was able to activate signal transducer and activator of transcription -3 (STAT3) signaling pathway in H7402 cells and meanwhile significantly increase the initiation activity of STAT3; proliferation promoting effect of LPS to liver cancer cells remarkably lowered once STAT3 was blocked or inhibited. Thus, TLR4 agonist LPS is proved to be able to induce liver cancer cells to express inflammation factors and mediate liver cancer cell proliferation and generation of multidrug resistance by activating the cyclooxygenase-2/prostaglandin signal axis as well as the STAT3 pathway.

  14. Pro-Inflammatory and Pro-Oxidant Status of Pancreatic Islet In Vitro Is Controlled by TLR-4 and HO-1 Pathways

    PubMed Central

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  15. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambertucci, Flavia

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial rolemore » of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice.« less

  16. Toll-like receptor expression and function differ between splenic marginal zone B cell lymphoma and splenic diffuse red pulp B cell lymphoma

    PubMed Central

    Verney, Aurélie; Traverse-Glehen, Alexandra; Callet-Bauchu, Evelyne; Jallades, Laurent; Magaud, Jean-Pierre; Salles, Gilles; Genestier, Laurent; Baseggio, Lucile

    2018-01-01

    In splenic marginal zone lymphoma (SMZL), specific and functional Toll-like Receptor (TLR) patterns have been recently described, suggesting their involvement in tumoral proliferation. Splenic diffuse red pulp lymphoma with villous lymphocytes (SDRPL) is close to but distinct from SMZL, justifying here the comparison of TLR patterns and functionality in both entities. Distinct TLR profiles were observed in both lymphoma subtypes. SDRPL B cells showed higher expression of TLR7 and to a lesser degree TLR9, in comparison to SMZL B cells. In both entities, TLR7 and TLR9 pathways appeared functional, as shown by IL-6 production upon TLR7 and TLR9 agonists stimulations. Interestingly, circulating SDRPL, but not SMZL B cells, constitutively expressed CD86. In addition, stimulation with both TLR7 and TLR9 agonists significantly increased CD80 expression in circulating SDRPL but not SMZL B cells. Finally, TLR7 and TLR9 stimulations had no impact on proliferation and apoptosis of SMZL or SDRPL B cells. In conclusion, SMZL and SDRPL may derive from different splenic memory B cells with specific immunological features that can be used as diagnosis markers in the peripheral blood.

  17. SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway

    PubMed Central

    Yang, Suxia; Zhang, Junwei; Wang, Shiying; Zhao, Xinxin; Shi, Jun

    2017-01-01

    Suppressor of cytokine signaling 2 (SOCS2) was reported to be involved in the development of Diabetic Nephropathy (DN). However, its underlying mechanism remains undefined. Western blot was carried out to determine the expressions of SOCS2, Toll-like receptors 4 (TLR4) and nuclear factor kappa B (NF-κB) pathway-related proteins in DN patients, streptozotocin (STZ)-induced DN rats and high glucose (HG)-stimulated podocytes. The effects of SOCS2 overexpression on renal injury, the inflammatory cytokines production, renal pathological changes, apoptosis and the TLR4/NF-κB pathway in DN rats or HG-stimulated podocytes were investigated. TLR4 antagonist TAK-242 and NF-κB inhibitor PDTC were used to confirm the functional mechanism of SOCS2 overexpression in HG-stimulated podocytes. SOCS2 was down-regulated, while TLR4 and NF-κB were up-regulated in renal tissues of DN patients and DN rats. Ad-SOCS2 infection alleviated STZ-induced renal injury and pathological changes and inhibited STZ-induced IL-6, IL-1β and MCP-1 generation and activation of the TLR4/NF-κB pathway in DN rats. SOCS2 overexpression attenuated apoptosis, suppressed the inflammatory cytokines expression, and inactivated the TLR4/NF-κB pathway in HG-stimulated podocytes. Suppression of the TLR4/NF-κB pathway enhanced the inhibitory effect of SOCS2 overexpression on apoptosis and inflammatory cytokines expressions in HG-stimulated podocytes. SOCS2 overexpression alleviated the development of DN by inhibiting the TLR4/NF-κB pathway, contributing to developing new therapeutic strategies against DN. PMID:29207635

  18. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis

    PubMed Central

    Ungaro, Ryan; Fukata, Masayuki; Hsu, David; Hernandez, Yasmin; Breglio, Keith; Chen, Anli; Xu, Ruliang; Sotolongo, John; Espana, Cecillia; Zaias, Julia; Elson, Greg; Mayer, Lloyd; Kosco-Vilbois, Marie; Abreu, Maria T.

    2009-01-01

    Dysregulated innate immune responses to commensal bacteria contribute to the development of inflammatory bowel disease (IBD). TLR4 is overexpressed in the intestinal mucosa of IBD patients and may contribute to uncontrolled inflammation. However, TLR4 is also an important mediator of intestinal repair. The aim of this study is to examine the effect of a TLR4 antagonist on inflammation and intestinal repair in two murine models of IBD. Colitis was induced in C57BL/6J mice with dextran sodium sulfate (DSS) or by transferring CD45Rbhi T cells into RAG1−/− mice. An antibody (Ab) against the TLR4/MD-2 complex or isotype control Ab was administered intraperitoneally during DSS treatment, recovery from DSS colitis, or induction of colitis in RAG1−/− mice. Colitis severity was assessed by disease activity index (DAI) and histology. The effect of the Ab on the inflammatory infiltrate was determined by cell isolation and immunohistochemistry. Mucosal expression of inflammatory mediators was analyzed by real-time PCR and ELISA. Blocking TLR4 at the beginning of DSS administration delayed the development of colitis with significantly lower DAI scores. Anti-TLR4 Ab treatment decreased macrophage and dendritic cell infiltrate and reduced mucosal expression of CCL2, CCL20, TNF-α, and IL-6. Anti-TLR4 Ab treatment during recovery from DSS colitis resulted in defective mucosal healing with lower expression of COX-2, PGE2, and amphiregulin. In contrast, TLR4 blockade had minimal efficacy in ameliorating inflammation in the adoptive transfer model of chronic colitis. Our findings suggest that anti-TLR4 therapy may decrease inflammation in IBD but may also interfere with colonic mucosal healing. PMID:19359427

  19. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats.

    PubMed

    Li, Jian-Mei; Ge, Chen-Xu; Xu, Min-Xuan; Wang, Wei; Yu, Rong; Fan, Chen-Yu; Kong, Ling-Dong

    2015-02-01

    Hypothalamic astrogliosis and inflammation cause neural injury, playing a critical role in metabolic syndrome development. This study investigated whether and how fructose caused hypothalamic astrogliosis and inflammation in vivo and in vitro. The inhibitory effects of betaine on hypothalamic neural injury, astrogliosis, and inflammation were explored to address its improvement of fructose-induced metabolic syndrome. Rats or astrocytes were exposed to fructose and then treated with betaine. Neural injury, proinflammatory markers, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway, and histone deacetylases 3 (HDAC3) expressions were evaluated. The reduction of pro-opiomelanocortin and melanocortin 4 receptor positive neurons in fructose-fed rats was ameliorated by betaine. Moreover, fructose induced astrogliosis and proinflammatory cytokine production by increasing TLR4, MyD88 (where MyD88 is myeloid differentiation factor 88), and NF-κB expression in rat hypothalamus and astrocytes. HDAC3 overexpression preserved the prolonged inflammation in fructose-stimulated astrocytes by regulating nuclear NF-κB-dependent transcription. Betaine suppressed TLR4/NF-κB pathway activation and HDAC3 expression, contributing to its inhibition of hypothalamic astrogliosis and inflammation in animal and cell models. These findings suggest that betaine inhibits fructose-caused astrogliosis and inflammation by the suppression of TLR4/NF-κB pathway activation and HDAC3 expression to protect against hypothalamic neural injury, which, at least partly, contributes to the improvement of fructose-induced metabolic syndrome. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury - Corrected and republished from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi: 10.7603/s40681-016-0009-1PMCID: PMC4864770.

    PubMed

    Chen, Lung-Che; Hu, Li-Hong; Yin, Mei-Chin

    2017-06-01

    Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent. © Author(s) 2017. This article is published with open access by China Medical University.

  1. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle.

    PubMed

    Panigrahi, Manjit; Sharma, Arjava; Bhushan, Bharat

    2014-01-01

    Crossbred cattle are more prone to mastitis in comparison to indigenous cattle. Toll-like receptor 4 (TLR4) recognizes pathogen ligands, for example, lipopolysaccharide (LPS) endotoxin from Escherichia coli and mediates signaling to initiate innate and adaptive immune responses. Mutations in TLR4 can compromise the host immune response to certain pathogens, so it may be a potential candidate for marker assisted selection to enhance mastitis resistance in dairy cattle. Hence, in this study role of bovine TLR4 gene in mastitis resistance was investigated by association as well as expression profiling analysis in crossbred cattle. The animals were divided into mastitis affected and unaffected groups on the basis of history of animals and California Mastitis Test (CMT). PCR-SSCP and Sequence analysis revealed three genotypes of coreceptor binding region 1 (CRBR1) fragment of TLR4 gene namely AA, AB, and BB in both groups of cattle. The logistic regression model did not show any significant effect of these genotypes on the occurrence of clinical mastitis. Moreover, in vitro challenge of peripheral blood mononuclear cells (PBMCs) with LPS failed to show any association of the genotypes with TLR4 gene expression. In a nutshell, in the present study enough evidence was not found for association of the SNP variants of CRBR1 fragment of TLR4 gene with mastitis susceptibility in crossbred cattle.

  2. TLR7 expression is decreased during tumour progression in transgenic adenocarcinoma of mouse prostate mice and its activation inhibits growth of prostate cancer cells.

    PubMed

    Han, Ju-Hee; Park, Shin-Young; Kim, Jin-Bum; Cho, Sung-Dae; Kim, Bumseok; Kim, Bo-Yeon; Kang, Min-Jung; Kim, Dong-Jae; Park, Jae-Hak; Park, Jong-Hwan

    2013-10-01

    Although various Toll-like receptors (TLRs) have been associated with immune response and tumorigenesis in the prostate cells, little is known about the role of TLR7. Accordingly, we examined the expression of TLR7 during tumour progression of TRMAP (transgenic mouse model for prostate cancer) mice and its role on cell growth. Toll-like receptor7 expression was examined by RT-polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Cell growth was examined by MTT assay. Colony formation was investigated by crystal violet staining. Strong expression of TLR7 was detected in the normal prostate epithelia of Wild-type (WT) mice, but not in TLR7-deficient mice. In contrast, TLR7 expression was weak in transgenic adenocarcinoma of mouse prostate (TRAMP)-C2 cells, as compared with murine bone marrow-derived macrophages (BMDMs). Moreover, TLR7 mRNA was markedly expressed in RWPE-1 cells (non-cancerous prostate epithelial cells), but not in PC3 and DU145 (prostate cancer cells). Immunohistochemically, TLR7 expression gradually decreased in TRAMP mice depending on the pathologic grade of the prostate cells. TLR7 agonists increased both the gene and protein expression of TLR7 and promoted production of proinflammatory cytokines/chemokines and IFN-β gene expression in prostate cancer cell lines. Moreover, loxoribine inhibited the growth and colony formation of TRAMP-C2 cells dependent of TLR7. These findings suggest that TLR7 may participate in tumour suppression in the prostate cells. © 2013 John Wiley & Sons Ltd.

  3. The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis1

    PubMed Central

    Jilling, Tamas; Simon, Dyan; Lu, Jing; Meng, Fan Jing; Li, Dan; Schy, Robert; Thomson, Richard B.; Soliman, Antoine; Arditi, Moshe; Caplan, Michael S.

    2009-01-01

    Bacteria are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC), but it is unknown whether their interaction with the epithelium can participate in the initiation of mucosal injury or they can act only following translocation across a damaged intestinal barrier. Our aims were to determine whether bacteria and intestinal epithelial TLR4 play roles in a well-established neonatal rat model and a novel neonatal murine model of NEC. Neonatal rats, C57BL/6J, C3HeB/FeJ (TLR4 wild type), and C3H/HeJ (TLR4 mutant) mice were delivered by Cesarean section and were subjected to formula feeding and cold asphyxia stress or were delivered naturally and were mother-fed. NEC incidence was evaluated by histological scoring, and gene expression was quantified using quantitative real-time PCR from cDNA generated from intestinal total RNA or from RNA obtained by laser capture microdissection. Spontaneous feeding catheter colonization or supplementation of cultured bacterial isolates to formula increased the incidence of experimental NEC. During the first 72 h of life, i.e., the time frame of NEC development in this model, intestinal TLR4 mRNA gradually decreases in mother-fed but increases in formula feeding and cold asphyxia stress, correlating with induced inducible NO synthase. TLR4, inducible NO synthase, and inflammatory cytokine induction occurred in the intestinal epithelium but not in the submucosa. NEC incidence was diminished in C3H/HeJ mice, compared with C3HeB/FeJ mice. In summary, bacteria and TLR4 play significant roles in experimental NEC, likely via an interaction of intraluminal bacteria and aberrantly overexpressed TLR4 in enterocytes. PMID:16920968

  4. Inhibition of lipid A-mediated type I interferon induction by bactericidal/permeability-increasing protein (BPI).

    PubMed

    Azuma, Masahiro; Matsuo, Aya; Fujimoto, Yukari; Fukase, Koichi; Hazeki, Kaoru; Hazeki, Osamu; Matsumoto, Misako; Seya, Tsukasa

    2007-03-09

    Lipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3. Here we showed that chemically synthesized TLR4-agonistic lipid A analogues but not antagonistic lipid A activate IFN-beta promoter in TLR4-expressing HEK293 cells. The amplitude of IFN-beta promoter activation was in parallel with that of NF-kappaB. LPS-binding protein (LBP) was required for efficient IFN-beta induction in this system, and this LBP activity was antagonized by bactericidal/permeability-increasing protein (BPI). Thus, we first show that BPI blocks the TLR4 responses by exogenous administration of BPI to lipid A-sensitive cells. Although the functional mechanism whereby extra-cellular BPI modulates the intra-cellular signal pathways selected by the TLR adaptors, MyD88 and TICAM-1 (TRIF), remains unknown, we infer that the lipid A portion of LPS participates in LBP-amplified IFN-beta induction and that BPI binding to LPS leads to inhibition of the activation of NF-kappaB and IFN-beta by LPS or agonistic lipid A via TLR4 in an extrinsic mode. BPI may serve as a therapeutic potential against endotoxin shock by acting as a regulator for the MyD88- and TICAM-1 pathways in the LPS-TLR4 signaling.

  5. Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4.

    PubMed

    Li, Yan; Lian, Di; Deng, Shoulong; Zhang, Xiaosheng; Zhang, Jinlong; Li, Wenting; Bai, Hai; Wang, Zhixian; Wu, Hongping; Fu, Juncai; Han, Hongbing; Feng, Jianzhong; Liu, Guoshi; Lian, Ling; Lian, Zhengxing

    2016-01-01

    Brucella is a zoonotic Gram-negative pathogen that causes abortion and infertility in ruminants and humans. TLR4 is the receptor for LPS which can recognize Brucella and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. Consequently, transgenic sheep over-expressing TLR4 are an suitable model to investigate the effects of TLR4 on preventing Brucellosis. In this study, we generated transgenic sheep overexpressing TLR4 and aimed to evaluate the effects of different seasons (breeding and non-breeding season) on superovulation and the imported exogenous gene on growth. In total of 43 donor ewes and 166 recipient ewes in breeding season, 37 donor ewes and 144 recipient ewes in non-breeding season were selected for super-ovulation and injected embryo transfer to generate transgenic sheep. Our results indicated the no. of embryos recovered of donors and the rate of pronuclear embryos did not show any significant difference between breeding and non-breeding seasons (P > 0.05). The positive rate of exogenous TLR4 tested were 21.21 % and 22.58 % in breeding and non-breeding season by Southern blot. The expression level of TLR4 in the transgenic sheep was 1.5 times higher than in the non-transgenic group (P < 0.05). The lambs overexpressing TLR4 had similar growth performance with non-transgenic lambs, and the blood physiological parameters of transgenic and non-transgenic were both in the normal range and did not show any difference. Here we establish an efficient platform for the production of transgenic sheep by the microinjection of pronuclear embryos during the whole year. The over-expression of TLR4 had no adverse effect on the growth of the sheep.

  6. Toll-Like Receptor 4 Expression in the Epithelium of Inflammatory Periapical Lesions.

    PubMed Central

    Leonardi, R.; Perrotta, R.E.; Musumeci, G.; Crimi, S.; dos Santos, J.N.; Rusu, M.C.; Bufo, P.; Barbato, E.; Pannone, G.

    2015-01-01

    Toll-like receptors (TLR) are essential for the innate immune response against invading pathogens and have been described in immunocompetent cells of areas affected by periapical disease. Besides initiating the inflammatory response, they also directly regulate epithelial cell proliferation and survival in a variety of settings. This study evaluates the in situ expression of TLR4 in periapical granulomas (PG) and radicular cysts, focusing on the epithelial compartment. Twenty-one periapical cysts (PC) and 10 PG were analyzed; 7 dentigerous non-inflamed follicular cyst (DC) served as control. TLR4 expression was assessed by immunohistochemistry. TLR4 immunoreaction products were detected in the epithelium of all specimens, with a higher percentage of immunostained cells in PG. Although TLR4 overexpression was detected in both PG and PC, there were differences that seemed to be related to the nature of the lesion, since in PG all epithelial cells of strands, islands and trabeculae were strongly immunoreactive for TLR4, whereas in PC only some areas of the basal and suprabasal epithelial layers were immunostained. This staining pattern is consistent with the action of TLR4: in PG it could promote formation of epithelial cell rests of Malassez and in epithelial strands and islands the enhancement of cell survival, proliferation and migration, whereas in PC TLR4 could protect the lining epithelium from extensive apoptosis. These findings go some way towards answering the intriguing question of why many epithelial strands or islands in PG and the lining epithelium of apical cysts regress after non-surgical endodontic therapy, and suggest that TLR4 plays a key role in the pathobiology of the inflammatory process related to periapical disease. PMID:26708181

  7. Toll-like receptor 4 expression in the epithelium of inflammatory periapical lesions. An immunohistochemical study.

    PubMed

    Leonardi, R; Perrotta, R E; Loreto, C; Musumeci, G; Crimi, S; Dos Santos, J N; Rusu, M C; Bufo, P; Barbato, E; Pannone, G

    2015-10-26

    Toll-like receptors (TLR) are essential for the innate immune response against invading pathogens and have been described in immunocompetent cells of areas affected by periapical disease. Besides initiating the inflammatory response, they also directly regulate epithelial cell proliferation and survival in a variety of settings. This study evaluates the in situ expression of TLR4 in periapical granulomas (PG) and radicular cysts, focusing on the epithelial compartment. Twenty-one periapical cysts (PC) and 10 PG were analyzed; 7 dentigerous non-inflamed follicular cyst (DC) served as control. TLR4 expression was assessed by immunohistochemistry. TLR4 immunoreaction products were detected in the epithelium of all specimens, with a higher percentage of immunostained cells in PG. Although TLR4 overexpression was detected in both PG and PC, there were differences that seemed to be related to the nature of the lesion, since in PG all epithelial cells of strands, islands and trabeculae were strongly immunoreactive for TLR4, whereas in PC only some areas of the basal and suprabasal epithelial layers were immunostained. This staining pattern is consistent with the action of TLR4: in PG it could promote formation of epithelial cell rests of Malassez and in epithelial strands and islands the enhancement of cell survival, proliferation and migration, whereas in PC TLR4 could protect the lining epithelium from extensive apoptosis. These findings go some way towards answering the intriguing question of why many epithelial strands or islands in PG and the lining epithelium of apical cysts regress after non-surgical endodontic therapy, and suggest that TLR4 plays a key role in the pathobiology of the inflammatory process related to periapical disease.

  8. Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage.

    PubMed

    Goldstein, Evan Z; Church, Jamie S; Pukos, Nicole; Gottipati, Manoj K; Popovich, Phillip G; McTigue, Dana M

    2017-12-01

    Iron is essential for basic cellular functions but in excess is highly toxic. For this reason, free iron and iron storage are controlled in the periphery by elaborate regulatory mechanisms. In contrast, iron regulation in the central nervous system (CNS) is not well defined. Given that excess iron is present after trauma, hemorrhagic stroke and neurodegeneration, understanding normal iron regulation and promoting iron uptake in CNS pathology is crucial. Peripherally, toll-like receptor 4 (TLR4) activation promotes iron sequestration by macrophages. Notably, iron-rich sites of CNS pathology typically contain TLR4 agonists, which may promote iron uptake. Indeed, our recent work showed impaired iron storage after acute spinal cord injury in mice with TLR4 deficiency. Here we used a reductionist model to ask if TLR4 activation in the CNS stimulates iron uptake and promotes neuroprotection from iron-induced toxicity. For this, we measured the ability of microglia/macrophages to sequester exogenous iron and prevent pathology with and without concomitant intraspinal TLR4 activation. Results show that, similar to the periphery, activating intraspinal TLR4 via focal LPS injection increased mRNA encoding iron uptake and storage proteins and promoted iron sequestration into ferritin-expressing macrophages. However, this did not prevent oligodendrocyte and neuron loss. Moreover, replacement of oligodendrocytes by progenitor cells - a normally robust response to in vivo macrophage TLR4 activation - was significantly reduced if iron was present concomitant with TLR4 activation. Thus, while TLR4 signaling promotes CNS iron uptake, future work needs to determine ways to enhance iron removal without blocking the reparative effects of innate immune receptor signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3.

    PubMed

    Hilberath, Jan N; Carlo, Troy; Pfeffer, Michael A; Croze, Roxanne H; Hastrup, Frantz; Levy, Bruce D

    2011-06-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4(Lps-d)/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (R(i)); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×10(3) vs. (control) 13×10(3) cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.

  10. MiR-344b-1-3p targets TLR2 and negatively regulates TLR2 signaling pathway

    PubMed Central

    Xu, Hong; Wu, Yuting; Li, Li; Yuan, Weifeng; Zhang, Deming; Yan, Qitao; Guo, Zhenhui; Huang, Wenjie

    2017-01-01

    Objectives COPD is an abnormal inflammatory response characterized by decreased expression of TLR2 in patients, which is suggested to induce invasive pulmonary aspergillosis (IPA). MicroRNAs (miRNAs) have been shown to play important roles in the pathogenesis of human respiratory system disorders. Therefore, the aim of this study was to identify the miRNAs involved in the regulation of TLR2 signaling in COPD. Materials and methods miRNA microarray analysis was performed to screen for the dysregulated miRNAs in alveolar macrophages (AMs) isolated from COPD rats. The interaction between these miRNAs and TLR2 gene was predicted using miRBase and validated using dual luciferase assay. Based on the analysis, a novel miR-344b-1-3p was identified as a novel modulator of TLR2 gene. Then, the mechanism through which miR-344b-1-3p regulated TLR2 expression was explored using cigarette smoke extract (CSE)-pretreated NR8383 cells. Moreover, by subjecting CSE-pretreated NR8383 cells to Pam3CSK4, the effect of miR-344b-1-3p on NF-κB activity and other important mediators of COPD, including IRAK-1, ERK, TNF-α, IL-1β, and MIP-2, was also assessed. Results COPD rat model was successfully induced by smoke inhalation. Among the 11 upregulated miRNAs in AMs from COPD rats, miR-344b-1-3p was predicted to be a novel miRNA targeting TLR2 gene. In the CSE pretreated NR8383 cells exposed to Pam3CSK4, miR-344b-1-3p inhibition increased the expression levels of TLR2, TNF-α, and IL-1β and decreased the expression levels of MIP-2. In addition, the phosphorylation of IRAK-1, IκBα, and IRK was augmented by miR-344b-1-3p inhibition. Conclusion Findings outlined in this study suggest that miR-344b-1-3p was an effective modulator of TLR2 gene, which can be employed as a promising therapeutic and preventive target of IPA in COPD patients. PMID:28243080

  11. SASH1 is a scaffold molecule in endothelial TLR4 signaling.

    PubMed

    Dauphinee, Shauna M; Clayton, Ashley; Hussainkhel, Angela; Yang, Cindy; Park, Yoo-Jin; Fuller, Megan E; Blonder, Josip; Veenstra, Timothy D; Karsan, Aly

    2013-07-15

    Recognition of microbial products by TLRs is critical for mediating innate immune responses to invading pathogens. In this study, we identify a novel scaffold protein in TLR4 signaling called SAM and SH3 domain containing protein 1 (SASH1). Sash1 is expressed across all microvascular beds and functions as a scaffold molecule to independently bind TRAF6, TAK1, IκB kinase α, and IκB kinase β. This interaction fosters ubiquitination of TRAF6 and TAK1 and promotes LPS-induced NF-κB, JNK, and p38 activation, culminating in increased production of proinflammatory cytokines and increased LPS-induced endothelial migration. Our findings suggest that SASH1 acts to assemble a signaling complex downstream of TLR4 to activate early endothelial responses to receptor activation.

  12. Expression of Pattern Recognition Receptors in Epithelial Cells Around Clinically Healthy Implants and Healthy Teeth.

    PubMed

    Calcaterra, Roberta; Di Girolamo, Michele; Mirisola, Concetta; Baggi, Luigi

    2016-06-01

    Gingival epithelial cells have a pivotal role in the recognition of microorganisms and damage-associated molecular pattern molecules and in the regulation of the immune response. The investigation of the behavior of Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD) like receptors (NLRs) around a healthy implant may help to address the first step of periimplantitis pathogenesis. To investigate by quantitative real-time polymerase chain reaction, the mRNA expressions of TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, NOD1, NOD2, and NLRP3 from gingival epithelial cells of the sulcus around healthy implants and around healthy teeth. Two types of implant-abutment systems with tube-in-tube interface were tested. After 6 months of implant restoration, gingival epithelial cells were obtained from the gingival sulcus around the implants and around the adjacent teeth of 10 patients. Our results did not reach statistical significance among the mRNA expressions of TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, NOD1, NOD2, and NLRP3 in epithelial cells around the implant versus around natural teeth. This study shows that the implant-abutment systems tested did not induce an immune response by the surrounding epithelial cells at 6 months since their positioning, as well as in the adjacent clincally healthy teeth.

  13. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade.

    PubMed

    Wu, Yaxin; Wu, Jiao; Chen, Ting; Li, Qing; Peng, Wei; Li, Huan; Tang, Xiaowei; Fu, Xiangsheng

    2018-05-01

    The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood. Using C57BL/6-Apc Min/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments. Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in Apc Min/+ mice (P < 0.05). The expression of TLR4, PAK1, p-PAK1, p-β-catenin S675, and cyclin D1 was significantly increased in F. nucleatum groups compared to the control groups (P < 0.05). Moreover, TAK-242 significantly decreased the average number and size of intestinal tumors compared to F. nucleatum groups (P < 0.05). The expression of p-PAK1, p-β-catenin S675, and cyclin D1 was also significantly decreased in the TAK-242-treated group compared to F. nucleatum groups (P < 0.05). Fusobacterium nucleatum potentiates intestinal tumorigenesis in Apc Min/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.

  14. Klotho preservation by Rhein promotes toll-like receptor 4 proteolysis and attenuates lipopolysaccharide-induced acute kidney injury.

    PubMed

    Bi, Fangfang; Chen, Fang; Li, Yanning; Wei, Ai; Cao, Wangsen

    2018-05-05

    Renal anti-aging protein Klotho exhibits impressive properties of anti-inflammation and renal protection, however is suppressed early after renal injury, making Klotho restoration an attractive strategy of treating renal inflammatory disorders. Here, we reported that Klotho is enriched in macrophages and Klotho preservation by Rhein, an anthraquinone derived from medicinal plant rhubarb, attenuates lipopolysaccharide (LPS)-induced acute inflammation essentially via promoting toll-like receptor 4 (TLR4) degradation. LPS-induced pro-inflammatory NF-κB signaling and cytokine expressions coincided with Klotho repression and toll-like receptor 4 (TLR4) elevation in macrophages, renal epithelial cells, and acutely- inflamed kidney. Intriguingly, Rhein treatment effectively corrected the inverted alterations of Klotho and TLR4 and mitigated the TLR4 downstream inflammatory response in a Klotho restoration and TLR4 repression-dependent manner. Klotho inducibly associated with TLR4 after LPS stimulation and suppressed TLR4 protein abundance mainly via a proteolytic process sensitive to the inhibition of Klotho's putative β-glucuronidase activity. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and renal protective effects of Rhein in a mouse model of acute kidney injury incurred by LPS. Thus, Klotho suppression of TLR4 via deglycosylation negatively controls TLR-associated inflammatory signaling and the endogenous Klotho preservation by Rhein or possibly other natural or synthetic compounds possesses promising potentials in the clinical treatment of renal inflammatory disorders. • Klotho is highly expressed in macrophages and repressed by LPS in vitro and in vivo. • Klotho inhibits LPS-induced TLR4 accumulation and the downstream signaling. • Klotho decreases TLR4 via a deglycosylation-associated proteolytic process. • Rhein effectively prevents acute inflammation-incurred Klotho suppression. • Rhein reversal of Klotho attenuates LPS-induced acute inflammation and kidney injury.

  15. Implications of lipid raft disintegration: enhanced anti-inflammatory macrophage phenotype.

    PubMed

    Cuschieri, Joseph

    2004-08-01

    Lipid rafts are membrane microdomains characterized by an enriched cholesterol environment and appear to serve as a platform for signaling. Their role within the macrophage during endotoxin exposure is unknown. THP-1 cells were subjected to lipopolysaccharide stimulation with or without methyl-beta-cyclodextrin (MbetaCD) pretreatment, a cholesterol depleting agent. Cell surface expression of toll-like receptor-4 (TLR4) and platelet-activating factor receptor (PAFr) was determined by flow cytometry. Membrane receptor components and activation of the mitogen-activated protein kinases (MAPK) was determined from lipid raft and cellular protein by immunoblot. Inflammatory mediator production was determined from harvested supernatants by enzyme-linked immunosorbent assay. Surface expression of TLR4 and PAFr was not affected by MbetaCD. Lipopolysaccharide stimulation led to TLR4 mobilization to lipid rafts, MAPK activation, and inflammatory mediator production. Pretreatment with MbetaCD did not affect TLR4 mobilization to lipid rafts, but did result in lost lipid raft expression of the PAFr coupled G-protein, Galpha1. MbetaCD treatment led to selective attenuation of MAPK activation through ERK 1/2. This dysregulated signaling was associated with attenuated production of tumor necrosis factor-alpha, but increased production of interleukin-10. Lipid raft disintegration results in lost expression of Galpha1, dysregulated MAPK signaling, and selective anti-inflammatory mediator production. Therefore, modulation of lipid raft cholesterol content may represent a potential mechanism for regulation of macrophage phenotypic differentiation. Copyright 2004 Elsevier Inc.

  16. Lactobacilli and Bifidobacteria Promote Immune Homeostasis by Modulating Innate Immune Responses to Human Rotavirus in Neonatal Gnotobiotic Pigs

    PubMed Central

    Vlasova, Anastasia N.; Chattha, Kuldeep S.; Kandasamy, Sukumar; Liu, Zhe; Esseili, Malak; Shao, Lulu; Rajashekara, Gireesh; Saif, Linda J.

    2013-01-01

    The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea. PMID:24098572

  17. The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken.

    PubMed

    Liu, Wenjing; Ge, Ming; Hu, Xuequan; Lv, Ai; Ma, Dexing; Huang, Xiaodan; Zhang, Ruili

    2017-11-01

    In this study, we investigated the effects of Agaricus blazei Murill polysaccharides (ABP) on cadmium (Cd)-induced apoptosis and the TLR4 signaling pathway of chicken peripheral blood lymphocytes (PBLs). Seven-day-old healthy chickens were randomly divided into four groups, and each group contained 20 males. The cadmium-supplemented diet group (Cd group) was fed daily with full feed that contained 140 mg cadmium chloride (CdCl 2 )/kg and 0.2 mL saline. The A. blazei Murill polysaccharide diet group (ABP group) was fed daily with full feed with 0.2 mL ABP solution (30 mg/mL) by oral gavage. The cadmium-supplemented plus A. blazei Murill polysaccharide diet group (Cd + ABP group) was fed daily with full feed containing 140 mg CdCl 2 /kg and 0.2 mL ABP solution (30 mg/mL) by gavage. The control group was fed daily with full feed with 0.2 mL saline per day. We measured the apoptosis rate and messenger RNA (mRNA) levels of apoptosis genes (caspase-3, Bax, and Bcl-2), the mRNA levels of TLR4 and TLR4 signaling pathway-related factors (MyD88, TRIF, NF-κB, and IRF3), the TLR4 protein expression, and the concentrations of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in chicken PBLs. The results showed that the PBL apoptosis rate was significantly increased, the mRNA levels of caspase-3 and Bax were significantly increased, while that of Bcl-2 was significantly reduced. The Bax/Bcl-2 ratio was significantly increased in the Cd group at 20, 40, and 60 days after treatment compared with that in the control group. After treatment with ABP, the above changes were clearly suppressed. At the same time, ABP reduced the concentrations of IL-1β, IL-6, and TNF-α induced by Cd. We also found that ABP inhibited the TLR4 mRNA level and protein expression and inhibited the mRNA levels of MyD88, TRIF, NF-κB, and IRF3. The results demonstrated that Cd could induce apoptosis, activate the TLR4 signaling pathway, and induce the expression of inflammatory cytokines in chicken PBLs, and that the administration of ABP clearly inhibited Cd-induced effects on chicken PBLs.

  18. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor

    PubMed Central

    Hwang, Se Hwan; Cho, Hye Kyung; Park, Sang Hi; Lee, WeonSun; Lee, Hee Jin; Lee, Dong Chang; Park, Sun Hwa; Lim, Mi Hyun; Back, Sang A; Yun, Byeong Gon; Sun, Dong Il

    2015-01-01

    The characteristics of mesenchymal stem cells (MSCs) derived from human turbinates (hTMSCs) have not been investigated in allergic rhinitis. We evaluated the influence of allergic state of the donor on the characteristics, proliferation, and differentiation potential of hTMSCs, compared with hTMSCs derived from non-allergic patients. hTMSCs were isolated from five non-allergic and five allergic patients. The expression of toll-like receptors (TLRs) in hTMSCs was measured by FACS, and cell proliferation was measured using a cell counting kit. Cytokine secretion was analyzed using multiplex immunoassays. The osteogenic, chondrogenic, and adipogenic differentiation potentials of hTMSCs were evaluated by histology and gene expression analysis. In allergic patients, FACS analysis showed that TLR3 and TLR4 were more highly expressed on the surface of hTMSCs than TLR2 and TLR5. The proliferation of hTMSCs was not influenced by the presence of TLR priming. The expression of IL-6, IL-8, IL-12, IP-10, and RANTES was upregulated after the TLR4 priming. The differentiation potential of hTMSCs was not influenced by TLR priming. These characteristics of hTMSCs were similar to those of hTMSCs from non-allergic patients. We conclude that the allergic condition of the donor does not influence TLR expression, proliferation, or immunomodulatory potential of hTMSCs. PMID:26376485

  19. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency.

