Yan, Yan; Shan, Peng; Wang, Chenxing; Quan, Yuan; Wu, Di; Zhao, Chunli; Wu, Gang; Deng, Hongbing
2017-04-01
Sustainable urban development focuses on enhancing urban well-being, while also balancing the demands of urban social and economic development, natural resource consumption, and environmental pollution. This work used general data envelopment analysis to assess the urban sustainability efficiency (USE) and sustainability potential (SP) in Lanzhou and Xiamen, two cities that are characteristic of urban areas in western and eastern China. The assessment indicator system included important natural and urban welfare factors as input and output indices, respectively. The results showed that overall urban sustainability efficiency increased in Lanzhou and Xiamen from 1985 to 2010, but that the sustainability of natural resources clearly decreased. The urban sustainability efficiency of Xiamen was higher than that of Lanzhou, and the sustainability potential of Xiamen was lower than that of Lanzhou; this indicates that Xiamen performed better in terms of urban sustainable development. The urban sustainability efficiency in Xiamen has increased with increasing urban population, and the rate and scale of economic development have been higher than in Lanzhou. The assessment and analysis performed in this study show that cities with different natural resources and development characteristics have different forms, patterns, and trajectories of sustainable development.
[State of the world population, 1986].
1987-01-01
The majority of the world population will soon reside in urban areas. At present, over 40% of the world's people are urban, and 50% will be urban soon after the year 2000. The proportion urban in developed countries has exceeded 50% since the mid-20th century, and in developing countries this level will be reached in the 1st quarter of the next century. Developing countries in Asia and Africa have less than 30% of their population urban. While over 70% of Latin America's population is urban. Within the next 50 years, the predominantly rural character of the developing countries will disappear forever. Currently the majority of the world's urban population lives in developing countries. In 1970, 695 million urban dwellers were in developed countries vs. 666 million in developing countries, but by 1985, there were only 849 million urban dwellers in developed countries vs. 1164 million in developing countries. By the year 2025, there will be nearly 4 times as many urban dwellers in developing countries. An increasing proportion of the urban population will reside in the largest cities. Around 2025, almost 30% of the urban population in developing countries will live in cities of over 4 million. Around 2000 there will be 5 cities of 15 million or more, 3 of them in developing countries. The proportion of the 20 largest cities in developing countries will increase from 9 in 1970 to 16 in 2000. The close relationship between city size and economic development that existed until the recent past is disappearing. It is possible that the very largest cities will no longer be at the center of international political and economic networks. Many developing countries will have to develop plans for cities of sizes never imagined in the developed countries of today. High rates of population increase in the developing countries are an inseparable aspect of their urbanization. Growth of the urban population in developing countries will continue to be rapid until well into the 21st century. The world rate of urban growth will continue to be about 2.5%/year during the 1st quarter of sthe 21st century. The annual rate of urban growth is 3.5% in developing countries and is highest in Africa, especially West Africa where it reaches 6.5%/year. Despite migration to cities, the rural population in developing countries will continue to grow at a rate of about 1%/year through the end of the century. In many rural areas, population density is already very high, and continued growth will hamper efforts to reduce urban migration. In developing countries, the increase in the urban population is due more to natural increase than to migration.
Xian, G.; Crane, M.; McMahon, C.
2008-01-01
Urban development has expanded rapidly in Las Vegas, Nevada of the United States, over the last fifty years. A major environmental change associated with this urbanization trend is the transformation of the landscape from natural cover types to increasingly anthropogenic impervious surface. This research utilizes remote sensing data from both the Landsat and Terra-Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments in conjunction with digital orthophotography to estimate urban extent and its temporal changes by determining sub-pixel impervious surfaces. Percent impervious surface area has shown encouraging agreement with urban land extent and development density. Results indicate that total urban land-use increases approximately 110 percent from 1984 to 2002. Most of the increases are associated with medium-to high-density urban development. Places having significant increases in impervious surfaces are in the northwestern and southeastern parts of Las Vegas. Most high-density urban development, however, appears in central Las Vegas. Impervious surface conditions for 2002 measured from Landsat and ASTER satellite data are compared in terms of their accuracy.
Davies, Scott; Behbahaninia, Hirbod; Giraudeau, Mathieu; Meddle, Simone L; Waites, Kyle; Deviche, Pierre
2015-12-01
Urban animals inhabit an environment considerably different than do their non-urban conspecifics, and to persist urban animals must adjust to these novel environments. The timing of seasonal reproductive development (i.e., growth of gonads and secondary sex organs) is a fundamental determinant of the breeding period and is frequently advanced in urban bird populations. However, the underlying mechanism(s) by which birds adjust the timing of reproductive development to urban areas remain(s) largely unknown. Here, we compared the timing of vernal reproductive development in free-ranging urban and non-urban male Abert's Towhees, Melozone aberti, in Phoenix, Arizona, USA, and tested the non-mutually exclusive hypotheses that earlier reproductive development is due to improved energetic status and/or earlier increase in endocrine activity of the reproductive system. We found that urban birds initiated testicular development earlier than non-urban birds, but this disparity was not associated with differences in body condition, fat stores, or innate immune performance. These results provide no support for the hypothesis that energetic constraints are responsible for delayed reproductive development of non-urban relative to urban male Abert's Towhees. Urban birds did, however, increase their plasma luteinizing hormone, but not plasma testosterone, earlier than non-urban birds. These findings suggest that adjustment to urban areas by Abert's Towhees involves increases in the endocrine activity of the anterior pituitary gland and/or hypothalamus earlier than non-urban towhees. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Shifting the urban heat island clock in a megacity: a case study of Hong Kong
NASA Astrophysics Data System (ADS)
Chen, Xuan; Jeong, Su-Jong
2018-01-01
With increasing levels of urbanization in the near future, understanding the impact of urbanization on urban heat islands (UHIs) is critical to adapting to regional climate and environmental changes. However, our understanding of the UHI effect relies mainly on its intensity or magnitude. The present study evaluates the impact of urbanization on UHI duration changes by comparing three stations with different rates of urbanization, including highly developed and developing urban areas throughout Hong Kong, from 1990-2015. Results show that the 26 year average UHI intensity in highly urbanized regions is much higher than that in developing areas, and the 26 year average of UHI duration is similar. Over the past 25 years, however, UHI duration has increased only in developing urban areas, from 13.59-17.47 hours. Both earlier UHI starting and later UHI ending times concurrently contribute to the UHI effect being experienced for a longer duration. The differences in UHI duration change between the two areas are supported by population and by night light changes from space. Increasing night light, which suggests enhancements in the economic infrastructure, occurred only in the developing urban areas. Our results suggest that changes in UHI duration should be included in an assessment of regional climate change as well as in urban planning in a megacity.
Analyzing the causes of urban waterlogging and sponge city technology in China
NASA Astrophysics Data System (ADS)
Ning, Yun-Fang; Dong, Wen-Yi; Lin, Lu-Sheng; Zhang, Qian
2017-03-01
With the rapid development of social economy in China, increased urban population, and rapid urbanization cause serious problems, for example, a heavy rain in the city inevitably leads to waterlogging, which poses a great threat to the livelihood and property security. Disaster due to urban flood is a key problem that restricts the development of urban ecology in China. The reason is the sharp increase of impermeable surface ratio in urban areas, leading to a decrease in rainfall infiltration and increase in surface runoff. To effectively solve the urban waterlogging, China proposed the construction of sponge city. This paper analyzes and summarizes the reasons for the formation of urban waterlogging, and introduces the concept of the sponge city technology to prevent waterlogging.
24 CFR 984.304 - Total tenant payment, family rent, and increases in family income.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Total tenant payment, family rent, and increases in family income. 984.304 Section 984.304 Housing and Urban Development REGULATIONS... HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SECTION 8 AND PUBLIC HOUSING FAMILY SELF-SUFFICIENCY...
24 CFR 984.304 - Total tenant payment, family rent, and increases in family income.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Total tenant payment, family rent, and increases in family income. 984.304 Section 984.304 Housing and Urban Development Regulations... HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SECTION 8 AND PUBLIC HOUSING FAMILY SELF-SUFFICIENCY...
Mberu, Blessing; Mumah, Joyce; Kabiru, Caroline; Brinton, Jessica
2014-09-01
Estimates suggest that over 90 % of population increase in the least developed countries over the next four decades will occur in urban areas. These increases will be driven both by natural population growth and rural-urban migration. Moreover, despite its status as the world's least urbanized region, the urban population in the sub-Saharan Africa region is projected to increase from under 40 % currently to over 60 % by 2050. Currently, approximately 70 % of all urban residents in the region live in slums or slum-like conditions. Sexual and reproductive health (SRH) risks for the urban poor are severe and include high rates of unwanted pregnancies, sexually transmitted infections, and poor maternal and child health outcomes. However, the links between poverty, urbanization, and reproductive health priorities are still not a major focus in the broader development agenda. Building on theoretical and empirical data, we show that SRH in urban contexts is critical to the development of healthy productive urban populations and, ultimately, the improvement of quality of life. We posit that a strategic focus on the sexual and reproductive health of urban residents will enable developing country governments achieve international goals and national targets by reducing health risks among a large and rapidly growing segment of the population. To that end, we identify key research, policy and program recommendations and strategies required for bringing sexual and reproductive health in urban contexts to the forefront of the development agenda.
NASA Astrophysics Data System (ADS)
Suhaili Mansor, Nur; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri; Paradhan, Biswajeet
2014-06-01
Specifically, the integration between social sciences and natural science are fundamental in our understanding of the economic, social and technological transformations that have drastically changed the society. This study will be based on the municipality of Sungai Petani, Kedah as it has been most influenced by urbanization and urban development. Urban development in Sungai Petani is closely associated with a tremendous increase in demand for land, which is highly related to population growth, human movement and their social mobility. The qualitative case study taken will rely on the visual interpretation technique that would allow the researcher to develop a map of urban changes detection. The potential application of GIS information to estimate socioeconomic indicators and the modelling of socio-economic activities that are explored in this study is hoped to increase further our understanding of the impacts of development and urbanization on social life.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei
2015-09-01
In this study, we investigated how different degrees of urbanization affect local and regional rainfall using high-resolution simulations based on the Weather Research and Forecasting Model. The extreme rainfall event of 21 July 2012 in Beijing was simulated for three representative urban land use distributions (no urbanization, early urbanization level of 1980, and recent urbanization level of 2009). Results suggest that urban modification of rainfall is potentially sensitive to urban land use condition. Rainfall was increased significantly over the downwind Beijing metropolis because of the effects of early urbanization; however, recent conditions of high urban development caused no significant increase. Further comparative analysis revealed that positive urban thermodynamical effects (i.e., urban warming, increased sensible heat transportation, and enhanced convergence and vertical motions) play major roles in urban modification of rainfall during the early urbanization stage. However, after cities expand to a certain extent (i.e., urban agglomeration), the regional moisture depression induced by the prevalence of impervious urban land has an effect on atmospheric instability energy, which might negate the city's positive impact on regional rainfall. Additional results from regional climate simulations for 10 Julys confirm this supposition. Given the explosive urban population growth and increasing demand for freshwater in cities, the potential negative effects of the urban environment on precipitation are worth investigation, particularly in rapidly developing countries and regions.
Urban development results in stressors that degrade stream ecosystems
Bell, Amanda H.; Coles, James F.; McMahon, Gerard; Woodside, Michael D.
2012-01-01
In 2003, eighty-three percent of Americans lived in metropolitan areas, and considerable population increases are predicted within the next 50 years. Nowhere are the environmental changes associated with urban development more evident than in urban streams. Contaminants, habitat destruction, and increasing streamflow flashiness resulting from urban development have been associated with the disruption of biological communities, particularly the loss of sensitive aquatic biota. Every stream is connected downstream to other water bodies, and inputs of contaminants and (or) sediments to streams can cause degradation downstream with adverse effects on biological communities and on economically valuable resources, such as fisheries and tourism. Understanding how algal, invertebrate, and fish communities respond to physical and chemical stressors associated with urban development can provide important clues on how multiple stressors may be managed to protect stream health as a watershed becomes increasingly urbanized. This fact sheet highlights selected findings of a comprehensive assessment by the National Water-Quality Assessment Program of the U.S. Geological Survey (USGS) of the effects of urban development on stream ecosystems in nine metropolitan study areas.
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Nunes, João; Steenhuis, Tammo; de Lima, João; Coelho, Celeste; Ferreira, António
2016-04-01
It is well known that urban development brings about changes in hydrological response. Relatively little, however, is known about impacts on streamflow during urban development in the Mediterranean climate. This paper examines changes in streamflow resulting from the construction of an enterprise park, a major road and apartment blocks in a small partially urbanized peri-urban catchment (6.2 km2) in central Portugal. These developments led to an increase in urban area from 32% to 40% over a five-year period (hydrological years 2008/09-2012/13). In the initial two-year period minor land-use changes increased impervious surfaces from 12.8% to 13.2%. The subsequent three-year period led to a further 17.2% increase in impervious area. Streamflow was recorded by a V-notch weir at the catchment outlet. Rainfall was recorded at a weather station 0.5km north of the catchment, and by five tipping-bucket raingauges installed in January 2011 within the study catchment. Annual runoff and storm runoff coefficients ranged from 14% to 21% and 9% to 14%, respectively, recorded in 2011/12 and 2012/13. Although these differences in runoff were caused in part by variation in rainfall, the comparison between 2009/10 (pre-) and 2012/13 (post-additional urban development), with broadly similar rainfall (887mm vs 947mm, respectively) and evapotranspiration (740mm vs 746mm), showed a 43% increase in storm runoff (from 90mm to 129mm), resulting from additional overland flow generated largely by the 4.4% increase in impervious surfaces. The additional urban development also led to changes in hydrograph parameters. The increase in storm runoff was not progressive over the study period, but regression lines of storm runoff against rainstorm parameters exhibited higher vertical positions in 2012/13 than 2008/09. Increasing peak flows, however, were more progressive over the study period, with annual regression lines displaying higher vertical positions, but with a clear distance between pre- and post- additional urban development periods. Response time to rainfall reduced from 60-75 minutes to 40 minutes and recession time fell from 21.3-29.5 h to 7.4-8.7 h, respectively. The relatively low runoff and storm runoff coefficients given the extent of urban land-use is due to the dispersed urban pattern and movement of at least part of the overland flow from impervious surfaces into pervious soils (within urban areas and/or downslope woodland and abandoned fields). High soil permeability, linked to the sandstone and limestone bedrock, favours the establishment of water sinks. The additional extension of observed urban development during the study period, however, also included partial routing of overland flow from additional impervious surfaces into the stream network, enhancing flow connectivity, thus, increasing storm runoff and providing quicker hydrologic response. Urban planning should consider the landscape mosaic of peri-urban areas in order to maximize water infiltration and minimize the impacts on streamflow regime and urban flooding.
Urban development and stream ecosystem health—Science capabilities of the U.S. Geological Survey
Reilly, Pamela A.; Szabo, Zoltan; Coles, James F.
2016-04-29
Urban development creates multiple stressors that can degrade stream ecosystems by changing stream hydrology, water quality, and physical habitat. Contaminants, habitat destruction, and increasing streamflow variability resulting from urban development have been associated with the disruption of biological communities, particularly the loss of sensitive aquatic biota. Understanding how algal, invertebrate, and fish communities respond to these physical and chemical stressors can provide important clues as to how streams should be managed to protect stream ecosystems as a watershed becomes increasingly urbanized. The U.S. Geological Survey continues to lead monitoring efforts and scientific studies on the effects of urban development on stream ecosystems in metropolitan areas across the United States.
M.R. McHale; I.C. Burke; M.A. Lefsky; P.J. Peper; E.G. McPherson
2009-01-01
Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban trees. These studies have been limited by a lack of research on urban tree biomass, such that estimates of carbon storage in urban systems have relied upon allometric relationships developed in traditional forests. As urbanization increases globally, it is becoming...
NASA Astrophysics Data System (ADS)
Shiflett, S. A.; Anderson, R. G.; Jenerette, D.
2014-12-01
Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.
Huth, M J
1984-01-01
This article analyzes the impact of the twin factors of rapid population growth and expanding urbanization on social and economic development in sub-Saharan Africa and compares policies that have been developed in Tanzania and Kenya in response to these factors. The principal consequences of overpopulation and overurbanization have been economic stagnation and physical and cultural malaise in urban population centers. Between 1960-80, per capita incomes in 19 countries of sub-Saharan Africa grew by less than 1%/year and 15 countries recorded a negative rate of growth in per capita income during the 1970s. Urban populations have increased at at overall rate of 6%/year as sub-Saharan Africans have migrated to cities in search of employment. Few national governments in the region have formulated longterm strategies to deal effectively with this double-faceted development constraint or have integrated new urban populations into the national economy. tanzania's development strategy is focused on the goals of socialism, rural development, and self-reliance. Urban development has remained a residual item in Tanzania's national development process, despite the fact that the urban population increased from 5.7% of the total population in 1967 to 12.7% in 1978 and is projected to comprise 24.7% by the year 2000. In contrast, Kenya, whose proportion of urban population increased from 9% to 15% between 1962 and 1979, has pursued an urban-focused development strategy. The strong urban-rural linkages of the economy have focused migration to the secondary towns. The national development plan includes urban spatial, employment, and investment policies. Although this plan constitutes a good basis for future planning, the magnitude of the urban problem is beyond the capabilities of the central government and requires the development of local capabilities.