    PubMed

    Ayala, Alfred; Chung, Chun-Shiang; Lomas, Joanne L; Song, Grace Y; Doughty, Lesley A; Gregory, Stephen H; Cioffi, William G; LeBlanc, Brian W; Reichner, Jonathan; Simms, H Hank; Grutkoski, Patricia S

    2002-12-01

    Acute lung injury (ALI) leading to respiratory distress is a common sequela of shock/trauma, however, modeling this process in mice with a single shock or septic event is inconsistent. One explanation is that hemorrhage is often just a "priming insult," thus, secondary stimuli may be required to "trigger" ALI. To test this we carried out studies in which we assessed the capacity of hemorrhage alone or hemorrhage followed by septic challenge (CLP) to induce ALI. Lung edema, bronchoalveolar lavage interleukin (IL)-6, alveolar congestion, as well as lung IL-6, macrophage inflammatory protein (MIP)-2, and myeloperoxidase (MPO) activity were all increased in mice subjected to CLP at 24 but not 72 hours following hemorrhage. This was associated with a marked increase in the susceptibility of these mice to septic mortality. Peripheral blood neutrophils derived from 24 hours post-hemorrhage, but not Sham animals, exhibited an ex vivo decrease in apoptotic frequency and an increase in respiratory burst capacity, consistent with in vivo "priming." Subsequently, we observed that adoptive transfer of neutrophils from hemorrhaged but not sham-hemorrhage animals to neutropenic recipients reproduce ALI when subsequently septically challenged, implying that this priming was mediated by neutrophils. We also found marked general increases in lung IL-6, MIP-2, and MPO in mice deficient for toll-like receptor (TLR-4) or the combined lack of TLR-4/FasL. However, the TLR-4 defect markedly attenuated neutrophil influx into the lung while not altering the change in local cytokine/chemokine expression. Alternatively, the combined loss of FasL and TLR-4 did not inhibit the increase in MPO and exacerbated lung IL-6/MIP-2 levels even further.

  20. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate.

    PubMed

    Lee, Dong-Sung; Lee, Eun-Sol; Alam, Md Morshedul; Jang, Jun-Hyeog; Lee, Ho-Sub; Oh, Hyuncheol; Kim, Youn-Chul; Manzoor, Zahid; Koh, Young-Sang; Kang, Dae-Gil; Lee, Dae Ho

    2016-02-01

    Studies have shown that dipeptidyl peptidase-4 (DPP-4) inhibitors have anti-inflammatory effects. Soluble DPP-4 (sDPP-4) has been considered as an adipokine of which actions need to be further characterized. We investigated the pro-inflammatory actions of sDPP-4 and the anti-inflammatory effects of DPP-4 inhibition, using vildagliptin, as an enzymatic inhibitor, and mannose-6-phosphate (M6P) as a competitive binding inhibitor. In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, vildagliptin suppressed the increased expression of inducible nitric oxide synthase (iNOS) and phosphorylated JNK (pJNK), activation of the NF-κB pathway, and the resultant NO and proinflammatory cytokine production. Although sDPP-4 alone did not affect the protein level of iNOS or pJNK or the production of NO in RAW264.7 cells, it did amplify iNOS expression, NO responses, and proinflammatory cytokine production in LPS-stimulated RAW264 cells. As a probable mechanism, we found that sDPP-4 caused dose-dependent increases in the expression levels of toll-like receptor 4 (TLR4) and TLR2 in RAW264.7 cells, and that these alterations were inhibited by vildagliptin, M6P, or bisindolylmaleimide II, a protein kinase C inhibitor. Either vildagliptin or M6P suppressed iNOS expression and NO and cytokine production in LPS+DPP-4-co-stimulated macrophages, while combined treatment of the co-stimulated cells with both agents had increased anti-inflammatory effects compared with either treatment alone. Intravenous injection of sDPP-4 to C57BL/6J mice increased the expression of both TLRs in kidney and white adipose tissues. Our findings suggest that sDPP-4 enhances inflammatory actions via TLR pathway, while DPP-4 inhibition with either an enzymatic or binding inhibitor has anti-inflammatory effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. HMGB1-TLR4 Axis Plays a Regulatory Role in the Pathogenesis of Mesial Temporal Lobe Epilepsy in Immature Rat Model and Children via the p38MAPK Signaling Pathway.

    PubMed

    Yang, Weihong; Li, Jing; Shang, Yun; Zhao, Li; Wang, Mingying; Shi, Jipeng; Li, Shujun

    2017-04-01

    The HMGB1-TLR4 axis is activated in adult mouse models of acute and chronic seizure. Nevertheless, whether HMGB1 was involved in the pathogenesis of mesial temporal lobe epilepsy (MTLE) remains unknown. In this study, we first measured the dynamic expression patterns of HMGB1 and TLR4 in the hippocampi of a rat model and in children with MTLE, as well as the levels of TNF-α and IL-1β. In addition, HMGB1 was added to mimic the process of inflammatory response in neurons. Neuronal somatic size and dendritic length were measured by immunohistochemistry and digital imaging. The results showed that the expression of HMGB1 and TLR4 as well as the levels of TNF-α and IL-1β were higher in the three stages of MTLE development in the rat model and in the children with MTLE. HMGB1 increased the levels of TNF-α and IL-1β, upregulated the protein level of p-p38MAPK and promoted the growth of cell somatic size and dendritic length in neurons. Pre-treatment with p38MAPK inhibitor SB203580 decreased the levels of TNF-α and IL-1β, while downregulation of TLR4 significantly reduced HMGB1-induced p38MAPK signaling pathway activation. These data demonstrated that the HMGB1-TLR4 axis may play an important role in the pathogenesis of MTLE via the p38MAPK signaling pathway.

  2. Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer.

    PubMed

    Słotwiński, Robert; Słotwińska, Sylwia Małgorzata

    2016-01-01

    Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.

  3. Post-Spaceflight (STS-135) Mouse Splenocytes Demonstrate Altered Activation Properties and Surface Molecule Expression

    PubMed Central

    Crucian, Brian; Sams, Clarence

    2015-01-01

    Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135). Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes) had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under culture conditions in vitro. PMID:25970640

  4. Valsartan independent of AT₁ receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions.

    PubMed

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-10-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and -4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and -4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2, -4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and-4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions

    PubMed Central

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-01-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and-4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and-4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2,-4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation. PMID:25109475

  6. TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal transduction pathway in macrophages.

    PubMed

    Kim, Eun-Cheol; Moon, Ji-Hoi; Kang, Sang W; Kwon, Byungsuk; Lee, Hyeon-Woo

    2015-04-01

    We showed previously that a novel protein, transmembrane protein 126A (TMEM126A), binds to CD137 ligand (CD137L, 4-1BBL) and couples with its reverse signals in macrophages. Here, we present data showing that TMEM126A relays TLR4 signaling. Thus, up-regulation of CD54 (ICAM-1), MHC II, CD86 and CD40 expression in response to TLR4 activation was diminished in TMEM126A-deficient macrophages. Moreover in TMEM126A-deficient RAW264.7 cells, LPS/TLR4-induced late-phase JNK/SAPK and IRF-3 phosphorylation was abolished. These findings indicate that TMEM126A contributes to the TLR4 signal up-regulating the expression of genes whose products are involved in antigen presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells.

    PubMed

    Thummayot, Sarinthorn; Tocharus, Chainarong; Jumnongprakhon, Pichaya; Suksamrarn, Apichart; Tocharus, Jiraporn

    2018-04-19

    Cyanidin is polyphenolic pigment found in plants. We have previously demonstrated that cyanidin protects nerve cells against Aβ 25-35 -induced toxicity by decreasing oxidative stress and attenuating apoptosis mediated by both the mitochondrial apoptotic pathway and the ER stress pathway. To further elucidate the molecular mechanisms underlying the neuroprotective effects of cyanidin, we investigated the effects of cyanidin on neuroinflammation mediated by the TLR4/NOX4 pathway in Aβ 25-35 -treated human neuroblastoma cell line (SK-N-SH). SK-N-SH cells were exposed to Aβ 25-35 (10 μmol/L) for 24 h. Pretreatment with cyanidin (20 μmol/L) or NAC (20 μmol/L) strongly inhibited the NF-κB signaling pathway in the cells evidenced by suppressing the degradation of IκBα, translocation of the p65 subunit of NF-κB from the cytoplasm to the nucleus, and thereby reducing the expression of iNOS protein and the production of NO. Furthermore, pretreatment with cyanidin greatly promoted the translocation of the Nrf2 protein from the cytoplasm to the nucleus; upregulating cytoprotective enzymes, including HO-1, NQO-1 and GCLC; and increased the activity of SOD enzymes. Pretreatment with cyanidin also decreased the expression of TLR4, directly improved intracellular ROS levels and regulated the activity of inflammation-related downstream pathways including NO production and SOD activity through TLR4/NOX4 signaling. These results demonstrate that TLR4 is a primary receptor in SK-N-SH cells, by which Aβ 25-35 triggers neuroinflammation, and cyanidin attenuates Aβ-induced inflammation and ROS production mediated by the TLR4/NOX4 pathway, suggesting that inhibition of TLR4 by cyanidin could be beneficial in preventing neuronal cell death in the process of Alzheimer's disease.

  8. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.« less

  9. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    PubMed

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.

  10. Neutrophil elastase enhances IL-12p40 production by lipopolysaccharide-stimulated macrophages via transactivation of the PAR-2/EGFR/TLR4 signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-07-01

    Proteinase-activated receptor 2 (PAR-2) and toll-like receptor 4 (TLR4) are involved in innate immune responses and signaling cross-talk between these receptor molecules has the potential to augment an ongoing inflammatory response. The aim of this study was to evaluate the possible cooperative influence of PAR-2 and TLR4 on IL-12p40 production by macrophages after stimulation with lipopolysaccharide (LPS). During culture, GM-CSF upregulated PAR-2 expression by macrophages in a time-dependent manner. Stimulation with LPS enhanced IL-12p40 production by macrophages in a concentration-dependent manner. While human neutrophil elastase (HNE) did not induce IL-12p40 production, pretreatment of macrophages with HNE synergistically increased the IL-12p40 protein level after LPS exposure. Silencing of TLR4 with small interfering RNA blunted the synergistic enhancement of IL-12p40 by HNE combined with LPS. Silencing of β-arrestin 2, p22phox, or ERK1/2 also inhibited an increase of IL-12p40. Interestingly, transfection of macrophages with small interfering RNA duplexes for DUOX-2, EGFR, TLR4, or TRAF6 significantly blunted the increase of IL-12p40 in response to treatment with HNE plus LPS. U73122 and Rottlerin also inhibited the increased production of IL-12p40. In conclusion, HNE is involved in transactivation of TLR4 through activation of DUOX-2/EGFR and synergistically enhances IL-12p40 production by macrophages stimulated with LPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Gene expression disorders of innate antibacterial signaling pathway in pancreatic cancer patients: implications for leukocyte dysfunction and tumor progression

    PubMed Central

    Dąbrowska, Aleksandra; Lech, Gustaw; Słodkowski, Maciej; Słotwińska, Sylwia M.

    2014-01-01

    The study was carried out to investigate changes in gene expression of innate antibacterial signaling pathways in patients with pancreatic cancer. Expression of the following genes was measured in peripheral blood leukocytes of 55 patients with pancreatic adenocarcinoma using real-time polymerase chain reaction (RT-PCR): TLR4, NOD1, MyD88, TRAF6 and HMGB1. The levels of expression of TLR4, NOD1 and TRAF6 genes were significantly elevated (p = 0.007; p = 0.001 and p = 0.01, respectively), while MyD88 expression was markedly reduced (p = 0.0002), as compared to controls. Expression of TLR4 and NOD1 exceeded the normal level more than 3.5-fold and there was a significant correlation found between the expression of these genes (r = 0.558, p < 0.001). TLR4, NOD1 and MyD88 genes were expressed at a similar level both before and after surgery. No significant changes in the expression of HMGB1 gene were observed. The results of the study clearly indicate abnormal expression of genes belonging to innate antibacterial signaling pathways in peripheral blood leukocytes of patients with pancreatic cancer, which may lead to leukocyte dysfunction. Overexpression of TLR4, NOD1 and TRAF6 genes, and decreased MyD88 gene expression may contribute to chronic inflammation and tumor progression by up-regulation of the innate antibacterial response. The parameters tested are useful for monitoring innate immunity gene disorders and pancreatic cancer progression. PMID:26155170

  12. Altered Expression of TLR2 and TLR4 on Peripheral CD14+ Blood Monocytes in Children with Urinary Tract Infection.

    PubMed

    Karananou, Panagiota; Fleva, Alexandra; Tramma, Despoina; Alataki, Anastasia; Pavlitou-Tsiontsi, Aikaterini; Emporiadou-Peticopoulou, Maria; Papadopoulou-Alataki, Efimia

    2016-01-01

    Urinary tract infection (UTI) is the second most common bacterial infection, after otitis media, in infants and children. The mechanisms of disease susceptibility and the role of immunity in the pathogenesis of UTI in children have been evaluated. In recent years, Toll-Like Receptors (TLRs) have been recognized as specific components of the innate immune system constituting important mediators in host immune recognition. The aim of the present study was to determine ΤLR2 and TLR4 expression during the acute phase of UTI in infants and children by measuring the CD14/TLR2 and CD14/TLR4 expression on monocytes. We also attempted to compare the TLRs expression with the immunological status of the patients to healthy children. The study group consisted of 60 children (36 females and 24 males) and the control group included 60 age-matched pediatric subjects (27 females and 33 males). In our study, no antibody deficiency was found either in the children with UTI or in healthy subjects. There might be a connection between low IgA, IgG, and IgG subclasses serum levels and UTI as there was a statistically significant difference between patients and healthy children. A higher expression of CD14/TLR2 was revealed in patients (90,07%) compared to controls (85,48%) as well as CD14/TLR4 in patients (90,53%) compared to controls (87,25%) (statistically significant difference, p < 0,05). The results of this study could provide new understanding of UTIs' pathogenesis in children.

  13. Altered Molecular Expression of the TLR4/NF-κB Signaling Pathway in Mammary Tissue of Chinese Holstein Cattle with Mastitis

    PubMed Central

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977

  14. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis.

    PubMed

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.

  15. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Tetsuro; Nozaki, Naoki; Takahashi, Hiroki

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantlymore » increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.« less

  16. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol[S

    PubMed Central

    Zhu, Xuewei; Owen, John S.; Wilson, Martha D.; Li, Haitao; Griffiths, Gary L.; Thomas, Michael J.; Hiltbold, Elizabeth M.; Fessler, Michael B.; Parks, John S.

    2010-01-01

    We previously showed that macrophages from macrophage-specific ATP-binding cassette transporter A1 (ABCA1) knockout (Abca1-M/-M) mice had an enhanced proinflammatory response to the Toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS), compared with wild-type (WT) mice. In the present study, we demonstrate a direct association between free cholesterol (FC), lipid raft content, and hyper-responsiveness of macrophages to LPS in WT mice. Abca1-M/-M macrophages were also hyper-responsive to specific agonists to TLR2, TLR7, and TLR9, but not TLR3, compared with WT macrophages. We hypothesized that ABCA1 regulates macrophage responsiveness to TLR agonists by modulation of lipid raft cholesterol and TLR mobilization to lipid rafts. We demonstrated that Abca1-M/-M vs. WT macrophages contained 23% more FC in isolated lipid rafts. Further, mass spectrometric analysis suggested raft phospholipid composition was unchanged. Although cell surface expression of TLR4 was similar between Abca1-M/-M and WT macrophages, significantly more TLR4 was distributed in membrane lipid rafts in Abca1-M/-M macrophages. Abca1-M/-M macrophages also exhibited increased trafficking of the predominantly intracellular TLR9 into lipid rafts in response to TLR9-specific agonist (CpG). Collectively, our data suggest that macrophage ABCA1 dampens inflammation by reducing MyD88-dependent TLRs trafficking to lipid rafts by selective reduction of FC content in lipid rafts. PMID:20650929

  17. Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy.

    PubMed

    Zhu, Su-Hua; Liu, Bing-Qian; Hao, Mao-Juan; Fan, Yi-Xin; Qian, Cheng; Teng, Peng; Zhou, Xiao-Wei; Hu, Liang; Liu, Wen-Tao; Yuan, Zhi-Lan; Li, Qing-Ping

    2017-10-01

    Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.

  18. Protective effect of Ginkgo biloba leaves extract, EGb761, on myocardium injury in ischemia reperfusion rats via regulation of TLR-4/NF-κB signaling pathway.

    PubMed

    Tang, Yuping; Zhou, Guisheng; Yao, Lijun; Xue, Ping; Yu, Danhong; Xu, Renjie; Shi, Wen; Yao, Xin; Yan, Zhaowei; Duan, Jin-Ao

    2017-10-17

    Beneficial actions of EGb 761 against ischemia/reperfusion (I/R) injury in lung, brain and renal ischemia have been described. However, the relationship between EGb 761 and signal molecules in myocardial ischemia reperfusion has not been well elucidated. In this study, we investigated the effects and mechanism of EGb 761 preconditioning on anti-myocardial I/R injuries in vivo . Meanwhile, their potential anti-oxidative stress and anti-inflammation effect were assessed. Hemodynamic parameters were monitored as left ventricular systolic pressure, LV end-diastolic pressure and maximal rate of increase and decrease of left ventricular pressure (dP/dtmax). The oxidative stress indicators and inflammatory factors were also evaluated. Western blot method was used for analysis of toll-like receptor 4 (TLR4), p-TLR4, nuclear factor-κB (NF-κB), p-NF-κB p65, Bax and Bcl-2 protein expressions. EGb 761 significantly improved cardiac function, decreased levels of creatine kinase, aspartate aminotransferase and lactate dehydrogenase. EGb 761 also restrained the oxidative stress related to myocardial ischemia injury as evidenced by decreased malondialdehyde, superoxide dismutase, catalase, glutathione-peroxidase, glutathione reductase activity. Meanwhile, the inflammatory cascade was inhibited as evidenced by decreased cytokines such as tumor necrosis factor-α, interleukin-6 and interleukin-1β. Our results still showed that EGb 761 pretreatment significantly decrease the level of cleaved Bax, and increase the level of Bcl-2 in rats subjected to I/R injury. Simultaneously, the expressions of myocardial TLR4 and NF-κB were significantly decreased. It can be concluded that EGb 761 pretreatment was protected against myocardium I/R injury by decreasing oxidative stress, repressing inflammatory cascade in vivo and inhibiting TLR4/NF-κB pathway.

  19. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hong; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012; Wu, Xinyi, E-mail: xywu8868@163.com

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cellsmore » has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-{kappa}B activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.« less

  20. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    PubMed

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway.

    PubMed

    Zhou, Chen-hui; Wang, Chun-xi; Xie, Guang-bin; Wu, Ling-yun; Wei, Yong-xiang; Wang, Qiang; Zhang, Hua-sheng; Hang, Chun-hua; Zhou, Meng-liang; Shi, Ji-xin

    2015-12-10

    Early brain injury (EBI) determines the unfavorable outcomes after subarachnoid hemorrhage (SAH). Fisetin, a natural flavonoid, has anti-inflammatory and neuroprotection properties in several brain injury models, but the role of fisetin on EBI following SAH remains unknown. Our study aimed to explore the effects of fisetin on EBI after SAH in rats. Adult male Sprague-Dawley rats were randomly divided into the sham and SAH groups, fisetin (25mg/kg or 50mg/kg) or equal volume of vehicle was given at 30min after SAH. Neurological scores and brain edema were assayed. The protein expression of toll-like receptor 4 (TLR 4), p65, ZO-1 and bcl-2 was examined by Western blot. TLR 4 and p65 were also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the production of pro-inflammatory cytokines. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) was perform to assess neural cell apoptosis. High-dose (50mg/kg) fisetin significantly improved neurological function and reduced brain edema at both 24h and 72h after SAH. Remarkable reductions of TLR 4 expression and nuclear factor κB (NF-κB) translocation to nucleus were detected after fisetin treatment. In addition, fisetin significantly reduced the productions of pro-inflammatory cytokines, decreased neural cell apoptosis and increased the protein expression of ZO-1 and bcl-2. Our data provides the evidence for the first time that fisetin plays a protective role in EBI following SAH possibly by suppressing TLR 4/NF-κB mediated inflammatory pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Innate Immune Responses to Bacterial Ligands in the Peripheral Human Lung – Role of Alveolar Epithelial TLR Expression and Signalling

    PubMed Central

    Thorley, Andrew J.; Grandolfo, Davide; Lim, Eric; Goldstraw, Peter; Young, Alan; Tetley, Teresa D.

    2011-01-01

    It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens. PMID:21789185

  3. Molecular cloning of Salmo salar Toll-like receptors (TLR1, TLR22, TLR5M and TLR5S) and expression analysis in SHK-1 cells during Piscirickettsia salmonis infection.

    PubMed

    Salazar, C; Haussmann, D; Kausel, G; Figueroa, J

    2016-02-01

    In fish, the innate immune system is the primary response against infection. Toll-like receptors (TLRs) recognize pathogens through pathogen-associated molecular patterns (PAMPs), and some target molecules of TLRs are homologous between fish and mammals. Piscirickettsia salmonis is one of the main pathogens affecting the salmon industry in Chile. Better knowledge of mechanisms underlying its invasive capacity and recognition of target cells is crucial for vaccine development. Therefore, Salmo salar L. TLR1, TLR22, membrane TLR5M and soluble TLR5S sequences were cloned, and expression kinetics were analysed by RT-qPCR in salmon head kidney cells (SHK-1) infected with three different P. salmonis preparations: alive, formaldehyde treated, extract. Clearly, all analysed TLRs were expressed and transcription level changes were revealed at 2 hpi, 12 or 16 hpi and 24 hpi depending on P. salmonis infection scheme. Increased IL1-beta expression confirmed TLR pathway response. Furthermore, significant expression modulations of several members of the TLR pathway in this in vitro model suggest that P. salmonis extract rather than formaldehyde-inactivated bacteria might strengthen the salmon immune system. © 2015 John Wiley & Sons Ltd.

  4. Effect of β-glucan on MUC4 and MUC5B expression in human airway epithelial cells.

    PubMed

    Kim, Yong-Dae; Bae, Chang Hoon; Song, Si-Youn; Choi, Yoon Seok

    2015-08-01

    β-Glucan is found in the cell walls of fungi, bacteria, and some plant tissues, and is detected by the innate immune system. Furthermore, this recognition is known to worsen respiratory symptoms in patients with allergic and inflammatory airway diseases. However, the means by which β-glucan affects the secretion of major mucins by human airway epithelial cells has not been elucidated. Therefore, in this study, the effect and signaling pathway of β-glucan on mucins MUC4 and MUC5B were investigated in human airway epithelial cells. In NCI-H292 cells and human normal nasal epithelial cells, the effect and signaling pathway of β-glucan on MUC4 and MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA (siRNA). β-Glucan increased MUC4 and MUC5B expression and activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). SB203580 (a p38 MAPK inhibitor) and pyrrolidine dithiocarbamate (PDTC; a NF-κB inhibitor) inhibited β-glucan-induced MUC4 and MUC5B expression. In addition, siRNA knockdown of p38 MAPK blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of NF-κB. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by β-glucan, and siRNA knockdown of TLR4 blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of p38 MAPK and NF-κB. These results demonstrate that in human airway epithelial cells β-glucan induces MUC4 and MUC5B expression via the TLR4-p38 MAPK-NF-κB signaling pathway. © 2015 ARS-AAOA, LLC.

  5. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cremore » and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo. - Highlights: • First genetic evidence that PTEN controls LPS/TLR4 signaling in B lymphocytes. • Evidence that PTEN regulates LPS induced lymphoproliferation in vivo. • PI-3 kinase inhibitors block LPS induced lymphoproliferation in vivo.« less

  6. Medicinal mushroom Lingzhi or Reishi, Ganoderma lucidum (W.Curt.:Fr.) P. Karst., beta-glucan induces Toll-like receptors and fails to induce inflammatory cytokines in NF-kappaB inhibitor-treated macrophages.

    PubMed

    Batbayar, Sainkhuu; Kim, Mi Jeong; Kim, Ha Won

    2011-01-01

    Beta-Glucan of medicinal Lingzhi or Reishi mushroom, Ganoderma lucidum (BGG), possesses immunostimulatory and anti-tumor activities. Innate immune cells are activated by the binding of beta-glucan to the dectin-1 receptor. The present study investigated the immunostimulating activities of BGG, including binding to dectin-1, secretion of cytokines and reactive oxygen species, and induction of Toll-like receptors (TLRs) in RAW264.7 mouse macrophages. Reverse transcription-polymerase chain reaction and flow cytometry were used for the cytokine and TLR analyses. A mouse inflammation antibody array was used for protein-level cytokine analysis. BGG bound to dectin-1 and induced RAW264.7 cell secretion of several cytokines, including granulocyte colony-stimulating factor, interleukin (IL)-6, regulated upon activation normal T cell expressed and secreted (RANTES), tissue inhibitor of metalloproteinase-1, and tumor necrosis factor-alpha. The secretion of these cytokines was further increased by the addition of lipopolysaccharide (LPS). BGG also induced both nitric oxide and inducible nitric oxide synthase (iNOS). Treatment with an inhibitor of nuclear factor-kappa B (NF-kappaB) reduced the induction of IL-1, IL-6, and iNOS in a concentration-dependent manner. Expressions of TLR2, TLR4, and TLR6 were increased by BGG treatment, and addition of LPS induced further induction of TLR4 and TLR6. Our result indicates that BGG induces macrophage secretion of inflammatory cytokines, which can be potentiated by the presence of LPS, likely by binding to dectin-1 and TLR-2/6 receptors, which activate NF-kappaB and prompt the secretion of cytokines.

  7. Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann-Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain.

    PubMed

    Suzuki, Michitaka; Sugimoto, Yuko; Ohsaki, Yuki; Ueno, Makoto; Kato, Shinsuke; Kitamura, Yukisato; Hosokawa, Hiroshi; Davies, Joanna P; Ioannou, Yiannis A; Vanier, Marie T; Ohno, Kousaku; Ninomiya, Haruaki

    2007-02-21

    Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2 genes. Loss of function of either protein results in the endosomal accumulation of cholesterol and other lipids, progressive neurodegeneration, and robust glial cell activation. Here, we report that cultured human NPC fibroblasts secrete interferon-beta, interleukin-6 (IL-6), and IL-8, and contain increased levels of signal transducers and activators of transcription (STATs). These cells also contained increased levels of Toll-like receptor 4 (TLR4) that accumulated in cholesterol-enriched endosomes/lysosomes, and small interfering RNA knockdown of this receptor reduced cytokine secretion. In the NPC1-/- mouse brain, glial cells expressed TLR4 and IL-6, whereas both glial and neuronal cells expressed STATs. Genetic deletion of TLR4 in NPC1-/- mice reduced IL-6 secretion by cultured fibroblasts but failed to alter STAT levels or glial cell activation in the brain. In contrast, genetic deletion of IL-6 normalized STAT levels and suppressed glial cell activation. These findings indicate that constitutive cytokine secretion leads to activation of STATs in NPC fibroblasts and that this secretion is partly caused by an endosomal accumulation of TLR4. These results also suggest that similar signaling events may underlie glial cell activation in the NPC1-/- mouse brain.

  8. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu; Mendonca, Kevin; Yamamoto, Hidemi S.

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascularmore » markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were correlated with histopathology in paraffin-embedded rabbit tissues. • Compounds differed by effects on putative pathways of increased risk of HIV. • Nonsoxynol-9 caused inflammatory tissue damage involving TLR4 and IL-8. • An antiretroviral combination stimulated immune cells evidenced by SLC and CD4.« less

  9. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    PubMed

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  10. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation.

    PubMed

    Fichorova, Raina N; Mendonca, Kevin; Yamamoto, Hidemi S; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV+2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P<0.05), and decreased levels of TLR2 (P<0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P<0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Subcellular Localization of Large Yellow Croaker ( Larimichthys crocea) TLR21 and Expression Profiling of Its Gene in Immune Response

    NASA Astrophysics Data System (ADS)

    Sun, Qingxue; Fan, Zejun; Yao, Cuiluan

    2018-04-01

    Toll-like receptor 21 (TLR21) is a non-mammalian type TLR, and plays an important role in innate immune response in fish. In this paper, the full-length cDNA sequence of TLR21 gene was identified and characterized from large yellow croaker, Larimichthys crocea and was termed as LcTLR21. It consists of 3365 bp, including a 5'-terminal untranslated region (UTR) of 97 bp, a 3'-terminal UTR of 331 bp, and an open reading frame (ORF) of 2937 bp encoding a polypeptide of 978 amino acid residues. The deduced LcTLR21 contains a signal peptide domain at N-terminal, 12 leucine-rich repeats (LRRs) at the extracellular region, a transmembrane domain and a cytoplasmic toll-interleukin-1 receptor (TIR) domain at the C-terminal. Subcellular localization analysis revealed that the LcTLR21-GFP was constitutively expressed in cytoplasm. Tissue expression analysis indicated that LcTLR21 gene broadly expressed in most of the examined tissues, with the most predominant abundance in spleen, followed by head-kidney and liver, while the weakest expression was detected in brain. The expression level of LcTLR21 after LPS, poly I:C and Vibrio parahaemolyticus challenges was investigated in spleen, head-kidney and liver. LcTLR21 gene transcripts increased significantly in all examined tissues after the challenges, and the highest expression level was detected in liver at 24 h after poly I:C stimulation ( P < 0.05), suggesting that LcTLR21 might play a crucial role in fish resistance to viral and bacterial infections.

  12. Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    PubMed Central

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses. PMID:22448280

  13. Adjuvant effect of killed Propionibacterium acnes on mouse peritoneal B-1 lymphocytes and their early phagocyte differentiation.

    PubMed

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.

  14. Reishi mushroom Ganoderma lucidum Modulates IgA production and alpha-defensin expression in the rat small intestine.

    PubMed

    Kubota, Atsuhito; Kobayashi, Masaki; Sarashina, Sota; Takeno, Reiko; Okamoto, Keisuke; Narumi, Katsuya; Furugen, Ayako; Suzuki, Yuji; Takahashi, Natsuko; Iseki, Ken

    2018-03-25

    Immunoglobulin A (IgA) secretion and alpha-defensins play a role in the innate immune system to protect against infection. Ganoderma lucidum (W.Curt.: Fr.) P. Karst. (Reishi) is a well-known mushroom in traditional Chinese medicine. This study aimed to determine the effects of Reishi on IgA secretion from Peyer's patch (PP) cells and alpha-defensin-5 (RD-5) and RD-6 expression in the rat small intestine. The rats received an oral injection of 0.5-5mg/kg of Reishi powder (1mL/kg) by sonde. All animals were euthanized 24h after Reishi administration. We examined RD-5, RD-6, and Toll-like receptor (TLR) 4 mRNA levels in the jejunum, ileum, and in Peyer's patches (PP) through quantitative real-time PCR analysis. IgA secretion from PP was measured through enzyme-linked immunosorbent assay of the supernatant after primary culture. Reishi increased IgA secretion in the presence of lipopolysaccharide (LPS) and increased TLR4 mRNA levels, but had no effect on the viability of PP cells. Moreover, Reishi increased RD-5, RD-6, and TLR4 mRNA levels significantly in the ileum in a concentration-dependent manner. Reishi can induce IgA secretion and increase the mRNA levels of RD-5 and RD-6 in the rat small intestine, through a TLR4-dependent pathway. The present results indicate that Reishi might reduce the risk of intestinal infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes.

    PubMed

    Farina, Antonella; Peruzzi, Giovanna; Lacconi, Valentina; Lenna, Stefania; Quarta, Silvia; Rosato, Edoardo; Vestri, Anna Rita; York, Michael; Dreyfus, David H; Faggioni, Alberto; Morrone, Stefania; Trojanowska, Maria; Farina, G Alessandra

    2017-02-28

    Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells.

  16. Adverse early life environment increases hippocampal microglia abundance in conjunction with decreased neural stem cells in juvenile mice.

    PubMed

    Cohen, Susan; Ke, Xingrao; Liu, Qiuli; Fu, Qi; Majnik, Amber; Lane, Robert

    2016-12-01

    Adverse maternal lifestyle resulting in adverse early life environment (AELE) increases risks for neuropsychiatric disorders in offspring. Neuropsychiatric disorders are associated with impaired neurogenesis and neuro-inflammation in the hippocampus (HP). Microglia are neuro-inflammatory cells in the brain that regulate neurogenesis via toll-like receptors (TLR). TLR-9 is implicated in neurogenesis inhibition and is responsible for stress-related inflammatory responses. We hypothesized that AELE would increase microglia cell count and increase TLR-9 expression in juvenile mouse HP. These increases in microglia cell count and TLR-9 expression would be associated with decrease neural stem cell count and neuronal cell count. We developed a mouse model of AELE combining Western diet and a stress environment. Stress environment consisted of random change from embryonic day 13 (E13) to E17 as well as static change in maternal environment from E13 to postnatal day 21(P21). At P21, we measured hippocampal cell numbers of microglia, neural stem cell and neuron, as well as hippocampal TLR-9 expression. AELE significantly increased total microglia number and TLR-9 expression in the hippocampus. Concurrently, AELE significantly decreased neural stem cell and neuronal numbers. AELE increased the neuro-inflammatory cellular response in the juvenile HP. We speculate that increased neuro-inflammatory responses may contribute to impaired neurogenesis seen in this model. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Molecular and functional characterization of Toll-like receptor (Tlr)1 and Tlr2 in common carp (Cyprinus carpio).

    PubMed

    Fink, Inge R; Pietretti, Danilo; Voogdt, Carlos G P; Westphal, Adrie H; Savelkoul, Huub F J; Forlenza, Maria; Wiegertjes, Geert F

    2016-09-01

    Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Activation of Toll-like receptor-9 promotes cellular migration via up-regulating MMP-2 expression in oral squamous cell carcinoma.

    PubMed

    Ruan, Min; Zhang, Zun; Li, Siyi; Yan, Min; Liu, Shengwen; Yang, Wenjun; Wang, Lizheng; Zhang, Chenping

    2014-01-01

    Activation of Toll like receptors (TLRs) signaling has been implicated in promoting malignant cell invasion and metastatic potential. Previously we demonstrated that increased TLR-9 expression predicted poor survival in oral cancer patients. The objective of this study is to further investigate the roles and potential molecular mechanisms of TLR-9 signaling in human oral cancer cell invasion. Cell migration, invasion and protein expression were detected by wound healing assay, Transwell chambers model and western blot. The secretion and activity levels of metalloproteinases-2/9 were quantified by ELISA and Gelatin zymography. EMSA and ChIP assays were employed to detect the activity of AP-1signal pathway. TLR-9 siRNA transfection was used to regulate the expression and activity of TLR-9 in oral cancer cell line HB cells. The results of both wound healing assay and in vitro Transwell assay revealed that activation of TLR-9 induced dose- and time- dependent migration and invasion of HB cells. An increased expression, secretion and activity of MMP-2 were observed upon the treatment of CpG-ODN. The TLR-9 signaling-mediated MMP-2 expression appeared to be a consequence of AP-1 activation, because that their DNA binding activity was enhanced by CpG-ODN treatment. All these influences were efficiently repressed by the knockdown of TLR-9 through siRNA or pretreatment of an AP-1 inhibitor. Activation of TLR-9 signaling could promote human oral cancer HB cells invasion with the induction of MMP-2 presentation by attenuating AP-1 binding activity, suggesting a novel anti-metastatic application for TLR-9 targeted therapy in oral cancer in the future.

  19. Expression of toll-like receptors in hepatic cirrhosis and hepatocellular carcinoma.

    PubMed

    Sun, L; Dai, J J; Hu, W F; Wang, J

    2016-07-14

    Toll-like receptors (TLRs) can specifically identify pathogen-associated molecular patterns (PAMPs) by recognizing structural patterns in diverse microbial molecules, and can provide an effective defense against multiple microbial infectious. A variety of TLRs can be expressed on the surface of liver parenchymal as well as nonparenchymal cells. Kupffer cells are a type of hepatic nonparenchymal macrophage, and are positively associated with the severity of liver fibrosis. They play an important role in the synthesis and deposition of the extracellular matrix by upregulating the expression of tissue inhibitor of metalloproteinases and downregulating the activity of matrix metalloproteinases. Cirrhosis, a chronic diffuse lesion usually accompanying extensive liver fibrosis and nodular regeneration, is caused by liver parenchymal cells repeating injury-repair following reconstruction of organizational structure in the hepatic lobules. Hepatocellular carcinoma is caused by repeated and persistent chronic severe liver injury, and partial hepatocytes can eventually transform into hepatoma cells. Multiple TLRs such as TLR2, TLR3, TLR4, and TLR9, as well as other receptors, can be expressed in cirrhosis and hepatocellular carcinoma. About 53 and 85% of hepatocellular carcinoma patients frequently express TLR3 and TLR9, respectively. The chronic and repeated liver injury caused by alcohol, and HBV, HCV, or other pathogens can be recognized by TLRs through the PAMP pathway, which directly increases the risk for hepatic cirrhosis and hepatocellular carcinoma. In this review, we briefly present evidence that the novel cellular molecular mechanisms of TLRs may provide more information about new therapeutics targets of the anti-inflammatory immune response.

  20. [Modulation of TLR-4/MyD88 signaling cascade by miR-21 is involved in airway immunologic dysfunction induced by cold air exposure].

    PubMed

    Xu, Rui; Huang, Huaping; Han, Zhong; Li, Minchao; Zhou, Xiangdong

    2016-01-01

    To investigate the role of miR-21 in airway immunologic dysfunction induced by cold air irritation. Immortalized human airway epithelial cell lines BEAS-2B and 16HBE cells were cultured in air-liquid phases. The differential expressions of endogenous miR-21, miR-164, and miR-155 in the cells induced by cold air exposure for different time were detected by real-time PCR. The reporter plasmid containing wild-type or mutated 3'UTR of TLR-4 were constructed and co-transfected into BEAS-2B cells or 16HBE cells together with miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, or miR-21 inhibitor control. Following the transfection, dual luciferase reporter assay was performed to verify the action of miR-21 on TLR-4. miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, and miR-21 inhibitor control were transfected via lipofectamine 2000 in BEAS-2B or 16HBE cells that were subsequently exposed to a temperature at 37 degrees celsius; or cold irritation (30 degrees celsius;), and the protein levels of TLR-4/MyD88 were detected by Western blotting. Cold irritation caused a time- dependent up-regulation of miR-21 in both BEAS-2B and 16HBE cells (P<0.05) without obviously affecting the expressions of miR-164 and miR-155. Dual luciferase reporter assay demonstrated a direct combination of miR-21 and its target protein TLR-4. The synthesis levels of TLR-4/MyD88 protein were decreased in miR-21 mimic group even at a routine culture temperature (P<0.05), as also seen in cells with cold irritation (P<0.05). Treatment with the miR-21 inhibitor partially attenuated cold irritation-induced down-regulation of TLR-4/MyD88 protein (P<0.05). Cold air irritation-induced airway immunologic dysfunction is probably associated with TLR-4/MyD88 down-regulation by an increased endogenic miR-21.

  1. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seok-Joo; Lee, Sun-Mee, E-mail: sunmee@skku.edu

    Alcoholic fatty liver is susceptible to secondary stresses such as ischemia/reperfusion (I/R). Baicalin is an active component extracted from Scutellaria baicalensis, which is widely used in herbal preparations for treatment of hepatic diseases and inflammatory disorders. This study evaluated the potential beneficial effect of baicalin on I/R injury in alcoholic fatty liver. Rats were fed an alcohol liquid diet or a control isocaloric diet for 5 weeks, and then subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Baicalin (200 mg/kg) was intraperitoneally administered 24 and 1 h before ischemia. After reperfusion, baicalin attenuated the increases inmore » serum alanine aminotransferase activity, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels in alcoholic fatty liver. The increased levels of TNF-α and IL-6 mRNA expression and inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions increased after reperfusion, which were higher in ethanol-fed animals, were attenuated by baicalin. In ethanol-fed animals, baicalin attenuated the increases in toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 protein expressions and the nuclear translocation of NF-κB after reperfusion. In conclusion, our findings suggest that baicalin ameliorates I/R-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in alcoholic fatty liver. -- Highlights: ► Baicalin attenuates hepatic I/R-induced inflammation in alcoholic fatty liver. ► Baicalin downregulates TLR4, MyD88 expression during I/R in alcoholic fatty liver. ► Baicalin attenuates NF-κB nuclear translocation during I/R in alcoholic fatty liver.« less

  2. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection.

    PubMed

    Yan, Bing; Zhang, Jinyue; Zhang, Wei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun; Chen, Shun

    2017-01-01

    Aquatic birds are considered the biological and genetic reservoirs of avian influenza virus and play a critical role in the transmission and dissemination of Newcastle Disease Virus (NDV). Both TLR7 and TLR21 are important for the host antiviral immune response. In an in vivo study, goTLR7, not goTLR21, was significantly up-regulated in the lungs of geese at 3 to 7 d after challenge with H9N2. And goOASL expression was induced in the bursa of fabricius, harderian glands and lungs. An increase in goRIG-I was detected in the lung and small intestine, whereas goPKR was increased in the lung but decreased in the thymus. In the in vitro study, goTLR7 and goRIG-I but not goTLR21 were highly induced by H9N2. Moreover, goOASL and goPKR were significantly induced in H9N2-treated PBMCs, whereas goMx was suppressed. The over-expression of goTLR7, not goTLR21, controlled NDV replication in DF-1 cells, resulting in a decrease in viral copies and the viral titres. Furthermore, we explored the cellular localization of goTLR7 and goTLR21 in heterologous (DF-1 and BHK21) and homologous cells (GEF) through ectopic expression of goTLRs. The antiviral functions of goTLR7 and goTLR21 during H9N2 and NDV infection and their cellular locations were reported here for the first time. These results will contribute to better understand the TLR-dependent antiviral immune responses of waterfowl. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. [The effects of postconditioning with propofol on Toll-like receptor 4 expression in the lung tissue of rat with acute lung injury].

    PubMed

    Li, Guo-Fu; Tong, Xin; Luan, Ting; Zang, Bin

    2012-10-01

    To investigate the effect of postconditioning with propofol on Toll-like receptor 4 (TLR4) expression in the lung tissue in lipopolysaccharide (LPS)-induced acute lung injury (ALI) rats. Thirty Sprague-Dawley (SD) rats were randomly assigned to control group, ALI group, and propofol postcondition group (each n=10). The model of ALI was reproduced by intravenous injection of LPS (8 mg/kg for 30 minutes) into the rats, equivalent normal saline was injected into the rats of control group. The rats were postconditioned with propofol injected intravenously by 20 mg/kg bolus dose and then continuously by 40 mg×kg(-1)×h(-1) with a constant speed for 1 hour. The rats were sacrificed 6 hours after drug injection. Lung wet/dry weight (W/D) ratio and lung permeability index (LPI) was taken. Tumor necrosis factor-α (TNF-α) level in bronchoalveolar lavage fluid (BALF) was detected using enzyme linked immunosorbent assay (ELISA) method and TLR4 mRNA expression in lung tissue was assessed by reverse transcription-polymerase chain reaction (RT-PCR). The lung W/D ratio, LPI, TLR4 mRNA and TNF-α in BALF were all increased in ALI group compared with control group [lung W/D ratio: 5.30±0.28 vs. 4.21±0.14, LPI (×10(-3)): 8.7±2.2 vs. 3.3±2.0, TLR4 mRNA: 2.451±0.028 vs. 0.998±0.021, TNF-α: 643.46±62.31 ng/L vs. 120.43±12.65 ng/L, all P<0.05]. The above indexes were significantly reduced in the propofol group than those in the ALI group [lung W/D ratio: 4.68±0.19 vs. 5.30±0.28, LPI (×10(-3)): 5.8±2.0 vs. 8.7±2.2, TLR4 mRNA: 1.126±0.025 vs. 2.451±0.028, TNF-α: 290.53±32.01 ng/L vs. 643.46±62.31 ng/L, all P<0.05], but still higher than those in control group (all P<0.05). Postconditioning with propofol may alleviate ALI via reducing TLR4 mRNA expression, and inhibit the waterfall-like inflammatory reaction.

  4. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing.

    PubMed

    Ruchaud-Sparagano, Marie-Hélène; Mills, Ross; Scott, Jonathan; Simpson, A John

    2014-10-01

    Monophosphoryl lipid A (MPLA) is a lipopolysaccharides (LPS) derivative associated with neutrophil-dependent anti-inflammatory outcomes in animal models of sepsis. Little is known about the effect of MPLA on neutrophil function. This study sought to test the hypothesis that MPLA would reduce release of cytotoxic mediators from neutrophils without impairing bacterial clearance. Neutrophils were isolated from whole blood of healthy volunteers. The effects of MPLA and LPS on autologous serum-opsonised Pseudomonas aeruginosa killing by neutrophils and phagocytosis of autologous serum-opsonised zymosan were examined. Neutrophil oxidative burst, chemotaxis, enzyme and cytokine release as well as Toll-like receptor 4 (TLR4) expression were assessed following exposure to LPS or MPLA. LPS, but not MPLA, induced significant release of superoxide and myeloperoxidase from neutrophils. However, MPLA did not impair neutrophil capacity to ingest microbial particles and kill P. aeruginosa efficiently. MPLA was directly chemotactic for neutrophils, involving TLR4, p38 mitogen-activated protein kinase and tyrosine and alkaline phosphatases. LPS, but not MPLA, impaired N-formyl-methionyl-leucyl phenylalanine-directed migration of neutrophils, increased surface expression of TLR4, increased interleukin-8 release and strongly activated the myeloid differentiation primary response 88 pathway. Phosphoinositide 3-kinase inhibition significantly augmented IL-8 release from MPLA-treated neutrophils. The addition of MPLA to LPS-preincubated neutrophils led to a significant reduction in LPS-mediated superoxide release and TLR4 surface expression. Collectively, these findings suggest that MPLA directs efficient chemotaxis and bacterial killing in human neutrophils without inducing extracellular release of cytotoxic mediators and suggest that MPLA warrants further attention as a potential therapeutic in human sepsis.

  5. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    PubMed

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  6. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3

    PubMed Central

    Hilberath, Jan N.; Carlo, Troy; Pfeffer, Michael A.; Croze, Roxanne H.; Hastrup, Frantz; Levy, Bruce D.

    2011-01-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4Lps-d/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (Ri); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×103 vs. (control) 13×103 cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.—Hilberath, J N., Carlo, T., Pfeffer, M. A., Croze, R. H., Hastrup, F., Levy, B. D. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3. PMID:21321188

  7. Epigenetic Regulation of Tumor Necrosis Factor α (TNFα) Release in Human Macrophages by HIV-1 Single-stranded RNA (ssRNA) Is Dependent on TLR8 Signaling*

    PubMed Central

    Han, Xinbing; Li, Xin; Yue, Simon C.; Anandaiah, Asha; Hashem, Falah; Reinach, Peter S.; Koziel, Henry; Tachado, Souvenir D.

    2012-01-01

    Human macrophages at mucosal sites are essential targets for acute HIV infection. During the chronic phase of infection, they are persistent reservoirs for the AIDS virus. HIV virions gain entry into macrophages following ligation of surface CD4-CCR5 co-receptors, which leads to the release of two copies of HIV ssRNA. These events lead to reverse transcription and viral replication initiation. Toll-like receptors TLR7 and TLR8 recognize specific intracellular viral ssRNA sequences, but in human alveolar macrophages, their individual roles in TLR-mediated HIV ssRNA recognition are unclear. In the current study, HIV-1 ssRNA induced TNFα release in a dose-dependent manner in adherent human macrophages expressing both intracellular TLR7 and TLR8. This response was reduced by inhibiting either endocytosis (50 μm dynasore) or endosomal acidification (1 μg/ml chloroquine). Either MYD88 or TLR8 gene knockdown with relevant siRNA reduced HIV-1 ssRNA-mediated TNFα release, but silencing TLR7 had no effect on this response. Furthermore, HIV-1 ssRNA induced histone 4 acetylation at the TNFα promoter as well as trimethylation of histone 3 at lysine 4, whereas TLR8 gene knockdown reduced these effects. Taken together in human macrophages, TLR8 binds and internalizes HIV ssRNA, leading to endosomal acidification, chromatin remodeling, and increases in TNFα release. Drugs targeting macrophage TLR8-linked signaling pathways may modulate the innate immune response to acute HIV infection by reducing viral replication. PMID:22393042

  8. Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells.

    PubMed

    Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício

    2016-12-01

    Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.

  9. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    PubMed

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  10. Expression analysis of genes involved in TLR2-related signaling pathway: Inflammation and apoptosis after ischemic brain injury.

    PubMed

    Winters, L; Winters, T; Gorup, D; Mitrečić, D; Curlin, M; Križ, J; Gajović, S

    2013-05-15

    Toll-like receptor 2 (TLR2) is involved in innate immunity in the brain and in the cascade of events after ischemic stroke. The aim of this study was to get an insight into the expression of genes related to TLR2 signaling pathway and associated with inflammation and apoptosis in the later stages of brain response after ischemic injury. Middle cerebral artery occlusion was performed on both wild-type and TLR2(-/-) mice followed by real-time PCR to measure the relative expression of selected genes. In TLR2(-/-) mice expression of genes involved in proinflammatory response was decreased after cerebral ischemia. Tnf was the most prominent cytokine active in the late phase of recovery. Contrary to proinflammatory genes, the expression of Casp8, as a hallmark of apoptosis, was increased in TLR2(-/-) mice, in particular in the late phase of recovery. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients.

    PubMed

    D'Alterio, Crescenzo; Nasti, Guglielmo; Polimeno, Marianeve; Ottaiano, Alessandro; Conson, Manuel; Circelli, Luisa; Botti, Giovanni; Scognamiglio, Giosuè; Santagata, Sara; De Divitiis, Chiara; Nappi, Anna; Napolitano, Maria; Tatangelo, Fabiana; Pacelli, Roberto; Izzo, Francesco; Vuttariello, Emilia; Botti, Gerardo; Scala, Stefania

    2016-01-01

    A neoadjuvant clinical trial was previously conducted in patients with resectable colorectal cancer liver metastases (CRLM). At a median follow up of 28 months, 20/33 patients were dead of disease, 8 were alive with disease and 5 were alive with no evidence of disease. To shed further insight into biological features accounting for different outcomes, the expression of CXCR4-CXCL12-CXCR7, TLR2-TLR4, and the programmed death receptor-1 (PD-1)/programmed death-1 ligand (PD-L1) was evaluated in excised liver metastases. Expression profiles were assessed through qPCR in metastatic and unaffected liver tissue of 33 CRLM neoadjuvant-treated patients. CXCR4 and CXCR7, TLR2/TLR4, and PD-1/PD-L1 mRNA were significantly overexpressed in metastatic compared to unaffected liver tissues. CXCR4 protein was negative/low in 10/31, and high in 21/31, CXCR7 was negative/low in 16/31 and high in 15/31, CXCL12 was negative/low in 14/31 and high in 17/31 CRLM. PD-1 was negative in 19/30 and positive in 11/30, PD-L1 was negative/low in 24/30 and high in 6/30 CRLM. Stromal PD-L1 expression, affected the progression-free survival (PFS) in the CRLM population. Patients overexpressing CXCR4 experienced a worse PFS and cancer specific survival (CSS) ( p = 0.001 and p = 0.0008); in these patients, KRAS mutation identified a subgroup with a significantly worse CSS ( p < 0.01). Thus, CXCR4 and PD-L1 expression discriminate patients with the worse PFS within the CRLM evaluated patients. Within the CXCR4 high expressing patients carrying Mut-KRAS in CRLM identifies the worst prognostic group. Thus, CXCR4 targeting plus anti-PD-1 therapy should be explored to improve the prognosis of Mut-KRAS-high CXCR4-CRLMs.

  12. B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: modulation by BCR and CD40, and relevance to T-independent antibody responses.

    PubMed

    Pone, Egest J; Lou, Zheng; Lam, Tonika; Greenberg, Milton L; Wang, Rui; Xu, Zhenming; Casali, Paolo

    2015-02-01

    Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS-mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing effective T-independent antibody responses to microbial pathogens, allergens and vaccines.

  13. B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: modulation by BCR and CD40, and relevance to T-independent antibody responses

    PubMed Central

    Pone, Egest J.; Lou, Zheng; Lam, Tonika; Greenberg, Milton L.; Wang, Rui; Xu, Zhenming; Casali, Paolo

    2015-01-01

    Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing effective T-independent antibody responses to microbial pathogens, allergens and vaccines. PMID:25536171

  14. Toll-like receptor 22 of gilthead seabream, Sparus aurata: molecular cloning, expression profiles and post-transcriptional regulation.

    PubMed

    Muñoz, Iciar; Sepulcre, María Pilar; Meseguer, José; Mulero, Victoriano

    2014-05-01

    TLR22 is a fish-specific TLR that recognizes dsRNAs. In the present study, a TLR22 homologue gene from gilthead seabream (sbTLR22) was identified and characterized. The full coding sequence contained a single open-reading frame of 2895 nucleotides encoding a predicted protein of 964 amino acids in length. Its 3'-UTR was relatively long, 1380 nucleotides, and contained three AU-rich sequences frequently associated with mRNA instability. Functional studies showed that the sbTLR22 transcript had a short half-life, although the three AU-rich sequences in its 3'-UTR did not seem to be related with this fact. The sbTLR22 was highly expressed in the spleen, thymus and gills of healthy fish. After Vibrio anguillarum infection, the mRNA levels of sbTLR22 increased greatly in head kidney, blood and peritoneal exudate, but were only moderately induced in spleen and liver, suggesting the involvement of sbTLR22 in the immune response against bacterial infections. In addition, acidophilic granulocytes and macrophages, both considered professional phagocytes in seabream, displayed cell-type-specific sbTLR22 expression profiles when stimulated with different pathogen-associated molecular patterns (PAMPs). Although acidophilic granulocytes expressed sbTLR22, polyinosinic:polycytidylic acid (poly I:C) was unable to up-regulate the expression of this receptor. In contrast, poly I:C induced the expression of sbTLR22 in macrophages, in a process that was partially endosome-dependent. Taken together, our results suggest that sbTLR22 is involved in bacterial infection and might sense bacterial PAMPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on antibody-mediated immune response and gene expression of pattern recognition receptors and cytokines in broiler chickens immunized with T-cell dependent antigens.

    PubMed

    Alizadeh, M; Rodriguez-Lecompte, J C; Echeverry, H; Crow, G H; Slominski, B A

    2016-04-01

    This study evaluated the effect of yeast-derived products on innate and antibody mediated immune response in broiler chickens following immunization with sheep red blood cells (SRBC) and bovine serum albumin (BSA). One-day-old male broiler chickens (Ross-308) were randomly assigned to 6 dietary treatments of 9 replicate cages of 5 birds each per treatment. Dietary treatments consisted of a Control diet without antibiotic, and diets containing 11 mg/kg of virginiamycin, 0.25% of yeast cell wall (YCW), 0.2% of a commercial product Maxi-Gen Plus containing processed yeast and nucleotides, 0.05% of nucleotides, or a diet containing 10% of DDGS. On days 21 and 28 post-hatching, 5 birds per treatment were immunized intramuscularly with both SRBC and BSA. One week after each immunization, blood samples were collected. Serum samples were analyzed by hemagglutination test for antibody response to SRBC, and by ELISA for serum IgM and IgG response to BSA. On d 35, 5 birds per treatment were euthanized and the tissue samples from the cecal tonsils were collected to assess the gene expression of toll-like receptors TLR2b, TLR4, and TLR21, monocyte mannose receptor (MMR), and cytokines IL-10, IL-13, IL-4, IL-12p35, and IFN-γ. The results for gene expression analysis demonstrated that the diet supplemented with YCW increased the expression of TLR2b and T-helper type 2 cytokines IL-10, IL-4, and IL-13 relative to the Control; and the expression of TLR4 and IL-13 was upregulated in the nucleotide-containing diet. However, the diets containing antibiotics or Maxi-Gen Plus downregulated the expression of IFN-γ compared to the control. The primary antibody response to SRBC was not affected by diets. However, the diet containing YCW increased the secondary antibody response to SRBC compared to the antibiotic treatment. Neither primary nor secondary IgG and IgM response against BSA were affected by diets. In conclusion, supplementation of the diet with YCW stimulated Th2 cell-mediated immune response indicating the immunomodulatory activities of these products following immunization with non-inflammatory antigens. © 2016 Poultry Science Association Inc.

  16. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    PubMed Central

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID:27463381

  17. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    PubMed

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P < 0.01). CLI-095 or PDTC administration suppressed proinflammatory cytokine (TNF-α, IL-6, and IL-1β) production and macrophage infiltration into the kidney (P < 0.01). Moreover, in an in vitro study, CLI-095 or PDTC suppressed myoglobin-induced expression of TLR4, NF-κB, and proinflammatory cytokine levels in macrophage RAW264.7 cells (P < 0.01). The pharmacological inhibition of TLR4/NF-κB exhibited protective effects on rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  18. Acemannan increases NF-κB/DNA binding and IL-6/-8 expression by selectively binding Toll-like receptor-5 in human gingival fibroblasts.

    PubMed

    Thunyakitpisal, Pasutha; Ruangpornvisuti, Vithaya; Kengkwasing, Pattrawadee; Chokboribal, Jaroenporn; Sangvanich, Polkit

    2017-04-01

    Acemannan, an acetylated polymannose from Aloe vera, has immunomodulatory effects. We investigated whether acemannan induces IL-6 and -8 expression and NF-κB/DNA binding in human gingival fibroblasts. IL-6 and -8 expression levels were assessed via RT-PCR and ELISA. The NF-κB p50/p65-DNA binding was determined. The structures of acemannan mono-pentamers and Toll-like receptor 5 (TLR5) were simulated. The binding energies between acemannan and TLR5 were identified. We found that acemannan significantly stimulated IL-6/-8 expression at both the mRNA and protein level and significantly increased p50/DNA binding. Preincubation with an anti-TLR5 neutralizing antibody abolished acemannan-induced IL-6/-8 expression and p50/DNA binding, and co-incubation of acemannan with Bay11-7082, a specific NF- κB inhibitor, abolished IL-6/-8 expression. The computer modeling indicated that monomeric/dimeric single stranded acemannan molecules interacted with the TLR5 flagellin recognition sites with a high binding affinity. We conclude that acemannan induces IL-6/-8 expression, and p50/DNA binding in gingival fibroblasts, at least partly, via a TLR5/NF-κB-dependent signaling pathway. Furthermore, acemannan selectively binds with TLR5 ectodomain flagellin recognition sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [TOLL-LIKE RECEPTORS IN COSMONAUT'S PERIPHERAL BLOOD CELLS AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION].

    PubMed

    Berendeeva, T A; Ponomarev, S A; Antropova, E N; Rykova, M P

    2015-01-01

    Studies of Toll-like receptors (TLR) in 20 cosmonauts-members of long-duration (124-199-day) missions to the International space station evidenced changes in relative and absolute counts of peripheral blood monocytes with TLR2, TLR4 and TLR6 on the surface, expression of TLR2 and TLR6 genes, and genes of molecules involved in the TLR signaling pathway and TLR-related NF-KB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability.

  20. MAPK/p38 regulation of cytoskeleton rearrangement accelerates induction of macrophage activation by TLR4, but not TLR3.

    PubMed

    Bian, Hongjun; Li, Feifei; Wang, Wenwen; Zhao, Qi; Gao, Shanshan; Ma, Jincai; Li, Xiao; Ren, Wanhua; Qin, Chengyong; Qi, Jianni

    2017-11-01

    Toll-like receptor 3 (TLR3) and TLR4 utilize adaptor proteins to activate mitogen‑activated protein kinase (MAPK), resulting in the acute but transient inflammatory response aimed at the clearance of pathogens. In the present study, it was demonstrated that macrophage activation by lipopolysaccharide (LPS) or poly(I:C), leading to changes in cell morphology, differed significantly between the mouse macrophage cell line RAW264.7 and mouse primary peritoneal macrophages. Moreover, the expression of α- and β-tubulin was markedly decreased following LPS stimulation. By contrast, α- and β-tubulin expression were only mildly increased following poly(I:C) treatment. However, the expression of β-actin and GAPDH was not significantly affected. Furthermore, it was verified that vincristine pretreatment abrogated the cytoskeleton rearrangement and decreased the synthesis and secretion of proinflammatory cytokines and migration of macrophages caused by LPS. Finally, it was observed that the MAPK/p38 signaling pathway regulating cytoskeleton rearrangement may participate in LPS‑induced macrophage cytokine production and migration. Overall, the findings of the present study indicated that MAPK/p38 regulation of the cytoskeleton, particularly tubulin proteins, plays an important role in LPS-induced inflammatory responses via alleviating the synthesis and secretion of proinflammatory cytokines and inhibiting the migration of macrophages.

  1. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus.

    PubMed

    Sinon, Suraya H; Rich, Alison M; Parachuru, Venkata P B; Firth, Fiona A; Milne, Trudy; Seymour, Gregory J

    2016-01-01

    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP). Initially, immunohistochemistry was used to determine TLR expression in 12 formalin-fixed archival OLP tissues with 12 non-specifically inflamed oral tissues as controls. RNA was isolated from further fresh samples of OLP and non-specifically inflamed oral tissue controls (n = 6 for both groups) and used in qRT(2)-PCR focused arrays to determine the expression of TLRs and associated signalling pathway genes. Genes with a statistical significance of ±two-fold regulation (FR) and a P-value < 0.05 were considered as significantly regulated. Significantly more TLR4(+) cells were present in the inflammatory infiltrate in OLP compared with the control tissues (P < 0.05). There was no statistically significant difference in the numbers of TLR2(+) and TLR8(+) cells between the groups. TLR3 was significantly downregulated in OLP (P < 0.01). TLR8 was upregulated in OLP, but the difference between the groups was not statistically significant. The TLR-mediated signalling-associated protein genes MyD88 and TIRAP were significantly downregulated (P < 0.01 and P < 0.05), as were IRAK1 (P < 0.05), MAPK8 (P < 0.01), MAP3K1 (P < 0.05), MAP4K4 (P < 0.05), REL (P < 0.01) and RELA (P < 0.01). Stress proteins HMGB1 and the heat shock protein D1 were significantly downregulated in OLP (P < 0.01). These findings suggest a downregulation of TLR-mediated signalling pathways in OLP lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. CD200Fc reduces LPS-induced IL-1β activation in human cervical cancer cells by modulating TLR4-NF-κB and NLRP3 inflammasome pathway.

    PubMed

    He, Aiqin; Shao, Jia; Zhang, Yu; Lu, Hong; Wu, Zhijun; Xu, Yunzhao

    2017-05-16

    Chronic inflammation plays an important role in tumorigenesis of cervical cancer. CD200Fc, a CD200R1 agonist, has been found to have anti-inflammatory effects in autoimmune diseases and neuro-degeneration. However, the anti-inflammatory effect of CD200Fc on cervical cancer has not yet to be completely understood. This study investigated the anti-inflammatory effects and mechanisms of CD200Fc in LPS-induced human SiHa cells and Caski cells. SiHa cells and Caski cells were stimulated with 40 μg/ml LPS under different concentrations of CD200Fc for 90 min or 12 hours. The mRNA and protein levels of pro-IL-1β, cleaved-IL-1β and NLRP3, as well as the protein level of cleaved caspase-1, were significantly increased in LPS-induced SiHa cells and Caski cells. LPS stimulation did not change ASC and pro-caspase-1 expression. CD200Fc down-regulated protein expression of cleaved caspase-1 and mRNA and protein expression of pro-IL-1β, cleaved-IL-1β and NLRP3. In addition, the protein levels of TLR4, p-P65 and p-IκB, as well as the translocation of P65 to nucleus, were significantly increased in LPS-induced SiHa cells and Caski cells. LPS stimulation did not change t-P65 and t-IκB on protein levels, which were components of TLR-NF-κB pathway. CD200Fc down-regulated protein expression of TLR4, p-P65 and p-IκB and inhibited the translocation of P65 to nucleus in LPS-induced SiHa cells and Caski cells. These results indicated that CD200Fc appeared to suppress the inflammatory activity of TLR4-NF-κB and NLRP3 inflammasome pathway in LPS-induced SiHa cells and Caski cells. It provided novel mechanistic insights into the potential therapeutic uses of CD200Fc for cervical cancer.

  3. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  4. Effect of N-Acetylserotonin on TLR-4 and MyD88 Expression during Intestinal Ischemia-Reperfusion in a Rat Model.

    PubMed

    Sukhotnik, Igor; Ben Shahar, Yoav; Halabi, Salim; Bitterman, Nir; Dorfman, Tatiana; Pollak, Yulia; Coran, Arnold; Bitterman, Arie

    2018-01-05

     Accumulating evidence indicates that changes in intestinal toll-like receptors (TLRs) precede histological injury in a rodent model of necrotizing enterocolitis. N-acetylserotonin (NAS) is a naturally occurring chemical intermediate in the biosynthesis of melatonin. A recent study has shown that treatment with NAS prevents gut mucosal damage and inhibits programmed cell death following intestinal ischemia-reperfusion (IR). The objective of this study was to determine the effects of NAS on TLR-4, myeloid differentiation factor 88 (Myd88), and TNF-α receptor-associated factor 6 (TRAF6) expression in intestinal mucosa following intestinal IR in a rat.  Male Sprague-Dawley rats were randomly assigned to one of the four experimental groups: 1) Sham rats underwent laparotomy; 2) Sham-NAS rats underwent laparotomy and were treated with intraperitoneal (IP) NAS (20 mg/kg); 3) IR rats underwent occlusion of both superior mesenteric artery and portal vein for 20 minutes followed by 48 hours of reperfusion; and 4) IR-NAS rats underwent IR and were treated with IP NAS immediately before abdominal closure. Intestinal structural changes, mucosal TLR-4, MyD88, and TRAF6 mucosal gene, and protein expression were examined using real-time PCR, Western blot, and immunohistochemistry.  Significant mucosal damage in IR rats was accompanied by a significant upregulation of TLR-4, MyD88, and TRAF6 gene and protein expression in intestinal mucosa compared with control animals. The administration of NAS decreased the intestinal injury score, inhibited cell apoptosis, and significantly reduced the expression of TLR-4, MyD88, and TRAF6.  Treatment with NAS is associated with downregulation of TLR-4, MyD88, and TRAF6 expression along with a concomitant decrease in intestinal mucosal injury caused by intestinal IR in a rat. Georg Thieme Verlag KG Stuttgart · New York.

  5. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha.

    PubMed

    Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe

    2007-10-30

    Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.

  6. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer.

    PubMed

    Liu, Li; Li, Yu H; Niu, Yin B; Sun, Yang; Guo, Zhen J; Li, Qian; Li, Chen; Feng, Juan; Cao, Shou S; Mei, Qi B

    2010-10-01

    Evidence strongly supported a link between inflammation and cancer. Patients with colitis have high risk for development of colon cancer. Nuclear factor-kappa B (NF-κB), partially induced by lipopolysaccharide (LPS) binding to Toll-like receptor (TLR) 4, is a vital molecule in supervising the transformation of colitis to colon cancer. It could be a good strategy to prevent colitis carcinogenesis for targeting LPS/TLR4/NF-κB pathway. In the present study, we obtained an oligogalactan composed of five galacturonic acids from apple pectin and evaluated its protective efficacy on intestinal toxicities and carcinogenesis in a mouse model of colitis-associated colon cancer induced by 1,2-dimethylhydrazine and dextran sodium sulfate (DSS). The apple oligogalactan (AOG) was highly effective against intestinal toxicities and carcinogenesis and decreased the elevated levels of TLR4 and tumor necrosis factor-α (TNF-α) induced by inflammation in vivo in this model system. In vitro studies, AOG alone only slightly increased the levels of protein expression and messenger RNA of TLR4, phosphorylation of IκBα and production of TNF-α in HT-29 cells. However, AOG significantly decreased the elevation of all the biomarkers induced by LPS when it was combined with LPS. The effect of AOG may be related to membrane internalization and redistribution of TLR4 from cell membrane to cytoplasm. AOG is active against inflammation and carcinogenesis through targeting LPS/TLR4/NF-κB pathway. Both AOG and LPS are agonists of TLR4 for sharing the same ligand but AOG has a much lower intrinsic activity than that of LPS. AOG may be useful for treatment of colitis and prevention of carcinogenesis in the clinics.

  7. A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins

    PubMed Central

    Ryan, Anthony; Lynch, Mark; Smith, Sinead M.; Amu, Sylvie; Nel, Hendrik J.; McCoy, Claire E.; Dowling, Jennifer K.; Draper, Eve; O'Reilly, Vincent; McCarthy, Ciara; O'Brien, Julie; Ní Eidhin, Déirdre; O'Connell, Mary J.; Keogh, Brian; Morton, Charles O.; Rogers, Thomas R.; Fallon, Padraic G.; O'Neill, Luke A.