Global distribution and evolvement of urbanization and PM2.5 (1998-2015)
NASA Astrophysics Data System (ADS)
Yang, Dongyang; Ye, Chao; Wang, Xiaomin; Lu, Debin; Xu, Jianhua; Yang, Haiqing
2018-06-01
PM2.5 concentrations increased and have been one of the major social issues along with rapid urbanization in many regions of the world in recent decades. The development of urbanization differed among regions, PM2.5 pollution also presented discrepant distribution across the world. Thus, this paper aimed to grasp the profile of global distribution of urbanization and PM2.5 and their evolutionary relationships. Based on global data for the proportion of the urban population and PM2.5 concentrations in 1998-2015, this paper investigated the spatial distribution, temporal variation, and evolutionary relationships of global urbanization and PM2.5. The results showed PM2.5 presented an increasing trend along with urbanization during the study period, but there was a variety of evolutionary relationships in different countries and regions. Most countries in East Asia, Southeast Asia, South Asia, and some African countries developed with the rapid increase in both urbanization and PM2.5. Under the impact of other socioeconomic factors, such as industry and economic growth, the development of urbanization increased PM2.5 concentrations in most Asian countries and some African countries, but decreased PM2.5 concentrations in most European and American countries. The findings of this study revealed the spatial distributions of global urbanization and PM2.5 pollution and provided an interpretation on the evolution of urbanization-PM2.5 relationships, which can contribute to urbanization policies making aimed at successful PM2.5 pollution control and abatement.
Problems of urban development and growth
NASA Technical Reports Server (NTRS)
Gerlach, A. C.; Wray, J. R.
1972-01-01
The increase in the density of human population in urban areas and the effects on various aspects of the environment are discussed. The application of remote sensors to measure, analyze, and predict urban changes and their environmental impact is described. Examples of urban area mapping by aerial photography are included. The methods which have been developed to acquire, analyze, utilize, and preserve remotely sensed data on urban development are presented.
Trends in Urbanization and Implications for Peri-Urban Livelihoods in Accra, Ghana
NASA Astrophysics Data System (ADS)
Adom, Cynthia
Urbanization is a common occurrence in both developed and developing worlds. Similar to occurrences in other developing world cities, Accra's urbanization is marked by fast, unplanned and uneven growth into mostly peripheral lands (Grant and Yankson 2002; Yeboah 2001; Ghana Statistical Service (GSS) 2002). Such trends in urbanization in places where data on the urbanization process is seriously inadequate and infrequent, (Rakodi 1997a; Ohadika 1991; Fasona and Omojola 2004) pose a major challenge to urban planning and management (Henderson 2002), and affect the livelihood base of several peri-urban households. Properly monitoring the urbanization process in the developing world and understanding its effects on people's lives depends on the availability of useful and up-to- date data (Weber and Puissant 2003; Mundia and Aniya 2006) that could be obtained using new and robust analytical techniques (Yang 2003). In addition, in the urban environment, differences in rates of urbanization, income, employment status, and gender dynamics across neighborhoods suggest that the impacts of increasing urbanization on peri-urban livelihoods are likely to vary across peoples and places. Against this backdrop, this dissertation uses Accra as a case study to, first, measures the nature and extent of urban expansion using a non-conventional technique, and then analyzes neighborhood - and gender-differentiated impacts of increasing urbanization on household livelihoods in peri-urban Accra. Study findings reveal: 1) major conversion of vegetated land to urban lands uses and support the effectiveness of the Self-Organizing Map and Landsat data to map complex and hazy urban tropical environments; 2) that the impacts of urbanization on peri-urban livelihoods are structured along the lines of neighborhood-level urbanization; changes brought by a higher rate of urbanization are more beneficial than harmful to household livelihoods; 3) that positive livelihood outcomes in high-growth neighborhoods as a result of increasing urbanization have disproportionately benefited male-headed households compared to female-headed households. Although study findings do not match some of the prior thinking about impacts of urbanization on livelihoods, it corroborates recent urban theory that asserts that urbanization does not necessarily result in the perpetuation of urban poverty.
ERIC Educational Resources Information Center
Kuo, Fan-Sheng; Perng, Yeng-Horng
2016-01-01
Creating an attractive cityscape has become one of the most promising actions to improve urban functionality and increase urban competitiveness. However, the resistances from the local inhabitants are always against the urban development. Taipei City, a metropolis in Taiwan, is now composed of complex urban systems chaotically enclosed by existing…
Tromboni, F; Dodds, W K
2017-07-01
Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.
DOT National Transportation Integrated Search
2008-11-01
Suburban development is occurring near urban areas across America. Often these communities are : separated by large masses of land with no linkage to the urban core. Referred to as urban sprawl, this type : of development causes a challenge for trans...
NASA Astrophysics Data System (ADS)
Beighley, R. Edward; Moglen, Glenn E.
2003-04-01
A procedure to adjust gauged streamflow data from watersheds urbanized during or after their gauging period is presented. The procedure adjusts streamflow to be representative of a fixed land use condition, which may reflect current or future development conditions. Our intent is to determine what an event resulting in a peak discharge in, for example, 1950 (i.e., before urbanization) would produce on the current urban watershed. While past approaches assumed uniform spatial and temporal changes in urbanization, this study focuses on the use of geographic information systems (GIS) based methodologies for precisely locating in space and time where land use change has occurred. This information is incorporated into a hydrologic model to simulate the change in discharge as a result of changing land use conditions. In this paper, we use historical aerial photographs, GIS linked tax-map data, and recent land use/land cover data to recreate the spatial development history of eight gauged watersheds in the Baltimore-Washington, D. C., metropolitan area. Using our procedure to determine discharge series representative of the current urban watersheds, we found that the increase of the adjusted 2-year discharge ranged from 16 to 70 percent compared with the measured annual maximum discharge series. For the 100-year discharge the adjusted values ranged from 0 to 47 percent greater than the measured values. Additionally, relationships between the increase in flood flows and four measures of urbanization (increase in urban land, decrease in forested land, increase in high-density development, and the spatial development pattern) are investigated for predicting the increase in flood flows for ungauged watersheds. Watersheds with the largest increases in flood flows typically had more extensive development in the areas far removed from the outlet. In contrast, watersheds with development located nearer to the outlet typically had the smallest increases in peak discharge.
Research on assessment methods for urban public transport development in China.
Zou, Linghong; Dai, Hongna; Yao, Enjian; Jiang, Tian; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method.
NASA Astrophysics Data System (ADS)
Skougaard Kaspersen, Per; Høegh Ravn, Nanna; Arnbjerg-Nielsen, Karsten; Madsen, Henrik; Drews, Martin
2017-08-01
The economic and human consequences of extreme precipitation and the related flooding of urban areas have increased rapidly over the past decades. Some of the key factors that affect the risks to urban areas include climate change, the densification of assets within cities and the general expansion of urban areas. In this paper, we examine and compare quantitatively the impact of climate change and recent urban development patterns on the exposure of four European cities to pluvial flooding. In particular, we investigate the degree to which pluvial floods of varying severity and in different geographical locations are influenced to the same extent by changes in urban land cover and climate change. We have selected the European cities of Odense, Vienna, Strasbourg and Nice for analyses to represent different climatic conditions, trends in urban development and topographical characteristics. We develop and apply a combined remote-sensing and flood-modelling approach to simulate the extent of pluvial flooding for a range of extreme precipitation events for historical (1984) and present-day (2014) urban land cover and for two climate-change scenarios (i.e. representative concentration pathways, RCP 4.5 and RCP 8.5). Changes in urban land cover are estimated using Landsat satellite imagery for the period 1984-2014. We combine the remote-sensing analyses with regionally downscaled estimates of precipitation extremes of current and expected future climate to enable 2-D overland flow simulations and flood-hazard assessments. The individual and combined impacts of urban development and climate change are quantified by examining the variations in flooding between the different simulations along with the corresponding uncertainties. In addition, two different assumptions are examined with regards to the development of the capacity of the urban drainage system in response to urban development and climate change. In the stationary
approach, the capacity resembles present-day design, while it is updated in the evolutionary
approach to correspond to changes in imperviousness and precipitation intensities due to urban development and climate change respectively. For all four cities, we find an increase in flood exposure corresponding to an observed absolute growth in impervious surfaces of 7-12 % during the past 30 years of urban development. Similarly, we find that climate change increases exposure to pluvial flooding under both the RCP 4.5 and RCP 8.5 scenarios. The relative importance of urban development and climate change on flood exposure varies considerably between the cities. For Odense, the impact of urban development is comparable to that of climate change under an RCP 8.5 scenario (2081-2100), while for Vienna and Strasbourg it is comparable to the impacts of an RCP 4.5 scenario. For Nice, climate change dominates urban development as the primary driver of changes in exposure to flooding. The variation between geographical locations is caused by differences in soil infiltration properties, historical trends in urban development and the projected regional impacts of climate change on extreme precipitation. Developing the capacity of the urban drainage system in relation to urban development is found to be an effective adaptation measure as it fully compensates for the increase in run-off caused by additional sealed surfaces. On the other hand, updating the drainage system according to changes in precipitation intensities caused by climate change only marginally reduces flooding for the most extreme events.
The need for a national urbanization policy in Nepal.
Ertur, O
1994-09-01
There is a need for a national urbanization policy in Nepal as a means of redressing regional disparities in development between the hills, the Kathmandu Valley, and the Terai versus rural and urban areas. A settlement system would complement urban and rural development and reduce dependency on India. An urbanization policy would be both systematic and guided by public and private investment in existing urban and rural settlements. Regional investment in development would contribute to commercialization and agricultural industrialization (development and linkage of market towns and service centers, strengthening of basic infrastructure and land use patterns, strengthening of urban areas around transportation centers, promoting nonfarm employment opportunities, establishing strong financial and technical institutions in middle-sized cities, and strengthening municipalities' mobilization of local resources and financing). Nepal has been one of the least developed countries in its region. The agricultural economy provides economic support for 80% of total population. In 1991, density was 130 person per sq. km. 9% of the total population live in urban areas, but the rate of urban growth is the highest among South Asian Regional Cooperation countries (7.3% in Nepal compared to 6.1% in Bangladesh and 3.7% in India). Rural markets and towns are rapidly becoming urbanized but without basic infrastructure. The spatial component of urbanization must be emphasized. Total population increased in the Terai from 37% in 1971 to 47% in 1991, which increased population density by 31% but not cultivation. Harsh physical conditions in mountainous regions and lack of cultivable land are push factors. Pull factors are employment opportunities in emerging urban centers and the availability of agricultural employment in the Terai. Movement to lowlands is enhanced by the eradication of malaria. 53% of the urban population is in the Terai in 1991, which also has 65% of cultivable land, 35% of roads, and 63% of industry. Urban settlements increased from 10 in 1951 to 33 in 1987 and 36 in 1991. In the Terai, the increases are from five to 21 urban centers. The central and eastern region have experienced faster urban growth than the other three regions. Kathmandu is the most populated urban center followed by Biratnagar, Pokhara, and Birganj. Government ministries are ill-equipped to handle the technical and manpower needs in the process of urbanization.
NASA Astrophysics Data System (ADS)
Emmi, P. C.; Forster, C. B.; Mills, J. I.; Call, B. D.; Sabula, J.; Klewicki, J. C.; Pataki, D. E.; Peterson, T. R.
2004-12-01
Cities are the locus of North America's most intense consumption of fossil fuels. Thus the rate and character of urbanization influence the rate of urban CO2 released into the global atmosphere. The rate of rural-to-urban land conversion, and changes in the population density of urban land, are influenced by coupled changes in urban demographics and the local economy. Urban sprawl (a rapid expansion of urban land with low population densities) is governed by a self-reinforcing feedback effect between urban transportation infrastructure investments (road building) and urban land development where road building begets new urban neighborhoods that, in turn, induce more road building that begets additional new neighborhoods. If unrestrained, this feedback effect leads to the unrestrained expansion of urban sprawl, urban vehicular travel and traffic congestion. This self-reinforcing feedback loop forms a key dynamic that controls the rate at which CO2-emitting fossil fuels are burned for transportation, electricity production, heating, and commercial/industrial processes. In a rapidly sprawling city residents must travel increasingly greater distances between work, shopping, and home while commercial service vehicles must travel to increasingly remote residential locations. The increasing number of vehicle trips and vehicle miles traveled, combined with the growing prevalence of ever-lower density urban land development, leads to a rapid increase in mobile and stationary CO2 emissions. A more compact and punctuated form of urban development with higher-density and mixed-use urban activity centers leads to reduced CO2 emissions. Those who shape urban development policy are often unconcerned by increasing CO2 emissions unless they can be linked to: (1) local concerns about criteria air pollutant emissions and air quality, (2) the dependency of federal infrastructure funding on meeting ambient air quality standards, and (3) the consequences of human exposure to health risks associated with declining air quality. The dynamic simulation of urban systems demonstrates that a suite of policies can be found to diminish sprawl and defeat traffic congestion thereby safeguarding the vitality a city. A systems thinking approach, facilitated by a community engagement process, has further enabled community opinion leaders and policy makers to map the key features, linkages and feedbacks of a complex, CO2-emitting urban ecosystem. A corresponding lumped-parameter, simulation model provides a framework for decision makers and stakeholders to explore the consequences of alternative options for managing urban growth, sprawl and congestion while also reducing CO2 emissions.
Li, Jing-Zhi; Zhu, Xiang; Li, Jing-Bao; Xu, Mei
2013-06-01
By using analytic hierarchy process and entropy method, the evaluation index system and the response relationship model of comprehensive development level of urbanization and comprehensive development and utilization potential of water resources in Dongting Lake District were constructed, with the key affecting factors, their change characteristics, and response characteristics from 2001 to 2010 analyzed. During the study period, the Dongting Lake District was undergoing a rapid development of urbanization, and at a scale expansion stage. The economic and social development level was lagged behind the population and area increase, and the quality and efficiency of urbanization were still needed to be improved. With the advance of urbanization, the water consumption increased yearly, and the water resources utilization efficiency and management level improved steadily. However, the background condition of water resources and their development and utilization level were more affected by hydrological environment rather than urbanization. To a certain extent, the development of urbanization in 2001, 2002, 2005, 2006, 2007, 2009 was slowed down by the shortage of water resources. At present, Dongting Lake region was confronted with the dual task of improving the level and quality of urbanization, and hence, it would be necessary to reform the traditional epitaxial expansion of urbanization and to enhance the water resource support capability.
Futures of global urban expansion: uncertainties and implications for biodiversity conservation
NASA Astrophysics Data System (ADS)
Güneralp, B.; Seto, K. C.
2013-03-01
Urbanization will place significant pressures on biodiversity across the world. However, there are large uncertainties in the amount and location of future urbanization, particularly urban land expansion. Here, we present a global analysis of urban extent circa 2000 and probabilistic forecasts of urban expansion for 2030 near protected areas and in biodiversity hotspots. We estimate that the amount of urban land within 50 km of all protected area boundaries will increase from 450 000 km2 circa 2000 to 1440 000 ± 65 000 km2 in 2030. Our analysis shows that protected areas around the world will experience significant increases in urban land within 50 km of their boundaries. China will experience the largest increase in urban land near protected areas with 304 000 ± 33 000 km2 of new urban land to be developed within 50 km of protected area boundaries. The largest urban expansion in biodiversity hotspots, over 100 000 ± 25 000 km2, is forecasted to occur in South America. Uncertainties in the forecasts of the amount and location of urban land expansion reflect uncertainties in their underlying drivers including urban population and economic growth. The forecasts point to the need to reconcile urban development and biodiversity conservation strategies.
How do slums change the relationship between urbanization and the carbon intensity of well-being?
McGee, Julius Alexander; Ergas, Christina; Greiner, Patrick Trent; Clement, Matthew Thomas
2017-01-01
This study examines how the relationship between urbanization (measured as the percentage of total population living in urban areas) and the carbon intensity of well-being (CIWB) (measured as a ratio of carbon dioxide emissions and life expectancy) in most nations from 1960-2013 varies based on the economic context and whereabouts of a substantial portion of a nation's urban population. To accomplish this, we use the United Nations' (UN) definition of slum households to identify developing countries that have substantial slum populations, and estimate a Prais-Winsten regression model with panel-corrected standard errors (PCSE), allowing for disturbances that are heteroskedastic and contemporaneously correlated across panels. Our findings indicate that the rate of increase in CIWB for countries without substantial slum populations begins to slow down at higher levels of urbanization, however, the association between urbanization and CIWB is much smaller in countries with substantial slum populations. Overall, while urbanization is associated with increases in CIWB, the relationship between urban development and CIWB is vastly different in developed nations without slums than in under-developed nations with slums.
How do slums change the relationship between urbanization and the carbon intensity of well-being?
McGee, Julius Alexander
2017-01-01
This study examines how the relationship between urbanization (measured as the percentage of total population living in urban areas) and the carbon intensity of well-being (CIWB) (measured as a ratio of carbon dioxide emissions and life expectancy) in most nations from 1960–2013 varies based on the economic context and whereabouts of a substantial portion of a nation’s urban population. To accomplish this, we use the United Nations’ (UN) definition of slum households to identify developing countries that have substantial slum populations, and estimate a Prais-Winsten regression model with panel-corrected standard errors (PCSE), allowing for disturbances that are heteroskedastic and contemporaneously correlated across panels. Our findings indicate that the rate of increase in CIWB for countries without substantial slum populations begins to slow down at higher levels of urbanization, however, the association between urbanization and CIWB is much smaller in countries with substantial slum populations. Overall, while urbanization is associated with increases in CIWB, the relationship between urban development and CIWB is vastly different in developed nations without slums than in under-developed nations with slums. PMID:29220352
Urban Wetlands for Stormwater Control and Wildlife Enhancement.
ERIC Educational Resources Information Center
Adams, Lowell W.; Dove, Louise E.
Underdeveloped land absorbs much of the water which falls during a rainstorm. However, urban development (which results in much of the land being covered by buildings and pavement) increases the extent of impervious land surface over pre-development conditions. This results in greater post-development runoff of the urban stormwater. Urban…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haapio, Appu, E-mail: appu.haapio@vtt.fi
Requirements for the assessment tools of buildings have increased, assessing of building components or separate buildings is not enough. Neighbourhoods, built environment, public transportations, and services, should be considered simultaneously. Number of population living in urban areas is high and increasing rapidly. Urbanisation is a major concern due to its detrimental effects on the environment. The aim of this study is to clarify the field of assessment tools for urban communities by analysing the current situation. The focus is on internationally well known assessment tools; BREEAM Communities, CASBEE for Urban Development and LEED for Neigborhood Development. The interest towards certificationmore » systems is increasing amongst the authorities, and especially amongst the global investors and property developers. Achieved certifications are expected to bring measureable publicity for the developers. The assessment of urban areas enables the comparison of municipalities and urban areas, and notably supports decision making processes. Authorities, city planners, and designers would benefit most from the use of the tools during the decision making process. - Highlights: Black-Right-Pointing-Pointer The urban assessment tools have strong linkage to the region. Black-Right-Pointing-Pointer The tools promote complementary building and retrofitting existing sites. Black-Right-Pointing-Pointer Sharing knowledge and experiences is important in the development of the tools.« less
Roman, Lara A; Fristensky, Jason P; Eisenman, Theodore S; Greenfield, Eric J; Lundgren, Robert E; Cerwinka, Chloe E; Hewitt, David A; Welsh, Caitlin C
2017-12-01
Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.
NASA Astrophysics Data System (ADS)
Roman, Lara A.; Fristensky, Jason P.; Eisenman, Theodore S.; Greenfield, Eric J.; Lundgren, Robert E.; Cerwinka, Chloe E.; Hewitt, David A.; Welsh, Caitlin C.
2017-12-01
Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.
Research on Assessment Methods for Urban Public Transport Development in China
Zou, Linghong; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method. PMID:25530756
NASA Astrophysics Data System (ADS)
Chaudhari, K.
2017-12-01
The Urban population of developing countries is predicted to rise from one third in 1990 to over 50% by 2025. In 1950 the world's total urban population was 734 million, of whom 448 million were living in developed countries and remaining 286 were in developing region. The total population on earth is predicted to increase by more than one billion people within the next 15 years, reaching 8.5 billion in 2030, and to increase further to 9.7 billion in 2050 and 11.2 billion by 2100. Looking at the ever increasing urbanization.In 2016, an estimated 54.5 per cent of the world's populations inhabited in urban region. By 2030, urban areas are projected to shelter 60 per cent of people worldwide and one in every three people will live in cities with at least half a million inhabitants.On the basis of these figures and other global trends, it would appear that Africa and Asia will have the highest share of world's urban growth in next 25 years, resulting consideration rise of large number of metropolitan cities and towns. Therefore issues related to urban climate change will be important for socio economic development for urban transformation through environmental sustainability.The information and communication systems plays an important role in achieving the social sustainability through environmental sustainability for urban transformation. This presentation aims to start the Global initiatives on the problem identifications in environment education for global transformation, education for socio-economic and environmental sustainability due to urbanization in 2050 to investigate problems related to social-economic risks and management issues resulting from urbanization to aid mitigation planning in globalized world and to educate scientists and local populations to form a basis for sustainable solutions in environment learning.The presentation aims to assess the potential of information and communication technology for environment education,both within different societies and internationally for urban climate sustainability and global transformation for sustainable urban development. The presentation aims at building the global network of environment education organisations for effective application of information and communication technologies for Urban cliamte sustainability in 2050.
McMichael, A. J.
2000-01-01
Urban living is the keystone of modern human ecology. Cities have multiplied and expanded rapidly worldwide over the past two centuries. Cities are sources of creativity and technology, and they are the engines for economic growth. However, they are also sources of poverty, inequality, and health hazards from the environment. Urban populations have long been incubators and gateways for infectious diseases. The early industrializing period of unplanned growth and laissez-faire economic activity in cities in industrialized countries has been superseded by the rise of collective management of the urban environment. This occurred in response to environmental blight, increasing literacy, the development of democratic government, and the collective accrual of wealth. In many low-income countries, this process is being slowed by the pressures and priorities of economic globalization. Beyond the traditional risks of diarrhoeal disease and respiratory infections in the urban poor and the adaptation of various vector-borne infections to urbanization, the urban environment poses various physicochemical hazards. These include exposure to lead, air pollution, traffic hazards, and the "urban heat island" amplification of heatwaves. As the number of urban consumers and their material expectations rise and as the use of fossil fuels increases, cities contribute to the large-scale pressures on the biosphere including climate change. We must develop policies that ameliorate the existing, and usually unequally distributed, urban environmental health hazards and larger-scale environmental problems. PMID:11019460
McMichael, A J
2000-01-01
Urban living is the keystone of modern human ecology. Cities have multiplied and expanded rapidly worldwide over the past two centuries. Cities are sources of creativity and technology, and they are the engines for economic growth. However, they are also sources of poverty, inequality, and health hazards from the environment. Urban populations have long been incubators and gateways for infectious diseases. The early industrializing period of unplanned growth and laissez-faire economic activity in cities in industrialized countries has been superseded by the rise of collective management of the urban environment. This occurred in response to environmental blight, increasing literacy, the development of democratic government, and the collective accrual of wealth. In many low-income countries, this process is being slowed by the pressures and priorities of economic globalization. Beyond the traditional risks of diarrhoeal disease and respiratory infections in the urban poor and the adaptation of various vector-borne infections to urbanization, the urban environment poses various physicochemical hazards. These include exposure to lead, air pollution, traffic hazards, and the "urban heat island" amplification of heatwaves. As the number of urban consumers and their material expectations rise and as the use of fossil fuels increases, cities contribute to the large-scale pressures on the biosphere including climate change. We must develop policies that ameliorate the existing, and usually unequally distributed, urban environmental health hazards and larger-scale environmental problems.
NASA Astrophysics Data System (ADS)
Cahya, D. L.; Martini, E.; Kasikoen, K. M.
2018-02-01
Urbanization is shown by the increasing percentage of the population in urban areas. In Indonesia, the percentage of urban population increased dramatically form 17.42% (1971) to 42.15% (2010). This resulted in increased demand for housing. Limited land in the city area push residents looking for an alternative location of his residence to the peri-urban areas. It is accompanied by a process of land conversion from green area into built-up area. Continuous land conversion in peri-urban area is becoming increasingly widespread. Bogor Regency as part of the Jakarta Metropolitan Area is experiencing rapid development. This regency has been experienced land-use change very rapidly from agricultural areas into urban built up areas. Aim of this research is to analyze the effect of urbanization on land use changes in peri-urban areas using spatial analysis methods. This research used case study of Ciawi Urban Area that experiencing rapid development. Method of this research is using descriptive quantitative approach. Data used in this research is primary data (field survey) and secondary data (maps). To analyze land use change is using Geographic Information System (GIS) as spatial analysis methods. The effect of urbanization on land use changes in Ciawi Urban Area from year 2013 to 2015 is significant. The reduction of farm land is around -4.00% and wetland is around - 2.51%. The increasing area for hotel/villa/resort is around 3.10%. Based on this research, local government (Bogor Regency) should be alert to the land use changes that does not comply with the land use plan and also consistently apply the spatial planning.
Feng, Yongjiu; Liu, Yan
2016-09-01
The world's coastal regions are experiencing rapid urbanization coupled with increased risk of ecological damage and storm surge related to global climate and sea level rising. This urban development issue is particularly important in China, where many emerging coastal cities are being developed. Lingang New City, southeast of Shanghai, is an excellent example of a coastal city that is increasingly vulnerable to environmental change. Sustainable urban development requires planning that classifies and allocates coastal lands using objective procedures that incorporate changing environmental conditions. In this paper, we applied cellular automata (CA) modeling based on self-adaptive genetic algorithm (SAGA) to predict future scenarios and explore sustainable urban development options for Lingang. The CA model was calibrated using the 2005 initial status, 2015 final status, and a set of spatial variables. We implemented specific ecological and environmental conditions as spatial constraints for the model and predicted four 2030 scenarios: (a) an urban planning-oriented Plan Scenario; (b) an ecosystem protection-oriented Eco Scenario; (c) a storm surge-affected Storm Scenario; and (d) a scenario incorporating both ecosystem protection and the effects of storm surge, called the Ecostorm Scenario. The Plan Scenario has been taken as the baseline, with the Lingang urban area increasing from 45.8 km(2) in 2015 to 66.8 km(2) in 2030, accounting for 23.9 % of the entire study area. The simulated urban land size of the Plan Scenario in 2030 was taken as the target to accommodate the projected population increase in this city, which was then applied in the remaining three development scenarios. We used CA modeling to reallocate the urban cells to other unconstrained areas in response to changing spatial constraints. Our predictions should be helpful not only in assessing and adjusting the urban planning schemes for Lingang but also for evaluating urban planning in coastal cities elsewhere.
Assessments of urban growth in the Tampa Bay watershed using remote sensing data
Xian, G.; Crane, M.
2005-01-01
Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.
Parasitic diseases and urban development.
Mott, K. E.; Desjeux, P.; Moncayo, A.; Ranque, P.; de Raadt, P.
1990-01-01
The distribution and epidemiology of parasitic diseases in both urban and periurban areas of endemic countries have been changing as development progresses. The following different scenarios involving Chagas disease, lymphatic filariasis, leishmaniasis and schistosomiasis are discussed: (1) infected persons entering nonendemic urban areas without vectors; (2) infected persons entering nonendemic urban areas with vectors; (3) infected persons entering endemic urban areas; (4) non-infected persons entering endemic urban areas; (5) urbanization or domestication of natural zoonotic foci; and (6) vectors entering nonendemic urban areas. Cultural and social habits from the rural areas, such as type of house construction and domestic water usage, are adopted by migrants to urban areas and increase the risk of disease transmission which adversely affects employment in urban populations. As the urban health services must deal with the rise in parasitic diseases, appropriate control strategies for the urban setting must be developed and implemented. PMID:2127380
Gender differences in the effects of urban neighborhood on depressive symptoms in Jamaica.
Mullings, Jasneth Asher; McCaw-Binns, Affette Michelle; Archer, Carol; Wilks, Rainford
2013-12-01
To explore the mental health effects of the urban neighborhood on men and women in Jamaica and the implications for urban planning and social development. A cross-sectional household sample of 2 848 individuals 15-74 years of age obtained from the Jamaica Health and Lifestyle Survey 2007-2008 was analyzed. Secondary analysis was undertaken by developing composite scores to describe observer recorded neighborhood features, including infrastructure, amenities/services, physical conditions, community socioeconomic status, and green spaces around the home. Depressive symptoms were assessed using the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Bivariate and multivariate methods were used to explore the associations among gender, neighborhood factors, and risk of depressive symptoms. While no associations were found among rural residents, urban neighborhoods were associated with increased risk of depressive symptoms. Among males, residing in a neighborhood with poor infrastructure increased risk; among females, residing in an informal community/unplanned neighborhood increased risk. The urban neighborhood contributes to the risk of depression symptomatology in Jamaica, with different environmental stressors affecting men and women. Urban and social planners need to consider the physical environment when developing health interventions in urban settings, particularly in marginalized communities.
Resource management as a key factor for sustainable urban planning.
Agudelo-Vera, Claudia M; Mels, Adriaan R; Keesman, Karel J; Rijnaarts, Huub H M
2011-10-01
Due to fast urbanization and increasing living standards, the environmental sustainability of our global society becomes more and more questionable. In this historical review we investigate the role of resources management (RM) and urban planning (UP) and propose ways for integration in sustainable development (SD). RM follows the principle of circular causation, and we reflect on to what extent RM has been an element for urban planning. Since the existence of the first settlements, a close relationship between RM, urbanization and technological development has been present. RM followed the demand for urban resources like water, energy, and food. In history, RM has been fostered by innovation and technology developments and has driven population growth and urbanization. Recent massive resource demand, especially in relation to energy and material flows, has altered natural ecosystems and has resulted in environmental degradation. UP has developed separately in response to different questions. UP followed the demand for improved living conditions, often associated to safety, good manufacturing and trading conditions and appropriate sanitation and waste management. In history UP has been a developing research area, especially since the industrial era and the related strong urbanization at the end of the 18th century. UP responded to new emerging problems in urban areas and became increasingly complex. Nowadays, UP has to address many objectives that are often conflicting, including, the urban sustainability. Our current urban un-sustainability is rooted in massive resource consumption and waste production beyond natural limits, and the absence of flows from waste to resources. Therefore, sustainable urban development requires integration of RM into UP. We propose new ways to this integration. Copyright © 2011 Elsevier Ltd. All rights reserved.
An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia.
Wang, Li-Yan; Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun
2018-03-19
Inner Mongolia, an autonomous region of the People's Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations-the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)-were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km², yet it had decreased to 674,135 km² by 2010. However, a path of modest urban development (rural-urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization's ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources.
Jiang, Oun-ou; Deng, Xiang-zheng; Ke, Xin-li; Zhao, Chun-hong; Zhang, Wei
2014-12-01
The sizes and number of cities in China are increasing rapidly and complicated changes of urban land use system have occurred as the social economy develops rapidly. This study took the urban agglomeration of Pearl River Delta Region as the study area to explore the driving mechanism of dynamic changes of urban area in the urbanization process under the joint influence of natural environment and social economic conditions. Then the CA (cellular automata) model was used to predict and simulate the urban area changes until 2030 under the designed scenarios of planning and RCPs (representative concentration pathways). The results indicated that urbanization was mainly driven by the non-agricultural population growth and social-economic development, and the transportation had played a fundamental role in the whole process, while the areas with high elevation or steep slope restricted the urbanization. Besides, the urban area would keep an expanding trend regardless of the scenarios, however, the expanding speed would slow down with different inflection points under different scenarios. The urban expansion speed increased in the sequence of the planning scenario, MESSAGE scenario and AIM scenario, and that under the MESSAGE climate scenario was more consistent with the current urban development trend. In addition, the urban expansion would mainly concentrate in regions with the relatively high urbanization level, e.g., Guangzhou, Dongguan, Foshan, Shenzhen, Zhanjiang and Chaoshan.
Urban development and the corresponding increases in impervious surfaces associated with that development have long been known to have adverse impacts upon urban riparian systems, water quality and quantity, groundwater recharge, streamflow, and aquatic ecosystem integrity. The ...
Urban forests for sustainable urban development
NASA Astrophysics Data System (ADS)
Sundara, Denny M.; Hartono, Djoko M.; Suganda, Emirhadi; Haeruman, S. Herman J.
2017-11-01
This paper explores the development of the urban forest in East Jakarta. By 2030 Jakarta area has a target of 30% green area covering 19,845 hectares, including urban forest covering an area of 4,631 hectares. In 2015, the city forest is only 646 hectares, while the city requires 3,985 hectares of new land Urban forest growth from year to year showed a marked decrease with increasing land area awoke to commercial functions, environmental conditions encourage the development of the city to become unsustainable. This research aims to support sustainable urban development and ecological balance through the revitalization of green areas and urban development. Analytical methods for urban forest area is calculated based on the amount of CO2 that comes from people, vehicles, and industrial. Urban spatial analysis based on satellite image data, using a GIS program is an analysis tool to determine the distribution and growth patterns of green areas. This paper uses a dynamic system model to simulate the conditions of the region against intervention to be performed on potential areas for development of urban forests. The result is a model urban forest area is integrated with a social and economic function to encourage the development of sustainable cities.
Park system concept for environmental sustainabilityin urban spatial development
NASA Astrophysics Data System (ADS)
Uniaty, Q.
2018-01-01
Urban Park System is an integrated concept between nature system and urban life. The problems caused by urban population activity resulted in the need to increase the balance between two systems. Establishment of urban park system is a response to the need for resilience of urban space structures. As an ideal requirement it needs to be built integration between the ecological, social, economic, aesthetic aspects of urban landscape architecture. The methodology was developed based on an approach to issues affecting the conditions due to urban issues and its relation to the development efforts of urban park system; Observation of Jakarta problem was obtained based on published studies and data, literature, characteristic and potential analyzes, local physical, from limited field observations. Both are simple methods aimed to describe the nature of a condition as well as form characteristics of problems in controlling the development of region, to examine the causes and symptoms. This method try to assess an object study compared between the conditions before and after. The benefits of urban park system development will not only improve the urban environment, but the value of urban pride, identity and control urban growth in line with efforts to improve the balance between conservation and development. Integrated urban park system will enhance the multifunctional role, connectivity, habitability, durability, identity and investment.
Gregory, M. Brian; Calhoun, Daniel L.