    2011-01-01

    Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system. PMID:21738466

  8. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory.

    PubMed

    Hung, Yun-Fen; Chen, Chiung-Ya; Li, Wan-Chen; Wang, Ting-Fang; Hsueh, Yi-Ping

    2018-06-07

    The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis

    PubMed Central

    2014-01-01

    Background Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Methods Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Results Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Conclusions Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress. PMID:24417870

  10. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis.

    PubMed

    Lin, Miao; Li, Long; Li, Liping; Pokhrel, Gaurab; Qi, Guisheng; Rong, Ruiming; Zhu, Tongyu

    2014-01-13

    Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress.

  11. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus.

    PubMed

    Biancardi, Vinicia Campana; Stranahan, Alexis M; Krause, Eric G; de Kloet, Annette D; Stern, Javier E

    2016-02-01

    ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN. Copyright © 2016 the American Physiological Society.

  12. Characterization and expression analysis of Toll-like receptor 3 cDNA from Atlantic salmon (Salmo salar).

    PubMed

    Vidal, R; González, R; Gil, F

    2015-06-10

    Innate pathway activation is fundamental for early anti-viral defense in fish, but currently there is insufficient understanding of how salmonid fish identify viral molecules and activate these pathways. The Toll-like receptor (TLR) is believed to play a crucial role in host defense of pathogenic microbes in the innate immune system. In the present study, the full-length cDNA of Salmo salar TLR3 (ssTLR3) was cloned. The ssTLR3 cDNA sequence was 6071 bp long, containing an open reading frame of 2754 bp and encoding 971 amino acids. The TLR group motifs, such as leucine-rich repeat (LRR) domains and Toll-interleukin-1 receptor (TIR) domains, were maintained in ssTLR3, with sixteen LRR domains and one TIR domain. In contrast to descriptions of the TLR3 in rainbow trout and the murine (TATA-less), we found a putative TATA box in the proximal promoter region 29 bp upstream of the transcription start point of ssTLR3. Multiple-sequence alignment analysis of the ssTLR3 protein-coding sequence with other known TLR3 sequences showed the sequence to be conserved among all species analyzed, implying that the function of the TLR3 had been sustained throughout evolution. The ssTLR3 mRNA expression patterns were measured using real-time PCR. The results revealed that TLR3 is widely expressed in various healthy tissues. Individuals challenged with infectious pancreatic necrosis virus and immunostimulated with polyinosinic:polycytidylic acid exhibited increased expression of TLR3 at the mRNA level, indicating that ssTLR3 may be involved in pathogen recognition in the early innate immune system.

  13. Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation

    PubMed Central

    Song, Jianwen; Guan, Ming; Zhao, Zhenwen; Zhang, Junjie

    2015-01-01

    Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation. PMID:26313906

  14. Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model.

    PubMed

    Li, Li-Fu; Liu, Yung-Yang; Chen, Ning-Hung; Chen, Yen-Huey; Huang, Chung-Chi; Kao, Kuo-Chin; Chang, Chih-Hao; Chuang, Li-Pang; Chiu, Li-Chung

    2018-06-20

    Mechanical ventilation (MV) is often used to maintain life in patients with sepsis and sepsis-related acute lung injury. However, controlled MV may cause diaphragm weakness due to muscle injury and atrophy, an effect termed ventilator-induced diaphragm dysfunction (VIDD). Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) signaling pathways may elicit sepsis-related acute inflammatory responses and muscle protein degradation and mediate the pathogenic mechanisms of VIDD. However, the mechanisms regulating the interactions between VIDD and endotoxemia are unclear. We hypothesized that mechanical stretch with or without endotoxin treatment would augment diaphragmatic structural damage, the production of free radicals, muscle proteolysis, mitochondrial dysfunction, and autophagy of the diaphragm via the TLR4/NF-κB pathway. Male C57BL/6 mice, either wild-type or TLR4-deficient, aged between 6 and 8 weeks were exposed to MV (6 mL/kg or 10 mL/kg) with or without endotoxemia for 8 h. Nonventilated mice were used as controls. MV with endotoxemia aggravated VIDD, as demonstrated by the increases in the expression levels of TLR4, caspase-3, atrogin-1, muscle ring finger-1, and microtubule-associated protein light chain 3-II. In addition, increased NF-κB phosphorylation and oxidative loads, disorganized myofibrils, disrupted mitochondria, autophagy, and myonuclear apoptosis were also observed. Furthermore, MV with endotoxemia reduced P62 levels and diaphragm muscle fiber size (P < 0.05). Endotoxin-exacerbated VIDD was attenuated by pharmacologic inhibition with a NF-κB inhibitor or in TLR4-deficient mice (P < 0.05). Our data indicate that endotoxin-augmented MV-induced diaphragmatic injury occurs through the activation of the TLR4/NF-κB signaling pathway.

  15. Klotho Restraining Egr1/TLR4/mTOR Axis to Reducing the Expression of Fibrosis and Inflammatory Cytokines in High Glucose Cultured Rat Mesangial Cells.

    PubMed

    Wu, Can; Ma, Xiaoyu; Zhou, Yang; Liu, Yv; Shao, Ying; Wang, Qiuyue

    2018-06-11

    Anti-aging protein Klotho is closely associated with a variety of chronic diseases and age-related diseases. And Klotho gene deficiency enhances the phosphorylation of mammalian target of rapamycin (mTOR), resulting in exacerbating streptozotocin-stimulated diabetic glomerular injury and promoting the progression of early diabetic kidney disease (DKD). However, it has not yet been elucidated that the mechanism of Klotho function on the pathogenesis of diabetic glomerular injury. What's more, insulin represents the antilipolytic effect via the mTOR-early growth response factor 1 (Egr1) regulatory axis in mammalian organism. Valsartan reduced the high glucose-activated toll like report 4 (TLR4) expression and inflammatory cytokines via inhibiting Egr1 expression. In this study, we aim to explore the effects of Klotho on Egr1 expression and TLR4/mTOR pathways activity in high glucose cultured rat mesangial cells (RMCs) in vitro. Our study revealed that high glucose upregulated Egr1 to aggravate the inflammation and fibrosis in RMCs. And high glucose activates Egr1/TLR4/mTOR regulatory axis in MCs, indicating that one coherent feedforward loop is formed. Anti-aging protein Klotho may attenuate glomerular inflammation and fibrosis to provide protection against diabetic kidney injury via inhibiting the activity of Egr1/TLR4/mTOR regulatory axis in high glucose conditions. This study complements the function mechanism of Egr1/TLR4/mTOR regulatory axis playing in the pathogenesis of DKD, and provides a new direction and theoretical basis for anti-aging protein Klotho in DKD treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Stronger Toll-like receptor 1/2, 4, and 7/8 but less 9 responses in peripheral blood mononuclear cells in non-infectious exacerbated asthmatic children.

    PubMed

    Lee, Wen-I; Yao, Tsung-Chieh; Yeh, Kuo-Wei; Chen, Li-Chen; Ou, Liang-Shiou; Huang, Jing-Long

    2013-02-01

    Toll-like receptors (TLR) initiate innate and often affect adaptive immune response. This study aimed to determine if TLR response and T regulatory cell (Treg) function in peripheral blood mononuclear cells (PBMC) correlate with clinical severity in non-infectious asthma. TLR1-9 expression and representative response cytokine TNF-α, IL-6, and IFN-β secretions were analyzed after stimulation by TLR1-9 ligands from 17 non-infectious asthmatic children. TNF-α production was higher in TLR1/2 (median 385.4 vs. 250.3 pg/ml in 1 μg/ml Pam3CSK4, p=0.0078), TLR4 (2392.4 vs. 1355.9 in 1 μg/ml LPS; p=0.0005), and TLR7/8 (10,776.2 vs. 4237.0 pg/ml in 1 μg/ml R848, p=0.0079) of patients in exacerbation than those in convalescence and healthy controls despite equal TLR expression. TNF-α production stimulated by TLR9 agonist was significantly lower in exacerbation (17.7 vs. 34.9 pg/ml in 1 μg/ml ODN2216, p=0.0175), while IL-6 production had similar patterns but was significantly lower in TLR3 signaling (119.7 vs. 245.0 pg/ml in 0.1 μg/ml poly(I:C), p=0.0033). IFN-β production by TLR3 agonist also decreased in exacerbation but not statistically significant. Six older children showed decreased FOXP3 percentage in CD4+CD25(high) and decreased suppression capability in exacerbation but restored in stabilization (82.8% vs. 90.0%, p=0.0061 and 60.9% vs. 81.7%, p=0.0071; respectively). In conclusion, normalizing imbalanced TLR signaling and enhancing Treg cell capability may guide possible therapeutic strategies for non-infectious asthma in exacerbation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets

    PubMed Central

    Liu, Ping; Pieper, Robert; Rieger, Juliane; Vahjen, Wilfried; Davin, Roger; Plendl, Johanna; Meyer, Wilfried; Zentek, Jürgen

    2014-01-01

    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea. PMID:24609095

  18. Porphyromonas gingivalis, Treponema denticola and toll-like receptor 2 are associated with hypertensive disorders in placental tissue: a case-control study.

    PubMed

    Chaparro, A; Blanlot, C; Ramírez, V; Sanz, A; Quintero, A; Inostroza, C; Bittner, M; Navarro, M; Illanes, S E

    2013-12-01

    To explore the associations between the presence of periodontal pathogens and the expression of toll-like receptors (TLR-2 and TLR-4) in the placental tissue of patients with hypertensive disorders compared to the placentas of healthy normotensive patients. A case-control study was performed. From a cohort composed of 126 pregnant women, 33 normotensive healthy pregnant women were randomly selected, and 25 cases of patients with hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, were selected. Placental biopsy was obtained after aseptic placental collection at the time of delivery. All of the samples were processed and analysed for the detection of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Treponema denticola and Tannerella forsythia using the polymerase chain reaction (PCR) technique. Determination of the expressions of TLR-2 and TLR-4 was performed in samples of total purified protein isolated from placental tissues and analysed by ELISA. The data were assessed using descriptive statistics. The associations among variables were estimated through multiple logistic regression models and the Mann-Whitney test to evaluate the differences between the two groups. A significant increase was observed in the expression of TLR-2 in the placentas of patients with hypertensive disorders (p = 0.04). Additionally, the multiple logistic regression models demonstrated an association between the presence of T. denticola and P. gingivalis in placental tissues and hypertensive disorders (OR: 9.39, p = 0.001, CI 95% 2.39-36.88 and OR: 7.59, p = 0.019, CI 95% 1.39-41.51, respectively). In the present study, pregnant women with periodontal disease presented an association in the placental tissue between the presence of T. denticola and P. gingivalis and hypertensive disorders. Additionally, increased expression of TLR-2 was observed. However, further studies are required to determine the specific roles of periodontal pathogens and TLRs in the placental tissue of patients with pregnancy-related hypertensive disorders. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. [Fisetin alleviates hypoxia/reoxygenation injury in rat hepatocytes via modulation of TLR4/NF-κB signaling pathway].

    PubMed

    Pu, Junliang; Wan, Lei; Zheng, Daofeng; Wei, Xufu; Wu, Zhongjun; Tang, Chengyong

    2017-07-01

    Objective To investigate the protective effect of fisetin (FIS) against hypoxia/reoxygenation (H/R) injury in rat hepatocytes and its mechanism. Methods H/R injury model of BRL-3A cells was established and the cells were pretreated with FIS. Survival rate was detected by CCK-8 assay. Cell apoptosis was measured by flow cytometry. The levels of ALT and AST were determined by microplate assay. The production of TNF-α and IL-1β were detected by ELISA. The mRNA and protein levels of TLR4 and NF-κBp65 were analyzed by quantitative real-time PCR and Western blotting, respectively. Results After subjected to H/R, cell survival rate decreased and the apoptosis level increased. The levels of ALT and AST in cell supernatant were elevated, so were the production of TNF-α and IL-1β. FIS pretreatment increased the cell survival rate and inhibited apoptosis. The levels of ALT, AST and the production of TNF-α and IL-1β were reduced significantly. Moreover, FIS inhibited the increasing expression levels of TLR4 and NF-κBp65 induced by H/R. Conclusion FIS alleviates the hepatocyte injury induced by H/R via modulation of TLR4/NF-κB signaling pathway.

  20. Impact of miR-140 Deficiency on Non-Alcoholic Fatty Liver Disease.

    PubMed

    Wolfson, Benjamin; Lo, Pang-Kuo; Yao, Yuan; Li, Linhao; Wang, Hongbing; Zhou, Qun

    2018-04-27

    Loss of miR-140 has a pro-fibrotic effect in the mammary gland. This study aimed to investigate whether miR-140 loss and obesity act synergistically to promote non-alcoholic fatty liver disease, and to identify the underlying mechanisms. Liver tissues were isolated from lean-fat diet and high-fat diet fed wild-type and miR-140 knockout mice. Using molecular staining and immunohistochemistry techniques we identified increased development of non-alcoholic fatty liver disease (NAFLD) and fibrotic indicators in miR-140 knockout mice. Utilizing an in vitro model system, we demonstrated that miR-140 targets TLR-4, and that miR-140 overexpression is sufficient to inhibit palmitic acid signaling through the TLR-4/NFκB pathway. Our findings demonstrate that loss of miR-140 results in increased expression of TLR-4, sensitizing cells to palmitic acid signaling and resulting in increased inflammatory activity through the TLR4/NFκB pathway. This signaling axis promotes NAFLD development in a high-fat diet context and indicates the potential utility of miR-140 rescue as a therapeutic strategy in NAFLD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction.

    PubMed

    Wang, Wei-Wei; Zhang, Yu; Huang, Xiao-Bing; You, Nan; Zheng, Lu; Li, Jing

    2017-10-14

    To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl 4 )-induced acute hepatic dysfunction. A rat model of HE was established with CCl 4 . Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was examined. FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating pro-inflammatory factors such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.

  2. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    PubMed

    Chen, Weijia; Lu, Zhijun

    2017-02-01

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  3. Suppressive effect of β,β-dimethylacryloyl alkannin on activated dendritic cells in psoriasis by the TLR7/8 pathway.

    PubMed

    Wang, Yan; Zhao, Jingxia; Di, Tingting; Wang, Mingxing; Ruan, Zhitong; Zhang, Lu; Xie, Xiangjiang; Meng, Yujiao; Lin, Yan; Liu, Xin; Wang, Ning; Li, Ping

    2016-11-01

    β,β-dimethylacryloyl alkannin (DMA) is a key component of Lithospermum and possesses good efficacy for treating psoriasis. DMA inhibits activated dendritic cells (DCs), but the mechanism is unknown. Therefore, this study aimed to explore the modulation of the TLR7/8 pathway by DMA in psoriasis-activated DCs. Models of psoriasis-like skin lesions were established using BALB/c mice; 8 mice were treated with DMA (2.5mg/kg). Bone marrow cells were isolated and induced into DCs using R848, a TLR7/8 agonist. Splenic CD11c+ cells were detected by flow cytometry. Skin CD11c+ cells were detected by immunofluorescence. TLR7, TLR8, MYD88, and IRAKM proteins were detected by Western blot. The effects of DMA on surface molecules of DCs were observed by flow cytometry. mRNA expression of inflammatory factors was detected by qRT-PCR. Secreted cytokines were detected by cytometric bead array. Compared with the model group, psoriasis-like skin lesions were alleviated by DMA, the splenic CD11c+ cells were significantly decreased (P<0.01), and CD11c+ cell numbers in skin lesions were decreased (P<0.01). Expression levels of TLR7, MYD88, and IRAKM were significantly decreased (P<0.05). R848-stimulated DCs showed increased expression of I-A/I-E, CD80, and CD86 (P<0.01), increased IL-23 and IL-1β mRNA and secretion (P<0.05), and increased TLR7, TLR8, MYD88, and IRAKM expression (P<0.01); DMA inhibited all of these effects of the TLR7/8 pathway activation by R848 (P<0.05). In conclusion, DMA could inhibit psoriasis-activated DCs via the TLR7/8 pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кB signaling pathway in isoproterenol-induced myocardial hypertrophy.

    PubMed

    Yang, Juan; Wang, Hong-Xin; Zhang, Ying-Jie; Yang, Yu-Hong; Lu, Mei-Li; Zhang, Jing; Li, Sheng-Tao; Zhang, Su-Ping; Li, Guang

    2013-10-25

    Astragaloside IV(As IV) is one of the main effective components isolated from the traditional Chinese medical herb Astragalus membranaceus. The protective effect of Astragalus membranaceus on myocardial hypertrophy has been extensively proved. To test the hypothesis that Astragaloside IV can ameliorate the myocardial hypertrophy and inflammatory effect induced by β-adrenergic hyperactivity, we carried out in vivo and in vitro experiments. In in vivo study, the isoproterenol(Iso) (5mg.kg -1 .d -1 ) was used as a model of myocardial hypertrophy by intraperitoneal injection. SD rats were randomly assigned to following six groups: A:the control;B: Iso group;C: Iso plus As IV 20mg.kg -1 .d -1 ;D: Iso plus As IV 40mg.kg -1 .d -1 ;E: Iso plus As IV 80mg.kg -1 .d -1 ;F: Iso plus Propranolol 40mg.kg -1 .d -1 . In in vitro study, cultured neonatal rat cardiomyocytes were pretreated with As IV(3, 10, 30μmol.L -1 ), Propranolol(2μmol.L -1 ) and BAY11-7082(5μmol.L -1 ) for 30minutes, and then incubated with Iso(10μmol.L -1 ) for 48 hours. For the rats in each group, the heart mass index (HMI) and the left ventricular mass index (LVMI) were measured. To measure the transverse diameter of left ventricular myocardial cells (TDM), the hematoxylin-eosin (HE) staining method was applied. In addition, the volume and the total protein content of cardiomyocytes were measured, the mRNA expression of ANP and TLR4 were quantified by RT-PCR, the protein expression of TLR4, IκBα and p65 were quantified by Western blot, and the level of TNF-α and IL-6 were measured by ELISA. In vivo: Comparing the Iso group to the control, the HMI, LVMI, TDM were significantly increased; the protein expression of TLR4 and p65 were increased, while the IκBα were decreased; the expression of ANP, TLR4 mRNA, and TNF-α, IL-6 in serum were significantly increased. These changes could be partly prevented by As IV and Pro. In vitro: the over-expression of the cell size, total protein content could remarkably down-regulated by As IV and Pro, and the results of RT-PCR, Western blot and ELISA were similar to those of in vivo. The results of these studies indicate that Astragaloside IV has good protective effect on myocardial hypertrophy induced by isoproterenol. More specifically, the cardioprotection is related to inhibiting the TLR4/NF-кB signaling pathway and the attenuating inflammatory effect. Astragaloside IV (PubChem CID:122690); BAY 11-7082 (PubChem CID:5353431); Propranolol (PubChem CID:62882); Isoproterenol (PubChem CID: 5806). © 2013 The Authors. Published by Elsevier Ireland Ltd All rights reserved.

  5. Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-κB signaling pathway.

    PubMed

    Lu, Meili; Tang, Futian; Zhang, Jing; Luan, Aina; Mei, Meng; Xu, Chonghua; Zhang, Suping; Wang, Hongxin; Maslov, Leonid N

    2015-04-01

    Myocardial ischemia/reperfusion (MI/R) injury, in which inflammatory response and cell apoptosis play a vital role, is frequently encountered in clinical practice. Astragaloside IV (AsIV), a small molecular saponin of Astragalus membranaceus, has been shown to confer protective effects against many cardiovascular diseases. The present study was aimed to investigate the antiinflammatory and antiapoptotic effects and the possible mechanism of AsIV on MI/R injury in rats. Rats were randomly divided into sham operation group, MI/R group and groups with combinations of MI/R and different doses of AsIV. The results showed that the expressions of myocardial toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were significantly increased, and apoptosis of cardiomyocytes was induced in MI/R group compared with that in sham operation group. Administration of AsIV attenuated MI/R injury, downregulated the expressions of TLR4 and NF-κB and inhibited cell apoptosis as evidenced by decreased terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells, B-cell lymphoma-2 associated X protein and caspase-3 expressions and increased B-cell lymphoma-2 expression compared with that in MI/R group. In addition, AsIV treatment reduced levels of inflammatory cytokines induced by MI/R injury. In conclusion, our results demonstrated that AsIV downregulates TLR4/NF-κB signaling pathway and inhibits cell apoptosis, subsequently attenuating MI/R injury in rats. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Evaluation of in situ expression of effector and regulatory cytokines, TLR, galectins and matrix metalloproteinases in oral manifestations of paracoccidioidomycosis.

    PubMed

    de Araújo, Marcelo Sivieri; Alves, Polyanna Miranda; de Lima, Lilian Margareth Biagioni; da Silva, Marcelo Fernandes; de Lima Pereira, Sanívia Aparecida; Rodrigues, Virmondes; Rodrigues, Denise Bertulucci Rocha

    2015-01-01

    Although the pathophysiology of paracoccidioidomycosis (PCM) is not completely understood, the study of immune response against fungus has provided insight into understanding the natural course of the disease and its clinical manifestations, hence contributing to the development of preventive measures and treatment proposals. The aim of this study was to evaluate the histopathological and immunological aspects involved in the role of different effector and regulatory responses, as well as the correlation between the TLRs, Galectins, Matrix Metalloproteinases and cytoplasmic proteases of mast cells in this infection. Sixteen biopsy specimens with oral lesions of chronic PCM, as well as 13 sections of normal oral mucosa were analyzed. Histopathological and immunological aspects involved in the role of different effector and regulatory responses were evaluated. Indirect immunohistochemistry was performed for IL-17, IL-10, IL-4, TGF-β, FoxP3, Gal-1, Gal-3, Gal-9, TLR-2, TLR-4, MMP-3 and MMP-9, as well as for chymase and tryptase for mast cells identification. Fibrosis was quantified using Picrosirius. There was a significant increase in the area of fibrosis and in the number of cells expressing IL-10, IL-4, IL-17, FoxP3, Gal-3, TLR-2, MMP3 and MMP9 in patients with PCM in comparison with patients in the group control. There was no difference in the expression of TGF-β, TLR-4, Gal-1 or Gal-9. Mast cells number was found to be significantly lower in oral chronic PCM when compared to control samples after quantification of mast cells and expression of chymase and tryptase. PCM granulomas were classified to the morphological aspects in organized ou non-organized. Expression of IL-4 in non-organized granulomas was significantly higher. The proteins studied herein appear to play an important role in the development and maintenance of oral lesions of PCM, as well as in the processes of development and progression of lesions caused by the fungus and by the immune response associated with the infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB

    PubMed Central

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Verstrepen, Kevin; Gregoire, Françoise; Bolaky, Nargis; Delforge, Valérie; Flamand, Véronique

    2016-01-01

    In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (IκBα). In DC, LPS increased MCP-1, TLR-4, and nuclear factor-κB1 (NFκB1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NFκB1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NFκB may be involved in the LPS-induced regulation of these genes. PMID:27881903

  8. Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB.

    PubMed

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Verstrepen, Kevin; Gregoire, Françoise; Bolaky, Nargis; Delforge, Valérie; Flamand, Véronique; Perret, Jason; Delporte, Christine

    2016-01-01

    In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (I κ B α ). In DC, LPS increased MCP-1, TLR-4, and nuclear factor- κ B1 (NF κ B1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NF κ B1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NF κ B may be involved in the LPS-induced regulation of these genes.

  9. Lipopolysaccharide-Induced Acute Kidney Injury Is Dependent on an IL-18 Receptor Signaling Pathway

    PubMed Central

    Nozaki, Yuji; Hino, Shoichi; Ri, Jinhai; Sakai, Kenji; Nagare, Yasuaki; Kawanishi, Mai; Niki, Kaoru; Funauchi, Masanori; Matsumura, Itaru

    2017-01-01

    The proinflammatory cytokine interleukin (IL)-18 is an important mediator of the organ failure induced by endotoxemia. IL-18 (known as an interferon-gamma (IFN-γ) inducing factor), and other inflammatory cytokines have important roles in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). We investigated the effect of inflammatory cytokines and Toll-like receptor 4 (TLR4) expression, an event that is accompanied by an influx of monocytes, including CD4+ T cells and antigen-presenting cells (APCs) in IL-18Rα knockout (KO) mice and wild-type (WT) mice after LPS injection. In the acute advanced phase, the IL-18Rα KO mice showed a higher survival rate and a suppressed increase of blood urea nitrogen, increased levels of proinflammatory cytokines such as IFN-γ and IL-18, the infiltration of CD4+ T cells and the expression of kidney injury molecule-1 as an AKI marker. In that phase, the renal mRNA expression of the M1 macrophage phenotype and C-C chemokine receptor type 7 as the maturation marker of dendritic cells (DCs) was also significantly decreased in the IL-18Rα KO mice, although there were small numbers of F4/80+ cells and DCs in the kidney. Conversely, there were no significant differences in the expressions of mRNA and protein TLR4 after LPS injection between the WT and IL-18Rα KO groups. Our results demonstrated that the IL-18Rα-mediated signaling pathway plays critical roles in CD4+ T cells and APCs and responded more quickly to IFN-γ and IL-18 than TLR4 stimulation in the pathogenesis of LPS-induced AKI. PMID:29261164

  10. Molecular Genetic Analysis of an Endotoxin Nonresponder Mutant Cell Line

    PubMed Central

    Schromm, Andra B.; Lien, Egil; Henneke, Philipp; Chow, Jesse C.; Yoshimura, Atsutoshi; Heine, Holger; Latz, Eicke; Monks, Brian G.; Schwartz, David A.; Miyake, Kensuke; Golenbock, Douglas T.

    2001-01-01

    Somatic cell mutagenesis is a powerful tool for characterizing receptor systems. We reported previously two complementation groups of mutant cell lines derived from CD14-transfected Chinese hamster ovary–K1 fibroblasts defective in responses to bacterial endotoxin. Both classes of mutants expressed a normal gene product for Toll-like receptor (TLR)4, and fully responded to stimulation by tumor necrosis factor (TNF)-α or interleukin (IL)-1β. We identified the lesion in one of the complementation groups in the gene for MD-2, a putative TLR4 coreceptor. The nonresponder phenotype of this mutant was reversed by transfection with MD-2. Cloning of MD-2 from the nonresponder cell line revealed a point mutation in a highly conserved region resulting in a C95Y amino acid exchange. Both forms of MD-2 colocalized with TLR4 on the cell surface after transfection, but only the wild-type cDNA reverted the lipopolysaccharide (LPS) nonresponder phenotype. Furthermore, soluble MD-2, but not soluble MD-2C95Y, functioned to enable LPS responses in cells that expressed TLR4. Thus, MD-2 is a required component of the LPS signaling complex and can function as a soluble receptor for cells that do not otherwise express it. We hypothesize that MD-2 conformationally affects the extracellular domain of TLR4, perhaps resulting in a change in affinity for LPS or functioning as a portion of the true ligand for TLR4. PMID:11435474

  11. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. © 2016 John Wiley & Sons Ltd.

  12. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells.

    PubMed

    Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland

    2009-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.

  13. A novel 1,2-benzenediamine derivative FC-99 suppresses TLR3 expression and ameliorates disease symptoms in a mouse model of sepsis.

    PubMed

    Gong, Wei; Hu, Erling; Dou, Huan; Song, Yuxian; Yang, Liu; Ji, Jianjian; Li, Erguang; Tan, Renxiang; Hou, Yayi

    2014-11-01

    Sepsis is a clinical condition characterized by overwhelming systemic inflammation with high mortality rate and high prevalence, but effective treatment is still lacking. Toll-like receptor 3 (TLR3) is an endogenous sensor, thought to regulate the amplification of immune response during sepsis. Modulators of TLR3 have an advantage in the treatment of sepsis. Here, we aimed to explore the mechanism of a monosubstituted 1,2-benzenediamine derivative FC-99 {N(1) -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine}on modulating TLR3 expression and its therapeutic potential on mouse model of sepsis. Cells were pretreated with FC-99 followed by poly(I:C) or IFN-α stimulation; TLR3 and other indicators were assayed. Female C57BL/6 mice were subjected to sham or caecal ligation puncture (CLP) surgery after i.p. injection of vehicle or FC-99; serum and tissues were collected for further experiments. FC-99 suppressed inflammatory response induced by poly(I:C) with no effect on cell viability or uptake of poly(I:C). FC-99 also inhibited TLR3 expression induced by not only poly(I:C) but also by exogenous IFN-α. This inhibition of FC-99 was related to the poly(I:C)-evoked IRF3/IFN-α/JAK/STAT1 signalling pathway. In CLP-induced model of sepsis, FC-99 administration decreased mice mortality and serum levels of inflammatory factors, attenuated multiple organ dysfunction and enhanced bacterial clearance. Accordingly, systemic and local expression of TLR3 was reduced by FC-99 in vivo. FC-99 reversed TLR3 expression and ameliorate CLP-induced sepsis in mice. Thus, FC-99 will be a potential therapeutic candidate for sepsis. © 2014 The British Pharmacological Society.

  14. Replication of Mycobacterium tuberculosis in retinal pigment epithelium.

    PubMed

    Nazari, Hossein; Karakousis, Petros C; Rao, Narsing A

    2014-06-01

    Mycobacterium tuberculosis is an important cause of posterior uveitis in tuberculosis-endemic regions. Clinical and histopathologic evidence suggests that retinal pigment epithelium (RPE) can harbor M tuberculosis. However, the mechanism of M tuberculosis phagocytosis and its growth in RPE is not clear. To investigate M tuberculosis phagocytosis, replication, and cytopathic effects in RPE cells compared with macrophages. Human fetal RPE and monocytic leukemia macrophage (THP-1) cell lines were cultured, and RPE and THP-1 cells were exposed to avirulent M tuberculosis H37Ra. Mycobacteria were added to RPE and THP-1 cells with a 5:1 multiplicity of infection. Nonphagocytized M tuberculosis was removed after 12 hours of exposure (day 0). Cells were harvested at days 0, 1, and 5 to count live and dead cells and intracellular mycobacteria. Toll-like receptor 2 (TLR2) and TLR4 expression was determined by immunohistochemistry; intracellular bacillary load, following TLR2 and TLR4 blockade. Number of intracellular M tuberculosis, cell survival, and TLR2 and TLR4 expression in RPE and THP-1 cells following exposure to M tuberculosis. At day 0, an equal number of intracellular M tuberculosis was observed per THP-1 and RPE cells (0.45 and 0.35 M tuberculosis per RPE and THP-1 cells, respectively). Mean (SD) number of intracellular M tuberculosis at day 5 was 1.9 (0.03) and 3.3 (0.01) per RPE and THP-1 cells, respectively (P < .001). Viability of infected RPE was significantly greater than that of THP-1 cells at day 5 (viable cells: 17 [8%] THP-1 vs 73% [4%] RPE; P < .05). Expression of TLR2 and TLR4 was detected in both cell types after 12 hours of exposure. Inhibition of TLR2 and TLR4 reduced intracellular M tuberculosis counts in RPE but not in THP-1 cells. Mycobacterium tuberculosis is phagocytized by RPE to a similar extent as in macrophages. However, RPE cells are better able to control bacillary growth and RPE cell survival is greater than that of THP-1 cells following mycobacterial infection, suggesting that RPE can serve as a reservoir for intraocular M tuberculosis infection.

  15. Functional Redundancy of MyD88-dependent Signaling Pathways in a Murine Model of Histidyl-tRNA Synthetase-induced Myositis

    PubMed Central

    Fernandez, Irina; Harlow, Lisa; Zang, Yunjuan; Liu-Bryan, Ru; Ridgway, William M.; Clemens, Paula R.; Ascherman, Dana P.

    2013-01-01

    We have previously shown that intramuscular administration of bacterially expressed murine histidyl-tRNA synthetase (HRS) triggers florid muscle inflammation (relative to appropriate control proteins) in various congenic strains of mice. Because severe disease develops even in the absence of adaptive immune responses to HRS, we sought to identify innate immune signaling components contributing to our model of HRS-induced myositis. In vitro stimulation assays demonstrated HRS-mediated activation of HEK293 cells transfected with either TLR2 or TLR4, revealing an excitatory capacity exceeding that of other bacterially expressed fusion proteins. Corresponding to this apparent functional redundancy of TLR signaling pathways, HRS immunization of B6.TLR2−/− and B6.TLR4−/− single knockout mice yielded significant lymphocytic infiltration of muscle tissue comparable to that produced in C57BL/6 WT mice. In contrast, concomitant elimination of TLR2 and TLR4 signaling in B6.TLR2−/−.TLR4−/− double knockout mice markedly reduced the severity of HRS-induced muscle inflammation. Complementary subfragment analysis demonstrated that amino acids 60–90 of HRS were absolutely required for in vitro as well as in vivo signaling via these MyD88-dependent TLR pathways—effects mediated, in part, through preferential binding of exogenous ligands capable of activating specific TLRs. Collectively, these experiments indicate that multiple MyD88-dependent signaling cascades contribute to this model of HRS-induced myositis, underscoring the antigenic versatility of HRS and confirming the importance of innate immunity in this system. PMID:23842751

  16. Tissue factor and Toll-like receptor (TLR)4 in hyperglycaemia-hyperinsulinaemia. Effects in healthy subjects, and type 1 and type 2 diabetes mellitus.

    PubMed

    Singh, Anamika; Boden, Guenther; Rao, A Koneti

    2015-04-01

    Diabetes mellitus (DM) patients have an increased incidence of cardiovascular events. Blood tissue factor-procoagulant activity (TF-PCA), the initiating mechanism for blood coagulation, is elevated in DM. We have shown that hyperglycaemia (HG), hyperinsulinaemia (HI) and combined HG+HI (induced using 24-hour infusion clamps) increases TF-PCA in healthy and type 2 DM (T2DM) subjects, but not in type 1 DM (T1DM) subjects. The mechanisms for this are unknown. DM patients have elevated plasma lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 ligand. We postulated that TLR4 plays a role in modulating TF levels. We studied the effect of HG+HI on TLR4 and TF-PCA in vivo during 24-hour HG+HI infusion clamps in healthy subjects, and T1DM and T2DM subjects, and in vitro in blood. In vivo, in healthy subjects, 24-hour HG + HI infusion increased TLR4 six-fold, which correlated with TF-PCA (r= 0.91, p<0.0001). T2DM patients showed smaller increases in both. In T1DM subjects, TLR4 declined (50%, p<0.05) and correlated with TF-PCA (r=0.55; p<0.05). In vitro, HG (200 mg/dl added glucose) and HI (1-100 nM added insulin) increased TF-PCA in healthy subjects (~2-fold, 2-4 hours). Insulin inhibited by ~30% LPS-induced increase in TF-PCA and high glucose reversed it. TLR4 levels paralleled TF-PCA (r=0.71, p<0.0001); HG and HI increased TLR4 and insulin inhibited LPS-induced TLR4 increase. This is first evidence that even in healthy subjects, HG of short duration increases TLR4 and TF-PCA, key players in inflammation and thrombosis. TLR4-TF interplay is strikingly different in non-diabetic, T1DM and T2DM subjects.

  17. Tissue Factor and Toll Like Receptor (TLR)4 in Hyperglycemia-Hyperinsulinemia: Effects in Healthy Subjects, and Type 1 and Type 2 Diabetes Mellitus

    PubMed Central

    Singh, Anamika; Boden, Guenther; Rao, A. Koneti

    2015-01-01

    SUMMARY Background Diabetes mellitus (DM) patients have increased cardiovascular events. Blood tissue factor-procoagulant activity (TF-PCA), the initiating mechanism for blood coagulation, is elevated in DM. We have shown that hyperglycemia (HG), hyperinsulinemia (HI) and combined HG+HI (induced using 24 hr infusion clamps) increases TF-PCA in healthy and T2DM subjects, but not in T1DM subjects. The mechanisms for this are unknown. DM patients have elevated plasma lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 ligand. We postulated that TLR4 plays a role in modulating TF levels. Objectives and Methods We studied the effect of HG+HI on TLR4 and TF-PCA in vivo during 24 hr HG+HI infusion clamps in healthy subjects, and T1DM and T2DM subjects, and in vitro in blood. Results In vivo, in healthy subjects, 24 hr HG + HI infusion increased TLR4 6-fold, which correlated with TF-PCA (r= 0.91, p<0.0001). T2DM patients showed smaller increases in both. In T1DM subjects, TLR4 declined (50%, p<0.05) and correlated with TF-PCA (r=0.55; p<0.05). In vitro, HG (200 mg/dl added glucose) and HI (1-100 nM added insulin) increased TF-PCA in healthy subjects (~2-fold, 2-4 hr). Insulin inhibited by ~30% LPS-induced increase in TF-PCA and high glucose reversed it. TLR4 levels paralleled TF-PCA (r=0.71, p<0.0001); HG and HI increased TLR4 and insulin inhibited LPS-induced TLR4 increase. Conclusions This is first evidence that even in healthy subjects, HG of short duration increases TLR4 and TF-PCA, key players in inflammation and thrombosis. TLR4-TF interplay is strikingly different in non-diabetic, T1DM and T2DM subjects. PMID:25653143

  18. Newly Identified TLR9 Stimulant, M6-395 Is a Potent Polyclonal Activator for Murine B Cells.

    PubMed

    Park, Mi-Hee; Jung, Yu-Jin; Kim, Pyeung-Hyeun

    2012-02-01

    Toll-like receptors (TLRs) have been extensively studied in recent years. However, functions of these molecules in murine B cell biology are largely unknown. A TLR4 stimulant, LPS is well known as a powerful polyclonal activator for murine B cells. In this study, we explored the effect of a murine TLR9 stimulant, M6-395 (a synthetic CpG ODNs) on B cell proliferation and Ig production. First, M6-395 was much more potent than LPS in augmenting B cell proliferation. As for Ig expression, M6-395 facilitated the expression of both TGF-β1-induced germ line transcript α (GLTα) and IL-4-induced GLTγ1 as levels as those by LPS and Pam3CSK4 (TLR1/2 agonist) : a certain Ig GLT expression is regarded as an indicative of the corresponding isotype switching recombination. However, IgA and IgG1 secretion patterns were quite different--these Ig isotype secretions by M6-395 were much less than those by LPS and Pam3CSK4. Moreover, the increase of IgA and IgG1 production by LPS and Pam3CSK4 was virtually abrogated by M6-395. The same was true for the secretion of IgG3. We found that this unexpected phenomena provoked by M6-395 is attributed, at least in part, to its excessive mitogenic nature. Taken together, these results suggest that M6-395 can act as a murine polyclonal activator but its strong mitogenic activity is unfavorable to Ig isotype switching.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw; Liou, Saou-Hsing; Yeh, Szu-Ching

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs inmore » the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause ICAM-1/IL‑8 expression in endothelial cells via TLRs. • Nickel induces the inflammatory responses via a TLR-4/NF-κB pathway. • Zinc causes the inflammatory responses via a broader TLRs/NF-κB signaling. • Nickel shows a significantly higher inflammatory effect than zinc. • NF-κB activation is the primary mechanism involved in the inflammatory responses.« less

  20. Toll-like receptor 4 deficiency causes pulmonary emphysema

    PubMed Central

    Zhang, Xuchen; Shan, Peiying; Jiang, Ge; Cohn, Lauren; Lee, Patty J.

    2006-01-01

    TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4–/– mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4–/– mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema. PMID:17053835

  1. Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States.

    PubMed

    Woller, Sarah A; Choi, Soo-Ho; An, Eun Jung; Low, Hann; Schneider, Dina A; Ramachandran, Roshni; Kim, Jungsu; Bae, Yun Soo; Sviridov, Dmitri; Corr, Maripat; Yaksh, Tony L; Miller, Yury I

    2018-05-29

    Apolipoprotein A-I binding protein (AIBP) reduces lipid raft abundance by augmenting the removal of excess cholesterol from the plasma membrane. Here, we report that AIBP prevents and reverses processes associated with neuroinflammatory-mediated spinal nociceptive processing. The mechanism involves AIBP binding to Toll-like receptor-4 (TLR4) and increased binding of AIBP to activated microglia, which mediates selective regulation of lipid rafts in inflammatory cells. AIBP-mediated lipid raft reductions downregulate LPS-induced TLR4 dimerization, inflammatory signaling, and expression of cytokines in microglia. In mice, intrathecal injections of AIBP reduce spinal myeloid cell lipid rafts, TLR4 dimerization, neuroinflammation, and glial activation. Intrathecal AIBP reverses established allodynia in mice in which pain states were induced by the chemotherapeutic cisplatin, intraplantar formalin, or intrathecal LPS, all of which are pro-nociceptive interventions known to be regulated by TLR4 signaling. These findings demonstrate a mechanism by which AIBP regulates neuroinflammation and suggest the therapeutic potential of AIBP in treating preexisting pain states. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Innate inflammatory gene expression profiling in potential brain-dead donors: detailed investigation of the effect of common corticosteroid therapy.

    PubMed

    Gholamnezhadjafari, Reza; Tajik, Nader; Falak, Reza; Aflatoonian, Reza; Dehghan, Sanaz; Rezaei, Abbas

    2017-07-01

    Our study aimed to assess the influence of common methylprednisolone therapy on innate inflammatory factors in potential brain-dead organ donors (BDDs). The study groups consisted of 50 potential BDDs who received 15 mg/kg/d methylprednisolone and 25 live organ donors (LDs) as control group. Innate immunity gene expression profiling was performed by RT-PCR array. Soluble serum cytokines and chemokines, complement components, heat shock protein 70 (HSP70) and high mobility group box-1 (HMGB1) were measured by ELISA. Surface expression of TLR2 and TLR4 were determined using flow cytometry. Gene expression profiling revealed up-regulation of TLRs 1, 2, 4, 5, 6, 7 and 8, MYD88, NF-κB, NF-κB1A, IRAK1, STAT3, JAK2, TNF-α, IL-1β, CD86 and CD14 in the BDD group. Remarkably, the serum levels of C-reactive protein and HSP70 were considerably higher in the BDD group. In addition, serum amounts of IL-1β, IL-6, TNF-α, HMGB1, HSP70, C3a and C5a, but not IL-8, sCD86 or monocyte chemoattractant protein-1, were significantly increased in the BDD group. Significant differences were observed in flow cytometry analysis of TLR2 and TLR4 between the two groups. In summary, common methylprednisolone therapy in BDDs did not adequately reduce systemic inflammation, which could be due to inadequate doses or inefficient impact on other inflammatory-inducing pathways, for example oxidative stress or production of damage-associated molecules.

  3. Lipopolysaccharide-regulated production of bone sialoprotein and interleukin-8 in human periodontal ligament fibroblasts: the role of toll-like receptors 2 and 4 and the MAPK pathway.

    PubMed

    Zhang, Y; Li, X

    2015-04-01

    Lipopolysaccharide (LPS) on the cell wall of periodontal pathogens is a major mediator of the inflammatory response and can enhance alveolar bone resorption in periodontitis. Bone sialoprotein is an early marker of osteoblast differentiation. The proinflammatory cytokine, interleukin-8 (IL-8), induces osteoclast differentiation, maturation and maintenance of bone resorption activity. However, the effects of LPS from periodontal pathogens on the expression of bone sialoprotein and IL-8 in human osteoblasts and the mechanism of periodontal bone metabolism regulation are rather unclear. The objectives of this study were to determine the effects of Porphyromonas gingivalis LPS on the production of bone sialoprotein and IL-8 in human periodontal ligament fibroblasts (hPDLFs), and to investigate whether toll-like receptor (TLR) 2, TLR4 and MAPKs pathways are involved in the regulation of production of bone sialoprotein and IL-8 by P. gingivalis LPS. The third-generation of hPDLFs were cultured with mineralization-inducing culture medium. After hPDLFs were treated with P. gingivalis LPS, bone sialoprotein and IL-8 mRNA expression were detected using Real time PCR. Then hPDLFs were transiently transfected with siTLR2 or siTLR4 (20 nm) or inhibited by MAPK signaling pathways inhibitors, and then bone sialoprotein and IL-8 mRNA and protein expression were also detected using Real time PCR and western blotting. Treatments with 0.01 and 0.1 mg/L of P. gingivalis LPS for 8 h up-regulated bone sialoprotein mRNA expression, whereas 10 and 100 mg/L of P. gingivalis LPS induced a significant decrease in the expression of bone sialoprotein mRNA. In contrast, IL8 mRNA levels were increased significantly by 10 mg/L of P. gingivalis LPS. Interestingly, small interfering RNA (siRNA) knock down of the TLR2 and ERK1/2 inhibitor, PD98059, abolished the effects of P. gingivalis LPS on the bone sialoprotein mRNA level, whereas siRNA knock down of the TLR2 and p38 MAPK inhibitor, SB203580, blocked the effect of P. gingivalis LPS on IL-8 in hPDLFs. This study suggests that in hPDLFs, P. gingivalis LPS suppresses bone sialoprotein and enhances IL-8 gene and protein expression via TLR2 and ERK1/2 or the p38 MAPK signaling pathway, respectively. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells

    PubMed Central

    Wang, Mingyong; Chen, Yue; Zhang, Yani; Zhang, Liyun; Lu, Xiao; Chen, Zhengliang

    2011-01-01

    Mannan-binding lectin (MBL) plays a key role in the lectin pathway of complement activation and can influence cytokine expression. Toll-like receptor 4 (TLR4) is expressed extensively and has been demonstrated to be involved in lipopolysaccharide (LPS)-induced signaling. We first sought to determine whether MBL exposure could modulate LPS-induced inflammatory cytokine secretion and nuclear factor-κB (NF-κB) activity by using the monocytoid cell line THP-1. We then investigated the possible mechanisms underlying any observed regulatory effect. Using ELISA and reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we found that at both the protein and mRNA levels, treatment with MBL suppresses LPS-induced tumor-necrosis factor (TNF)-α and IL-12 production in THP-1 cells. An electrophoretic mobility shift assay and western blot analysis revealed that MBL treatment can inhibit LPS-induced NF-κB DNA binding and translocation in THP-1 cells. While the binding of MBL to THP-1 cells was evident at physiological calcium concentrations, this binding occurred optimally in response to supraphysiological calcium concentrations. This binding can be partly inhibited by treatment with either a soluble form of recombinant TLR4 extracellular domain or anti-TLR4 monoclonal antibody (HTA125). Activation of THP-1 cells by LPS treatment resulted in increased MBL binding. We also observed that MBL could directly bind to the extracellular domain of TLR4 in a dose-dependent manner, and this interaction could attenuate the binding of LPS to cell surfaces. Taken together, these data suggest that MBL may affect cytokine expression through modulation of LPS-/TLR-signaling pathways. These findings suggest that MBL may play an important role in both immune regulation and the signaling pathways involved in cytokine networks. PMID:21383675

  5. Cigarette smoke extract modulates human beta-defensin-2 and interleukin-8 expression in human gingival epithelial cells.

    PubMed

    Mahanonda, R; Sa-Ard-Iam, N; Eksomtramate, M; Rerkyen, P; Phairat, B; Schaecher, K E; Fukuda, M M; Pichyangkul, S

    2009-08-01

    Human gingival epithelial cells (HGECs) are continually exposed to oral bacteria and to other harmful agents. Their responses to stimuli are critical in maintaining periodontal homeostasis. The aim of this study was to investigate the modulating effect of cigarette smoke extract (CSE) on the innate immune responses of HGECs. Toll-like receptor (TLR) expression of HGECs was determined by reverse transcriptase-polymerase chain reaction (RT-PCR). The effect of CSE or nicotine on the expression of the antimicrobial peptide human beta-defensin-2 (hBD-2) and the pro-inflammatory cytokine interleukin (IL)-8 in stimulated HGEC cultures was evaluated by RT-PCR and enzyme-linked immunosorbent assay. The HGECs expressed mRNA of TLRs 1, 2, 3, 5, 6, 9, 10, and minimally of TLR4, but not of TLRs 7 or 8. Stimulation of HGECs with highly purified TLR2, 3 or 5 ligands led to expression of hBD-2 and of IL-8. Enhancement of hBD-2 and IL-8 was observed in HGECs after combined stimulation with Porphyromonas gingivalis lipopolysaccharide (TLR2 ligand) and tumour necrosis factor-alpha, compared with stimulation using either agent alone. After CSE exposure, hBD-2 expression was markedly reduced in stimulated HGEC cultures, whereas IL-8 expression was markedly increased. These effects were also observed, but were markedly attenuated, upon nicotine treatment. Human gingival epithelial cells play a critical role in orchestrating the innate immune responses of periodontal tissue via TLR signalling. Our results represent the first demonstration that CSE can modulate HGEC function by suppressing hBD-2 and enhancing IL-8 production, and this may be, in part, a possible mechanism which promotes periodontal disease.

  6. Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Miao, E-mail: hemiao@mail.cmu.edu.cn; Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp; Song, Yuan

    Asian sand dust (ASD) is known to exacerbate asthma, although its mechanism is not yet well understood. In this study, when the effects on inflammatory response by LPS present in ASD was investigated by measuring the gene expression of cytokines and chemokines in RAW264.7 cells treated with ASD and/or polymyxin B (PMB), the ASD effects were attenuated by PMB, but not completely. When an in vitro study was performed using bone marrow-derived macrophages (BMDMs) from WT, TLR2{sup −/−}, TLR4{sup −/−}, and MyD88{sup −/−} BALB/c mice and BMDMs from WT, TLR2{sup −/−}, TLR4{sup −/−}, TLR2/4{sup −/−}, TLR7/9{sup −/−}, and MyD88{sup −/−}more » C57BL/6J mice, cytokine (IL-6, IL-12) production in BMDMs was higher in ASD-stimulated TLR2{sup −/−} cells than in TLR4{sup −/−} cells, whereas it was lower or undetectable in TLR2/4{sup −/−} and MyD88{sup −/−} cells. These results suggest that ASD causes cytokine production predominantly in a TLR4/MyD88-dependent pathway. When WT and TLRs 2{sup −/−}, 4{sup −/−}, and MyD88{sup −/−} BALB/c mice were intratracheally challenged with OVA and/or ASD, ASD caused exacerbation of lung eosinophilia along with Th2 cytokine and eosinophil-relevant chemokine production. Serum OVA-specific IgE and IgG1 similar to WT was observed in TLRs 2{sup −/−}, 4{sup −/−} mice, but not in MyD88{sup −/−} mice. The Th2 responses in TLR2{sup −/−} mice were attenuated remarkably by PMB. These results indicate that ASD exacerbates lung eosinophilia in a MyD88-dependent pathway. TLRs 2 and 4 signaling may be important in the increase in lung eosinophilia. Also, the TLR4 ligand LPS and TLR2 ligand like β-glucan may be strong candidates for exacerbation of lung eosinophilia. - Highlights: • ASD enhanced Th2 response in TLR2{sup −/−}, TLR4{sup −/−} and WT mice, but not in MyD88{sup −/−}. • Th2 responses in TLR2{sup −/−} mice were attenuated by LPS inhibitor polymyxin B. • TLR2 and TLR4 signaling is important in allergic lung disease aggravation by ASD. • MyD88 is the key adapter molecule in the signaling pathway for Th2 activation. • ASD-bound LPS and β-glucan may be strong candidates for the aggravating substances.« less

  7. Human sperm Toll-like receptor 4 (TLR4) mediates acrosome reaction, oxidative stress markers, and sperm parameters in response to bacterial lipopolysaccharide in infertile men.

    PubMed

    Sahnoun, Sana; Sellami, Afifa; Chakroun, Nozha; Mseddi, Malek; Attia, Hammadi; Rebai, Tarek; Lassoued, Saloua

    2017-08-01

    To study the role of Toll-like receptor 4 (TLR4) in human spermatozoa and to assess sperm parameters, oxidative stress markers, and acrosome reaction in response to the stimulation of TLR4 by its ligand, the lipopolysaccharide (LPS), as a major endotoxin of Gram-negative bacteria. Our study was carried out in 73 sperm samples from patients undergoing semen analysis for couple infertility investigations. The studied patients were divided into three groups: normozoospermic fertile patients (n = 13), patients with abnormal and leukospermic semen (n = 13), and patients with abnormal and non-leukospermic semen (n = 47). TLR4 expression in human spermatozoa was initially analyzed by western blot. Sperm samples were incubated in the presence of LPS (200 ng/ml) for 18 h. Then, sperm motility and vitality were evaluated by microscopic observation and oxidative stress markers as malondialdehyde (MDA) and carbonyl groups (CG) were spectrophotometrically assessed in neat and selected sperm. A triple-stain technique was also performed to evaluate acrosome reaction in 15 sperm samples from infertile patients. TLR4 expression was confirmed in human spermatozoa with a molecular weight of 69 kDa. In the normozoospermic group, no significant differences in sperm parameters and oxidative stress markers were shown after incubation with LPS in neat and selected sperms. Regarding samples from the non-leukospermic group, LPS reduced spermatozoa motility and vitality rates in selected sperm (P = 0.003; P = 0.004, respectively). A significant increase of MDA and CG levels was also detected (P = 0.01; P = 0.02, respectively). However, only the MDA levels were significantly increased (P = 0.01) in neat LPS-stimulated sperm. The same results were shown within the leukospermic group. The comparison between the two groups, leukospermic and non-leukospermic, in selected sperms showed a more important LPS effect in the leukospermic group significantly on motility and MDA rates (P = 0.006; P = 0.009, respectively). Furthermore, a significant decrease in reacted spermatozoa rate was detected in response to LPS in selected sperm samples from infertile men (P = 0.03). These findings indicate that human spermatozoa express TLR4 and respond to LPS stimulation with alterations in viability, motility, and the acrosome reaction implicating reactive oxygen species (ROS) production in sperm samples from infertile patients.

  8. Effect of strenuous exercise and ex vivo TLR3 and TLR4 stimulation on inflammatory gene expression in equine pulmonary leukocytes.

    PubMed

    Mignot, Clémence C; Pirottin, Dimitri; Farnir, Frédéric; de Moffarts, Brieuc; Molitor, Céline; Lekeux, Pierre; Art, Tatiana

    2012-06-30

    The effects of strenuous exercise and ex vivo stimulation of TLR3 and TLR4 pathways on the expression of six inflammatory genes in equine pulmonary leukocytes were investigated. The genes tested were interferon-beta (IFN-β), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon gamma-induced protein 10 (IP-10), chemokine (c-c motif) ligand 5 (RANTES) and tumor necrosis factor-alpha (TNF-α). We hypothesized that strenuous exercise would modulate basal gene expression on one hand and modulate the response to bacterial lipopolysaccharide (LPS) and to polyinosinic:polycytidylic acid (Poly IC) on the other hand. Eight young Thoroughbred mares were selected for the experiment. Bronchoalveolar lavages were performed on horses 48 h before and 24h after the completion of treadmill exercise until fatigue. Differential counts were performed on the bronchoalveolar lavage cells. Real-time PCR was used to quantify cytokine expression in pulmonary leukocytes. Target gene expression was normalized to the expression of three housekeeping genes (HKG). There were no significant differences in the mRNA expression of the six cytokines between pre-exercise and post-exercise cells. LPS and Poly IC induced respectively significant increases of TNF-α, IFN-β, IL-6, IL-1β, and TNF-α, IFN-β, IP-10 and RANTES, both before and after exercise. However, exercise induced a significant decrease of the genes response to LPS and Poly IC. These findings may suggest that strenuous treadmill exercise exerts a deleterious effect on part of the pulmonary immune response in horses 24h following an intense physical activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Expression analysis of Toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure.

    PubMed

    Bharati, Jaya; Dangi, S S; Mishra, S R; Chouhan, V S; Verma, V; Shankar, O; Bharti, M K; Paul, A; Mahato, Dilip K; Rajesh, G; Singh, G; Maurya, V P; Bag, S; Kumar, Puneet; Sarkar, M

    2017-04-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15 days acclimation at thermo neutral zone (TNZ) in psychrometric chamber, animals were exposed at 42°C for 6h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (day 1, 5 and 12), after heat stress exposure (day 1-10, Short Term Heat Stress Acclimation - STHSA; day 15-23, Long Term Heat Stress Acclimation - LTHSA) and recovery period (day 7 and 12) and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. Serum cortisol concentration was assessed by RIA. The mRNA and protein expression in PBMCs were determined by qPCR and western blot respectively. Samples at TNZ were taken as control. Serum cortisol concentration was increased (P<0.05) during STHSA and gradually declined during LTHSA. Toll like receptor 2 (TLR 2) expression was up regulated (P<0.05) during STHSA and declined to basal level during LTHSA and recovery phase. However, toll like receptor 4 (TLR 4) expression was up regulated (P<0.05) during STHSA and LTHSA while declined in recovery phase. Interleukin 2 (IL2) and interleukin 6 (IL 6) were up regulated (P<0.05) during STHSA and reduced to basal level during LTHSA. PBMCs culture study was conducted to study transcriptional abundance of TLR2/4 and IL2/6 at different temperature-time combinations. The present findings indicate that TLR 2/4 and IL 2/6 could possibly play a vital role in thermo tolerance in Tharparkar cattle during short term and long term heat stress exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis.

    PubMed

    Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K

    2011-11-01

    Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.

  11. Allelic Variation in TLR4 Is Linked to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Chickens

    PubMed Central

    Leveque, Gary; Forgetta, Vincenzo; Morroll, Shaun; Smith, Adrian L.; Bumstead, Nat; Barrow, Paul; Loredo-Osti, J. C.; Morgan, Kenneth; Malo, Danielle

    2003-01-01

    Toll-like receptor 4 (TLR4) is part of a group of evolutionarily conserved pattern recognition receptors involved in the activation of the immune system in response to various pathogens and in the innate defense against infection. We describe here the cloning and characterization of the avian orthologue of mammalian TLR4. Chicken TLR4 encodes a 843-amino-acid protein that contains a leucine-rich repeat extracellular domain, a short transmembrane domain typical of type I transmembrane proteins, and a Toll-interleukin-1R signaling domain characteristic of all TLR proteins. The chicken TLR4 protein shows 46% identity (64% similarity) to human TLR4 and 41% similarity to other TLR family members. Northern blot analysis reveals that TLR4 is expressed at approximately the same level in all tissues tested, including brain, thymus, kidney, intestine, muscle, liver, lung, bursa of Fabricius, heart, and spleen. The probe detected only one transcript of ca. 4.4 kb in length for all tissues except muscle where the size of TLR4 mRNA was ca. 9.6 kb. We have mapped TLR4 to microchromosome E41W17 in a region harboring the gene for tenascin C and known to be well conserved between the chicken and mammalian genomes. This region of the chicken genome was shown previously to harbor a Salmonella susceptibility locus. By using linkage analysis, TLR4 was shown to be linked to resistance to infection with Salmonella enterica serovar Typhimurium in chickens (likelihood ratio test of 10.2, P = 0.00138), suggesting a role of TLR4 in the host response of chickens to Salmonella infection. PMID:12595422

  12. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4.

    PubMed

    Lin, Yan; Yu, Le-Xing; Yan, He-Xin; Yang, Wen; Tang, Liang; Zhang, Hui-Lu; Liu, Qiong; Zou, Shan-Shan; He, Ya-Qin; Wang, Chao; Wu, Meng-Chao; Wang, Hong-Yang

    2012-09-01

    Robust clinical and epidemiologic data support the role of inflammation as a key player in hepatocellular carcinoma (HCC) development. Our previous data showed that gut-derived lipopolysaccharide (LPS) promote HCC development by activating Toll-like receptor 4 (TLR4) expressed on myeloid-derived cells. However, the effects of gut-derived LPS on other types of liver injury models are yet to be studied. The purpose of this study was to determine the importance of gut-derived LPS and TLR4 signaling in a T-cell-mediated hepatitis-Con A-induced hepatitis model, which mimic the viral hepatitis. Reduction of endotoxin using antibiotics regimen or genetic ablation of TLR4 in mice significantly alleviate Con A-induced liver injury by inhibiting the infiltration of T lymphocytes into the liver and the activation of CD4(+) T lymphocytes as well as the production of T helper 1 cytokines; in contrast, exogenous LPS can promote Con A-induced hepatitis and CD4(+) T cells activation in vivo and in vitro. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored Con A-induced liver injury and inflammation, indicating the major cell target of LPS. In addition, TLR4 may positively regulate the target hepatocellular apoptosis via the perforin/granzyme B pathway. These data suggest that gut-derived LPS and TLR4 play important positive roles in Con A-induced hepatitis and modulation of the gut microbiotia may represent a new avenue for therapeutic intervention to treat acute hepatitis induced by hepatitis virus infection, thus to prevent hepatocellular carcinoma.

  13. [AVIAN RECOMBINANT VIRUS H5N1 INFLUENZA (A/VIETNAM/1203/04) AND ITS ESCAPE-MUTANT m13(13) INDUCE EARLY SIGNALING REACTIONS OF THE IMMUNITY IN HUMAN LYMPHOCYTES].

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Ershov, F I

    2016-01-01

    The innate immune receptors TLR4, TLR7, TLR8, and RIG1 recognized the structures of the influenza viruses in human lymphocytes and were activated by the recombinant avian influenza virus A/Vietnam/1203/04 and its escape-mutant m13(13) during early period of interaction. The stimulated levels are not connected with viral reproduction. Donor cells with the low constitutive immune receptors gene expression levels showed higher stimulation. Inflammation virus effects resulted in. increasing production of TNF-alpha and IFN-gamma by lymphocytes. Signaling gene reactions of the parent and mutant viruses endosomal as well as cytoplasmic receptors are very similar. The mutant virus A/Vietnam/1203/04 (HA S145F), stimulated an increase in the transcription level of the membrane receptor gene TLR4 and a decrease in the level of activation of TNF-alpha gene. Further studies of natural influenza virus isolates are necessary to estimate the role of HA antigenic changes on immune reactions in humans.

  14. In vitro and in vivo protective effect of arginine against lipopolysaccharide induced inflammatory response in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Jiang, Jun; Shi, Dan; Zhou, Xiao-Qiu; Hu, Yi; Feng, Lin; Liu, Yang; Jiang, Wei-Dan; Zhao, Ye

    2015-02-01

    The present study was designed to assess the possible protective effects of arginine (Arg) against lipopolysaccharide (LPS) induced inflammatory response in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. Firstly, inflammatory response was established by exposing enterocytes to different concentrations of LPS for 24 h. Secondly, the protective effects of Arg against subsequent LPS exposure were studied in enterocytes. Finally, we investigated whether dietary Arg supplementation could attenuate immune challenge induced by LPS in vivo. The result indicated that 10 mg/L LPS could induced inflammatory response in enterocytes. Cells exposed to LPS (10-30 mg/L) alone for 24 h resulted in a significant increase in lactate dehydrogenase release (LDH) (P < 0.05). The cell viability, protein content, alkaline phosphatase activity were decreased by LPS (P < 0.05). Moreover, LPS exposure significantly increased TNF-α, IL-1β, and IL-6 mRNA expression in vitro (P < 0.05). However, pre-treatment with Arg remarkably prevented the increase of TNF-α, IL-1β, and IL-6 by inhibiting the excessive activation of TLR4-Myd88 signaling pathway through down-regulating TLR4, Myd88, NFκB p65, and MAPK p38 mRNA expression (P < 0.05). Interestingly, the experiment in vivo showed that Arg pre-supplementation could attenuate immune challenge induced by LPS via TLR4-Myd88 signaling pathway, and thus protect fish against LPS-induced inflammatory response. In conclusion, all of these results indicated pre-supplementation with Arg decreased LPS induced immune damage and regulated TLR4-Myd88 signaling pathway in juvenile Jian carp in vivo and in enterocytes in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. CXCR4–CXCL12–CXCR7, TLR2–TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients

    PubMed Central

    D'Alterio, Crescenzo; Nasti, Guglielmo; Polimeno, Marianeve; Ottaiano, Alessandro; Conson, Manuel; Circelli, Luisa; Botti, Giovanni; Scognamiglio, Giosuè; Santagata, Sara; De Divitiis, Chiara; Nappi, Anna; Napolitano, Maria; Tatangelo, Fabiana; Pacelli, Roberto; Izzo, Francesco; Vuttariello, Emilia; Botti, Gerardo; Scala, Stefania

    2016-01-01

    ABSTRACT A neoadjuvant clinical trial was previously conducted in patients with resectable colorectal cancer liver metastases (CRLM). At a median follow up of 28 months, 20/33 patients were dead of disease, 8 were alive with disease and 5 were alive with no evidence of disease. To shed further insight into biological features accounting for different outcomes, the expression of CXCR4–CXCL12–CXCR7, TLR2–TLR4, and the programmed death receptor-1 (PD-1)/programmed death-1 ligand (PD-L1) was evaluated in excised liver metastases. Expression profiles were assessed through qPCR in metastatic and unaffected liver tissue of 33 CRLM neoadjuvant-treated patients. CXCR4 and CXCR7, TLR2/TLR4, and PD-1/PD-L1 mRNA were significantly overexpressed in metastatic compared to unaffected liver tissues. CXCR4 protein was negative/low in 10/31, and high in 21/31, CXCR7 was negative/low in 16/31 and high in 15/31, CXCL12 was negative/low in 14/31 and high in 17/31 CRLM. PD-1 was negative in 19/30 and positive in 11/30, PD-L1 was negative/low in 24/30 and high in 6/30 CRLM. Stromal PD-L1 expression, affected the progression-free survival (PFS) in the CRLM population. Patients overexpressing CXCR4 experienced a worse PFS and cancer specific survival (CSS) (p = 0.001 and p = 0.0008); in these patients, KRAS mutation identified a subgroup with a significantly worse CSS (p < 0.01). Thus, CXCR4 and PD-L1 expression discriminate patients with the worse PFS within the CRLM evaluated patients. Within the CXCR4 high expressing patients carrying Mut-KRAS in CRLM identifies the worst prognostic group. Thus, CXCR4 targeting plus anti-PD-1 therapy should be explored to improve the prognosis of Mut-KRAS-high CXCR4-CRLMs. PMID:28123896

  16. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer.

    PubMed

    Chen, Yen-Ching; Giovannucci, Edward; Lazarus, Ross; Kraft, Peter; Ketkar, Shamika; Hunter, David J

    2005-12-15

    Chronic inflammation has been hypothesized to be a risk factor for prostate cancer. The Toll-like receptor 4 (TLR4) presents the bacterial lipopolysaccharide (LPS), which interacts with ligand-binding protein and CD14 (LPS receptor) and activates expression of inflammatory genes through nuclear factor-kappaB and mitogen-activated protein kinase signaling. A previous case-control study found a modest association of a polymorphism in the TLR4 gene [11381G/C, GG versus GC/CC: odds ratio (OR), 1.26] with risk of prostate cancer. We assessed if sequence variants of TLR4 were associated with the risk of prostate cancer. In a nested case-control design within the Health Professionals Follow-up Study, we identified 700 participants with prostate cancer diagnosed after they had provided a blood specimen in 1993 and before January 2000. Controls were 700 age-matched men without prostate cancer who had had a prostate-specific antigen test after providing a blood specimen. We genotyped 16 common (>5%) single nucleotide polymorphisms (SNP) discovered in a resequencing study spanning TLR4 to test for association between sequence variation in TLR4 and prostate cancer. Homozygosity for the variant alleles of eight SNPs was associated with a statistically significantly lower risk of prostate cancer (TLR4_1893, TLR4_2032, TLR4_2437, TLR4_7764, TLR4_11912, TLR4_16649, TLR4_17050, and TLR4_17923), but the TLR4_15844 polymorphism corresponding to 11381G/C was not associated with prostate cancer (GG versus CG/CC: OR, 1.01; 95% confidence interval, 0.79-1.29). Six common haplotypes (cumulative frequency, 81%) were observed; the global test for association between haplotypes and prostate cancer was statistically significant (chi(2) = 14.8 on 6 degrees of freedom; P = 0.02). Two common haplotypes were statistically significantly associated with altered risk of prostate cancer. Inherited polymorphisms of the innate immune gene TLR4 are associated with risk of prostate cancer.

  17. Controversial roles played by toll like receptor 4 in urinary bladder cancer; A systematic review.

    PubMed

    Afsharimoghaddam, Amin; Soleimani, Mohammad; Lashay, Alireza; Dehghani, Mahdi; Sepehri, Zahra

    2016-08-01

    Urinary bladder cancer (UBC) is a prevalent human cancer. The main mechanisms which lead to eradication or progression the disease has yet to be clarified. Toll like receptor (TLR) 4 is a membrane receptor which is expressed either on immune cells or tumor cells. This review article was aimed to clear the main mechanisms played by TLR4 and its related intracellular pathways on outcome of UBC. PubMed, Scopus and Google scholar databases have been used for searching related research articles which have evaluated the roles played by TLR4 and its related intracellular pathways on outcome of UBC. Collected information from the related articles revealed that TLR4 either participates in induction of immune responses against UBC or development of the malignancy. There are limited investigations regarding the genetic variations of TLR4 in UBC. According to the results it seems that TLR4/ligands interaction outcome is dependent on several factors including TLR4 ligand doses, interaction of TLR4 with its ligands on immune cells or tumor cells, and other TLRs/ligand interaction simultaneously. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of vitamin E on reproductive protection in pregnant mice infected with pseudorabies virus (PRV) via regulating expression of Toll-like receptors (TLRs) and cytokine balance.