2007-01-01
As part of the U.S. Geological Survey National Water-Quality Assessment Program?s effort to assess the physical, chemical, and biological responses of streams to urbanization, 30 wadable streams were sampled near Atlanta, Ga., during 2002?2003. Watersheds were selected to minimize natural factors such as geology, altitude, and climate while representing a range of urban development. A multimetric urban intensity index was calculated using watershed land use, land cover, infrastructure, and socioeconomic variables that are highly correlated with population density. The index was used to select sites along a gradient from low to high urban intensity. Response variables measured include stream hydrology and water temperature, instream habitat, field properties (pH, conductivity, dissolved oxygen, turbidity), nutrients, pesticides, suspended sediment, sulfate, chloride, Escherichia coli (E. coli) concentrations, and characterization of algal, invertebrate and fish communities. In addition, semipermeablemembrane devices (SPMDs)?passive samplers that concentrate hydrophobic organic contaminants such as polycyclicaromatic hydrocarbons (PAHs)?were used to evaluate water-quality conditions during the 4 weeks prior to biological sampling. Changes in physical, chemical, and biological conditions were evaluated using both nonparametric correlation analysis and nonmetric multidimensional scaling (MDS) ordinations and associated comparisons of dataset similarity matrices. Many of the commonly reported effects of watershed urbanization on streams were observed in this study, such as altered hydrology and increases in some chemical constituent levels. Analysis of water-chemistry data showed that specific conductance, chloride, sulfate, and pesticides increased as urbanization increased. Nutrient concentrations were not directly correlated to increases in development, but were inversely correlated to percent forest in the watershed. Analyses of SPMD-derived data showed that bioassays and certain chemical constituents such as pyrene and benzophenanthrene, both PAHs found in coal tar, were strongly correlated with measures of watershed urbanization. Hydrologic variability metrics indicated that as urban development increased, streams became flashier, with characteristic high flows having shorter duration. The hydrologic effects associated with urbanization were greatest during the fall and least apparent during the winter. No correlations were observed between increasing urbanization and stream temperature or changes in stream habitat. Algal, invertebrate, and fish communities exhibited statistically significant changes as watersheds became increasingly urban, with the strongest responses observed in the invertebrate community followed by fishes, then algal diatom communities. Invertebrate communities were the most responsive to increasing urbanization with Ephemeroptera, Plecoptera, and Tricoptera taxa, especially Plecoptera (stoneflies) responding negatively and most strongly to increasing urbanization. Invertebrate communities were influenced more significantly by water quality, although significant responses to altered hydrology also were noted. In terms of the fish community, the percentage of cyprinids present in the stream was the only Index of Biotic Integrity metric that responded negatively to increases in watershed urbanization. Fish community response to urbanization was intermediate relative to algae and invertebrates with respect to significant metric responses as well as the overall community response to increasing urbanization. Measures of hydrologic variability were the most influential environmental variables affecting the algal community. Although sites were originally chosen to represent a gradient of increasing urbanization, a cluster analysis performed on the component metrics of the urban index categorized sites into four distinct groups. Multivariate analysis based on nonmetric MDS and related analyses of data ma
An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia
Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun
2018-01-01
Inner Mongolia, an autonomous region of the People’s Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations—the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)—were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km2, yet it had decreased to 674,135 km2 by 2010. However, a path of modest urban development (rural–urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization’s ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources. PMID:29562707
A temporal study of urban development for the municipality of Anchorage, Alaska
Markon, Carl J.
2003-01-01
A land use/land cover database was produced for a portion of the Municipality of Anchorage, Alaska to document the temporal and spatial extent of urbanization to assist in the analysis of changes in impervious cover and water quality. Data were derived from black and white and color infrared aerial photography, and satellite imagery from the early 1970's to 2000 in roughly ten‐year increments. Aerial photographs and satellite data were manually interpreted to identify and map land use/land cover classes which were then entered into a geographic information system, attributed, and georeferenced to a U.S. Geological Survey topographic map base. The spatial extent of the study was 31,117 hectares. In the early 1970's, approximately 7,356 hectares (24%) of the study area were mapped as urban developed. During the 30‐year analysis period, the largest increase in urban development occurred between the late 1970's and early 1980's when urban area increased to 12,263 hectares (39%). Between 1980 and 1990, and 1990 and 2000, urban area increased to 12,762 hectares (41%), and 13,980 hectares (45%) respectively. Most development occurred in forested or tall shrub areas, although some also occurred in wetlands. Between 1970 and 2000, close to 1,300 hectares of wetlands were lost due to development. Contrary to this, the amount of lake and pond area increased slightly from 261 hectares in 1973 to 334 hectares in 1980, and reduced to 310 hectares by 2000. The increase was primarily due to the filling in of gravel pits with spring melt water.
Rice, James; Rice, Julie Steinkopf
2009-01-01
Urban slums are proliferating in the developing countries. A corollary of this structural transformation is the increasing recognition of an urban penalty wherein slum populations exhibit notable inequalities in health relative to non-slum urban residents and even rural populations. The built urban environment, in turn, is a crucial context within which the social production of disproportionate morbidity and mortality is enacted. The authors develop this assertion and use bivariate and partial correlation analysis to highlight the association of urban slum prevalence, or proportion of the total population living in urban slum conditions, with indicators of mortality and gender parity, measured at the national level. Data for 99 developing countries show that greater urban slum prevalence is strongly correlated with higher levels of infant, child, and maternal mortality. Further, urban slum prevalence exhibits strong, deleterious correlations with gender parity (measured by the gender development index) and fertility rate, factors that have a crucial direct impact in shaping variant mortality levels. Future research is warranted on the social inequalities in health and illness derived from the expansion of urban slum conditions in the developing countries.
Sustainable Urban Infrastructure Development and the Role of Water Technologies in the U.S.
Increased climate variability and rapid urbanization are fundamentally changing the urban watershed hydrology and consequently sustainability of water systems. However, our urban planning and engineering practices are based on decades-old hydrological theory and guidance based o...
NASA Astrophysics Data System (ADS)
Kinoshita, A. M.; Hogue, T. S.
2013-05-01
Much of the western U.S. is increasingly susceptible to wildfire activity due to drier conditions, elevated fuel loads, and expanding urbanization. As population increases, development pushes the urban boundary further into wildlands, creating more potential for human interaction at the wildland-urban interface (WUI), primarily from human ignitions and fire suppression policies. The immediate impacts of wildfires include vulnerability to debris flows, flooding, and impaired water quality. Fires also alter longer-term hydrological and ecosystem behavior. The current study utilizes geospatial datasets to investigate historical wildfire size and frequency relative to the WUI for a range of cities across western North America. California, the most populous state in the U.S., has an extensive fire history. The decennial population and acres burned for four major counties (Los Angeles, San Bernardino, San Diego, and Shasta) in California show that increasing wildfire size and frequency follow urbanization trends, with high correlation between the last decade of burned area, urban-fringe proximity, and increasing population. Ultimately, results will provide information on urban fringe communities that are most vulnerable to the risks associated with wildfire and post-fire impacts. In light of evolving land use policies (i.e. forest management and treatment, development at the urban-fringe) and climate change, it is critical to advance our knowledge of the implications that these conditions pose to urban centers, communicate risks to the public, and ultimately provide guidance for wildfire management.
Modeling flood reduction effects of low impact development at a watershed scale.
Ahiablame, Laurent; Shakya, Ranish
2016-04-15
Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Linda A. Joyce; Steven W. Running; David D. Breshears; Virginia H. Dale; Robert W. Malmsheimer; R. Neil Sampson; Brent Sohngen; Christopher W. Woodall
2014-01-01
Forests occur within urban areas, at the interface between urban and rural areas (wildland-urban interface), and in rural areas. Urban forests contribute to clean air, cooling buildings, aesthetics, and recreation in parks. Development in the wildland-urban interface is increasing because of the appeal of owning homes near or in the woods. In rural areas, market...
NASA Astrophysics Data System (ADS)
Kasaee Roodsari, B.; Chandler, D. G.
2016-12-01
Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.
Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools.
Seto, Karen C; Güneralp, Burak; Hutyra, Lucy R
2012-10-02
Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km(2), nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr(-1)), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses.
Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools
Seto, Karen C.; Güneralp, Burak; Hutyra, Lucy R.
2012-01-01
Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr−1), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses. PMID:22988086
Xian, G.; Crane, M.
2006-01-01
Urban development in the Las Vegas Valley, Nevada, has grown rapidly in the past fifty years. Associated with this growth has been a change in landscape from natural cover types to developed urban land mixed with planned vegetation canopy throughout in the metropolitan area. Air quality in the Las Vegas Valley has been affected by increases in anthropogenic emissions and concentrations of carbon monoxide, ozone, and criteria pollutants of particular matter. Ozone concentration in the region is generally influenced by synoptic and mesoscale meteorological conditions, as well as regional transport of pollutants from the western side of Las Vegas. Local influences from ground-level nitrogen oxide emissions and vegetation canopy coverage also affect ozone concentration. Multi-year observational data collected by a network of local air monitoring stations in Clark County, Nevada, indicate that ozone maximums develop in May and June, while minimums exist primarily from November to February. Ozone concentrations are high on the west and northwest sides of the valley. A nighttime ozone reduction in the urban area characterizes the heterogeneous features of spatial distribution for average ozone levels in the Las Vegas urban area. The urban vegetation canopy has a locally positive effect by reducing ozone in urban areas. Decreased ozone levels associated with increased urban development density suggests that the highest ozone concentrations are associated with medium- to low-density urban development in Las Vegas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.W.
This paper identifies a number of developments which are prominent during the urbanization of a country and which have particularly strong implications for energy use. Concomitant with urbanization, the industrial composition of the economy's production shifts, with reductions in agriculture and increases in the importance of primary metals, chemicals, and cement, all of which are relatively energy-intensive sectors. Evidence from India indicates that the movement of a worker from agriculture to the least energy-intensive urban activity other than services will quadruple per worker production energy requirements. Next, population concentration associated with urbanization facilitates increases in the scale of production whichmore » in turn encourages the substitution of modern energy for traditional fuels and requires energy for longer deliveries. Also, concentrated, off-farm populations require processing and delivery of food, which are not required for largely agricultural countries. Domestic activity changes send activities which were formerly conducted in the household with little or no energy use, outside, usually into firms, where fuels are used. Urban households also use considerably more transportation than do rural households. Evidence from Hong Kong indicates that pure urban density increases encourage substitutions of modern energy for traditional fuels. Finally, increased real incomes associated with urbanization increase energy consumption, with an elasticity of roughly unity. Aggregate cross-sectional data evidence from sixty developing countries was used to examine the overall magnitude of the effects of urbanization and associated developmental changes on per capita energy use. Controlling for industrial structure, per capita income (per capita gross domestic product), and several other variables, a one-percent increase in urbanization will cause a one-half percent increase in per capita energy use. 81 refs., 5 figs., 63 tabs.« less
Resilience Development of Preservice Teachers in Urban Schools
ERIC Educational Resources Information Center
Roselle, Rene
2007-01-01
Retention of teachers in urban schools continues to plague public schools. Could universities increase the likelihood that teachers will stay in urban schools longer by preparing them for some of the adversities they may face and helping them develop resilience in relation to these challenges? Could we produce resilient educators before they…
Xian, G.
2007-01-01
Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi‐year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night‐time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoqing; Gao, Weijun; Zhou, Nan; Kammen, Daniel M.; Wu, Yiqun; Zhang, Yao; Chen, Wei
2016-12-01
This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China’s heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities’ differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willingham, Alison N.; /Ohio State U.
Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes inmore » an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial avoidance and mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was associated with forested land cover surrounded by a suburban matrix. Compared to raccoons and opossums, skunks may not be tolerated in close proximity to human development in urban areas. Domestic cat presence was positively associated with increasingly urbanized and less diverse landscapes with decreased amounts of forest and urban open space at the largest spatial scale. At an intermediate spatial scale, cat presence was associated with a moderate degree of urban development characterized by increased forest cover, and at a small spatial scale cat presence was associated with a high degree of urbanization. Free-ranging domestic cats are often associated with human-dominated landscapes and likely utilize remnant natural habitat patches for hunting purposes, which may have implications for native predator and prey species existing in fragmented habitat patches in proximity to human development.« less
Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.
2010-01-01
In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were more strongly related to local geologic setting, slope, watershed topography, and river-engineering practices than to urbanization. Historical local river-engineering features such as channelization, bank stabilization, and grade controls may have confounded relations among habitat characteristics and urbanization. A number of hydrologic-condition metrics (including flashiness and duration of high flow during pre- or post-ice periods) showed strong relations to the urban intensity index. Hydrologic-condition metrics cannot be used alone to predict habitat or geomorphic change. Chloride and SPMD measures of potential toxicity and polycyclic aromatic hydrocarbon concentrations showed the strongest positive correlations to urbanization including increases in road infrastructure, percentage of impervious surface in the watershed, urban land cover, and land-distribution related to urban land cover. This suggests that automobiles and the infrastructure required to support automobiles are a significant source of these compounds in this study area. Chloride in spring and summer showed a significant positive correlation with the urban intensity index; concentrations increased with increasing road infrastructure, urban land cover, and a number of landscape variables related to urbanization. Spring concentrations of sulfate, prometon, and diazinon correlated to fewer urban characteristics than chloride, including increases in road infrastructure, percentage of impervious surface, and urban land cover. Changes in biological communities correlated to the urban intensity index or individual urban-associated variables. Decreased percentages of pollution-sensitive diatoms and diatoms requiring high dissolved-oxygen saturation correlated to increases in the percentage of developed urban land, total impervious surface, stream flashiness, population density, road-area density, and decreases in the percentage of wetland in the watershed. Invertebrate taxa richness and Coleop
Trends of urban surface temperature and heat island characteristics in the Mediterranean
NASA Astrophysics Data System (ADS)
Benas, Nikolaos; Chrysoulakis, Nektarios; Cartalis, Constantinos
2017-11-01
Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001-2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade-1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade-1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.
24 CFR 236.755 - Housing owner's obligation under contract to report tenant income increase.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FOR RENTAL PROJECTS Rental Assistance Payments § 236.755 Housing owner's obligation under contract to... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Housing owner's obligation under contract to report tenant income increase. 236.755 Section 236.755 Housing and Urban Development...
Green city Banda Aceh: city planning approach and environmental aspects
NASA Astrophysics Data System (ADS)
Arif, A. A.
2017-02-01
Banda Aceh as the capital of Aceh Province is the region with the tsunami disaster that occurred on December 26, 2004 the most severe of which over 60% of the city area were destroyed mainly coastal region and settlements. One product plan for rehabilitation and reconstruction of Banda Aceh is made of Banda Aceh as Green City. To realize the Green City Banda Aceh, urban development process should be conducted in a planned and integrated way with attention to spatial and environmental aspects to ensure an efficient urban management and to create a healthy, beautiful and comfortable environment. There is a weakness of the process in urban planning and development that occurred at present where cities tend to minimize the development of green open space and land conversion into a commercial district, residential areas, industrial areas, transport networks and infrastructure and facilities for other cities. Another tendency that occurs is urban environment only developed economically but not ecologically, whereas ecological balance is as important as the development of the economic value of urban areas. Such conditions have caused unbalance of urban ecosystems including increased air temperature, air pollution, declining water table, flooding, salt water intrusion and increased content of heavy metals in the soil. From an ecological perspective, unfavorable microclimate, high-temperature increase due to the lack of trees as a sieve / filter against heavy rain, can cause flooding. These conditions result in inconvienient, arid and less beautiful urban areas. The author identifies the elements contained in the Green City Banda Aceh and how the efforts and approaches must be made toward Green City Banda Aceh.
Coles, James F.; McMahon, Gerard; Bell, Amanda H.; Brown, Larry R.; Fitzpatrick, Faith A.; Scudder Eikenberry, Barbara C.; Woodside, Michael D.; Cuffney, Thomas F.; Bryant, Wade L.; Cappiella, Karen; Fraley-McNeal, Lisa; Stack, William P.
2012-01-01
Which urban-related stressors are most closely linked to biological community degradation, and how can multiple stressors be managed to protect stream health as a watershed becomes increasingly urbanized?
NASA Astrophysics Data System (ADS)
Wright, O.; Istanbulluoglu, E.
2012-12-01
The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.
2016-01-01
Climate Assessment for Army Enterprise Planning Effects of Climate Change , Urban Development, and... Climate Assessment for Army Enterprise Planning ERDC/CERL TR-16-29 January 2016 Effects of Climate Change , Urban Development, and Threatened and...due to climate change factors. The effects of climate change on DoD in- stallations is increasing in significance and has the potential to impact
Climate change and developing-country cities: implications for environmental health and equity.
Campbell-Lendrum, Diarmid; Corvalán, Carlos
2007-05-01
Climate change is an emerging threat to global public health. It is also highly inequitable, as the greatest risks are to the poorest populations, who have contributed least to greenhouse gas (GHG) emissions. The rapid economic development and the concurrent urbanization of poorer countries mean that developing-country cities will be both vulnerable to health hazards from climate change and, simultaneously, an increasing contributor to the problem. We review the specific health vulnerabilities of urban populations in developing countries and highlight the range of large direct health effects of energy policies that are concentrated in urban areas. Common vulnerability factors include coastal location, exposure to the urban heat-island effect, high levels of outdoor and indoor air pollution, high population density, and poor sanitation. There are clear opportunities for simultaneously improving health and cutting GHG emissions most obviously through policies related to transport systems, urban planning, building regulations and household energy supply. These influence some of the largest current global health burdens, including approximately 800,000 annual deaths from ambient urban air pollution, 1.2 million from road-traffic accidents, 1.9 million from physical inactivity, and 1.5 million per year from indoor air pollution. GHG emissions and health protection in developing-country cities are likely to become increasingly prominent in policy development. There is a need for a more active input from the health sector to ensure that development and health policies contribute to a preventive approach to local and global environmental sustainability, urban population health, and health equity.
Assessing the Urban Heat Island Effect Across Biomes in the Continental USA Using Landsat and MODIS
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Bounoua, L.; Zhang, Ping; Wolfe, Robert
2011-01-01
Impervious surface area (ISA) from the Landsat TM and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined across urban gradients and used to stratify sampling of LST and NDVI. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban - rural temperature difference) with the largest 8 C (average) for cities built in mixed forest biomes. For all cities ISA is the primary driver for increase in temperature explaining 70% of the total variance. Annually, urban areas are warmer than the non-urban fringe by 2.9 C, except in biomes with arid and semiarid climates. The average amplitude of the UHI is asymmetric with a 4.3 C difference in summer and 1.3 C in winter. In desert environments, UHI's point to a possible heat sink effect. Results show that the urban heat island amplitude increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.