    PubMed

    Wu, De; Luo, Xiao-lin; Lin, Yan; Fang, Zheng-feng; Luo, Xiao-rong; Xu, Hai-tao; Zeng, Wenxian

    2010-01-01

    Vitamin E supplement and pseudorabies virus (PRV) infection have a reciprocal role in influencing the maternal immune response, a key determinant of the success or failure of pregnancy. However, it remains unknown whether vitamin E supplement provides protection against PRV-induced failure of pregnancy. This study was therefore conducted to investigate the effect of dietary vitamin E level (0, 75, 375, 750 and 1,500 mg/kg) on the reproduction performance, immunity and expression of Toll-like receptors (TLRs) of PRV-challenged mice. The mortality and abortion rate of PRV-challenged mice decreased with the increase in vitamin E consumption. Overall, PBS-injected mice had a higher live embryo number and live litter size than PRV-challenged mice. Both live embryo number and live litter size of PRV-challenged mice increased with increasing vitamin E levels. Vitamin E supplement resulted in decreased concentration of serum IL-2 and IFN-γ, but increased concentration of serum IL-10. The concentration of serum IgG, IgA and IgM increased with increasing vitamin E levels. In the uterine and embryo mRNA abundance of TLR3, TLR7 and TLR9 was higher in PRV-challenged mice than that in PBS-injected mice fed on the same dosage of vitamin E. The mRNA abundance of embryonic TLR3, TLR7 and TLR9 in PRV-challenged mice decreased with increasing vitamin E levels. Collectively, vitamin E supplement may improve reproductive performance of PRV-challenged mice by attenuating PRV-induced negative effects on the cytokine profile, immunoglobulin synthesis and TLR expression.

  19. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Deng, Hui-Xiong; Chen, Xiao-Xuan; Li, Wei-Zhong; Li, Kang-Sheng

    2018-03-23

    Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.

  20. Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus.

    PubMed

    Xu, Ming-Ju; Liu, Bao-Jian; Wang, Cun-Lian; Wang, Guo-Hua; Tian, Yong; Wang, Shao-Hua; Li, Jun; Li, Pei-Yao; Zhang, Rui-Hua; Wei, Dong; Tian, Shu-Fei; Xu, Tong

    2017-11-01

    Epigallocatechin-3-gallate (EGCG) was found to inhibit the Toll-like receptor 4 (TLR4) pathway involved in influenza virus pathogenesis. Here, the effect of EGCG on TLR4 in an H9N2 virus-induced acute lung injury mouse model was investigated. BALB/c mice were inoculated intranasally with A/Swine/Hebei/108/2002 (H9N2) virus or noninfectious allantoic fluid, and treated with EGCG and E5564 or normal saline orally for 5 consecutive days. PMVECs were treated with EGCG or anti-67kDa laminin receptor (LR). Lung physiopathology, inflammation, oxidative stress, viral replication, and TLR4/NF-κB/Toll-interacting protein (Tollip) pathway in lung tissue and/or PMVECs were investigated. EGCG attenuated lung histological lesions, decreased lung W/D ratio, cytokines levels, and inhibited MPO activity and prolonged mouse survival. EGCG treatment also markedly downregulated TLR4 and NF-κB protein levels but Tollip expression was upregulated compared with that in untreated H9N2-infected mice (P<0.05). In PMVECs, anti-67LR antibody treatment significantly downregulated Tollip levels; however, the TLR4 and NF-κB protein levels dramatically increased compared with that in the EGCG-treated group (P<0.05). EGCG remarkably downregulated TLR4 protein levels through 67LR/Tollip, decreased MPO activity and inflammatory cytokine levels, supporting EGCG as a potential therapeutic agent for managing acute lung injury induced by H9N2 SIV. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Systemic Inflammatory Response Syndrome After Major Abdominal Surgery Predicted by Early Upregulation of TLR4 and TLR5.

    PubMed

    Lahiri, Rajiv; Derwa, Yannick; Bashir, Zora; Giles, Edward; Torrance, Hew D T; Owen, Helen C; O'Dwyer, Michael J; O'Brien, Alastair; Stagg, Andrew J; Bhattacharya, Satyajit; Foster, Graham R; Alazawi, William

    2016-05-01

    To study innate immune pathways in patients undergoing hepatopancreaticobiliary surgery to understand mechanisms leading to enhanced inflammatory responses and identifying biomarkers of adverse clinical consequences. Patients undergoing major abdominal surgery are at risk of life-threatening systemic inflammatory response syndrome (SIRS) and sepsis. Early identification of at-risk patients would allow tailored postoperative care and improve survival. Two separate cohorts of patients undergoing major hepatopancreaticobiliary surgery were studied (combined n = 69). Bloods were taken preoperatively, on day 1 and day 2 postoperatively. Peripheral blood mononuclear cells and serum were separated and immune phenotype and function assessed ex vivo. Early innate immune dysfunction was evident in 12 patients who subsequently developed SIRS (postoperative day 6) compared with 27 who did not, when no clinical evidence of SIRS was apparent (preoperatively or days 1 and 2). Serum interleukin (IL)-6 concentration and monocyte Toll-like receptor (TLR)/NF-κB/IL-6 functional pathways were significantly upregulated and overactive in patients who developed SIRS (P < 0.0001). Interferon α-mediated STAT1 phosphorylation was higher preoperatively in patients who developed SIRS. Increased TLR4 and TLR5 gene expression in whole blood was demonstrated in a separate validation cohort of 30 patients undergoing similar surgery. Expression of TLR4/5 on monocytes, particularly intermediate CD14CD16 monocytes, on day 1 or 2 predicted SIRS with accuracy 0.89 to 1.0 (areas under receiver operator curves). These data demonstrate the mechanism for IL-6 overproduction in patients who develop postoperative SIRS and identify markers that predict patients at risk of SIRS 5 days before the onset of clinical signs.

  2. Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xua; Chen, Cheng; Li, Wei-Zhong; Wang, Ge-Fei; Li, Kang-Sheng

    2017-10-18

    Lasting activations of toll-like receptors (TLRs), MAPK and NF-κB pathways can support influenza A virus (IAV) infection and promote pneumonia. In this study, we have investigated the effect and mechanism of action of emodin on IAV infection using qRT-PCR, western blotting, ELISA, Nrf2 luciferase reporter, siRNA and plaque inhibition assays. The results showed that emodin could significantly inhibit IAV (ST169, H1N1) replication, reduce IAV-induced expressions of TLR2/3/4/7, MyD88 and TRAF6, decrease IAV-induced phosphorylations of p38/JNK MAPK and nuclear translocation of NF-κB p65. Emodin also activated the Nrf2 pathway, decreased ROS levels, increased GSH levelss and GSH/GSSG ratio, and upregulated the activities of SOD, GR, CAT and GSH-Px after IAV infection. Suppression of Nrf2 via siRNA markedly blocked the inhibitory effects of emodin on IAV-induced activations of TLR4, p38/JNK, and NF-κB pathways and on IAV-induced production of IL-1β, IL-6 and expression of IAV M2 protein. Emodin also dramatically increased the survival rate of mice, reduced lung edema, pulmonary viral titer and inflammatory cytokines, and improved lung histopathological changes. In conclusion, emodin can inhibit IAV replication and influenza viral pneumonia, at least in part, by activating Nrf2 signaling and inhibiting IAV-induced activations of the TLR4, p38/JNK MAPK and NF-κB pathways.

  3. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    PubMed

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  4. Anti-WASP intrabodies inhibit inflammatory responses induced by Toll-like receptors 3, 7, and 9, in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Chisato; Sato, Mitsuru, E-mail: mitsuru.sato@affrc.go.jp; Oshima, Takuma

    Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we showed that the WASP N-terminal domain interacted with the SH3 domain of Bruton's tyrosine kinase (Btk), and that the complex formed by WASP and Btk was important for TLR2 and TLR4 signaling in macrophages. Several other studies have shown that Btk played important roles in modulating innate immune responses through TLRs in immune cells. Here, we evaluated the significance of the interaction between WASP and Btk in TLR3, TLR7, and TLR9 signaling. We established bone marrow–derived macrophage cell lines from transgenic (Tg) mice that expressed intracellular antibodiesmore » (intrabodies) that specifically targeted the WASP N-terminal domain. One intrabody comprised the single-chain variable fragment and the other comprised the light-chain variable region single domain of an anti-WASP N-terminal monoclonal antibody. Both intrabodies inhibited the specific interaction between WASP and Btk, which impaired the expression of TNF-α, IL-6, and IL-1β in response to TLR3, TLR7, or TLR9 stimulation. Furthermore, the intrabodies inhibited the phosphorylation of both nuclear factor (NF)-κB and WASP in response to TLR3, TLR7, or TLR9 stimulation, in the Tg bone marrow-derived macrophages. These results suggested that WASP plays important roles in TLR3, TLR7, and TLR9 signaling by associating with Btk in macrophages. - Highlights: • The interaction between WASP and Btk is critical for TLR3, TLR7, and TLR9 signaling. • Anti-WASP intrabodies inhibited several TLR pathways that led to cytokine expression. • Phosphorylation of NF-κB via TLR signaling was inhibited by anti-WASP intrabodies. • WASP phosphorylation via several TLR ligands was inhibited by anti-WASP intrabodies.« less

  5. Inhibition of DC-SIGN-mediated transmission of human immunodeficiency virus type 1 by Toll-like receptor 3 signalling in breast milk macrophages.

    PubMed

    Yagi, Yukie; Watanabe, Eri; Watari, Eiji; Shinya, Eiji; Satomi, Misao; Takeshita, Toshiyuki; Takahashi, Hidemi

    2010-08-01

    The majority of cells in early/colostrum milk are breast milk macrophages (BrMMø) expressing dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM3) grabbing nonintegrin (DC-SIGN), and the expression level of DC-SIGN on BrMMø will determine cell-to-cell human immunodeficiency virus type 1 (HIV-1) transmissibility. Thus, one of the strategies to prevent vertical transmission of HIV-1 through breast-feeding is to find a way to suppress DC-SIGN expression on BrMMø. As for the expression of Toll-like receptors (TLRs) in BrMMø, TLR3 was always seen in BrMMø but not in peripheral blood monocytes (PBMo). Also, the expression of TLR3 was slightly enhanced in BrMMø when the cells were treated with interleukin (IL)-4. Moreover, when TLR3 was stimulated with its specific ligand, the double-stranded RNA (dsRNA) poly(I:C), DC-SIGN expression on BrMMø was reduced even in the IL-4-mediated enhanced state. Some reduction may be caused by type I interferons (IFNs), such as IFN-alpha/beta, secreted from BrMMø. Indeed, both IFNs, particularly IFN-beta, showed a strong capacity to suppress the enhancement of DC-SIGN expression on IL-4-treated BrMMø and such TLR3-mediated DC-SIGN suppression was partially abrogated by the addition of anti-IFN-alpha/beta-receptor-specific antibodies. As expected, DC-SIGN-mediated HIV-1 transmission to CD4-positive cells by BrMMø was inhibited by either poly(I:C) stimulation or by treatment with type I IFNs. These findings suggest a possible strategy for preventing mother-to-child transmission (MTCT) of HIV-1 via breast-feeding through TLR3 signalling.

  6. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells

    PubMed Central

    Luo, Yunpeng; Che, Wen; Zhao, Mingyan

    2017-01-01

    Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI. PMID:27959396

  7. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes

    PubMed Central

    Tai, Ningwen; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cells mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or NOD-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275

  8. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    PubMed

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  9. Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in Macrophages via TLRs-mediated signaling.

    PubMed

    Jang, Ah-Ra; Choi, Joo-Hee; Shin, Sung Jae; Park, Jong-Hwan

    2018-04-01

    Mycobacterium tuberculosis is a highly virulent bacterium that causes tuberculosis. It infects about one third of the world's population. Type I interferons (IFNs) play a detrimental role in host defense against M. tuberculosis infection. Proteins secreted by M. tuberculosis through ESX-1 secretion system contribute to type I IFNs production. However, the precise mechanism by which 6-kDa early secretory antigen target (ESAT6), one of ESX-1-mediated secretory proteins, induces type I IFNs production in host cells is currently unclear. Therefore, the objective of the present study was to determine the underlying molecular mechanism regulating ESAT6-mediated gene expression of IFN-β in macrophages. Recombinant ESAT6 produced from E. coli expression system induced IFN-β gene expression in various types of macrophages such as mouse bone marrow-derived macrophages (BMDMs), peritoneal macrophages, and MH-S cells (murine alveolar macrophage cell line). Deficiency of TLR4 and TRIF absolutely abrogated ESAT6-induced IFN-β gene expression. TLR2 and MyD88 were partially involved in IFN-β gene expression in response to low dose of ESAT6. Another recombinant ESAT6 produced from baculovirus system also upregulated IFN-β gene expression via TLR4-dependent pathway. Polymyxin B (PMB) treatment impaired LPS-induced IFN-β expression. However, IFN-β expression induced by ESAT6 was not influenced by PMB. This suggests that ESAT6-mediated IFN-β expression is not due to LPS contamination. Treatment with ESAT6 resulted in activation of TBK1 and IRF3 in macrophages. Such activation was abolished in TLR4- and TRIF-deficient cells. Moreover, inhibition of IRF3 and TBK1 suppressed IFN-β gene expression in response to ESAT6. Our results suggest that ESAT6 might contribute to virulence of M. tuberculosis by regulating type I IFNs production through TLR4-TRIF signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. CD14+ CD15- HLA-DR- myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure.

    PubMed

    Bernsmeier, Christine; Triantafyllou, Evangelos; Brenig, Robert; Lebosse, Fanny J; Singanayagam, Arjuna; Patel, Vishal C; Pop, Oltin T; Khamri, Wafa; Nathwani, Rooshi; Tidswell, Robert; Weston, Christopher J; Adams, David H; Thursz, Mark R; Wendon, Julia A; Antoniades, Charalambos Gustav

    2018-06-01

    Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14 + HLA-DR - myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14 + CD15 - CD11b + HLA-DR - cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. Circulating CD14 + CD15 - CD11b + HLA-DR - M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. Immunosuppressive CD14 + HLA-DR - M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages.

    PubMed

    Movita, Dowty; Kreefft, Kim; Biesta, Paula; van Oudenaren, Adri; Leenen, Pieter J M; Janssen, Harry L A; Boonstra, Andre

    2012-10-01

    The immunostimulatory role of Kupffer cells in various inflammatory liver diseases is still not fully understood. In this study, phenotypic and functional aspects of Kupffer cells from healthy C57BL/6 mice were analyzed and compared with those of splenic and peritoneal macrophages to generate a blueprint of the cells under steady-state conditions. In the mouse liver, only one population of Kupffer cells was identified as F4/80(high)CD11b(low) cells. We observed that freshy isolated Kupffer cells are endocytic and show a relatively high basal ROS content. Interestingly, despite expression of TLR mRNA on Kupffer cells, ligation of TLR4, TLR7/8, and TLR9 resulted in a weak induction of IL-10, low or undetectable levels of IL-12p40 and TNF, and up-regulation of CD40 on the surface. Kupffer cells and splenic macrophages show functional similarities, in comparison with peritoneal macrophages, as reflected by comparable levels of TLR4, TLR7/8, and TLR9 mRNA and low or undetectable levels of TNF and IL-12p40 produced upon TLR ligation. The unique, functional characteristics of Kupffer cells, demonstrated in this study, suggest that Kupffer cells under steady-state conditions are specialized as phagocytes to clear and degrade particulates and only play a limited immunoregulatory role via the release of soluble mediators.

  12. Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-κB and MAPKs signaling pathways.

    PubMed

    Fu, Yunhe; Liu, Bo; Zhang, Naisheng; Liu, Zhicheng; Liang, Dejie; Li, Fengyang; Cao, Yongguo; Feng, Xiaosheng; Zhang, Xichen; Yang, Zhengtao

    2013-01-09

    Magnolia officinalis as a traditional Chinese herb has long been used for the treatment of anxiety, cough, headache and allergic diseases, and also have been used in traditional Chinese medicine to treat a variety of mental disorders including depression. Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to have anti-inflammatory properties. However, the underlying molecular mechanisms are not well understood. The aim of this study was to investigate the molecular mechanism of magnolol in modifying lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 cells. The purity of magnolol was determined by high performance liquid chromatography. RAW264.7 cells were stimulated with LPS in the presence or absence of magnolol. The expression of proinflammatory cytokines were determined by ELISA and reverse transcription-PCR. Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Toll-like receptor 4 (TLR4) were determined by Western blot. Further analyses were performed on mTLR4 and mMD2 co-transfected HEK293 cells. The result showed that the purity of magnolol used in this study was 100%. Magnolol inhibited the expression of TNF-α, IL-6 and IL-1β in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Western blot analysis showed that magnolol suppressed LPS-induced NF-κB activation, IκBα degradation, phosphorylation of ERK, JNK and P38. Magnolol could significantly down-regulated the expression of TLR4 stimulating by LPS. Furthermore, magnolol suppressed LPS-induced IL-8 production in HEK293-mTLR4/MD-2 cells. Our results suggest that magnolol exerts an anti-inflammatory property by down-regulated the expression of TLR4 up-regulated by LPS, thereby attenuating TLR4 mediated the activation of NF-κB and MAPK signaling and the release of pro-inflammatory cytokines. These findings suggest that magnolol may be a therapeutic agent against inflammatory diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Linagliptin reduces effects of ET-1 and TLR2-mediated cerebrovascular hyperreactivity in diabetes.

    PubMed

    Hardigan, Trevor; Abdul, Yasir; Ergul, Adviye

    2016-08-15

    The anti-hyperglycemic agent linagliptin, a dipeptidyl peptidase-4 inhibitor, has been shown to reduce inflammation and improve endothelial cell function. In this study, we hypothesized that DPP-IV inhibition with linagliptin would improve impaired cerebral blood flow in diabetic rats through improved insulin-induced cerebrovascular relaxation and reversal of pathological cerebrovascular remodeling that subsequently leads to improvement of cognitive function. Male type-2 diabetic Goto-Kakizaki (GK) and nondiabetic Wistar rats were treated with linagliptin, and ET-1 plasma levels and dose response curves to ET-1 (0.1-100nM) in basilar arteries were assessed. The impact of TLR2 antagonism on ET-1 mediated basilar contraction and endothelium-dependent relaxation to acetylcholine (ACh, 1nM-1M) in diabetic GK rats was examined with antibody directed against the TLR2 receptor (Santa Cruz, 5μg/mL). The expression of TLR2 in middle cerebral arteries (MCAs) from treated rats and in brain microvascular endothelial cells (BMVEC) treated with 100nM linagliptin was assessed. Linagliptin lowered plasma ET-1 levels in diabetes, and reduced ET-1-induced vascular contraction. TLR2 antagonism in diabetic basilar arteries reduced ET-1-mediated cerebrovascular dysfunction and improved endothelium-dependent vasorelaxation. Linagliptin treatment in the BMVEC was able to reduce TLR2 expression in cells from both diabetic and nondiabetic rats. These results suggest that inhibition of DPPIV using linagliptin improves the ET-1-mediated cerebrovascular dysfunction observed in diabetes through a reduction in ET-1 plasma levels and reduced cerebrovascular hyperreactivity. This effect is potentially a result of linagliptin causing a decrease in endothelial TLR2 expression and a subsequent increase in NO bioavailability. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance.

    PubMed

    Böhland, Martin; Kress, Eugenia; Stope, Matthias B; Pufe, Thomas; Tauber, Simone C; Brandenburg, Lars-Ove

    2016-10-15

    Bacterial meningitis is - despite therapeutical progress during the last decades - still characterized by high mortality and severe permanent neurogical sequelae. The brain is protected from penetrating pathogens by both the blood-brain barrier and the innate immune system. Invading pathogens are recognized by so-called pattern recognition receptors including the Toll-like receptors (TLR) which are expressed by glial immune cells in the central nervous system. Among these, TLR2 is responsible for the detection of Gram-positive bacteria such as the meningitis-causing pathogen Streptococcus pneumoniae. Here, we used TLR2-deficient mice to investigate the effects on mortality, bacterial growth and inflammation in a mouse model of pneumococcal meningitis. Our results revealed a significantly increased mortality rate and higher bacterial burden in TLR2-deficient mice with pneumococcal meningitis. Furthermore, infected TLR2-deficient mice suffered from a significantly increased pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and Chemokine (C-C motif) ligand 2 (CCL2) or CCL3 chemokine expression and decreased expression of anti-inflammatory cytokines and antimicrobial peptides. In contrast, glial cell activation assessed by glial cell marker expression was comparable to wildtype mice. Taken together, the results suggest that TLR2 is essential for an efficient immune response against Streptococcus pneumoniae meningitis since lack of the receptor led to a worse outcome by higher mortality due to increased bacterial burden, weakened innate immune response and reduced expression of antimicrobial peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways.

    PubMed

    Lee, Seung Jin; Seo, Kyo Won; Kim, Chi Dae

    2015-05-01

    5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.

  16. Ursolic acid isolated from Uncaria rhynchophylla activates human dendritic cells via TLR2 and/or TLR4 and induces the production of IFN-gamma by CD4+ naïve T cells.

    PubMed

    Jung, Tae-Young; Pham, Thanh Nhan Nguyen; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2010-09-25

    Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro. Dendritic cells harvested on day 8 were examined using functional assay. The expression levels of CD1a, CD80, CD83, CD86, HLA-DR and CCR7 on Ursolic acid-primed dendritic cells was slightly enhanced. Ursolic acid dose-dependently enhanced the T cell stimulatory capacity in an allogeneic mixed lymphocyte reaction, as measured by T cell proliferation. The production of IL-12p70 induced by Ursolic acid-primed dendritic cells was inhibited by the anti-Toll-like receptor-2 (TLR2) mAb and anti-TLR4 mAb. Moreover, Ursolic acid-primed dendritic cells expressed levels of mRNA coding for both TLR2 and TLR4. The majority of cells produced considerable interferon-gamma (IFN-gamma), but also small amounts of interleukin (IL-4)-4. Ursolic acid-primed dendritic cells have an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that Ursolic acid modulates human dendritic cells function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR2 and/or TLR4, and may be used on dendritic cells-based vaccines for cancer immunotherapy. 2010 Elsevier B.V. All rights reserved.

  17. Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Jiang, Jun; Shi, Dan; Zhou, Xiao-Qiu; Yin, Long; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Tang, Ling; Wu, Pei; Zhao, Ye

    2015-11-28

    The present study was conducted to investigate the anti-inflammatory effect of vitamin D both in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. In primary enterocytes, exposure to 10 mg lipopolysaccharide (LPS)/l increased lactate dehydrogenase activity in the culture medium (P<0·05) and resulted in a significant loss of cell viability (P<0·05). LPS exposure increased (P<0·05) the mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8), which was decreased by pre-treatment with 1,25-dihydroxyvitamin D (1,25D3) in a dose-dependent manner (P<0·05). Further results showed that pre-treatment with 1,25D3 down-regulated Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (Myd88) and NF-κB p65 mRNA expression (P<0·05), suggesting potential mechanisms against LPS-induced inflammatory response. In vivo, intraperitoneal injection of LPS significantly increased TNF-α, IL-1β, IL-6 and IL-8 mRNA expression in the intestine of carp (P<0·05). Pre-treatment of fish with vitamin D3 protected the fish intestine from the LPS-induced increase of TNF-α, IL-1β, IL-6 and IL-8 mainly by downregulating TLR4, Myd88 and NF-κB p65 mRNA expression (P<0·05). These observations suggest that vitamin D could inhibit LPS-induced inflammatory response in juvenile Jian carp in vivo and in enterocytes in vitro. The anti-inflammatory effect of vitamin D is mediated at least in part by TLR4-Myd88 signalling pathways in the intestine and enterocytes of juvenile Jian carp.

  18. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com; Wei, Cong-Cong; Shang, Ting-Ting

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B)more » p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.« less

  19. Expression of TLR-7, MyD88, NF-kB, and INF-α in B Lymphocytes of Mayan Women with Systemic Lupus Erythematosus in Mexico.

    PubMed

    Pacheco, Guillermo Valencia; Novelo Noh, Irene B; Velasco Cárdenas, Rubí M-H; Angulo Ramírez, Angélica V; López Villanueva, Ricardo F; Quintal Ortiz, Irma G; Alonso Salomón, Ligia G; Ruz, Norma Pavía; Rivero Cárdenas, Nubia A

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease involving multiple organs. It is currently accepted that several genetic, environmental, and hormonal factors are contributing to its development. Innate immunity may have a great influence in autoimmunity through Toll-like receptors. TLR-7 recognizing single-strand RNA has been involved in SLE. Its activation induces intracellular signal with attraction of MyD88 and NF-kBp65, leading to IFN-α synthesis which correlate with disease activity. To assess the expression of TLR-7, MyD88, and NF-kBp65 in B lymphocytes of Mayan women with SLE. One hundred patients with SLE and 100 healthy controls, all of them Mayan women, were included. TLR-7 was analyzed on B and T lymphocytes, and MyD88 and NF-kB only in B lymphocytes. Serum INF-α level was evaluated by ELISA. Significant expression (p < 0.0001) of TLR-7 in B and T lymphocytes and serum IFN-α increased (p = 0.034) was observed in patients. MyD88 and NF-kBp65 were also increased in B lymphocytes of patients. TLR-7 and NF-kBp65 expression correlated, but no correlation with INF-α and disease activity was detected. Data support the role of TLR-7 and signal proteins in the pathogenesis of SLE in the Mayan population of Yucatán.

  20. Identification, characterization and genetic mapping of TLR1 loci in rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Palti, Y.; Rodriguez, M.F.; Gahr, S.A.; Purcell, M.K.; Rexroad, C. E.; Wiens, G.D.

    2010-01-01

    Induction of innate immune pathways is critical for early anti-microbial defense but there is limited understanding of how teleosts recognize microbial molecules and activate these pathways. In mammals, Toll-like receptors (TLR) 1 and 2 form a heterodimer involved in recognizing peptidoglycans and lipoproteins of microbial origin. Herein, we identify and describe the rainbow trout (Oncorhynchus mykiss) TLR1 gene ortholog and its mRNA expression. Two TLR1 loci were identified from a rainbow trout bacterial artificial chromosome (BAC) library using DNA sequencing and genetic linkage analyses. Full length cDNA clone and direct sequencing of four BACs revealed an intact omTLR1 open reading frame (ORF) located on chromosome 14 and a second locus on chromosome 25 that contains a TLR1 pseudogene. The duplicated trout loci exhibit conserved synteny with other fish genomes that extends beyond the TLR1 gene sequences. The omTLR1 gene includes a single large coding exon similar to all other described TLR1 genes, but unlike other teleosts it also has a 5??? UTR exon and intron preceding the large coding exon. The omTLR1 ORF is predicted to encode an 808 amino-acid protein with 69% similarity to the Fugu TLR1 and a conserved pattern of predicted leucine-rich repeats (LRR). Phylogenetic analysis grouped omTLR1 with other fish TLR1 genes on a separate branch from the avian TLR1 and mammalian TLR1, 6 and 10. omTLR1 expression levels in rainbow trout anterior kidney leukocytes were not affected by the human TLR2/6 and TLR2/1 agonists diacylated lipoprotein (Pam2CSK4) and triacylated lipoprotein (Pam3CSK4). However, due to the lack of TLR6 and 10 genes in teleost genomes and up-regulation of TLR1 mRNA in response to LPS and bacterial infection in other fish species we hypothesize an important role for omTLR1 in anti-microbial immunity. Therefore, the identification of a TLR2 ortholog in rainbow trout and the development of assays to measure ligand binding and downstream signaling are critical for future elucidation of omTLR1 functions.

  1. Identification, characterization and genetic mapping of TLR1 loci in rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Palti, Yniv; Rodriguez, M. Fernanda; Gahr, Scott A.; Purcell, Maureen K.; Rexroad, Caird E.; Wiens, Gregory D.

    2010-01-01

    Induction of innate immune pathways is critical for early anti-microbial defense but there is limited understanding of how teleosts recognize microbial molecules and activate these pathways. In mammals, Toll-like receptors (TLR) 1 and 2 form a heterodimer involved in recognizing peptidoglycans and lipoproteins of microbial origin. Herein, we identify and describe the rainbow trout (Oncorhynchus mykiss) TLR1 gene ortholog and its mRNA expression. Two TLR1 loci were identified from a rainbow trout bacterial artificial chromosome (BAC) library using DNA sequencing and genetic linkage analyses. Full length cDNA clone and direct sequencing of four BACs revealed an intact omTLR1 open reading frame (ORF) located on chromosome 14 and a second locus on chromosome 25 that contains a TLR1 pseudogene. The duplicated trout loci exhibit conserved synteny with other fish genomes that extends beyond the TLR1 gene sequences. The omTLR1 gene includes a single large coding exon similar to all other described TLR1 genes, but unlike other teleosts it also has a 5' UTR exon and intron preceding the large coding exon. The omTLR1 ORF is predicted to encode an 808 amino-acid protein with 69% similarity to the Fugu TLR1 and a conserved pattern of predicted leucine-rich repeats (LRR). Phylogenetic analysis grouped omTLR1 with other fish TLR1 genes on a separate branch from the avian TLR1 and mammalian TLR1, 6 and 10. omTLR1 expression levels in rainbow trout anterior kidney leukocytes were not affected by the human TLR2/6 and TLR2/1 agonists diacylated lipoprotein (Pam2CSK4) and triacylated lipoprotein (Pam3CSK4). However, due to the lack of TLR6 and 10 genes in teleost genomes and up-regulation of TLR1 mRNA in response to LPS and bacterial infection in other fish species we hypothesize an important role for omTLR1 in anti-microbial immunity. Therefore, the identification of a TLR2 ortholog in rainbow trout and the development of assays to measure ligand binding and downstream signaling are critical for future elucidation of omTLR1 functions.

  2. TLR2 and TLR3 expression as a biomarker for the risk of doxorubicin-induced heart failure.

    PubMed

    Liang, Shao; Xinyong, Cai; Hongmin, Zhu; Jing, Wang; Lang, Hong; Ping, Zhang

    2018-06-27

    Doxorubicin (Dox) is limited in its use because of its adverse effect of inducing irreversible heart dysfunction. Innate immune factors, including toll-like receptors (TLRs), play important roles in most cardiac diseases and doxorubicin-induced cardiotoxicity. In this study, subjects were divided into the following groups: healthy controls (n = 62), HF group (n = 60), Dox group (n = 82), and Dox-HF group (n = 32). Expressions of TLR mRNAs in peripheral blood mononuclear cells were detected by RT-PCR. Western blotting was used to quantify protein expressions of Peripheral blood mononuclear cells (PBMCs) TLRs and their downstream signal proteins. The release of inflammatory factors was detected by ELISA. Results indicated that TLR2 was increased and TLR3 was decreased between the control group and Dox group, and between the Dox group and Dox-HF group. Serum inflammatory factors were comparable between the HF group, the Dox group, and the Dox-HF group. This study suggested that TLR2 and TLR3 are up- and down-regulated, respectively, in doxorubicin-treated patients who develop heart dysfunctions. This may suggest a predictive role for TLR2-TLR3 imbalance in doxorubicin-induced heart failure. Copyright © 2018. Published by Elsevier B.V.

  3. Newly Identified TLR9 Stimulant, M6-395 Is a Potent Polyclonal Activator for Murine B Cells

    PubMed Central

    Park, Mi-Hee; Jung, Yu-Jin

    2012-01-01

    Background Toll-like receptors (TLRs) have been extensively studied in recent years. However, functions of these molecules in murine B cell biology are largely unknown. A TLR4 stimulant, LPS is well known as a powerful polyclonal activator for murine B cells. Methods In this study, we explored the effect of a murine TLR9 stimulant, M6-395 (a synthetic CpG ODNs) on B cell proliferation and Ig production. Results First, M6-395 was much more potent than LPS in augmenting B cell proliferation. As for Ig expression, M6-395 facilitated the expression of both TGF-β1-induced germ line transcript α (GLTα) and IL-4-induced GLTγ1 as levels as those by LPS and Pam3CSK4 (TLR1/2 agonist) : a certain Ig GLT expression is regarded as an indicative of the corresponding isotype switching recombination. However, IgA and IgG1 secretion patterns were quite different--these Ig isotype secretions by M6-395 were much less than those by LPS and Pam3CSK4. Moreover, the increase of IgA and IgG1 production by LPS and Pam3CSK4 was virtually abrogated by M6-395. The same was true for the secretion of IgG3. We found that this unexpected phenomena provoked by M6-395 is attributed, at least in part, to its excessive mitogenic nature. Conclusion Taken together, these results suggest that M6-395 can act as a murine polyclonal activator but its strong mitogenic activity is unfavorable to Ig isotype switching. PMID:22536167

  4. Impact of toll-like-receptor-9 (TLR9) deficiency on visceral adipose tissue adipokine expression during chronic DSS-induced colitis in mice.