Chen, Yiyong; Gu, Weiying; Liu, Tao; Yuan, Lei; Zeng, Mali
2017-05-23
Given the benefits of urban greenways on the health and well-being of urban populations, the increased use of urban greenways has garnered increasing attention. Studies on urban greenways, however, have been mostly conducted in Western countries, whereas there is limited knowledge on greenway use in urban areas in developing countries. To address this shortcoming, the present study selected Wutong Greenway in Shenzhen, China, as a case study and focused on the use pattern and factors that influence the frequency and duration of urban greenway use in developing countries. An intercept survey of greenway users was conducted, and 1257 valid questionnaires were obtained. Multiple logistic regression analysis was used to examine the relationship between potential predictors and greenway use. Results showed that visitors with a varied sociodemographic background use Wutong Greenway with high intensity. Various factors affect the use of urban greenways, including individual and environmental factors and greenway use patterns. Unlike previous studies, we found that accommodation type, length of stay at present residence and mode of transportation to the greenway are important factors that affect greenway use. In contrast with studies conducted in Western countries, less-educated and low-income respondents visit the Wutong greenway even more frequently than others. Thus, the greenway is an important public asset that promotes social equity and that all residents can freely use. To better serve citizens, we suggest that the greenway network should be extended to other areas and that its environmental quality should be improved.
Rural development and urban migration: can we keep them down on the farm?
Rhoda, R
1983-01-01
This study tests the hypothesis that rural development projects and programs reduce rural-urban migration. The author presents various factors in the social theories of migration, including those relating to origin and destination, intervening obstacles such as distance, and personal factors. 3 economic models of migration are the human capital or cost-benefit approach, the expected income model, and the intersectoral linkage model. Empirical studies of migration indicate that: 1) rural areas with high rates of out-migration tend to have high population densities or high ratios of labor to arable land, 2) distance inhibits migration, 3) rural-urban migration is positively correlated with family income level, and 4) selectivity differences in socioeconomic status between migrants and nonmigrants often are grouped into development packages which might include irrigation, new varieties of seed, subsidized credit, increased extension, and improved marketing arrangements. The migration impacts of some of these efforts are described: 1) land reform usually is expected to slow rural out-migration because it normally increases labor utilization in rural areas, but this is a limited effect, 2) migration effects of the Green Revolution technology are mainly in rural-rural migration, and 3) agricultural mechanization may stimulate rural-urban migration in the long run. Development of rural social services migh have various effects on rural-urban migration. Better rural education, which improves the chances of urban employment, will stimulate rural-urban migration, while successful rural family planning programs will have a negative effect in the long run as there will be reduced population pressure on arable land. Better rural health services might reduce the incentive for rural-urban migration as well. It is suggested that governments reconsider policies which rely on rural development to curb rural-urban migration and alleviate problems of urban poverty and underemployment.
Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.
2005-01-01
Recovery and protection of streams in urban areas depend on a comprehensive understanding of how human activities affect stream ecosystems. The hydrologic effects of urban development and the consequences for stream channel form and streambed stability were examined in 16 streams in the Puget Lowland, Washington, using three streamflow metrics that integrate storm‐scale effects of urban development over annual to decadal timescales: the fraction of time that streamflow exceeds the mean streamflow (TQmean), the coefficient of variation of annual maximum streamflow (CVAMF), and the fraction of time that streamflow exceeds the 0.5‐year flood (T0.5). Urban streams had low interannual variability in annual maximum streamflow and brief duration of frequent high flows, as indicated by significant correlations between road density and both CVAMFand T0.5. The broader distribution of streamflow indicated by TQmean may be affected by urban development, but differences in TQmean between streams are also likely a result of other physiographic factors. The increase in the magnitude of frequent high flows due to urban development but not their cumulative duration has important consequences for channel form and bed stability in gravel bed streams because geomorphic equilibrium depends on moderate duration streamflow (e.g., exceeded 10% of the time). Streams with low values of TQmean and T0.5 are narrower than expected from hydraulic geometry. Dimensionless boundary shear stress (t*) for the 0.5‐year flood was inversely related to T0.5 among the streams, indicating frequent and extensive bed disturbance in streams with low values of T0.5. Although stream channels expand and the size of bed material increases in response to urban streamflow patterns, these adjustments may be insufficient to reestablish the disturbance regime in urban streams because of the differential increase in the magnitude of frequent high flows causing disturbance relative to any changes in longer duration, moderate flows that establish a stable channel.
Wai, K M; Wang, X M; Lin, T H; Wong, M S; Zeng, S K; He, N; Ng, E; Lau, K; Wang, D H
2017-12-01
Although projected precipitation increases in East Asia due to future climate change have aroused concern, less attention has been paid by the scientific community and public to the potential long-term increase in precipitation due to rapid urbanization. A ten-year precipitation dataset was analysed for both a rapidly urbanized megacity and nearby suburban/rural stations in southern China. Rapid urbanization in the megacity was evident from satellite observations. A statistically significant, long-term, increasing trend of precipitation existed only at the megacity station (45.6mm per decade) and not at the other stations. The increase was attributed to thermal and dynamical modifications of the tropospheric boundary layer related to urbanization, which was confirmed by the results of our WRF-SLUCM simulations. The results also suggested that a long-term regional increase in precipitation, caused by greenhouse gas-induced climate change, for instance, was not evident within the study period. The urbanization-induced increase was found to be higher than the precipitation increase (18.3mm per decade) expected from future climate change. The direct climate impacts due to rapid urbanization is highlighted with strong implications for urban sustainable development and the planning of effective adaptation strategies for issues such as coastal defenses, mosquito-borne disease spread and heat stress mortality. Copyright © 2017 Elsevier B.V. All rights reserved.
Ramachandran, Ambady; Ramachandran, Shobhana; Snehalatha, Chamukuttan; Augustine, Christina; Murugesan, Narayanasamy; Viswanathan, Vijay; Kapur, Anil; Williams, Rhys
2007-02-01
This study aimed to assess the direct cost incurred by diabetic subjects who were in different income groups in urban and rural India, as well as to examine the changing trends of costs in the urban setting from 1998 to 2005. A total of 556 diabetic subjects from various urban and rural regions of seven Indian states were enrolled. A brief uniform coded questionnaire (24 items) on direct cost was used. Annual family income was higher in urban subjects (rupees [Rs] 100,000 or $2,273) than in the rural subjects (Rs 36,000 or $818) (P < 0.001). Total median expenditure on health care was Rs 10,000 ($227) in urban and Rs 6,260 ($142) in rural (P < 0.001) subjects. Treatment costs increased with duration of diabetes, presence of complications, hospitalization, surgery, insulin therapy, and urban setting. Lower-income groups spent a higher proportion of their income on diabetes care (urban poor 34% and rural poor 27%). After accounting for inflation, a secular increase of 113% was observed in the total expenses between 1998 and 2005 in the urban population. The highest increase in percentage of household income devoted to diabetes care was in the lowest economic group (34% of income in 1998 vs. 24.5% in 2005) (P < 0.01). There was a significant improvement in urban subjects in medical reimbursement from 2% (1998) to 21.3% (2005). Urban and rural diabetic subjects spend a large percentage of income on diabetes management. The economic burden on urban families in developing countries is rising, and the total direct cost has doubled from 1998 to 2005.
Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.
2017-12-01
Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
NASA Technical Reports Server (NTRS)
Estes, Maurice G., Jr.; Quattrochi, Dale; Stasiak, Elizabeth
2003-01-01
Reinvestment in urban centers is breathing new life into neighborhoods that have been languishing as a result of explosive suburban development over the past several decades. In cities all over the country, adaptive reuse, brownfields redevelopment, transforming urban landscapes, economies, and quality of life. However, the way in which this development occurs has the potential to exacerbate the urban heat island (UHI) phenomenon, an existing problem in many areas and one which poses a threat to the long-term sustainability and environmental quality of cities. The UHI phenomenon is rooted in the science of how the land covers respond to solar heating and can adversely effect the environment. This phenomenon is responsible for urban centers having higher air temperatures and poorer air quality than suburban areas. In addition, the UHI phenomenon causes metrological occurrences, degrades water quality, increases energy demands, poses threats to public health and contributes to global warming. While the name of the phenomenon implies that is solely an urban issue, research has shown that the effects of the UHI are becoming prevalent in suburbs, as well. The UHI phenomenon can plague regions - urban centers and their suburbs. Furthermore, heat islands have been found to exist in both city centers and suburban communities. As suburban areas increasingly develop using land covers and building materials common to urban areas, they are inheriting urban problems - such as heat islands. In this way, it may be necessary for non-urban communities to engage in heat island mitigation. The good news is that through education and planning, the effects of the UHI phenomenon can be prevented and mitigated. Heat islands are more a product of urban design rather than the density of development. Therefore, cities can continue to grow and develop without exacerbating the UHI by employing sustainable development strategies.
Global patterns in overweight among children and mothers in less developed countries.
Van Hook, Jennifer; Altman, Claire E; Balistreri, Kelly S
2013-04-01
Past research has identified increases in national income and urbanization as key drivers of the global obesity epidemic. That work further identified educational attainment and urban residence as important moderators of the effects of national income. However, such work has tended to assume that children and adults respond in the same way to these factors. In the present paper, we evaluate how the socio-economic and country-level factors associated with obesity differ between children and their mothers. We modelled the associations between maternal education, country-level income and urban residence with mother's and children's weight status. We analysed ninety-five nationally representative health and nutrition surveys conducted between 1990 and 2008 from thirty-three less developed countries. Our sample included children aged 2-4 years (n 253 442) and their mothers (n 228 655). Consistent with prior research, we found that mothers' risk of overweight was positively associated with economic development, urban residence and maternal education. Additionally, economic development was associated with steeper increases in mothers' risk of overweight among those with low (v. high) levels of education and among those living in rural (v. urban) areas. However, these associations were different for children. Child overweight was not associated with maternal education and urban residence, and negatively associated with national income. We speculate that the distinctive patterns for children may arise from conditions in low- and middle-income developing countries that increase the risk of child underweight and poor nutrition.
ERIC Educational Resources Information Center
Norris, Jeff L.
2012-01-01
Urban development, the pinnacle of human land use, has drastic effects on native ecosystems and the species they contain. For the first time in recorded history there are more people living in cities than in the rural areas surrounding them. Furthermore, the global rate of urbanization continues increasing; raising serious concerns for earth's…
NASA Astrophysics Data System (ADS)
Dai, Erfu; Wu, Zhuo; Du, Xiaodian
2017-04-01
Urbanization is an irreversible trend worldwide, especially in rapidly developing China. Accelerated urbanization has resulted in rapid urban sprawl and urban landscape pattern changes. Quantifying the spatiotemporal dynamics of urban land use and landscape pattern not only can reveal the characteristics of social transfer and economic development, but also can provide insights into the driving mechanisms of land use changes. In this study, we integrated remote sensing (RS), geographic information system (GIS), landscape metrics, and gradient analysis to quantitatively compare the spatiotemporal dynamics of land use, urban sprawl, and landscape pattern for nine cities in the Pearl River Delta from 1985‒2000. For the whole study region, urbanization was obvious. The results show an increase in urban buildup land and shrinkage of cropland in the Pearl River Delta. However, the nine cities differed greatly in terms of the process and magnitude of urban sprawl for both the spatial and temporal dimensions. This was most evident for the cities of Guangzhou and Shenzhen. Gradient analysis on urban landscape changes could deepen understanding of the stages of urban development and provide a scientific foundation for future urban planning and land management strategies in China.
Angkurawaranon, Chaisiri; Wisetborisut, Anawat; Rerkasem, Kittipan; Seubsman, Sam-Ang; Sleigh, Adrian; Doyle, Pat; Nitsch, Dorothea
2015-09-16
Obesity and obesity related conditions, driven by processes such as urbanization and globalization, are contributing to pronounced cardiovascular morbidity and mortality in developing countries. There is limited evidence on the influence of living in an urban environment in early life on obesity and obesity related conditions later in life in developing countries such as Thailand. We used data from two cohort studies conducted in Thailand, the Thai Cohort Study (TCS) and the Chiang Mai University (CMU) Health Worker Study, to investigate the association between early life urban (vs rural) exposure and the later development of obesity. We additionally explored the association between early life urban exposure and impaired fasting glucose in adulthood using data from the CMU Health Worker Study. Among 48,490 adults from the TCS, 9.1 % developed obesity within 4 years of follow-up. Among 1,804 initially non-obese adults from CMU Health worker study, 13.6 % developed obesity within 5 years of follow-up. Early life urban exposure was associated with increased risk of developing obesity in adulthood in both cohorts. Adjusting for age and sex, those who spent their early lives in urban areas were 1.21 times more likely to develop obesity in the TCS (OR 1.21, 95 % CI 1.12 to 1.31) and 1.65 times more likely in the CMU Health Worker study (OR 1.65, 95 % CI 1.23 to 2.20). These associations remained significant despite adjustment for later life urban exposure and current household income. No evidence for an association was found for impaired fasting glucose. Early life urban exposure was associated with increased risk of developing obesity in adulthood. These findings support public health intervention programs to prevent obesity starting from early ages.
NASA Astrophysics Data System (ADS)
Feng, Jianzhong; Bai, Linyan; wang, Kui; Zhang, Xuefu; Xie, Nengfu; Ran, Qiyun; Guo, Mingqiu; Xu, Lijun
2017-02-01
As China promotes the Belt and Road (BAR) initiative, the overland SREB development is widely concerned. The cities (including towns), population centers, of urban system are the cores of the economy along the SREB. Therefore, it is necessary to monitoring the urbanization of the belt so that the new growing points of urban development and the valid coupling mechanism between human and nature will be explored to promote the regional socio-economic sustainable development and effectively implement the BAR initiative. Using the DMSP-OLS stable nighttime lights (NTL) data in 1992, 2003, and 2014, in this paper we studied the urbanized spatial patterns of and the urbanized characteristics and trends of the main city system along the SREB in the view of the whole regionalized economic zone and typical cities and settlements (towns). The results showed that in general the NTL intensities in the SREB’s city system had the obvious geographical differentiation characteristics where there was maximum brightness of NTLs over the western European countries as well as being gradually decreasing from west to east. There were obvious increases of the NTL digital number (DN) values and NTL covering areas in 2003 and 2013 comparatively with that of 1992, which indicates the great urbanization development during this period. As for the four types of urban development process, there was an apparent consistency in a certain local area but a large heterogeneity among different areas. By analyzing the 273 pivot cities and the most pivot 26 cities, we found the number of the relatively small cities being decreasing but that of the large and medium-sized cities increasing. This study would provide the scientific support for the related researches and decision making of urbanization and urban economic development to promote the socio-economic comprehensive development of the overland SREB.
Introduction: population migration and urbanization in developing countries.
Kojima, R
1996-12-01
This introductory article discusses the correlation between migration and rapid urbanization and growth in the largest cities of the developing world. The topics include the characteristics of urbanization, government policies toward population migration, the change in absolute size of the rural population, and the problems of maintaining megacities. Other articles in this special issue are devoted to urbanization patterns in China, South Africa, Iran, Korea and Taiwan as newly industrialized economies (NIEs), informal sectors in the Philippines and Thailand, and low-income settlements in Bogota, Colombia, and India. It is argued that increased urbanization is produced by natural population growth, the expansion of the urban administrative area, and the in-migration from rural areas. A comparison of urbanization rates of countries by per capita gross national product (GNP) reveals that countries with per capita GNP of under US$2000 have urbanization rates of 10-60%. Rates are under 30% in Africa, the Middle East, South Asia, China, and Indonesia. Rapid urbanization appears to follow the economic growth curve. The rate of urbanization in Latin America is high enough to be comparable to urbanization in Europe and the US. Taiwan and Korea have high rates of urbanization that surpass the rate of industrialization. Thailand and Malaysia have low rates of urbanization compared to the size of their per capita GNP. Urbanization rates under 20% occur in countries without economic development. Rates between 20% and 50% occur in countries with or without industrialization. East Asian urbanization is progressing along with industrialization. Africa and the Middle East have urbanization without industrialization. In 1990 there were 20 developing countries and 5 developed countries with populations over 5 million. In 10 of 87 developing countries rural population declined in absolute size. The author identifies and discusses four patterns of urban growth.
Dogan, Eyup; Turkekul, Berna
2016-01-01
This study aims to investigate the relationship between carbon dioxide (CO2) emissions, energy consumption, real output (GDP), the square of real output (GDP(2)), trade openness, urbanization, and financial development in the USA for the period 1960-2010. The bounds testing for cointegration indicates that the analyzed variables are cointegrated. In the long run, energy consumption and urbanization increase environmental degradation while financial development has no effect on it, and trade leads to environmental improvements. In addition, this study does not support the validity of the environmental Kuznets curve (EKC) hypothesis for the USA because real output leads to environmental improvements while GDP(2) increases the levels of gas emissions. The results from the Granger causality test show that there is bidirectional causality between CO2 and GDP, CO2 and energy consumption, CO2 and urbanization, GDP and urbanization, and GDP and trade openness while no causality is determined between CO2 and trade openness, and gas emissions and financial development. In addition, we have enough evidence to support one-way causality running from GDP to energy consumption, from financial development to output, and from urbanization to financial development. In light of the long-run estimates and the Granger causality analysis, the US government should take into account the importance of trade openness, urbanization, and financial development in controlling for the levels of GDP and pollution. Moreover, it should be noted that the development of efficient energy policies likely contributes to lower CO2 emissions without harming real output.
Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone.