    PubMed

    Karrasch, T; Schmid, A; Kopp, A; Obermeier, F; Hofmann, C; Schäffler, A

    2015-02-01

    Studies postulate an involvement of adipokines in inflammatory gastrointestinal diseases. Leptin-deficient ob/ob mice as well as TLR9-deficient mice have a more moderate course of chronic DSS-induced colitis (DSS-CC) and adipocytes do express functional TLR9 molecules. Adipokine mRNA expression in visceral adipose tissue of mice before and after the induction of DSS-CC was investigated. Experiments were performed in both TLR9(wt/wt) and TLR9(-/-) mice. In vitro, the effect of TLR9 blocking peptide on leptin and visfatin protein secretion was studied in 3T3-L1 adipocytes. Induction of DSS-CC led to an upregulation of leptin mRNA expression in TLR9(wt/wt) mice, while TLR9(-/-) animals showed a significant reduction of leptin expression even below baseline. While visfatin expression remained unchanged in TLR9(wt/wt) animals, TLR9(-/-) mice exhibited a significant induction during DSS-CC. CTRP-3 expression was reduced after colitis induction only in TLR9(-/-) animals. Of note, IL-6 expression levels remained unchanged, while CXCL1/KC and cyclophilin A expression was reduced in DSS-CC. Inhibition of TLR9 signaling by using TLR9 blocking peptide led to reduced leptin protein secretion into cell culture supernatants in 3T3-L1 adipocytes, while visfatin protein secretion was enhanced. DSS-CC leads to differential adipokine expression profiles in the visceral fat pad in TLR9(wt/wt) vs. TLR9(-/-) mice. In vitro, inhibition of TLR9 signaling induces visfatin secretion while inhibiting leptin secretion in adipocytes. Thus, visceral adipokines are regulated by intact TLR9 signaling pathway and a specific interplay between the leptin- and the TLR9-pathways might be of pathophysiological importance in chronic intestinal inflammation. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  6. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  7. Accelerated model of lupus autoimmunity and vasculopathy driven by toll-like receptor 7/9 imbalance

    PubMed Central

    Liu, Yudong; Seto, Nickie L; Carmona-Rivera, Carmelo; Kaplan, Mariana J

    2018-01-01

    Objectives Activation of endosomal toll-like receptor (TLR)7 or TLR9 has been proposed as a critical step for the initiation and development of SLE. Traditional spontaneous lupus models normally introduce multiple risk alleles, thereby adding additional confounding factors. In the induced lupus models, the role of TLR9 remains unclear. In the present study, we explored the role of an imbalance between TLR7 and TLR9 pathways in the pathogenesis of lupus and its associated vasculopathy using the imiquimod model in TLR9 KO/B6 background. Methods Wild type (WT) and Tlr9-/- mice were epicutaneously treated with imiquimod cream 5% on both ears three times per week for indicated times. At euthanasia, mice were analysed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses. Results Compared with the lupus-like phenotype that develops in imiquimod-treated WT mice, Tlr9-/- mice exposed to imiquimod have increased severity of autoimmunity features and inflammatory phenotype that develops at earlier stages. These abnormalities are characterised by enhanced TLR7 expression and immune activation, increased immune complex deposition, Th1 T cells and dendritic cell kidney infiltration and significant impairments in endothelial function. Modulation of TLR7 expression was observed in the Tlr9-/- mice. Conclusions These findings further underscore the protective role of TLR9 in TLR7-driven autoimmunity and also in the development of vasculopathy, further strengthening the importance of tightly manipulating TLRs in putative therapeutic strategies. This study provides a new model of accelerated lupus phenotype driven by danger-associated molecular patterns. PMID:29765617

  8. Accelerated model of lupus autoimmunity and vasculopathy driven by toll-like receptor 7/9 imbalance.

    PubMed

    Liu, Yudong; Seto, Nickie L; Carmona-Rivera, Carmelo; Kaplan, Mariana J

    2018-01-01

    Activation of endosomal toll-like receptor (TLR)7 or TLR9 has been proposed as a critical step for the initiation and development of SLE. Traditional spontaneous lupus models normally introduce multiple risk alleles, thereby adding additional confounding factors. In the induced lupus models, the role of TLR9 remains unclear. In the present study, we explored the role of an imbalance between TLR7 and TLR9 pathways in the pathogenesis of lupus and its associated vasculopathy using the imiquimod model in TLR9 KO/B6 background. Wild type (WT) and Tlr9 -/- mice were epicutaneously treated with imiquimod cream 5% on both ears three times per week for indicated times. At euthanasia, mice were analysed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses. Compared with the lupus-like phenotype that develops in imiquimod-treated WT mice, Tlr9 -/- mice exposed to imiquimod have increased severity of autoimmunity features and inflammatory phenotype that develops at earlier stages. These abnormalities are characterised by enhanced TLR7 expression and immune activation, increased immune complex deposition, Th1 T cells and dendritic cell kidney infiltration and significant impairments in endothelial function. Modulation of TLR7 expression was observed in the Tlr9 -/- mice. These findings further underscore the protective role of TLR9 in TLR7-driven autoimmunity and also in the development of vasculopathy, further strengthening the importance of tightly manipulating TLRs in putative therapeutic strategies. This study provides a new model of accelerated lupus phenotype driven by danger-associated molecular patterns.

  9. The efficacy of (+)-Naltrexone on alcohol preference and seeking behaviour is dependent on light-cycle.

    PubMed

    Jacobsen, Jonathan Henry W; Buisman-Pijlman, Femke T A; Mustafa, Sanam; Rice, Kenner C; Hutchinson, Mark R

    2018-01-01

    Circadian rhythm affects drug-induced reward behaviour and the innate immune system. Peaks in reward-associated behaviour and immune responses typically occur during the active (dark) phase of rodents. While the role of the immune system, specifically, Toll-like receptor 4 (TLR4, an innate immune receptor) in drug-induced reward is becoming increasingly appreciated, it is unclear whether its effects vary according to light-cycle. Therefore, the aim of this study was to characterise the effects of the phase of the light-cycle and the state of the innate immune system on alcohol reward behaviour and subsequently determine whether the efficacy of targeting the immune component of drug reward depends upon the light-cycle. This study demonstrates that mice exhibit greater alcohol-induced conditioned place preference and alcohol two-bottle choice preference during the dark cycle. This effect overlapped with elevations in reward-, thirst- and immune-related genes. Administration of (+)-Naltrexone, a TLR4 antagonist, reduced immune-related gene mRNA expression and alcohol preference with its effects most pronounced during the dark cycle. However, (+)-Naltrexone, like other TLR4 antagonists exhibited off-target side effects, with a significant reduction in overall saccharin intake - an effect likely attributable to a reduction in tyrosine hydroxylase (Th) mRNA expression levels. Collectively, the study highlights a link between a time-of-day dependent influence of TLR4 on natural and alcohol reward-like behaviour in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. [Immunological aspects of a piloted mission to Mars].

    PubMed

    Morukov, B V; Rykova, M P; Antropova, E N; Berendeeva, T A; Morukov, I B; Ponomarev, S A

    2013-01-01

    The paper deals with the results of the effects of 520-day isolation and confinement modeling some elements of a mission to Mars on the immune system. Longitudinal analyses revealed that the mechanisms of adaptive response of the human immune system to the conditions of extremely long isolation led to a change of the parameters, characterizing innate and adaptive immunity. Among them the most important are: changes in the signaling PRRs--TLR, manifested in the reduction of the percentage of circulating monocytes and granulocytes expressed on its own surfaces TLR2, TLR4 and TLR6, decreases early NK cell activation potential, increases in the percentage T- and B-lymphocytes, that expressed early activation marker CD69 after adequate stimulation, and in production of cytokines in response to PHA stimulation. The active mobilization of the mechanisms of adaptive immunity, the implementation of the function of the level of immunity to a qualitatively different level, apparently, should be taken as a sign of adaptive adjustment of an organism in response to the complex influence of unfavorable factors, aimed at the preservation of immune homeostasis.

  11. Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors

    PubMed Central

    Mo, Irene Fung Ying; Yip, Kevin Hak Kong; Chan, Wing Keung; Law, Helen Ka Wai; Lau, Yu Lung; Chan, Godfrey Chi Fung

    2008-01-01

    Background Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings. Results We selected lipopolysaccharide (LPS) from Escherichia coli and lipoteichoic acid (LTA) from Streptococcus pyogenes as our toxins of choice. Our findings showed both LPS and LTA did not affect MSC proliferation, but prolonged LPS challenge upregulated the osteogenic differentiation of MSCs, as assessed by alkaline phosphatase activity and calcium deposition. Because toll-like receptors (TLRs), in particularly TLR4 and TLR2, are important for the cellular responsiveness to LPS and LTA respectively, we evaluated their expression profiles serially from MSCs to osteoblasts by quantitative PCR. We found that during osteogenic differentiation, MSC-derived osteoprogenitors gradually expressed TLR2 and TLR4 by Day 12. But under prolonged incubation with LPS, MSC-derived osteoprogenitors had reduced TLR2 and TLR4 gene expression. This peculiar response to LPS suggests a possible adaptive mechanism when MSCs are subjected to continuous exposure with bacteria. Conclusion In conclusion, our findings support the potential of using human MSCs as a biological graft, even under a bacterial toxin-rich environment. PMID:18799018

  12. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages.

    PubMed

    Kim, Jung-Hee; Jeong, Ji-Hye; Jeon, Sung-Tak; Kim, Ho; Ock, Jiyeon; Suk, Kyoungho; Kim, Sang-In; Song, Kyung-Sik; Lee, Won-Ha

    2006-06-01

    In the course of screening inhibitors of matrix metalloproteinase (MMP)-9 induction in macrophages, we isolated decursin, a coumarin compound, from the roots of Angelicae gigas. As a marker for the screening and isolation, we tested expression of MMP-9 in RAW264.7 cells and THP-1 cells after treatment with bacterial lipopolysaccharide (LPS), the TLR-4 ligand. Decursin suppressed MMP-9 expression in cells stimulated by LPS in a dose-dependent manner at concentrations below 60 microM with no sign of cytotoxicity. The suppressive effect of decursin was observed not only in cells stimulated with ligands for TLR4, TLR2, TLR3, and TLR9 but also in cells stimulated with interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha, indicating that the molecular target of decursin is common signaling molecules induced by these stimulants. In addition to the suppression of MMP-9 expression, decursin blocked nitric oxide production and cytokine (IL-8, MCP-1, IL-1beta, and TNF-alpha) secretion induced by LPS. To find out the molecular mechanism responsible for the suppressive effect of decursin, we analyzed signaling molecules involved in the TLR-mediated activation of MMP-9 and cytokines. Decursin blocked phosphorylation of IkappaB and nuclear translocation of NF-kappaB in THP-1 cells activated with LPS. Furthermore, expression of a luciferase reporter gene under the promoter containing NF-kappaB binding sites was blocked by decursin. These data indicate that decursin is a novel inhibitor of NF-kappaB activation in signaling induced by TLR ligands and cytokines.

  13. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides.

    PubMed

    Couture, Leah A; Piao, Wenji; Ru, Lisa W; Vogel, Stefanie N; Toshchakov, Vladimir Y

    2012-07-13

    Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal) is an adapter protein that facilitates recruitment of MyD88 to TLR4 and TLR2 signaling complexes. We previously generated a library of cell-permeating TLR4 TIR-derived decoy peptides fused to the translocating segment of the Drosophila Antennapedia homeodomain and examined each peptide for the ability to inhibit TLR4 signaling (Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., and Vogel, S. N. (2011) J. Immunol. 186, 4819-4827). We have now expanded this study to test TIRAP decoy peptides. Five TIRAP peptides, TR3 (for TIRAP region 3), TR5, TR6, TR9, and TR11, inhibited LPS-induced cytokine mRNA expression and MAPK activation. Inhibition was confirmed at the protein level; select peptides abolished the LPS-induced cytokine production measured in cell culture 24 h after a single treatment. Two of the TLR4 inhibitory peptides, TR3 and TR6, also inhibited cytokine production induced by a TLR2/TLR1 agonist, S-(2,3-bis(palmitoyloxy)-(2R,2S)-propyl)-N-palmitoyl-(R)-Cys-Ser-Lys(4)-OH; however, a higher peptide concentration was required to achieve comparable inhibition of TLR2 versus TLR4 signaling. Two TLR4 inhibitory peptides, TR5 and TR6, were examined for the ability to inhibit TLR4-driven cytokine induction in mice. Pretreatment with either peptide significantly reduced circulating TNF-α and IL-6 in mice following LPS injection. This study has identified novel TLR inhibitory peptides that block cellular signaling at low micromolar concentrations in vitro and in vivo. Comparison of TLR4 inhibition by TLR4 and TIRAP TIR-derived peptides supports the view that structurally diverse regions mediate functional interactions of TIR domains.

  15. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Grimaldi, David; Zuber, Benjamin; Sauneuf, Bertrand; Rousseau, Christophe; El Hachem, Carole; Martin, Clémence; Belaïdouni, Nadia; Balloy, Viviane; Mira, Jean-Paul; Chiche, Jean-Daniel

    2012-09-15

    Sepsis is characterized by a dysregulated inflammatory response followed by immunosuppression that favors the development of secondary infections. Toll-like receptors (TLRs) are major regulators of the host's response to infections. How variability in TLR signaling may impact the development of sepsis-induced immune dysfunction has not been established. We sought to establish the role of TLR2, TLR4, and TLR5 in postseptic mice with Pseudomonas aeruginosa pneumonia. We used an experimental model of sublethal polymicrobial sepsis induced by cecal ligation and puncture (CLP). Wild-type, tlr2(-/-), tlr4(-/-), tlr5(-/-), tlr2 4(-/-) mice that underwent CLP were secondarily subjected to P. aeruginosa pulmonary infection. Postseptic wild-type and tlr4(-/-) and tlr5(-/-) mice displayed high susceptibility to P. aeruginosa pneumonia. In contrast, TLR2-deficient mice, either tlr2(-/-)or tlr2 4(-/-), that underwent CLP were resistant to the secondary pulmonary infection. As compared to wild-type mice, tlr2(-/-) mice displayed improvement in bacterial clearance, decreased bacteremic dissemination, and attenuated lung damage. Furthermore, tlr2(-/-) mice exhibited a pulmonary proinflammatory cytokine balance, with increased production of tumor necrosis factor α and decreased release of interleukin 10. In a model of secondary P. aeruginosa pneumonia in postseptic mice, TLR2 deficiency improves survival by promoting efficient bacterial clearance and restoring a proinflammatory cytokine balance in the lung.

  16. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice

    PubMed Central

    González-Navajas, José M.; Fine, Sean; Law, Jason; Datta, Sandip K.; Nguyen, Kim P.; Yu, Mandy; Corr, Maripat; Katakura, Kyoko; Eckman, Lars; Lee, Jongdae; Raz, Eyal

    2010-01-01

    TLRs sense various microbial products. Their function has been best characterized in DCs and macrophages, where they act as important mediators of innate immunity. TLR4 is also expressed on CD4+ T cells, but its physiological function on these cells remains unknown. Here, we have shown that TLR4 triggering on CD4+ T cells affects their phenotype and their ability to provoke intestinal inflammation. In a model of spontaneous colitis, Il10–/–Tlr4–/– mice displayed accelerated development of disease, with signs of overt colitis as early as 8 weeks of age, when compared with Il10–/– and Il10–/–Tlr9–/– mice, which did not develop colitis by 8 months. Similar results were obtained in a second model of colitis in which transfer of naive Il10–/–Tlr4–/– CD4+ T cells into Rag1–/– recipients sufficient for both IL-10 and TLR4 induced more aggressive colitis than the transfer of naive Il10–/– CD4+ T cells. Mechanistically, LPS stimulation of TLR4-bearing CD4+ T cells inhibited ERK1/2 activation upon subsequent TCR stimulation via the induction of MAPK phosphatase 3 (MKP-3). Our data therefore reveal a tonic inhibitory role for TLR4 signaling on subsequent TCR-dependent CD4+ T cell responses. PMID:20051628

  17. A novel 1,2-benzenediamine derivative FC-99 suppresses TLR3 expression and ameliorates disease symptoms in a mouse model of sepsis

    PubMed Central

    Gong, Wei; Hu, Erling; Dou, Huan; Song, Yuxian; Yang, Liu; Ji, Jianjian; Li, Erguang; Tan, Renxiang; Hou, Yayi

    2014-01-01

    Background and Purpose Sepsis is a clinical condition characterized by overwhelming systemic inflammation with high mortality rate and high prevalence, but effective treatment is still lacking. Toll-like receptor 3 (TLR3) is an endogenous sensor, thought to regulate the amplification of immune response during sepsis. Modulators of TLR3 have an advantage in the treatment of sepsis. Here, we aimed to explore the mechanism of a monosubstituted 1,2-benzenediamine derivative FC-99 {N1-[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine}on modulating TLR3 expression and its therapeutic potential on mouse model of sepsis. Experimental Approach Cells were pretreated with FC-99 followed by poly(I:C) or IFN-α stimulation; TLR3 and other indicators were assayed. Female C57BL/6 mice were subjected to sham or caecal ligation puncture (CLP) surgery after i.p. injection of vehicle or FC-99; serum and tissues were collected for further experiments. Key Results FC-99 suppressed inflammatory response induced by poly(I:C) with no effect on cell viability or uptake of poly(I:C). FC-99 also inhibited TLR3 expression induced by not only poly(I:C) but also by exogenous IFN-α. This inhibition of FC-99 was related to the poly(I:C)-evoked IRF3/IFN-α/JAK/STAT1 signalling pathway. In CLP-induced model of sepsis, FC-99 administration decreased mice mortality and serum levels of inflammatory factors, attenuated multiple organ dysfunction and enhanced bacterial clearance. Accordingly, systemic and local expression of TLR3 was reduced by FC-99 in vivo. Conclusion and Implications FC-99 reversed TLR3 expression and ameliorate CLP-induced sepsis in mice. Thus, FC-99 will be a potential therapeutic candidate for sepsis. PMID:24903157

  18. The IRAK-ERK-p67phox-Nox-2 axis mediates TLR4, 2-induced ROS production for IL-1β transcription and processing in monocytes

    PubMed Central

    Singh, Ankita; Singh, Vishal; Tiwari, Rajiv L.; Chandra, Tulika; Kumar, Ashutosh; Dikshit, Madhu; Barthwal, Manoj K.

    2016-01-01

    In monocytic cells, Toll-like receptor 4 (TLR4)- and TLR2-induced reactive oxygen species (ROS) cause oxidative stress and inflammatory response; however, the mechanism is not well understood. The present study investigated the role of interleukin-1 receptor-associated kinase (IRAK), extracellular signal-regulated kinase (ERK), p67phox and Nox-2 in TLR4- and TLR2-induced ROS generation during interleukin-1 beta (IL-1β) transcription, processing, and secretion. An IRAK1/4 inhibitor, U0126, PD98059, an NADPH oxidase inhibitor (diphenyleneiodonium (DPI)), and a free radical scavenger (N-acetyl cysteine (NAC))-attenuated TLR4 (lipopolysaccharide (LPS))- and TLR2 (Pam3csk4)-induced ROS generation and IL-1β production in THP-1 and primary human monocytes. An IRAK1/4 inhibitor and siRNA-attenuated LPS- and Pam3csk4-induced ERK-IRAK1 association and ERK phosphorylation and activity. LPS and Pam3csk4 also induced IRAK1/4-, ERK- and ROS-dependent activation of activator protein-1 (AP-1), IL-1β transcription, and IL-1β processing because significant inhibition in AP-1 activity, IL-1β transcription, Pro- and mature IL-β expression, and caspase-1 activity was observed with PD98059, U0126, DPI, NAC, an IRAK1/4 inhibitor, tanshinone IIa, and IRAK1 siRNA treatment. IRAK-dependent ERK-p67phox interaction, p67phox translocation, and p67phox–Nox-2 interaction were observed. Nox-2 siRNA significantly reduced secreted IL-1β, IL-1β transcript, pro- and mature IL-1β expression, and caspase-1 activity indicating a role for Nox-2 in LPS- and Pam3csk4-induced IL-1β production, transcription, and processing. In the present study, we demonstrate that the TLR4- and TLR2-induced IRAK-ERK pathway cross-talks with p67phox-Nox-2 for ROS generation, thus regulating IL-1β transcription and processing in monocytic cells. PMID:26320741

  19. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways

    PubMed Central

    Doyle, Alexander; Zhang, Guohua; Abdel Fattah, Elmoataz A.; Eissa, N. Tony; Li, Yi-Ping

    2011-01-01

    Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.—Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., Li, Y.-P. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. PMID:20826541

  20. Vitamin D supplementation and antibacterial immune responses in adolescents and young adults with HIV/AIDS

    PubMed Central

    Chun, Rene F.; Liu, Nancy Q.; Lee, T; Schall, Joan I.; Denburg, Michelle R.; Rutstein, Richard M.; Adams, John S.; Zemel, Babette S.; Stallings, Virginia A.; Hewison, Martin

    2014-01-01

    Human monocytes activated by toll-like receptor 2/1 ligand (TLR2/1L) show enhanced expression of the vitamin D receptor (VDR) and the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1). The resulting intracrine conversion of precursor 25-hydroxyvitamin D3 (25OHD) to active 1,25-dihydroxyvitamin D (1,25(OH)2D) can stimulate expression of antibacterial cathelicidin (CAMP). To determine whether this response is functional in HIV-infected subjects (HIV+), serum from HIV+ subjects pre- and post-vitamin D supplementation was utilized in monocyte cultures with or without TLR2/1L. Expression of CYP27B1 and VDR was enhanced following treatment with TLR2/1L, although this effect was lower in HIV+ vs HIV- serum (p<0.05). CAMP was also lower in TLR2/1L-treated monocytes cultured in HIV+ serum (p<0.01). In a dose study, supplementation of HIV+ subjects with 4,000IU or 7,000IU vitamin D/day increased serum 25OHD from 17.3±8.0 and 20.6±6.2 ng/ml (43 nM and 51 nM) at baseline to 41.1±12.0 and 51.9±23.1 ng/ml (103 nM and 130 nM) after 12 wks (both p<0.001). Greater percent change from baseline 25OHD was significantly associated with enhanced TLR2/1L-induced monocyte CAMP adjusted for baseline expression (p = 0.009). In a randomized placebo-controlled trial, 7,000IU vitamin D/day increased serum 25OHD from 18.0±8.6 to 32.7±13.8 ng/ml (45 nM and 82 nM) after 12 wks. Expression of CAMP increased significantly from baseline after 52 wks of vitamin D-supplementation. At this time point, TLR2/1L-induced CAMP was positively associated with percent change from baseline in 25OHD (p = 0.029 overall and 0.002 within vitamin D-supplemented only). These data indicate that vitamin D supplementation in HIV-infected subjects can promote improved antibacterial immunity, but also suggest that longer periods of supplementation are required to achieve this. PMID:25092518

  1. Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency through Commensally Induced Pyroptosis

    PubMed Central

    Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H.; Göthert, Joachim R.; Rünzi, Michael; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.

    2013-01-01

    Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b+ myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b+Ly6C+-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b+ myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species–mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis. PMID:23636052

  2. Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis.

    PubMed

    Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H; Göthert, Joachim R; Rünzi, Michael; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2013-06-01

    Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b(+) myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b(+)Ly6C(+)-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species-mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis.

  3. Antagonists of toll like receptor 4 maybe a new strategy to counteract opioid-induced hyperalgesia and opioid tolerance.

    PubMed

    Li, Qian

    2012-12-01

    Long term opioid treatment results in hyperalgesia and tolerance, which is a troublesome phenomenon in clinic application. Recent studies have revealed a critical role of toll-like receptor 4 (TLR4) in the neuropathological process of opioid-induced hyperalgesia and tolerance. TLR4 is predominantly expressed by microglial cells and is a key modulator in the activation of the innate immune system. Activation of TLR4 may initiate the activation of microglia and hence a number of neurotransmitters and neuromodulators that could enhance neuronal excitability are released. Blockade of TLR4 activation by its antagonists alleviate neuropathic pain. We hypothesized that opioid antagonists such as naloxone and naltrexone, which were also demonstrated to be TLR4 antagonist, may have clinic application value in attenuation of opioid-induced hyperalgesia and tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. "Host tissue damage" signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes.

    PubMed

    Kaufmann, Andreas; Musset, Boris; Limberg, Sven H; Renigunta, Vijay; Sus, Rainer; Dalpke, Alexander H; Heeg, Klaus M; Robaye, Bernard; Hanley, Peter J

    2005-09-16

    The activation of Toll-like receptors (TLRs) by lipopolysaccharide or other ligands evokes a proinflammatory immune response, which is not only capable of clearing invading pathogens but can also inflict damage to host tissues. It is therefore important to prevent an overshoot of the TLR-induced response where necessary, and here we show that extracellular ATP is capable of doing this in human monocytes. Using reverse transcription-PCR, we showed that monocytes express P2Y(1), P2Y(2), P2Y(4), P2Y(11), and P2Y(13) receptors, as well as several P2X receptors. To elucidate the function of these receptors, we first studied Ca(2+) signaling in single cells. ATP or UTP induced a biphasic increase in cytosolic Ca(2+), which corresponded to internal Ca(2+) release followed by activation of store-operated Ca(2+) entry. The evoked Ca(2+) signals stimulated Ca(2+)-activated K(+) channels, producing transient membrane hyperpolarization. In addition, ATP promoted cytoskeleton reorganization and cell migration; however, unlike chemoattractants, the migration was non-directional and further analysis showed that ATP did not activate Akt, essential for sensing gradients. When TLR2, TLR4, or TLR2/6 were stimulated with their respective ligands, ATPgammaS profoundly inhibited secretion of proinflammatory cytokines (tumor necrosis factor-alpha and monocyte chemoattractant protein-1) but increased the production of interleukin-10, an anti-inflammatory cytokine. In radioimmune assays, we found that ATP (or ATPgammaS) strongly increased cAMP levels, and, moreover, the TLR-response was inhibited by forskolin, whereas UTP neither increased cAMP nor inhibited the TLR-response. Thus, our data suggest that ATP promotes non-directional migration and, importantly, acts as a "host tissue damage" signal via the G(s) protein-coupled P2Y(11) receptor and increased cAMP to negatively regulate TLR signaling.

  5. Toll-like receptor 1(TLR1) Gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children.

    PubMed

    Qi, Hui; Sun, Lin; Wu, Xirong; Jin, Yaqiong; Xiao, Jing; Wang, Shengfeng; Shen, Chen; Chu, Ping; Qi, Zhan; Xu, Fang; Guo, Yajie; Jiao, Weiwei; Tian, Jianling; Shen, Adong

    2015-03-01

    Toll-like receptor 1 (TLR1) recognizes lipopeptides with TLR2, and affects immune response to Mycobacterium tuberculosis infection. Here, we report results of the first case-control pediatric study of the TLR1 single-nucleotide polymorphisms and susceptibility to tuberculosis (TB). A pediatric case-control study enrolled 340 TB patients and 366 healthy controls, all Han Chinese from North China. Significant differences of the allelic and genotypic distributions of rs5743618 in TLR1 gene were observed between TB group and control group and, G allele of rs5743618 was associated with increased risk for TB (OR: 2.40, 95%CI: 1.41-4.07, P = 0.0009). TLR1 rs5743618 -GT genotype was related to reduction in surface expression of TLR1 in monocytes and granulocytes regardless of stimulation with inactivated H37Rv. In addition, after stimulated with inactivated lysate of M. tuberculosis strain H37Rv, samples of peripheral blood mononuclear cells (PBMCs) from children with the rs5743618 GT genotypes showed a decreased level of Tumor Necrosis Factor-a (TNF-a) and CXC chemokine ligand 10 (CXCL10) production, invariable production of interleukin-6 (IL-6) and IL-8 and increased production of IL-10 ex vivo. To conclude, TLR1 rs5743618 G allele was found associated to susceptibility to TB in Han Chinese pediatric population. TLR1 rs5743618-GT genotype carriers may have reduced immune response to MTB infection although further study is warranted to test this conclusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases.

    PubMed

    Barrio, Laura; Saez de Guinoa, Julia; Carrasco, Yolanda R

    2013-10-01

    B cells use a plethora of TLR to recognize pathogen-derived ligands. These innate signals have an important function in the B cell adaptive immune response and modify their trafficking and tissue location. The direct role of TLR signaling on B cell dynamics nonetheless remains almost entirely unknown. In this study, we used a state-of-the-art two-dimensional model combined with real-time microscopy to study the effect of TLR4 stimulation on mouse B cell motility in response to chemokines. We show that a minimum stimulation period is necessary for TLR4 modification of B cell behavior. TLR4 stimulation increased B cell polarization, migration, and directionality; these increases were dependent on the MyD88 signaling pathway and did not require ERK or p38 MAPK activity downstream of TLR4. In addition, TLR4 stimulation enhanced Rac GTPase activity and promoted sustained Rac activation in response to chemokines. These results increase our understanding of the regulation of B cell dynamics by innate signals and the underlying molecular mechanisms.

  7. Type I interferon dependence of plasmacytoid dendritic cell activation and migration

    PubMed Central

    Asselin-Paturel, Carine; Brizard, Géraldine; Chemin, Karine; Boonstra, Andre; O'Garra, Anne; Vicari, Alain; Trinchieri, Giorgio

    2005-01-01

    Differential expression of Toll-like receptor (TLR) by conventional dendritic cells (cDCs) and plasmacytoid DC (pDCs) has been suggested to influence the type of immune response induced by microbial pathogens. In this study we show that, in vivo, cDCs and pDCs are equally activated by TLR4, -7, and -9 ligands. Type I interferon (IFN) was important for pDC activation in vivo in response to all three TLR ligands, whereas cDCs required type I IFN signaling only for TLR9- and partially for TLR7-mediated activation. Although TLR ligands induced in situ migration of spleen cDC into the T cell area, spleen pDCs formed clusters in the marginal zone and in the outer T cell area 6 h after injection of TLR9 and TLR7 ligands, respectively. In vivo treatment with TLR9 ligands decreased pDC ability to migrate ex vivo in response to IFN-induced CXCR3 ligands and increased their response to CCR7 ligands. Unlike cDCs, the migration pattern of pDCs required type I IFN for induction of CXCR3 ligands and responsiveness to CCR7 ligands. These data demonstrate that mouse pDCs differ from cDCs in the in vivo response to TLR ligands, in terms of pattern and type I IFN requirement for activation and migration. PMID:15795237

  8. The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner.

    PubMed

    Ryu, Seung-Hyun; Park, Jong-Hyung; Choi, Soo-Young; Jeon, Hee-Yeon; Park, Jin-Il; Kim, Jun-Young; Ham, Seung-Hoon; Choi, Yang-Kyu

    2016-07-28

    The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.

  9. Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer.

    PubMed

    Messaritakis, Ippokratis; Stogiannitsi, Maria; Koulouridi, Asimina; Sfakianaki, Maria; Voutsina, Alexandra; Sotiriou, Afroditi; Athanasakis, Elias; Xynos, Evangelos; Mavroudis, Dimitris; Tzardi, Maria; Souglakos, John

    2018-01-01

    Toll-like receptors (TLRs) play essential role in innate and acquired immunity, are expressed in various cell types, and are associated with altered susceptibility to many diseases, and cancers. The aim of this study was to investigate TLR2 (-196 to-174del), TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T1237C and T1486C) gene polymorphisms at risk of colorectal cancer (CRC) development and progression. Peripheral blood was obtained from 397 patients with adjuvant (stage II/III, n = 202) and metastatic (n = 195) CRC. Moreover, blood samples from 50 healthy volunteers and 40 patients with adenomatous polyps were also included as control groups. DNA from patients and controls was analyzed using PCR and PCR-RFLP for genotyping functional polymorphism within TLR2, TLR4 and TLR9 genotypes. TLR2-196 to-174del/del genotype was detected in 76.6% of the patients and was significantly higher that the controls groups (p<0.001). TLR4 Asp299Gly, TLR4 Thr399Ile, TLR9 T1237C and T1486C homozygous genotypes were detected in 70.5%, 70.5%, 61.5% and 61.5% of the patients respectively, and were also significantly higher than that in the control groups (p<0.001). All polymorphisms detected were also significantly associated with the metastatic disease (p<0.001) leading to shorter overall survival (p<0.001); whereas, TLR4 Asp299Gly and Thr399Ile polymorphisms were significantly associated with KRAS mutations. The detection of higher frequencies of the TLR2, TLR4 and/or TLR9 polymorphisms in CRC patients compared with the control groups highlight the role of these polymorphism in CRC development and cancer progression.

  10. G2013 modulates TLR4 signaling pathway in IRAK-1 and TARF-6 dependent and miR-146a independent manner.

    PubMed

    Hajivalili, M; Pourgholi, F; Majidi, J; Aghebati-Maleki, L; Movassaghpour, A A; Samadi Kafil, H; Mirshafiey, A; Yousefi, M

    2016-04-30

    Inflammation is inseparable part of different diseases especially cancer and autoimmunity. During inflammation process toll like receptor 4(TLR4) responds to lipopolysaccharide (LPS), one of the bacterial components, and TLR4 signaling leads to interleukine-1 receptor associated kinase-1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor6 (TRAF6) activation which ultimately results in nuclear factor- ĸB (NF-ĸB) activation as the main transcription factor of inflammatory cytokines. Conversely, NF-ĸB over activation induces miR-146a in innate immune cells which can consequently reduce TRAF6, IRAK1, and NF-ĸB activation in a negative feedback. G2013 is a novel designed non-steroidal anti-inflammatory drug (NSAID) which was recently shown to be effective in experimental autoimmune encephalomyelitis (EAE) mouse model. The aim of this study was to evaluate G2013 effects on inflammatory (IRAK1 and TRAF6) and anti-inflammatory (miR-146a) factors of TLR4 signaling pathway. For this purpose, cytotoxicity of G2013 has been evaluated by MTT assay. Expression level of miR-146a in PBMCs and IRAK1 along with TRAF6 in HEK-293 TLR4 cells have been determined using real time PCR. Our results showed that IC50 of G2013 was 25μg/ml, thus 5 and 25 μg/ml concentrations used for further treatments as low dose and high dose concentrations. Our results showed that IRAK1 expression reduced between 5 to 8 fold after treatment by G2013 in a dose dependent manner (p<0.001). In parallel TRAF6 expression declined between 3 to 10 fold dose dependently (p<0.05). However, miR-146a expression was not affected after treatment with low dose and high dose of G2013. In conclusion our data showed that G2013 can regulate TLR4 signaling pathway during inflammation by reducing downstream signaling molecules, IRAK1 and TRAF6 without altering miR-146a expression.

  11. TLR4-dependent internalization of CX3CR1 aggravates sepsis-induced immunoparalysis.

    PubMed

    Ge, Xin-Yu; Fang, Shang-Ping; Zhou, Miao; Luo, Jing; Wei, Juan; Wen, Xue-Ping; Yan, Xiao-Di; Zou, Zui

    2016-01-01

    Sepsis, the most severe manifestation of infection, poses a major challenge to health-care systems around the world. Limited ability to clean and remove the pathogen renders difficulty in septic patients to recover from the phase of immunoparalysis. The present study found the vital role of CX3CR1 internalization on sepsis-induced immunoparalysis. A mouse model with cecal ligation and puncture (CLP) and cell model with lipopolysaccharides (LPS) were employed to explore the relationship between CX3CR1 internalization and septic immunoparalysis. Immunoparalysis model in mice was established 4 days after CLP with significantly decreased proinflammatory cytokines. Flow cytometry analysis found a decreased surface expression of CX3CR1 during immunoparalysis, which was associated with reduced mRNA level and increased internalization of CX3CR1. G-protein coupled receptor kinase 2 (GRK2) and β-arrestin2 were significantly increased during septic immunoparalysis and involved in the internalization of CX3CR1. TLR4 -/- or TLR4 inhibitor-treated macrophages exhibited an inhibited expression of GRK2 and β-arrestin2, along with reduced internalization of CX3CR1. Moreover, the knockdown of GRK2 and β-arrestin2 inhibited the internalization of CX3CR1 and led to a higher response on the second hit, which was associated with an increased activation of NF-κB. The critical association between internalization of CX3CR1 and immunosuppression in sepsis may provide a novel reference for clinical therapeutics.

  12. Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy.

    PubMed

    Carlsson, Emil; Thwaite, Joanne E; Jenner, Dominic C; Spear, Abigail M; Flick-Smith, Helen; Atkins, Helen S; Byrne, Bernadette; Ding, Jeak Ling

    2016-01-01

    Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence.

  13. [Effect of schistosome ova on Trinitrobenzenesulfonic acid induced colitis in mice].