Zhou, Z X; Li, J; Zhang, W
2016-08-01
Ecosystems offer material and environmental support for human habitation and development in those areas of the earth where people choose to live. However, urbanization is an inexorable trend of human social development and threatens the health of those ecosystems inhabited by humans. This study calculates the values of NPP (net primary productivity), carbon sequestration, water interception, soil conservation, and agricultural production in the Guanzhong-Tianshui Economic Zone. At the same time, we combined DMSP/OLS (Defense Meteorological Satellite Program Operational Line Scanner) night lights remote sensing data and statistical data to analyze the level of urbanization. Quantitative analysis was performed on the interactions between the ecosystem service functions and urbanization based on the calculations of their coupled coordination degrees. The results were the following: (1) The values of NPP, carbon sequestration, and agricultural production showed a trend of increase. However, water interception decreased before increasing, while soil conservation showed the reverse trend; (2) Urbanization levels in the Guanzhong-Tianshui Economic Zone for the last 10 years have proceeded at a fast pace with comprehensive promotion; and (3) Coupled and coupled coordination degrees between urbanization and ecosystem services show increasing trends. This research can provide a theoretical basis for the region's rapid economic development in the balance.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-02-05
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8-61.1%, followed by SpoPerf (53.9-58.3%) and EcoPerf (42.3-45.4%), and the costs of the three scenarios were 3.74, 3.47, and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.
Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-01-01
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747
Modeling urban land development as a continuum to address fine-grained habitat heterogeneity
P.N. Manley; S.A. Parks; Lori Campbell; M.D. Schlesinger
2009-01-01
Natural landscapes are increasingly subjected to impacts associated with urbanization, resulting in loss and degradation of native ecosystems and biodiversity. Traditional classification approaches to the characterization of urbanization may prove inadequate in some human-modified...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.
Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less
Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.
Briber, Brittain M; Hutyra, Lucy R; Reinmann, Andrew B; Raciti, Steve M; Dearborn, Victoria K; Holden, Christopher E; Dunn, Allison L
2015-01-01
Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.
Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers
Briber, Brittain M.; Hutyra, Lucy R.; Reinmann, Andrew B.; Raciti, Steve M.; Dearborn, Victoria K.; Holden, Christopher E.; Dunn, Allison L.
2015-01-01
Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm2 yr-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha-1 yr-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important. PMID:26302444
Population, migration and urbanization.
1982-06-01
Despite recent estimates that natural increase is becoming a more important component of urban growth than rural urban transfer (excess of inmigrants over outmigrants), the share of migration in the total population growth has been consistently increasing in both developed and developing countries. From a demographic perspective, the migration process involves 3 elements: an area of origin which the mover leaves and where he or she is considered an outmigrant; the destination or place of inmigration; and the period over which migration is measured. The 2 basic types of migration are internal and international. Internal migration consists of rural to urban migration, urban to urban migration, rural to rural migration, and urban to rural migration. Among these 4 types of migration various patterns or processes are followed. Migration may be direct when the migrant moves directly from the village to the city and stays there permanently. It can be circular migration, meaning that the migrant moves to the city when it is not planting season and returns to the village when he is needed on the farm. In stage migration the migrant makes a series of moves, each to a city closer to the largest or fastest growing city. Temporary migration may be 1 time or cyclical. The most dominant pattern of internal migration is rural urban. The contribution of migration to urbanization is evident. For example, the rapid urbanization and increase in urban growth from 1960-70 in the Republic of Korea can be attributed to net migration. In Asia the largest component of the population movement consists of individuals and groups moving from 1 rural location to another. Recently, because urban centers could no longer absorb the growing number of migrants from other places, there has been increased interest in the urban to rural population redistribution. This reverse migration also has come about due to slower rates of employment growth in the urban centers and improved economic opportunities in rural areas. According to UN data, at the global level the trend in longterm and permanent migration is towards stabilization or decline in the rate of movement into developed countries like the US, Canada, the UK, and Australia from developing countries. Migrants in the Asian and Pacific region mostly tend to be in the 15-25 year age group. Most migrants streams are male dominant. The rural urban migration stream includes a large proportion of people who are better educated than their rural counterparts but generally less educated than the urban natives. Reasons for migrating in the Asian and Pacific region are economic, educational, sociocultural and political. A negative factor in rural migration is that it deprives villages of the ablest people.
Urban development and employment in Abidjan.
Joshi, H; Lubell, H; Mouly, J
1975-04-01
The city of Abidjan in the Ivory Coast has grown physically, economically, and demographically at rates exceeding all reasonable expectation. Yet, as in many other development nations, the employment generated by Abidjan's rapid economic expansion has failed to keep pace with the increase in working population it has attracted. Consequently, economic success has been accompanied by a variety of social strains. Some of these have been discussed in earlier issues of the "International Labour Review" by Louis Roussel. This discussion expands on Roussel's earlier treatment by focusing more specifically on several facets of the urban employment problem created by the rapid growth of Abidjan. Attention is directed to labor supply and employment, factors affecting migration, foreign Africans in the Ivory Coast labor force; the urban informal sector; urban infrastructure and development; social problems of population pressure; employment policy options (current government policies and other policy options); and general issues and policy alternatives (motivations for rural urban migration, smaller urban centers as alternative growth poles, and distributing the gains from development). Several essential features of the employment problem stem from the rural urban distribution of the workforce. The rural labor force, including temporary seasonal workers from the savannah countries to the north, remains more or less in balance with increasing rural employment opportunities, since the migration of Ivory Coast nationals to the cities is balanced by the inflow of foreign workers. In contrast, the influx of migrants into urban areas has led to a more rapid increase in the urban labor force than in urban employment, with a consequent rise in unemployment. In 1970 the Abidjan rate of open unemployment was probably around 20%. At this time, most people's idea of a desirable job is one in the formal sector of the urban economy. If there is to be any hope of an eventual balance between expectations and reality, it must be realized that an increasing share of the urban labor force will have to end up in the informal sector. Different attitudes towards work in the informal sector are needed on the part of both young people entering the labor force and of government policy makers. The latter should be seeking ways to increase productivity and incomes in the informal sector rather than for ways to destroy it. Current government policies include the training and educating of nationals to replace foreign technicians and managers, increasing the attractiveness of the rural milieu by the promotion of cooperatives, attempts to reform the land tenure system, the supply of electricity to villages, and the introduction of educational television; and adapting the educational system and technical training programs to the needs of the economy.
Wu, Yanyan; Li, Shuyuan; Yu, Shixiao
2016-01-01
There are widespread concerns about urban sprawl in China. In response, modeling and assessing urban expansion and subsequent land use and land cover (LULC) changes have become important approaches to support decisions about appropriate development and land resource use. Guangzhou, a major metropolitan city in South China, has experienced rapid urbanization and great economic growth in the past few decades. This study applied a series of Landsat images to assess the urban expansion and subsequent LULC changes over 35 years, from 1979 to 2013. From start to end, urban expansion increased by 1512.24 km(2) with an annual growth rate of 11.25 %. There were four stages of urban growth: low rates from 1979 to 1990, increased rates from 1990 to 2001, high rates from 2001 to 2009, and steady increased rates from 2009 to 2013. There were also three different urban growth types in these different stages: edge-expansion growth, infilling growth, and spontaneous growth. Other land cover, such as cropland, forest, and mosaics of cropland and natural vegetation, were severely impacted as a result. To analyze these changes, we used landscape metrics to characterize the changes in the spatial patterns across the Guangzhou landscape and the impacts of urban growth on other types of land cover. The significant changes in LULC and urban expansion were highly correlated with economic development, population growth, technical progress, policy elements, and other similar indexes.
Rural to urban migration is an unforeseen impact of development intervention in Ethiopia.
Gibson, Mhairi A; Gurmu, Eshetu
2012-01-01
Rural development initiatives across the developing world are designed to improve community well-being and livelihoods. However they may also have unforeseen consequences, in some cases placing further demands on stretched public services. In this paper we use data from a longitudinal study of five Ethiopian villages to investigate the impact of a recent rural development initiative, installing village-level water taps, on rural to urban migration of young adults. Our previous research has identified that tap stands dramatically reduced child mortality, but were also associated with increased fertility. We demonstrate that the installation of taps is associated with increased rural-urban migration of young adults (15-30 years) over a 15 year period (15.5% migrate out, n = 1912 from 1280 rural households). Young adults with access to this rural development intervention had three times the relative risk of migrating to urban centres compared to those without the development. We also identify that family dynamics, specifically sibling competition for limited household resources (e.g. food, heritable land and marriage opportunities), are key to understanding the timing of out-migration. Birth of a younger sibling doubled the odds of out-migration and starting married life reduced it. Rural out-migration appears to be a response to increasing rural resource scarcity, principally competition for agricultural land. Strategies for livelihood diversification include education and off-farm casual wage-labour. However, jobs and services are limited in urban centres, few migrants send large cash remittances back to their families, and most return to their villages within one year without advanced qualifications. One benefit for returning migrants may be through enhanced social prestige and mate-acquisition on return to rural areas. These findings have wide implications for current understanding of the processes which initiate rural-to-urban migration and transitions to low fertility, as well as for the design and implementation of development intervention across the rural and urban developing world.
Rural to Urban Migration Is an Unforeseen Impact of Development Intervention in Ethiopia
Gibson, Mhairi A.; Gurmu, Eshetu
2012-01-01
Rural development initiatives across the developing world are designed to improve community well-being and livelihoods. However they may also have unforeseen consequences, in some cases placing further demands on stretched public services. In this paper we use data from a longitudinal study of five Ethiopian villages to investigate the impact of a recent rural development initiative, installing village-level water taps, on rural to urban migration of young adults. Our previous research has identified that tap stands dramatically reduced child mortality, but were also associated with increased fertility. We demonstrate that the installation of taps is associated with increased rural-urban migration of young adults (15–30 years) over a 15 year period (15.5% migrate out, n = 1912 from 1280 rural households). Young adults with access to this rural development intervention had three times the relative risk of migrating to urban centres compared to those without the development. We also identify that family dynamics, specifically sibling competition for limited household resources (e.g. food, heritable land and marriage opportunities), are key to understanding the timing of out-migration. Birth of a younger sibling doubled the odds of out-migration and starting married life reduced it. Rural out-migration appears to be a response to increasing rural resource scarcity, principally competition for agricultural land. Strategies for livelihood diversification include education and off-farm casual wage-labour. However, jobs and services are limited in urban centres, few migrants send large cash remittances back to their families, and most return to their villages within one year without advanced qualifications. One benefit for returning migrants may be through enhanced social prestige and mate-acquisition on return to rural areas. These findings have wide implications for current understanding of the processes which initiate rural-to-urban migration and transitions to low fertility, as well as for the design and implementation of development intervention across the rural and urban developing world. PMID:23155400
NATIONAL CONFERENCE ON RETROFIT OPPORTUNITIES ...
Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previously developed urban environments. A diverse assortment of resource management tools, or
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
ERIC Educational Resources Information Center
Pan, Lu; Ye, Jingzhong
2017-01-01
Over the past 30 years in China, the development ideology--a model of economic development that is characterized by urbanization, industrialization, and modernization--has brought about many changes and consequences, including increased migration by the rural population, sharp adjustments in urban-rural education policy, the decline of rural…
Urban ecology in a developing world: why advanced socioecological theory needs Africa.
McHale, Melissa R; Bunn, David N; Pickett, Steward Ta; Twine, Wayne
2013-12-01
Socioecological theory, developed through the study of urban environments, has recently led to a proliferation of research focusing on comparative analyses of cities. This research emphasis has been concentrated in the more developed countries of the Northern Hemisphere (often referred to as the "Global North"), yet urbanization is now occurring mostly in the developing world, with the fastest rates of growth in sub-Saharan Africa. Countries like South Africa are experiencing a variety of land-cover changes that may challenge current assumptions about the differences between urban and rural environments and about the connectivity of these dynamic socioecological systems. Furthermore, questions concerning ecosystem services, landscape preferences, and conservation - when analyzed through rural livelihood frameworks - may provide insights into the social and ecological resilience of human settlements. Increasing research on urban development processes occurring in Africa, and on patterns of kinship and migration in the less developed countries of the "Global South", will advance a more comprehensive worldview of how future urbanization will influence the progress of sustainable societies.
Characterizing continuous urban growth using composited time-series Landsat data
NASA Astrophysics Data System (ADS)
Song, X. P.; Sexton, J. O.; Huang, C.; Feng, M.; Channan, S.; Baker, M. E.; Townshend, J. R.
2014-12-01
Impervious surfaces are land cover features through which water cannot penetrate into the soil. As an indicator of urban land use, impervious surface cover (ISC) is disproportionally important to human beings-although covering only 0.5% of the Earth's terrestrial surface, cities support over 50% the Earth's population. The increasing demand for built-up space by a growing urban population has been driving land use change in urban areas worldwide. An increase in ISC can significantly impact the biophysical characteristics of land surface, such as altering the local surface energy balance, or transforming regional hydrological systems. Remotely sensed data is commonly used as the primary data source for extracting impervious surface information for monitoring urban growth, but current studies often lack the sufficient temporal resolution or thematic detail to reveal the long-term, nonlinear development of impervious surfaces over time. In a previous study (Sexton et al. 2013), we created an annual stack of 30-m percent ISC estimates for the Washington DC-Baltimore metropolitan region from 1984 to 2010 by compositing all available Landsat images in the USGS archive. Here we developed a robust time-series method to detect impervious surface change. The method employs a customized logistic function for every pixel to model the continuous process of urban growth. It quantifies the fractional intensity of ISC change at the sub-pixel level and also characterizes the timing and length (in years) of urban development. The new method detects change based on a sequence of observations before, during and after change and thus is highly resistant to random noises. Our results showed that the DC-Baltimore metropolitan region experienced an accelerated growth pathway from the late 1980s to the late 2000s. The majority of urban and sub-urban development occurred at scales finer than the Landsat resolution (30 m), with a region-wide mean intensity of 46% ISC increase. Our study demonstrates the value of the long-term and fine temporal resolution data offered by the Landsat archive, and also highlights the possible limitations of Landsat's spatial resolution in characterizing continuous urban development.
Sun, Qiang
2017-06-01
As the largest developing country in the world, China has witnessed fast-paced urbanization over the past three decades with rapid economic growth. In fact, urbanization has been not only shown to promote economic growth and improve the livelihood of people but also can increase demands of regional logistics. Therefore, a better understanding of the relationship between urbanization and regional logistics is important for China's future sustainable development. The development of urban residential area and heterogeneous, modern society as well regional logistics are running two abreast. The regional logistics can promote the development of new-type urbanization jointly by promoting industrial concentration and logistics demand, enhancing the residents' quality of life and improving the infrastructure and logistics technology. In this paper, the index system and evaluation model for evaluating the development of regional logistics and the new-type urbanization are constructed. Further, the econometric analysis is utilized such as correlation analysis, co-integration test, and error correction model to explore relationships of the new-type urbanization development and regional logistics development in Liaoning Province. The results showed that there was a long-term stable equilibrium relationship between the new-type urbanization and regional logistics. The findings have important implications for Chinese policymakers that on the path towards a sustainable urbanization and regional reverse, this must be taken into consideration. The paper concludes providing some strategies that might be helpful to the policymakers in formulating development policies for sustainable urbanization.
Impact of pavements on the urban heat island : final project report.
DOT National Transportation Integrated Search
2016-10-01
Increasing urbanization has led to the development of Urban Heat Islands (UHIs), with serious implications for the environment. Pavements play a role in this by absorbing and storing more heat than the natural surfaces that they replace. To quantify ...
Future Directions for Urban Forestry Research in the United States
John F. Dwyer; David J. Nowak; Gary W. Watson
2002-01-01
Urban forestry research promises to continue to be an integral part of the growth and development of forestry in urban and urbanizing areas of the United States. The future is expected to bring increased emphasis on research in support of the care of trees and other plants, ecological restoration, and comprehensive and adaptive management across the landscape....
Ecological integrity of remnant montane forests along an urban gradient in the Sierra Nevada
K. E. Heckmann; P.N. Manley; M.D. Schlesinger
2008-01-01
Urban development typically has extensive and intensive effects on native ecosystems, including vegetation communities and their associated biota. Increasingly, urban planning strives to retain elements of native ecosystems to meet multiple social and ecological objectives. The ecological integrity of native forests in an urbanizing landscape is challenged by a myriad...
Climate Change and Developing-Country Cities: Implications For Environmental Health and Equity
Corvalán, Carlos
2007-01-01
Climate change is an emerging threat to global public health. It is also highly inequitable, as the greatest risks are to the poorest populations, who have contributed least to greenhouse gas (GHG) emissions. The rapid economic development and the concurrent urbanization of poorer countries mean that developing-country cities will be both vulnerable to health hazards from climate change and, simultaneously, an increasing contributor to the problem. We review the specific health vulnerabilities of urban populations in developing countries and highlight the range of large direct health effects of energy policies that are concentrated in urban areas. Common vulnerability factors include coastal location, exposure to the urban heat-island effect, high levels of outdoor and indoor air pollution, high population density, and poor sanitation. There are clear opportunities for simultaneously improving health and cutting GHG emissions most obviously through policies related to transport systems, urban planning, building regulations and household energy supply. These influence some of the largest current global health burdens, including approximately 800,000 annual deaths from ambient urban air pollution, 1.2 million from road-traffic accidents, 1.9 million from physical inactivity, and 1.5 million per year from indoor air pollution. GHG emissions and health protection in developing-country cities are likely to become increasingly prominent in policy development. There is a need for a more active input from the health sector to ensure that development and health policies contribute to a preventive approach to local and global environmental sustainability, urban population health, and health equity. PMID:17393341
Saidi, Kais; Mbarek, Mounir Ben
2017-05-01
This study attempts to empirically examine the impact of financial development, income, trade openness, and urbanization on carbon dioxide emissions for the panel of emerging economies using the time series data over the period 1990-2013. Results showed a positive monotonic relationship between income and CO 2 emissions. All models do not support the EKC hypothesis which assumes an inverted U-shaped relationship between income and environmental degradation. Financial development has a long-run negative impact on carbon emissions, implying that financial development minimizes environmental degradation. This means that financial development can be used as an implement to keep the degradation environmental clean by introducing financial reforms. The urbanization decreases the CO 2 emissions; therefore, it is important for the policymakers and urban planners in these countries to slow the rapid increase in urbanization.