    PubMed

    Jiang, Jie; Xue, Ru-yi; Zhang, Shun-cai; Zhou, Jun; Zhou, Kang

    2007-08-14

    To investigate the effects of intraperitoneal injected schistosome ova on TNBS-induced colitis and on the intestinal TLR4 expression in mice. 40 BALB/c mice were randomized into 3 groups: normal control group (10 mice), TNBS group (20 mice) in which mice were exposed to trinitrobenzesulfonic acid (TNBS) and were induced with colitis, and the schistosome ova group (10 mice) in which mice were intraperitoneal injected with freeze-killed schistosome ova and later exposed to TNBS. The following variables were observed: mortality, pathological appearance of the colon, histological scoring of the specimen, serum TNF-alpha level, and intestinal TLR4 expression detected by RT-PCR and Immunohistochemistry. Mortality of schistosome ova group was lower than that of the TNBS group (20% vs 70%, P < 0.05). Inflammation of the mice colon in the schistosome ova group was less severe than that of the TNBS group (1.4 +/- 0.5 vs 4.2 +/- 0.6, P < 0.01, Ameho criteria scoring). TLR4 expression of colon was up-regulated in mice of TNBS group and down-regulated in schistosome ova group which was still higher than that of normal controls (0.762 +/- 0.054 vs 0.325 +/- 0.029 vs 0.237 +/- 0.021, P < 0.01). Intraperitoneal injected schistosome ova can obviously reduce TNBS-induced colitis in mice, which may be attributed to down-regulated TLR4 expression in colon.

  14. The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury.

    PubMed

    Stivers, Nicole S; Pelisch, Nicolas; Orem, Ben C; Williams, Joshua; Nally, Jacqueline M; Stirling, David P

    2017-08-01

    Microglia/macrophage activation and recruitment following spinal cord injury (SCI) is associated with both detrimental and reparative functions. Stimulation of the innate immune receptor Toll-like receptor-2 (TLR2) has shown to be beneficial following SCI, and it increases axonal regeneration following optic nerve crush. However, the mechanism(s) remain unclear. As microglia express high levels of TLR2, we hypothesized that modulating the microglial response to injury using a specific TLR2 agonist, Pam3CSK4, would prevent secondary-mediated white matter degeneration following SCI. To test this hypothesis, we documented acute changes in microglia, axons, and oligodendroglia over time using two-photon excitation and an ex vivo laser-induced SCI (LiSCI) model. We utilized double transgenic mice that express GFP in either microglia or oligodendroglia, and YFP in axons, and we applied the lipophilic fluorescent dye (Nile Red) to visualize myelin. We found that treatment with Pam3CSK4 initiated one hour after injury induced a significant increase in the extent and timing of the microglial response to injury compared to vehicle controls. This enhanced response was observed 2 to 4h following SCI and was most prominent in areas closer to the ablation site. In addition, Pam3CSK4 treatment significantly reduced axonal dieback rostral and caudal to the ablation at 6h post-SCI. This protective effect of Pam3CSK4 was also mirrored when assessing secondary bystander axonal damage (i.e., axons spared by the primary injury that then succumb to secondary degeneration), and when assessing the survival of oligodendroglia. Following these imaging experiments, custom microarray analysis of the ex vivo spinal cord preparations revealed that Pam3CSK4-treatment induced an alternative (mixed M1:M2) microglial activation profile. In summary, our data suggest that by providing a second "sterile" activation signal to microglia through TLR2/TLR1 signaling, the microglial response to injury can be modulated in situ and is highly neuroprotective. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells.

    PubMed

    Bulgari, Omar; Dong, Xianwen; Roca, Alfred L; Caroli, Anna M; Loor, Juan J

    2017-01-01

    Innate immune responses induced by in vitro stimulation of primary mammary epithelial cells (MEC) using Gram-negative lipopolysaccharide (LPS) and Gram-positive lipoteichoic acid (LTA) bacterial cell wall components are well- characterized in bovine species. The objective of the current study was to characterize the downstream regulation of the inflammatory response induced by Toll-like receptors in primary goat MEC (pgMEC). We performed quantitative real-time RT-PCR (qPCR) to measure mRNA levels of 9 genes involved in transcriptional regulation or antibacterial activity: Toll-like receptor 2 ( TLR2 ), Toll-like receptor 4 ( TLR4 ), prostaglandin-endoperoxide synthase 2 ( PTGS2 ), interferon induced protein with tetratricopeptide repeats 3 ( IFIT3 ), interferon regulatory factor 3 ( IRF3 ), myeloid differentiation primary response 88 ( MYD88 ), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 ( NFKB1 ), Toll interacting protein ( TOLLIP ), and lactoferrin ( LTF ). Furthermore, we analyzed 7 cytokines involved in Toll-like receptor signaling pathways: C-C motif chemokine ligand 2 ( CCL2 ), C-C motif chemokine ligand 5 ( CCL5 ), C-X-C motif chemokine ligand 6 ( CXCL6 ), interleukin 8 ( CXCL8 ), interleukin 1 beta ( IL1B ), interleukin 6 ( IL6 ), and tumor necrosis factor alpha ( TNF ). Stimulation of pgMEC with LPS for 3 h led to an increase in expression of CCL2 , CXCL6 , IL6 , CXCL8 , PTGS2 , IFIT3 , MYD88 , NFKB1 , and TLR4 ( P  < 0.05). Except for IL6 , and PTGS2 , the same genes had greater expression than controls at 6 h post-LPS ( P  < 0.05). Expression of CCL5 , PTGS2 , IFIT3 , NFKB1 , TLR4 , and TOLLIP was greater than controls after 3 h of incubation with LTA ( P  < 0.05). Compared to controls, stimulation with LTA for 6 h led to greater expression of PTGS2 , IFIT3 , NFKB1 , and TOLLIP ( P  < 0.05) whereas the expression of CXCL6 , CXCL8 , and TLR4 was lower ( P  < 0.05). At 3 h incubation with both toxins compared to controls a greater expression ( P  < 0.05) of CCL2 , CCL5 , CXCL6 , CXCL8 , IL6 , PTGS2 , IFIT3 , IRF3 , MYD88 , and NFKB1 was detected. After 6 h of incubation with both toxins, the expression of CCL2 , CXCL6 , IFIT3 , MYD88 , NFKB1 , and TLR4 was higher than the controls ( P  < 0.05). Data indicate that in the goat MEC, LTA induces a weaker inflammatory response than LPS. This may be related to the observation that gram-positive bacteria cause chronic mastitis more often than gram-negative infections.

  16. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    PubMed

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC.

  17. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model

    PubMed Central

    Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC. PMID:25915861

  18. Characterization of TLR5 and TLR9 from silver pomfret (Pampus argenteus) and expression profiling in response to bacterial components.

    PubMed

    Gao, Quanxin; Yue, Yanfeng; Min, Minghua; Peng, Shiming; Shi, Zhaohong; Sheng, Wenquan; Zhang, Tao

    2018-06-08

    Toll like receptor (TLR) 5 and 9 are important members of the TLR family that play key roles in innate immunity in all vertebrates. In this study, paTLR5 and paTLR9 were identified in silver pomfret (Pampus argenteus), a marine teleost of great economic value. Open reading frames (ORFs) of paTLR5 and paTLR9 are 2646 and 3225 bp, encoding polypeptides of 881 and 1074 amino acids, respectively. Sequence analysis revealed several conserved characteristic features, including signal peptides, leucine-rich repeat (LRR) motifs, and a Toll/interleukin-I receptor (TIR) domain. Sequence, phylogenetic and synteny analysis revealed high sequence identity with counterparts in other teleosts, confirming their correct nomenclature and conservation during evolution. Quantitative real-time PCR revealed that the that both TLRs were ubiquitously expressed in all investigated tissues, most abundantly in liver, kidney, spleen, intestine and gill, but lower in muscle and skin. In vitro immunostimulation experiments revealed that Aeromonas hydrophila lipopolysaccharide (LPS) and Vibrio anguillarum flagellin induced higher levels of paTLR9 and paTLR5 mRNA expression in isolated fish intestinal epithelial cells (FIECs) than Lactobacillus plantarum lipoteichoic acid (LTA), but all increased the secretion of IL-6 and TNF-α and induced cell apoptosis and necrosis. Together, these results indicate that paTLR5 and paTLR9 may function in the response to bacterial pathogens. Our findings enhance our understanding of the function of TLRs in the innate immune system of silver pomfret and other teleosts. Copyright © 2018. Published by Elsevier Ltd.

  19. Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania (V.) braziliensis and Leishmania (L.) amazonensis

    PubMed Central

    Campos, Marliane Batista; Lima, Luciana Vieira do Rêgo; de Lima, Ana Carolina Stocco; Vasconcelos dos Santos, Thiago; Ramos, Patrícia Karla Santos; Gomes, Claudia Maria de Castro

    2018-01-01

    Leishmania (V.) braziliensis and Leishmania(L.) amazonensis are the most pathogenic agents of American Cutaneous Leishmaniasis in Brazil, causing a wide spectrum of clinical and immunopathological manifestations, including: localized cutaneous leishmaniasis (LCLDTH+/++), borderline disseminated cutaneous leishmaniasis (BDCLDTH±), anergic diffuse cutaneous leishmaniasis (ADCLDTH-), and mucosal leishmaniasis (MLDTH++++). It has recently been demonstrated, however, that while L. (V.) braziliensis shows a clear potential to advance the infection from central LCL (a moderate T-cell hypersensitivity form) towards ML (the highest T-cell hypersensitivity pole), L. (L.) amazonensis drives the infection in the opposite direction to ADCL (the lowest T-cell hypersensitivity pole). This study evaluated by immunohistochemistry the expression of Toll-like receptors (TLRs) 2, 4, and 9 and their relationships with CD4 and CD8 T-cells, and TNF-α, IL-10, and TGF-β cytokines in that disease spectrum. Biopsies of skin and mucosal lesions from 43 patients were examined: 6 cases of ADCL, 5 of BDCL, and 11 of LCL caused byL. (L.) amazonensis; as well as 10 cases of LCL, 4 of BDCL, and 6 of ML caused byL. (V.) braziliensis. CD4+ T-cells demonstrated their highest expression in ML and, in contrast, their lowest in ADCL. CD8+ T-cells also showed their lowest expression in ADCL as compared to the other forms of the disease. TNF-α+showed increased expression from ADCL to ML, while IL-10+and TGF-β+ showed increased expression in the opposite direction, from ML to ADCL. With regards to TLR2, 4, and 9 expressions, strong interactions of TLR2 and 4 with clinical forms associated with L. (V.) braziliensis were observed, while TLR9, in contrast, showed a strong interaction with clinical forms linked to L. (L.) amazonensis. These findings strongly suggest the ability of L. (V.) braziliensis and L. (L.) amazonensis to interact with those TLRs to promote a dichotomous T-cell immune response in ACL. PMID:29543867

  20. Does helminth activation of toll-like receptors modulate immune response in multiple sclerosis patients?

    PubMed Central

    Correale, Jorge; Farez, Mauricio F.

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disease affecting the Central Nervous System (CNS), in which Th1 and Th17 cells appear to recognize and react against certain myelin sheath components. Epidemiological evidence has accumulated indicating steady increase in autoimmune disease incidence in developed countries. Reduced infectious disease prevalence in particular has been proposed as the cause. In agreement with this hypothesis, we recently demonstrated significantly better clinical and radiological outcome in helminth-infected MS patients, compared to uninfected ones. Parasite-driven protection was associated with regulatory T cell induction and anti-inflammatory cytokine secretion, including increased TGF-β and IL-10 levels. Interestingly, surface expression of TLR2, on both B cells and dendritic cells (DC) was significantly higher in infected MS patients. Moreover, stimulation of myelin-specific T cell lines with a TLR2 agonist induced inhibition of T cell proliferation, suppression of IFN-γ, IL-12, and IL-17 secretion, as well as increase in IL-10 production, suggesting the functional responses observed correlate with TLR2 expression patterns. Furthermore, parasite antigens were able to induce TLR2 expression on both B cells and DCs. All functional effects mediated by TLR2 were abrogated when MyD88 gene expression was silenced; indicating helminth-mediated signaling induced changes in cytokine secretion in a MyD88-dependent manner. In addition, helminth antigens significantly enhanced co-stimulatory molecule expression, effects not mediated by MyD88. Parasite antigens acting on MyD88 induced significant ERK kinase phosphorylation in DC. Addition of the ERK inhibitor U0126 was associated with dose-dependent IL-10 inhibition and reciprocal enhancement in IL-12, both correlating with ERK inhibition. Finally, cytokine effects and changes observed in co-stimulatory DC molecules after helminth antigen exposure were lost when TLR2 was silenced. Overall, the data described indicate that helminth molecules exert potent regulatory effects on both DCs and B cells from MS patients through TLR2 regulation. PMID:22937527

  1. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production

    PubMed Central

    Fortes, Guilherme B.; Alves, Leticia S.; de Oliveira, Rosane; Dutra, Fabianno F.; Rodrigues, Danielle; Fernandez, Patricia L.; Souto-Padron, Thais; De Rosa, María José; Kelliher, Michelle; Golenbock, Douglas; Chan, Francis K. M.

    2012-01-01

    Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS. PMID:22262768

  2. Let-7i attenuates human brain microvascular endothelial cell damage in oxygen glucose deprivation model by decreasing toll-like receptor 4 expression.

    PubMed

    Xiang, Wei; Tian, Canhui; Peng, Shunli; Zhou, Liang; Pan, Suyue; Deng, Zhen

    2017-11-04

    The let-7 family of microRNAs (miRNAs) plays an important role on endothelial cell function. However, there have been few studies on their role under ischemic conditions. In this study, we demonstrate that let-7i, belonging to the let-7 family, rescues human brain microvascular endothelial cells (HBMECs) in an oxygen-glucose deprivation (OGD) model. Our data show that the expression of let-7 family miRNAs was downregulated after OGD. Overexpression of let-7i significantly alleviated cell death and improved survival of OGD-treated HBMECs. Let-7i also protected permeability in an in vitro blood brain barrier (BBB) model. Further, let-7i downregulated the expression of toll-like receptor 4 (TLR4), an inflammation trigger. Moreover, overexpression of let-7i decreased matrix metallopeptidase 9 (MMP9) and inducible nitric oxide synthase (iNOS) expression under OGD. Upon silencing TLR4 expression in HBMECs, the anti-inflammatory effect of let-7i was abolished. Our research suggests that let-7i promotes OGD-induced inflammation via downregulating TLR4 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Correlations between gene expression highlight a different activation of ACE/TLR4/PTGS2 signaling in symptomatic and asymptomatic plaques in atherosclerotic patients.

    PubMed

    Ferronato, Silvia; Scuro, Alberto; Gomez-Lira, Macarena; Mazzucco, Sara; Olivato, Silvia; Turco, Alberto; Elisa, Orlandi; Malerba, Giovanni; Romanelli, Maria Grazia

    2018-06-19

    Inflammation has a key role and translates the effects of many known risk factors for the disease in atherosclerotic vulnerable plaques. Aiming to look into the elements that induce the development of either a vulnerable or stable atherosclerotic plaque, and considering that inflammation has a central role in the progression of lesions, we analyzed the expression of genes involved in the ACE/TLR4/PTGS2 signaling in carotid plaques of symptomatic and asymptomatic patients. Patients with internal carotid artery stenosis undergoing carotid endarterectomy at Verona University Hospital were included in this study. A total of 71 patients was considered for gene expression analysis (29 atherothrombotic stroke patients and 42 asymptomatic patients). Total RNA was extracted from the excised plaques and expression of PTGS2, ACE, TLR4, PTGER4, PTGER3, EPRAP and ACSL4 genes was analyzed by real-time PCR. The correlation between the pair of genes was studied by Spearman coefficient. From the analyzed genes, we did not observe any individual difference in gene expression but the network of co-expressed genes suggests a different activation of pathways in the two groups of plaques.

  4. Polyinosine-polycytidylic acid promotes excessive iodine intake induced thyroiditis in non-obese diabetic mice via Toll-like receptor 3 mediated inflammation.

    PubMed

    Shi, Ya-nan; Liu, Feng-hua; Yu, Xiu-jie; Liu, Ze-bing; Li, Qing-xin; Yuan, Ji-hong; Zang, Xiao-yi; Li, Lan-ying

    2013-02-01

    Excessive iodine intake and viral infection are recognized as both critical factors associated with autoimmune thyroid diseases. Toll-like receptors (TLRs) have been reported to play an important role in autoimmune and inflammatory disorders. In this study, we aimed to clarify the possible mechanism of TLR3 involved in polyinosine-polycytidylic acid (poly(I:C)) promoting excessive iodine intake induced thyroiditis in non-obese diabetic (NOD) mice. Both NOD and BALB/c mice were randomly assigned to four groups: control group (n = 5), high iodine intake (HI) group (n = 7), poly(I:C) group (n = 7) and combination of excessive iodine and poly(I:C) injection (HIP) group (n = 7). After 8 weeks, mice were weighed and blood samples were collected. All the mice were sacrificed before dissection of spleen and thyroid gland. Then, thyroid histology, thyroid secreted hormone, expression of CD3(+) cells and TLR3 as well as inflammatory mRNA level were evaluated. Both NOD and BALB/c mice from HI and HIP group represented goiter and increasing thyroid relative weight. Thyroid histology evidence indicated that only HIP group of NOD mice showed severe thyroiditis with lymphocytes infiltration in majority of thyroid tissue, severe damage of follicles and general fibrosis. Immunofluorescence staining results displayed a large number of CD3(+) cells in HIP NOD mice. Real-time polymerase chain reaction (PCR) results suggested interferon (IFN)-α increased over 30 folds and IFN-γ expression was doubled compared with control group, but interleukin (IL)-4 remained unchanged in HIP group of NOD mice thyroid. Meanwhile, over one third decrease of blood total thyroxine (TT4) and increased thyroid-stimulating hormone (TSH) was observed in HIP group of NOD mice. Only HIP group of NOD mice represented significantly elevation of TLR3 expression. Poly(I:C) enhanced excessive dietary iodine induced thyroiditis in NOD mice through increasing TLR3 mediated inflammation.

  5. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation.

    PubMed

    Ding, Feijia; Li, Fan; Li, Yunhong; Hou, Xiaolin; Ma, Yi; Zhang, Nan; Ma, Jiao; Zhang, Rui; Lang, Bing; Wang, Hongyan; Wang, Yin

    2016-08-01

    Curcumin has anti-inflammatory and antioxidant properties and has been widely used to treat or prevent neurodegenerative diseases. However, the mechanisms underlying the neuroprotective effects of curcumin are not well known. In the present study, the effect of curcumin on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells was investigated using enzyme-linked immunosorbent assays of the culture medium and western blotting of cell lysates. The results showed that curcumin significantly inhibited the LPS-induced expression and release of heat shock protein 60 (HSP60) in the BV2 cells. The level of heat shock factor (HSF)-1 was upregulated in LPS-activated BV2 microglia, indicating that the increased expression of HSP60 was driven by HSF-1 activation. However, the increased HSF-1 level was downregulated by curcumin. Extracellular HSP60 is a ligand of Toll-like receptor 4 (TLR-4), and the level of the latter was increased in the LPS-activated BV2 microglia and inhibited by curcumin. The activation of TLR-4 is known to be associated with the activation of myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB, with the subsequent production of proinflammatory and neurotoxic factors. In the present study, curcumin demonstrated marked suppression of the LPS-induced expression of MyD88, NF-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the microglia. These results indicate that curcumin may exert its neuroprotective and anti-inflammatory effects by inhibiting microglial activation through the HSP60/TLR-4/MyD88/NF-κB signaling wpathway. Therefore, curcumin may be useful for the treatment of neurodegenerative diseases that are associated with microglial activation.

  6. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro.

    PubMed

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-09-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

  7. TLR2 signal influences the iNOS/NO responses and worm development in C57BL/6J mice infected with Clonorchis sinensis.

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Shi, Yun-Liang; Wan, Xiao-Ling; Yang, Yi-Chao

    2017-08-07

    Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5)  = 2.595, P = 0.049), 60 (t (5)  = 7.838, P = 0.001) and 90 dpi (t (5)  = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5)  = 5.139, P = 0.004), 60 (t (5)  = 6.138, P = 0.002) and 90 dpi (t (5)  = 6.332, P = 0.001). However, the rising of iNOS transcripts dropped under the uninfected control level in the TLR2 mutant mice at 120 dpi (t (5)  = -9.082, P < 0.0001). Both total NO and iNOS transcripts were significantly higher in the TLR2 mutant mice than those in the TLR2 wild-type mice at 30 (t (5)  = 3.091/2.933, P = 0.027/0.033) and 60 dpi (t (5)  = 2.667/6.331, P = 0.044/0.001), respectively. In addition, the remarkable increase of iNOS expressions was immunohistochemically detected in the splenic serial sections of TLR2 wild-type mice at 30 and 60 dpi. However, the expressions of iNOS were remarkably decreased in the splenocytes of both TLR2 wild-type and mutant mice at 120 dpi. These results demonstrate that TLR2 signal plays an important role in the regulation of iNOS expression after C. sinensis infection. TLR2 signal is also beneficial to limiting worm growth and development and contributing to the susceptibility to C. sinensis in which the iNOS/NO reactions possibly participate.

  8. Probiotic Bacteria Alter Pattern-Recognition Receptor Expression and Cytokine Profile in a Human Macrophage Model Challenged with Candida albicans and Lipopolysaccharide

    PubMed Central

    Matsubara, Victor H.; Ishikawa, Karin H.; Ando-Suguimoto, Ellen S.; Bueno-Silva, Bruno; Nakamae, Atlas E. M.; Mayer, Marcia P. A.

    2017-01-01

    Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM) or associated with Escherichia coli lipopolysaccharide (LPS), followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4) was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05), resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1β, and reduction of IL-12 production by macrophages (p < 0.05). Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation. PMID:29238325

  9. Extremely low-level microwaves attenuate immune imbalance induced by inhalation exposure to low-level toluene in mice.

    PubMed

    Novoselova, Elena G; Glushkova, Olga V; Khrenov, Maxim O; Novoselova, Tatyana V; Lunin, Sergey M; Fesenko, Eugeny E

    2017-05-01

    To clarify whether extremely low-level microwaves (MW) alone or in combination with p38 inhibitor affect immune cell responses to inhalation exposure of mice to low-level toluene. The cytokine profile, heat shock proteins expression, and the activity of several signal cascades, namely, NF-κB, SAPK/JNK, IRF-3, p38 MAPK, and TLR4 were measured in spleen lymphocytes of mice treated to air-delivered toluene (0.6 mg/m 3 ) or extremely low-level microwaves (8.15-18 GHz, 1μW/cm 2 , 1 Hz swinging frequency) or combined action of these two factors. A single exposure to air-delivered low-level toluene induced activation of NF-κB, SAPK/JNK, IFR-3, p38 MAPK and TLR4 pathways. Furthermore, air toluene induced the expression of Hsp72 and enhanced IL-1, IL-6, and TNF-α in blood plasma, which is indicative of a pro-inflammatory response. Exposure to MW alone also resulted in the enhancement of the plasma cytokine values (e.g. IL-6, TNF-α, and IFN-γ) and activation of the NF-κB, MAPK p38, and especially the TLR4 pathways in splenic lymphocytes. Paradoxically, pre-exposure to MW partially recovered or normalized the lymphocyte parameters in the toluene-exposed mice, while the p38 inhibitor XI additionally increased protective activity of microwaves by down regulating MAPKs (JNK and p38), IKK, as well as expression of TLR4 and Hsp90-α. The results suggest that exposure to low-intensity MW at specific conditions may recover immune parameters in mice undergoing inhalation exposure to low-level toluene via mechanisms involving cellular signaling.

  10. Auranofin, as an anti-rheumatic gold compound suppresses LPS-induced homodimerization of TLR4

    PubMed Central

    Youn, Hyung S.; Lee, Joo Y.; Saitoh, Shin I.; Miyake, Kensuke; Hwang, Daniel H.

    2009-01-01

    Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-κB and IRF3 and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-κ activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKβ, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity. PMID:17034761

  11. Characterization and anti-inflammation role of swine IFITM3 gene

    PubMed Central

    Li, He-Ping; Chen, Pei-Ge; Liu, Fu-Tao; Zhu, He-Shui; Jiao, Xian-Qin; Zhong, Kai; Guo, Yu-Jie; Zha, Guang-Ming; Han, Li-Qiang; Lu, Wei-Fei; Wang, Yue-Ying; Yang, Guo-Yu

    2017-01-01

    IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation. PMID:29088728

  12. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways.

    PubMed

    Seifert, Lena; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Werba, Gregor; Pansari, Mridul; Pergamo, Matthew; Ochi, Atsuo; Torres-Hernandez, Alejandro; Levie, Elliot; Tippens, Daniel; Greco, Stephanie H; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Eisenthal, Andrew; van Heerden, Eliza; Avanzi, Antonina; Barilla, Rocky; Zambirinis, Constantinos P; Rendon, Mauricio; Daley, Donnele; Pachter, H Leon; Hajdu, Cristina; Miller, George

    2015-12-01

    Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway.

    PubMed

    Ye, Han-Yang; Jin, Jian; Jin, Ling-Wei; Chen, Yan; Zhou, Zhi-Hong; Li, Zhan-Yuan

    2017-04-01

    Chlorogenic acid (CGA), a polyphenolic compound, exists widely in medicinal herbs, which has been shown a strong antioxidant and anti-inflammatory effect. This study investigated the protective effects and mechanism of CGA on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Treatment of CGA successfully ameliorates LPS-induced renal function and pathological damage. Moreover, CGA dose-dependently suppressed LPS-induced blood urea nitrogen (BUN), creatinine levels, and inflammatory cytokines TNF-α, IL-6, and IL-1β in serum and tissue. The relative proteins' expression of TLR4/NF-κB signal pathway was assessed by western blot analysis. Our results showed that CGA dose-dependently attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels. CGA also suppressed LPS-induced TNF-α, IL-6, and IL-1β production both in serum and kidney tissues. Furthermore, our results showed that CGA significantly inhibited the LPS-induced expression of phosphorylated NF-κB p65 and IκB as well as the expression of TLR4 signal. In conclusion, our results provide a mechanistic explanation for the anti-inflammatory effects of CGA in LPS-induced AKI mice through inhibiting TLR4/NF-κB signaling pathway.

  14. A novel role for GSK3 in the regulation of the processes of human labour.

    PubMed

    Lim, Ratana; Lappas, Martha

    2015-02-01

    Preterm birth remains the largest single cause of neonatal death and morbidity. Infection and/or inflammation are strongly associated with preterm delivery. Glycogen synthase kinase 3 (GSK3) is known to be a crucial mediator of inflammation homeostasis. The aims of this study were to determine the effect of spontaneous human labour in foetal membranes and myometrium on GSK3α/β expression, and the effect of inhibition of GSK3α/β on pro-labour mediators in foetal membranes and myometrium stimulated with Toll-like receptor (TLR) ligands and pro-inflammatory cytokines. Term and preterm labour in foetal membranes was associated with significantly decreased serine phosphorylated GSK3α and β expression, and thus increased GSK3 activity. There was no effect of term labour on serine phosphorylated GSK3β expression in myometrium. The specific GSK3α/β inhibitor CHIR99021 significantly decreased lipopolysaccharide (ligand to TLR4)-stimulated pro-inflammatory cytokine gene expression and release; COX2 gene expression and prostaglandin release; and MMP9 gene expression and pro MMP9 release in foetal membranes and/or myometrium. CHIR99021 also decreased FSL1 (TLR2 ligand) and flagellin (TLR5 ligand)-induced pro-inflammatory cytokine gene expression and release and COX2 mRNA expression and prostaglandin release. GSK3β siRNA knockdown in primary myometrial cells was associated with a significant decrease in IL1β and TNFα-induced pro-inflammatory cytokine and prostaglandin release. In conclusion, GSK3α/β activity is increased in foetal membranes after term and preterm labour. Pharmacological blockade of the kinase GSK3 markedly reduced pro-inflammatory and pro-labour mediators in human foetal membranes and myometrium, providing a possible therapeutics for the management of preterm labour. © 2015 Society for Reproduction and Fertility.

  15. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells.

    PubMed

    Rivas-Santiago, Bruno; Hernandez-Pando, Rogelio; Carranza, Claudia; Juarez, Esmeralda; Contreras, Juan Leon; Aguilar-Leon, Diana; Torres, Martha; Sada, Eduardo

    2008-03-01

    The innate immune response in human tuberculosis is not completely understood. To improve our knowledge regarding the role of cathelicidin hCAP-18/LL37 in the innate immune response to tuberculosis infection, we used immunohistochemistry, immunoelectron microscopy, and gene expression to study the induction and production of the antimicrobial peptide in A549 epithelial cells, alveolar macrophages (AM), neutrophils, and monocyte-derived macrophages (MDM) after infection with Mycobacterium tuberculosis. We demonstrated that mycobacterial infection induced the expression and production of LL-37 in all cells studied, with AM being the most efficient. We did not detect peptide expression in tuberculous granulomas, suggesting that LL-37 participates only during early infection. Through the study of Toll-like receptors (TLR) in MDM, we showed that LL-37 can be induced by stimulation through TLR-2, TLR-4, and TLR-9. This last TLR was strongly stimulated by M. tuberculosis DNA. We concluded that LL-37 may have an important role in the innate immune response against M. tuberculosis.

  16. Expression of Cathelicidin LL-37 during Mycobacterium tuberculosis Infection in Human Alveolar Macrophages, Monocytes, Neutrophils, and Epithelial Cells▿

    PubMed Central

    Rivas-Santiago, Bruno; Hernandez-Pando, Rogelio; Carranza, Claudia; Juarez, Esmeralda; Contreras, Juan Leon; Aguilar-Leon, Diana; Torres, Martha; Sada, Eduardo

    2008-01-01

    The innate immune response in human tuberculosis is not completely understood. To improve our knowledge regarding the role of cathelicidin hCAP-18/LL37 in the innate immune response to tuberculosis infection, we used immunohistochemistry, immunoelectron microscopy, and gene expression to study the induction and production of the antimicrobial peptide in A549 epithelial cells, alveolar macrophages (AM), neutrophils, and monocyte-derived macrophages (MDM) after infection with Mycobacterium tuberculosis. We demonstrated that mycobacterial infection induced the expression and production of LL-37 in all cells studied, with AM being the most efficient. We did not detect peptide expression in tuberculous granulomas, suggesting that LL-37 participates only during early infection. Through the study of Toll-like receptors (TLR) in MDM, we showed that LL-37 can be induced by stimulation through TLR-2, TLR-4, and TLR-9. This last TLR was strongly stimulated by M. tuberculosis DNA. We concluded that LL-37 may have an important role in the innate immune response against M. tuberculosis. PMID:18160480

  17. Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity

    PubMed Central

    2010-01-01

    Background Activation of Toll-like receptors (TLRs) is widely accepted as an essential event for defence against infection. Many TLRs utilize a common signalling pathway that relies on activation of the kinase IRAK4 and the transcription factor NFκB for the rapid expression of immunity genes. Methods 21 K DNA microarray technology was used to evaluate LPS-induced (TLR4) gene responses in blood monocytes from a child with an IRAK4-deficiency. In vitro responsiveness to LPS was confirmed by real-time PCR and ELISA and compared to the clinical predisposition of the child and IRAK4-deficient mice to Gram negative infection. Results We demonstrated that the vast majority of LPS-responsive genes in IRAK4-deficient monocytes were greatly suppressed, an observation that is consistent with the described role for IRAK4 as an essential component of TLR4 signalling. The severely impaired response to LPS, however, is inconsistent with a remarkably low incidence of Gram negative infections observed in this child and other children with IRAK4-deficiency. This unpredicted clinical phenotype was validated by demonstrating that IRAK4-deficient mice had a similar resistance to infection with Gram negative S. typhimurium as wildtype mice. A number of immunity genes, such as chemokines, were expressed at normal levels in human IRAK4-deficient monocytes, indicating that particular IRAK4-independent elements within the repertoire of TLR4-induced responses are expressed. Conclusions Sufficient defence to Gram negative immunity does not require IRAK4 or a robust, 'classic' inflammatory and immune response. PMID:20105294

  18. Transgenic mice with ectopic expression of constitutively active TLR4 in adipose tissues do not show impaired insulin sensitivity

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is associated with obesity and diabetes. However, what causes and mediates chronic inflammation in metabolic disorders is not well understood. Tolllike receptor 4 (TLR4) mediates both infection-induced and sterile inflammation by recognizing pathogen-associated molecul...

  19. TLR2/4 ligand-amplified liver inflammation promotes initiation of autoimmune hepatitis due to sustained IL-6/IL-12/IL-4/IL-25 expression.

    PubMed

    Chi, Gang; Feng, Xin-Xia; Ru, Ying-Xia; Xiong, Ting; Gao, Yuan; Wang, Han; Luo, Zhen-Long; Mo, Ran; Guo, Fang; He, Yong-Pei; Zhang, Gui-Mei; Tian, De-An; Feng, Zuo-Hua

    2018-05-21

    Autoimmune hepatitis (AIH), a serious autoimmune liver disease, can be a lifelong illness, leading to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). So far the mechanisms for disease initiation are largely unknown. Here we report that the amplified non-AIH liver inflammation could promote the initiation of AIH due to the sustained increase of IL-6, IL-12, IL-4, and IL-25 in the liver. The liver injury resulting from virus (adenovirus) or chemicals (CCl 4 ) could induce an amplified (stronger/long-lasting) hepatic inflammation by releasing the ligands for TLR2/TLR4. The amplified inflammation resulted in the increase of multiple cytokines and chemokines in the liver. Among them, the sustained increase of IL-6/IL-12 resulted in the activation of STAT3 and STAT4 in hepatic CD4 + CD25 + Treg cells, thus suppressing Foxp3 gene expression to reduce the suppressive function of Treg cells in the liver, but not those in the spleen. The increase of IL-12 and the impairment of Treg function promoted Th1 response in presence of self-mimicking antigen (human CYP2D6). Intriguingly, the amplified inflammation resulted in the increase of IL-4 and IL-25 in the liver. The moderate increase of IL-4 was sufficient for cooperating with IL-25 to initiate Th2 response, but inefficient in suppressing Th1 response, favoring the initiation of autoimmune response. Consequently, either adenovirus/CYP2D6 or CCl 4 /CYP2D6 could induce the autoimmune response and AIH in the mice, leading to hepatic fibrosis. The findings in this study suggest that the amplified non-AIH inflammation in the liver could be a driving force for the initiation of autoimmune response and AIH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis

    PubMed Central

    2014-01-01

    Introduction The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis. Methods The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry. Results We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes. Conclusions We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis. PMID:24984848

Top