Urbanization, economic development and health: evidence from China's labor-force dynamic survey.
Chen, Hongsheng; Liu, Ye; Li, Zhigang; Xue, Desheng
2017-11-29
The frequent outbreak of environmental threats in China has resulted in increased criticism regarding the health effects of China's urbanization. Urbanization is a double-edged sword with regard to health in China. Although great efforts have been made to investigate the mechanisms through which urbanization influences health, the effect of both economic development and urbanization on health in China is still unclear, and how urbanization-health (or development-health) relationships vary among different income groups remain poorly understood. To bridge these gaps, the present study investigates the impact of both urbanization and economic development on individuals' self-rated health and its underlying mechanisms in China. We use data from the national scale of the 2014 China Labor-force Dynamics Survey to analyze the impact of China's urbanization and economic development on health. A total of 14,791 individuals were sampled from 401 neighborhoods within 124 prefecture-level cities. Multilevel ordered logistic models were applied. Model results showed an inverted U-shaped relationship between individuals' self-rated health and urbanization rates (with a turning point of urbanization rate at 42.0%) and a positive linear relationship between their self-rated health and economic development. Model results also suggested that the urbanization-health relationship was inverted U-shaped for high- and middle-income people (with a turning point of urbanization rate at 0.0% and 49.2%, respectively), and the development-health relationship was inverted U-shaped for high- and low-income people (with turning points of GDP per capita at 93,462 yuan and 71,333 yuan, respectively) and linear for middle-income people. The impact of urbanization and economic development on health in China is complicated. Careful assessments are needed to understand the health impact of China's rapid urbanization. Social and environmental problems arising from rapid urbanization and economic growth should be addressed. Equitable provision of health services are needed to improve low-income groups' health in highly urbanized cities.
Decentralised systems - definition and drivers in the current context.
Sharma, Ashok K; Tjandraatmadja, Grace; Cook, Stephen; Gardner, Ted
2013-01-01
This paper explores the current context for decentralised approaches in the provision of urban water services. It examines the recent history of decentralised systems' implementation in Australia and identifies its drivers. The drivers included addressing capacity constraints of centralised systems, mitigating the environmental impact of urban development, and increasing the resilience of urban water systems to episodic droughts and the projected impacts of climate change. The concepts of integrated urban water management and water sensitive urban design were prevalent in many of the innovative approaches used for the provision of decentralised urban water services. However, there remains a degree of confusion among water professionals in the terminology adopted for on-site and decentralised systems. Based on a literature review, consultation with water industry professionals and examination of decentralised urban developments in Australia, this paper has developed a generalised definition of decentralised systems for adoption across the water sector. The definition encompasses the various development scales in which decentralised systems are implemented, and reflects the new functions and characteristics inherent to those systems.
Chen, Yiyong; Gu, Weiying; Liu, Tao; Yuan, Lei; Zeng, Mali
2017-01-01
Given the benefits of urban greenways on the health and well-being of urban populations, the increased use of urban greenways has garnered increasing attention. Studies on urban greenways, however, have been mostly conducted in Western countries, whereas there is limited knowledge on greenway use in urban areas in developing countries. To address this shortcoming, the present study selected Wutong Greenway in Shenzhen, China, as a case study and focused on the use pattern and factors that influence the frequency and duration of urban greenway use in developing countries. An intercept survey of greenway users was conducted, and 1257 valid questionnaires were obtained. Multiple logistic regression analysis was used to examine the relationship between potential predictors and greenway use. Results showed that visitors with a varied sociodemographic background use Wutong Greenway with high intensity. Various factors affect the use of urban greenways, including individual and environmental factors and greenway use patterns. Unlike previous studies, we found that accommodation type, length of stay at present residence and mode of transportation to the greenway are important factors that affect greenway use. In contrast with studies conducted in Western countries, less-educated and low-income respondents visit the Wutong greenway even more frequently than others. Thus, the greenway is an important public asset that promotes social equity and that all residents can freely use. To better serve citizens, we suggest that the greenway network should be extended to other areas and that its environmental quality should be improved. PMID:28545246
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Versini, P. A.; Tchiguirinskaia, I.
2017-12-01
Urban areas are facing an expected increase in intensity and frequency of extreme weather events due to climate change. Combined with unsustainable urbanization, this should exacerbate the environmental consequences related to the water cycle as stormwater management issues, urban heat island increase and biodiversity degradation. Blue Green Solutions (BGS), such as green roofs, vegetated swales or urban ponds, appear to be particularly efficient to reduce the potential impact of new and existing urban developments with respect to these issues. Based on this statement, the French ANR EVNATURB project aims to develop a platform to assess the eco-systemic services provided by BGS and related with the previously mentioned issues. By proposing a multi-disciplinary consortium coupling monitoring, modelling and prospecting, it attempts to tackle several scientific issues currently limiting BGS wide implementation. Based on high resolution monitored sites and modelling tools, space-time variability of the related physical processes will be studied over a wide range of scales (from the material to the district scale), as well as local social-environmental stakes and constraints, to better consider the complexity of the urban environment. The EVNATURB platform developed during the project is intended for every stakeholder involved in urban development projects (planners, architects, engineering and environmental certification companies…) and will help them to implement BGS and evaluate which ones are the most appropriate for a particular project depending on its environmental objectives and constraints, and particularly for obtaining environmental certification.
NASA Astrophysics Data System (ADS)
Rempis, Nikolaos; Alexandrakis, George; Kampanis, Nikolaos
2017-04-01
Coastal zone is a vital part of human society due to sea activities. Α variety of activities and uses are present and are further developing in the coastal and marine are. Coastal ecosystems and landscape are under severe pressure due to population growth and continuous expansion of human activities and supplemented from the effects of climate change (e.g. coastal flooding, erosion). Heraklion is the largest urban center in Crete. Its suburban and coastal area receives intensive urban sprawl pressures, changing the urban landscape and resulting negative impacts on the human and natural environment. The saturation of coastal area of Heraklion creates the need for new development interventions (e.g. new marina, coastal protection, urban regeneration). This study examine the impacts of the new programmed coastal development intervention in the coastal landscape of Heraklion. A decision analytic approach was implemented, based on the need of stakeholders for the protection and further development of coastal area of Heraklion. In this direction, local authorities have proposed the realization of several development interventions which include a new marina, expansion of bathing beaches and coastal regeneration project in a large beach. The results indicate that the realization of any coastal development projects, also increases the negative effects that are related to land-sea interaction. The negative effects are a result of the interaction between different human activities but also between human activities and the environment. The development of the marina in the selected location, increases the pressure on the sea area as the navigation will increase, but also increases the pressure on land space, as traffic flows will change, creating new pressures in urban areas. The extension of bathing beaches implies larger number of bathers, thus creating greater needs for infrastructures in land area for their service. Coastal protection projects, as planned, will upgrade the inland section of the city coastal walls and upgrade them as tourist attraction.
NASA Astrophysics Data System (ADS)
Ismiyati, I.; Hermawan, F.
2018-02-01
Most of urban spatial structures in developing countries apparently face a typical phenomenon, as well as in Indonesia. The development of the urban spatial structure has the effects, namely to create polycentric pattern (sprawl). Moreover, communication technology believes that the factors of distance and density are highly considered in the organization of the urban structure. In other words, a distance problem is overcome by communication technology, in terms of interaction among people; in running their activities, mobility or distance is not a problem at all. Urban structure as path which is dependent is unable to intervene for an optimum form of urban structure because of dynamic of development objectives. In facts, lifestyle of inhabitant particularly concerning residential and vehicle ownership influences the mobility transport on the tremendous changes in developing countries. On the contrary, this research points out that mobility transport contributes to transportation problems as it becomes increasingly inefficient. Therefore, a sporadic traffic jam and increasing carbon emission issues have risen on the urban phenomenon. It is important to investigate the lifestyle, in terms of residential choice and vehicle ownership to reshape the urban spatial structure. The research aims to draw the urban spatial growth which extends to the phenomenon process toward polycentric pattern and inefficient transport mobility patterns triggering transportation problems in the context of Indonesia. The results confirm that lifestyle regarding residential choices to suburban area and vehicle ownership preference are unable to create the efficient mobility transport, either by cost, density consequences or vehicle ownership as orientation. This research recommends the local authority from multi-disciplinary sector, in particular public policy making to issue permission for authority of land use; residential area and transport agencies for reconciliation with regard to life style aspects in urban spatial planning.
Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Zhang, Ping; Wolfe, Robert E.; Bounoua, Lahouari
2010-01-01
Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the nonurban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 C temperature difference in summer and only 1.3 C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.
Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach
NASA Astrophysics Data System (ADS)
Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun
2017-10-01
Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.
Effects of urban sprawl and vehicle miles traveled on traffic fatalities.
Yeo, Jiho; Park, Sungjin; Jang, Kitae
2015-01-01
Previous research suggests that urban sprawl increases auto-dependency and that excessive auto use increases the risk of traffic fatalities. This indirect effect of urban sprawl on traffic fatalities is compared to non-vehicle miles traveled (VMT)-related direct effect of sprawl on fatalities. We conducted a path analysis to examine the causal linkages among urban sprawl, VMT, traffic fatalities, income, and fuel cost. The path diagram includes 2 major linkages: the direct relationship between urban sprawl and traffic fatalities and the indirect effect on fatalities through increased VMT in sprawling urban areas. To measure the relative strength of these causal linkages, path coefficients are estimated using data collected nationally from 147 urbanized areas in the United States. Through both direct and indirect paths, urban sprawl is associated with greater numbers of traffic fatalities, but the direct effect of sprawl on fatalities is more influential than the indirect effect. Enhancing traffic safety can be achieved by impeding urban sprawl and encouraging compact development. On the other hand, policy tools reducing VMT may be less effective than anticipated for traffic safety.
Sprague, Lori A.; Harned, Douglas A.; Hall, David W.; Nowell, Lisa H.; Bauch, Nancy J.; Richards, Kevin D.
2007-01-01
During 2002-2004, the U.S. Geological Survey's National Water-Quality Assessment Program conducted a study to determine the effects of urbanization on stream water quality and aquatic communities in six environmentally heterogeneous areas of the conterminous United States--Atlanta, Georgia; Raleigh-Durham, North Carolina; Milwaukee-Green Bay, Wisconsin; Dallas-Fort Worth, Texas; Denver, Colorado; and Portland, Oregon. This report compares and contrasts the response of stream chemistry during base flow to urbanization in different environmental settings and examines the relation between the exceedance of water-quality benchmarks and the level of urbanization in these areas. Chemical characteristics studied included concentrations of nutrients, dissolved pesticides, suspended sediment, sulfate, and chloride in base flow. In three study areas where the background land cover in minimally urbanized basins was predominantly forested (Atlanta, Raleigh-Durham, and Portland), urban development was associated with increased concentrations of nitrogen and total herbicides in streams. In Portland, there was evidence of mixed agricultural and urban influences at sites with 20 to 50 percent urban land cover. In two study areas where agriculture was the predominant background land cover (Milwaukee-Green Bay and Dallas-Fort Worth), concentrations of nitrogen and herbicides were flat or decreasing as urbanization increased. In Denver, which had predominantly shrub/grass as background land cover, nitrogen concentrations were only weakly related to urbanization, and total herbicide concentrations did not show any clear pattern relative to land cover - perhaps because of extensive water management in the study area. In contrast, total insecticide concentrations increased with increasing urbanization in all six study areas, likely due to high use of insecticides in urban applications and, for some study areas, the proximity of urban land cover to the sampling sites. Phosphorus concentrations increased with urbanization only in Portland; in Atlanta and Raleigh-Durham, leachate from septic tanks may have increased phosphorus concentrations in basins with minimal urban development. Concentrations of suspended sediment were only weakly associated with urbanization, probably because this study analyzed only base-flow samples, and the bulk of sediment loads to streams is transported in storm runoff rather than base flow. Sulfate and chloride concentrations increased with increasing urbanization in four study areas (Atlanta, Raleigh-Durham, Milwaukee-Green Bay, and Portland), likely due to increasing contributions from urban sources of these constituents. The weak relation between sulfate and chloride concentrations and urbanization in Dallas-Fort Worth and Denver was likely due in part to high sulfate and chloride concentrations in ground-water inflow, which would have obscured any pattern of increasing concentration with urbanization. Pesticides often were detected at multiple sites within a study area, so that the pesticide 'signature' for a given study area - the mixtures of pesticides detected, and their relative concentrations, at streams within the study area - tended to show some pesticides as dominant. The type and concentrations of the dominant pesticides varied markedly among sites within a study area. There were differences between pesticide signatures during high and low base-flow conditions in five of the six study areas. Normalization of absolute pesticide concentrations by the pesticide toxicity index (a relative index indicating potential toxicity to aquatic organisms) dramatically changed the pesticide signatures, indicating that the pesticides with the greatest potential to adversely affect cladocerans or fish were not necessarily the pesticides detected at the highest concentrations. In a screening-level assessment, measured contaminant concentrations in individual base-flow water samples were compared with various water-qual
NASA Astrophysics Data System (ADS)
Rai, A.; Minsker, B. S.
2014-12-01
Urbanization over the last century has degraded our natural water resources by increasing storm-water runoff, reducing nutrient retention, and creating poor ecosystem health downstream. The loss of tree canopy and expansion of impervious area and storm sewer systems have significantly decreased infiltration and evapotranspiration, increased stream-flow velocities, and increased flood risk. These problems have brought increasing attention to catchment-wide implementation of green infrastructure (e.g., decentralized green storm water management practices such as bioswales, rain gardens, permeable pavements, tree box filters, cisterns, urban wetlands, urban forests, stream buffers, and green roofs) to replace or supplement conventional storm water management practices and create more sustainable urban water systems. Current green infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring pre-development hydrology and ultimately addressing water quality issues at an urban catchment scale. The benefits of green infrastructure extend well beyond local storm water management, as urban green spaces are also major contributors to human health. Considerable research in the psychological sciences have shown significant human health benefits from appropriately designed green spaces, yet impacts on human wellbeing have not yet been formally considered in GI design frameworks. This research is developing a novel computational green infrastructure (GI) design framework that integrates hydrologic requirements with criteria for human wellbeing. A supervised machine learning model is created to identify specific patterns in urban green spaces that promote human wellbeing; the model is linked to RHESSYS model to evaluate GI designs in terms of both hydrologic and human health benefits. An application of the models to Dead Run Watershed in Baltimore showed that image mining methods were able to capture key elements of human preferences that could improve tree-based GI design. Hydrologic benefits associated with these features were substantial, indicating that increased urban tree coverage and a more integrated GI design approach can significantly increase both human and hydrologic benefits.
Urban containment policies and the protection of natural areas: the case of Seoul's greenbelt
David N. Bengston; Yeo-Chang Youn
2006-01-01
Countries around the world have responded to the problems associated with rapid urban growth and increasingly land-consumptive development patterns by creating a wide range of policy instruments designed to manage urban growth. Of the array of growth management techniques, urban containment policies are considered by some to be a promising approach. This paper focuses...
Hip-Hop, the "Obama Effect," and Urban Science Education
ERIC Educational Resources Information Center
Emdin, Christopher; Lee, Okhee
2012-01-01
Background/Context: With the ever increasing diversity of schools, and the persistent need to develop teaching strategies for the students who attend today's urban schools, hip-hop culture has been proposed to be a means through which urban youth can find success in school. As a result, studies of the role of hip-hop in urban education have grown…
Effects of income and urban form on urban NO2: global evidence from satellites.
Bechle, Matthew J; Millet, Dylan B; Marshall, Julian D
2011-06-01
Urban air pollution is among the top 15 causes of death and disease worldwide, and a problem of growing importance with a majority of the global population living in cities. A important question for sustainable development is to what extent urban design can improve or degrade the environment and public health. We investigate relationships between satellite-derived estimates of nitrogen dioxide concentration (NO(2), a key component of urban air pollution) and urban form for 83 cities globally. We find a parsimonious yet powerful relationship (model R(2) = 0.63), using as predictors population, income, urban contiguity, and meteorology. Cities with highly contiguous built-up areas have, on average, lower urban NO(2) concentrations (a one standard deviation increase in contiguity is associated with a 24% decrease in average NO(2) concentration). More-populous cities tend to have worse air quality, but the increase in NO(2) associated with a population increase of 10% may be offset by a moderate increase (4%) in urban contiguity. Urban circularity ("compactness") is not a statistically significant predictor of NO(2) concentration. Although many factors contribute to urban air pollution, our findings suggest that antileapfrogging policies may improve air quality. We find that urban NO(2) levels vary nonlinearly with income (Gross Domestic Product), following an "environmental Kuznets curve"; we estimate that if high-income countries followed urban pollution-per-income trends observed for low-income countries, NO(2) concentrations in high-income cities would be ∼10× larger than observed levels.
Stream hydrologic response to increased urbanization in Mid-Atlantic watersheds
Urban development alters stream hydrology; resulting in increases in the Richard-Baker Flashiness index, peak flow, and the number of flood events for many watersheds throughout the U.S. To better understand and predict the relationship between stream flow patterns and watershed ...
Pata, Ugur Korkut
2018-03-01
This paper examines the dynamic short- and long-term relationship between per capita GDP, per capita energy consumption, financial development, urbanization, industrialization, and per capita carbon dioxide (CO 2 ) emissions within the framework of the environmental Kuznets curve (EKC) hypothesis for Turkey covering the period from 1974 to 2013. According to the results of the autoregressive distributed lag bounds testing approach, an increase in per capita GDP, per capita energy consumption, financial development, urbanization, and industrialization has a positive effect on per capita CO 2 emissions in the long term, and also the variables other than urbanization increase per capita CO 2 emissions in the short term. In addition, the findings support the validity of the EKC hypothesis for Turkey in the short and long term. However, the turning points obtained from long-term regressions lie outside the sample period. Therefore, as the per capita GDP increases in Turkey, per capita CO 2 emissions continue to increase.
Urban base flow with low impact development
Bhaskar, Aditi; Hogan, Dianna M.; Archfield, Stacey A.
2016-01-01
A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole-watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11-km2 watershed contains 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID.
NASA Astrophysics Data System (ADS)
Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu
With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban water sustainable management, we must deeply recognize the reality that water shortages and the limited carrying capacity, and dynamic assessment of WECC provides an early warning approach and control direction of water environment. For the East Lake, it is the primary target to mitigate the carrying capacity of social-economy, especially for prevention of lake area encroachment shrinking and domestic wastewater discharge.
Diurnal changes in urban boundary layer environment induced by urban greening
NASA Astrophysics Data System (ADS)
Song, Jiyun; Wang, Zhi-Hua
2016-11-01
Urban green infrastructure has been widely used for mitigating adverse environmental problems as well as enhancing urban sustainability of cities worldwide. Here we develop an integrated urban-land-atmosphere modeling framework with the land surface processes parameterized by an advanced urban canopy model and the atmospheric processes parameterized by a single column model. The model is then applied to simulate a variety of forms of green infrastructure, including urban lawns, shade trees, green and cool roofs, and their impact on environmental changes in the total urban boundary layer (UBL) for a stereotypical desert city, viz. Phoenix, Arizona. It was found that green roofs have a relatively uniform cooling effect proportional to their areal coverage. In particular, a reduction of UBL temperature of 0.3 °C and 0.2 °C per 10% increase of green roof coverage was observed at daytime and nighttime, respectively. In contrast, the effect of greening of street canyons is constrained by the overall abundance of green infrastructure and the energy available for evapotranspiration. In addition, the increase in urban greening causes boundary-layer height to decrease during daytime but increase at nighttime, leading to different trends of changes in urban air quality throughout a diurnal cycle.
Contaminants in urban waters—Science capabilities of the U.S. Geological Survey
Jastram, John D.; Hyer, Kenneth E.
2016-04-29
Streams and estuaries with urban watersheds commonly exhibit increased streamflow and decreased base flow; diminished stream-channel stability; excessive amounts of contaminants such as pesticides, metals, industrial and municipal waste, and combustion products; and alterations to biotic community structure. Collectively, these detrimental effects have been termed the “urban-stream syndrome.” Water-resource managers seek to lessen the effects on receiving water bodies of new urban development and remediate the effects in areas of existing urbanization. Similarly, the scientific community has produced extensive research on these topics, with researchers from the U.S. Geological Survey (USGS) leading many studies of urban streams and the processes responsible for the urban-stream syndrome. Increasingly, USGS studies are evaluating the effects of management and restoration activities to better understand how urban waters respond to the implementation of management practices. The USGS has expertise in collecting and interpreting data for many physical, chemical, and ecological processes in urban waters and, thus, provides holistic assessments to inform managers of urban water resources.
A Century of the Evolution of the Urban Area in Shenyang, China
Liu, Miao; Xu, Yanyan; Hu, Yuanman; Li, Chunlin; Sun, Fengyun; Chen, Tan
2014-01-01
Analyzing spatiotemporal characteristics of the historical urbanization process is essential in understanding the dynamics of urbanization and scientifically planned urban development. Based on historical urban area maps and remote sensing images, this study examined the urban expansion of Shenyang from 1910 to 2010 using area statistics, typology identification, and landscape metrics approaches. The population and gross domestic product were analyzed as driving factors. The results showed that the urban area of Shenyang increased 43.39-fold during the study period and that the growth rate has accelerated since the 1980s. Three urban growth types were distinguished: infilling, edge-expansion, and spontaneous growth. Edge-expansion was the primary growth type. Infilling growth became the main growth type in the periods 1946–70, 1988–97, and 2004–10. Spontaneous growth was concentrated in the period of 1997 to 2000. The results of landscape metrics indicate that the urban landscape of Shenyang originally was highly aggregated, but has become increasingly fragmented. The urban fringe area was the traditional hot zone of urbanization. Shenyang was mainly located north of the Hun River before 1980; however, the south side of the river has been the hot zone of urbanization since the 1980s. The increase of urban area strongly correlated with the growth of GDP and population. Over a long time scale, the urbanization process has been affected by major historical events. PMID:24893167
NASA Astrophysics Data System (ADS)
Pouyat, R. V.; Chen, Y.; Yesilonis, I.; Day, S.
2014-12-01
Land use change (LUC) has a significant impact on both above- and below-ground carbon (C) stocks; however, little is known about the net effects of urban LUC on the C cycle and climate system. Moreover, as climate change becomes an increasingly pressing concern, there is growing evidence that urban policy and management decisions can have significant regional impacts on C dynamics. Soil organic carbon (SOC) varies significantly across ecoregions at global and continental scales due to differential sensitivity of primary production, substrate quality, and organic matter decay to changes in temperature and soil moisture. These factors are highly modified by urban LUC due to vegetation removal, soil relocation and disruption, pollution, urban heat island effects, and increased atmospheric CO2 concentrations. As a result, on a global scale urban LUC differentially affects the C cycle from ecoregion to ecoregion. For urban ecosystems, the data collected thus far suggests urbanization can lead to both an increase and decrease in soil C pools and fluxes, depending on the native ecosystem being impacted by urban development. For example, in drier climates, urban landscapes accumulate higher C densities than the native ecosystems they replaced. Results suggest also that soil C storage in urban ecosystems is highly variable with very high (> 20.0) and low (< 2.0) C densities (kg m-2 to a 1 m depth) present in the landscape at any one time. Moreover, similar to non-urban soils, total SOC densities are consistently 2-fold greater than aboveground stocks. For those soils with low SOC densities, there is potential to increase C sequestration through management, but specific urban related management practices need to be evaluated. In addition, urban LUC is a human-driven process and thus can be modified or adjusted to reduce its impacts on the C cycle. For example, policies that influence development patterns, population density, management practices, and other human factors can greatly ameliorate the impact of urban LUC on the C cycle. However, even with the recent and rapid expansion of newly acquired data, the net effects of urban LUC on C stocks and fluxes have not been comprehensively addressed. Furthermore, how sensitive these changes are to urban planning, policy decisions, and site management needs to be explored.
Growing awareness of gender in urban policies.
Macfarlane, L
1996-01-01
This article discusses issues from the Women in the City Conference held in October 1994 in Paris. The conference was organized by the Organization for Economic Cooperation and Development's (OECD) Urban Affairs of the Territorial Development Service. An OECD report "Shaping Structural Change--The Role of Women" was published in 1991. This report argued that economies were not benefiting fully from women's contributions to economic growth and social development. Also, the "systemic nature of gender-based inequalities and the need for systemic solutions" was encouraged. The Secretary General urged OECD work groups to include the issue of the role of women. The conference was organized to this end. The conference demonstrated the progress made in women's international leadership and policy participation. However, the conference also indicated that the representation of women in urban decision making and planning groups was too low in member countries. Some urban changes involving urban women were a concern. 1) Women's participation in the labor force increased to 60%, and these women are required to provide the household budget. 2) Two parent households declined and single parent households, mostly women, increased. 3) Single person households increased and many were elderly and female. 4) OECD country populations were aging. These aforementioned trends place greater responsibilities on women. Urban policies impact on women's daily lives. Women are seeking policy changes related to women's transportation needs, access to affordable housing, improved house and community environments, security, more responsive services, economic development for women, and culture and leisure. Women's participation in public life can be improved through the expansion of child care facilities, legal changes, provision of gender-sensitive information, and new forms of urban governance that are more responsive and accessible to women.
Walls talk: Microbial biogeography of homes spanning urbanization
Ruiz-Calderon, Jean F.; Cavallin, Humberto; Song, Se Jin; Novoselac, Atila; Pericchi, Luis R.; Hernandez, Jean N.; Rios, Rafael; Branch, Oralee H.; Pereira, Henrique; Paulino, Luciana C.; Blaser, Martin J.; Knight, Rob; Dominguez-Bello, Maria G.
2016-01-01
Westernization has propelled changes in urbanization and architecture, altering our exposure to the outdoor environment from that experienced during most of human evolution. These changes might affect the developmental exposure of infants to bacteria, immune development, and human microbiome diversity. Contemporary urban humans spend most of their time indoors, and little is known about the microbes associated with different designs of the built environment and their interaction with the human immune system. This study addresses the associations between architectural design and the microbial biogeography of households across a gradient of urbanization in South America. Urbanization was associated with households’ increased isolation from outdoor environments, with additional indoor space isolation by walls. Microbes from house walls and floors segregate by location, and urban indoor walls contain human bacterial markers of space use. Urbanized spaces uniquely increase the content of human-associated microbes—which could increase transmission of potential pathogens—and decrease exposure to the environmental microbes with which humans have coevolved. PMID:26933683
NASA Astrophysics Data System (ADS)
Pfeil-McCullough, Erin Kathleen
Urbanization has far reaching and significant effects on forest ecosystems, directly through urban development and indirectly through supportive processes such as coal mining and agriculture. Urban processes modify the landscape leading to altered hillslope hydrology, increased disturbance, and the introduction of non-native forest pathogens. This dissertation addresses several challenges in our ability to detect these urbanization impacts on forests via geospatial analyses. The role of forests in urban hydrological processes has been extensively studied, but the impacts of urbanized hydrology on forests remain poorly examined. This dissertation documented impacts to hydrology and forests at variety of temporal and spatial scales: 1) A geospatial comparison of the historic and contemporary forests of Allegheny County, Pennsylvania revealed substantial shifts in tree species, but less change in the species soil moisture preference. These results document additional evidence that increased heterogeneity in urban soil moisture alters forest structure. 2) To examine soil moisture changes, impacts of longwall mine subsidence were assessed by using a Landsat based canopy moisture index and hot spot analysis tools at the forest patch scale. Declines in forest canopy moisture were detected over longwall mines as mining progressed through time, and results contradicted assumptions that the hydrological impacts overlying LMS recover within 4-5 years following subsidence of undermined land. 3) Utilizing a landslide susceptibility model (SINMAP), increases in landslide susceptibility were predicted in Pittsburgh, PA based on several scenarios of ash tree loss to the emerald ash borer (EAB), a bark beetle that rapidly kills ash trees. This model provides a tool to predict changes in landslide susceptibility following tree loss, increasing the understanding of urban forest function and its role in slope stability. Detecting how urbanized hydrology impacts forest health, function, and development is fundamental to sustaining the services forests provide. Results from this dissertation will ultimately allow improvements in the management and protection of both trees and water resources in urban systems and beyond.
Cyril, Sheila; Oldroyd, John C; Renzaho, Andre
2013-05-28
Despite a plethora of studies examining the effect of increased urbanisation on health, no single study has systematically examined the measurement properties of scales used to measure urbanicity. It is critical to distinguish findings from studies that use surrogate measures of urbanicity (e.g. population density) from those that use measures rigorously tested for reliability and validity. The purpose of this study was to assess the measurement reliability and validity of the available urbanicity scales and identify areas where more research is needed to facilitate the development of a standardised measure of urbanicity. Databases searched were MEDLINE with Full Text, CINAHL with Full Text, and PsycINFO (EBSCOhost) as well as Embase (Ovid) covering the period from January 1970 to April 2012. Studies included in this systematic review were those that focused on the development of an urbanicity scale with clearly defined items or the adoption of an existing scale, included at least one outcome measure related to health, published in peer-reviewed journals, the full text was available in English and tested for validity and reliability. Eleven studies met our inclusion criteria which were conducted in Sri Lanka, Austria, China, Nigeria, India and Philippines. They ranged in size from 3327 to 33,404 participants. The number of scale items ranged from 7 to 12 items in 5 studies. One study measured urban area socioeconomic disadvantage instead of urbanicity. The emerging evidence is that increased urbanisation is associated with deleterious health outcomes. It is possible that increased urbanisation is also associated with access and utilisation of health services. However, urbanicity measures differed across studies, and the reliability and validity properties of the used scales were not well established. There is an urgent need for studies to standardise measures of urbanicity. Longitudinal cohort studies to confirm the relationship between increased urbanisation and health outcomes are urgently needed.
2013-01-01
Background Despite a plethora of studies examining the effect of increased urbanisation on health, no single study has systematically examined the measurement properties of scales used to measure urbanicity. It is critical to distinguish findings from studies that use surrogate measures of urbanicity (e.g. population density) from those that use measures rigorously tested for reliability and validity. The purpose of this study was to assess the measurement reliability and validity of the available urbanicity scales and identify areas where more research is needed to facilitate the development of a standardised measure of urbanicity. Methods Databases searched were MEDLINE with Full Text, CINAHL with Full Text, and PsycINFO (EBSCOhost) as well as Embase (Ovid) covering the period from January 1970 to April 2012. Studies included in this systematic review were those that focused on the development of an urbanicity scale with clearly defined items or the adoption of an existing scale, included at least one outcome measure related to health, published in peer-reviewed journals, the full text was available in English and tested for validity and reliability. Results Eleven studies met our inclusion criteria which were conducted in Sri Lanka, Austria, China, Nigeria, India and Philippines. They ranged in size from 3327 to 33,404 participants. The number of scale items ranged from 7 to 12 items in 5 studies. One study measured urban area socioeconomic disadvantage instead of urbanicity. The emerging evidence is that increased urbanisation is associated with deleterious health outcomes. It is possible that increased urbanisation is also associated with access and utilisation of health services. However, urbanicity measures differed across studies, and the reliability and validity properties of the used scales were not well established. Conclusion There is an urgent need for studies to standardise measures of urbanicity. Longitudinal cohort studies to confirm the relationship between increased urbanisation and health outcomes are urgently needed. PMID:23714282
Mapping Global Urban Extent and Intensity for Environmental Monitoring and Modeling
NASA Astrophysics Data System (ADS)
Schneider, A.; Friedl, M. A.
2007-05-01
The human dimensions of global environmental change have received increased attention in policy, decision- making, research, and even the media. However, the influence of urban areas in global change processes is still often assumed to be negligible. Although local environmental conditions such as the urban heat island effect are well-documented, little or no work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, it is becoming increasingly clear that the `ecological footprint' of cities may play a critical role in environmental changes at regional and global scales. Our understanding of the cumulative impacts of urban areas on natural systems has been limited foremost by a lack of reliable, accurate data on current urban form and extent at the global scale. The data sets that have emerged to fill this gap (LandScan, GRUMP, nighttime lights) suffer from a number of limitations that prevent widespread use. Building on our early efforts with MODIS data, our current work focuses on: (1) completing a new, validated map of global urban extent; and (2) developing methods to estimate the subpixel fraction of impervious surface, vegetation, and other land cover types within urbanized areas using coarse resolution satellite imagery. For the first task, a technique called boosting is used to improve classification accuracy and provides a means to integrate 500 m resolution MODIS data with ancillary data sources. For the second task, we present an approach for estimating percent cover that relies on continuous training data for a full range of city types. These exemplars are used as inputs to fuzzy neural network and regression tree algorithms to predict fractional amounts of land cover types with increased accuracy. Preliminary results for a global sample of 100 cities (which vary in population size, level of economic development, and spatial extent) show good agreement with the expected morphology in each region.
The Changing Roles Professional Development Program
A. Hermansen-Baez; N. Wulff
2010-01-01
As populations and urbanization expand in the Southern United States, human influences on forests and other natural areas are increasing. As a result, natural resource professionals are faced with complex challenges, such as managing smaller forest parcels for multiple benefits, and wildfire prevention and management in the wildland-urban interface (areas where urban...
Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J
2015-12-15
An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. Copyright © 2015 Elsevier B.V. All rights reserved.
Urbanization and health in developing countries.
Harpham, T; Stephens, C
1991-01-01
In developing countries the level of urbanization is expected to increase to 39.5% by the end of this century and to 56.9% by 2025. The number of people living in slums and shanty towns represent about one-third of the people living in cities in developing countries. This article focuses upon these poor urban populations and comments upon their lifestyle and their exposure to hazardous environmental conditions which are associated with particular patterns of morbidity and mortality. The concept of marginality has been used to describe the lifestyle of the urban poor in developing countries. This concept is critically examined and it is argued that any concept of the urban poor in developing countries being socially, economically or politically marginal is a myth. However, it can certainly be claimed that in health terms the urban poor are marginal as demonstrated by some of the studies reviewed in this article. Most studies of the health of the urban poor in developing countries concentrate on the environmental conditions in which they live. The environmental conditions of the urban poor are one of the main hazards of the lifestyle of poor urban residents. However, other aspects of their way of life, or lifestyle, have implications for their health. Issues such as smoking, diet, alcohol and drug abuse, and exposure to occupational hazards, have received much less attention in the literature and there is an urgent need for more research in these areas.
Beaulieu, Karen M.; Bell, Amanda H.; Coles, James F.
2012-01-01
Beginning in 1999, the U.S. Geological Survey National Water Quality Assessment Program investigated the effects of urban development on stream ecosystems in nine metropolitan study areas across the United States. In seven of these study areas, stream-chemistry samples were collected every other month for 1 year at 6 to 10 sites. Within a study area, the sites collectively represented a gradient of urban development from minimally to highly developed watersheds, based on the percentage of urban land cover; depending on study area, the land cover before urban development was either forested or agricultural. The stream-chemistry factors measured in the samples were total nitrogen, total phosphorus, chloride, and pesticide toxicity. These data were used to characterize the stream-chemistry factors in four ways (hereafter referred to as characterizations)—seasonal high-flow value, seasonal low-flow value, the median value (representing a single integrated value of the factor over the year), and the standard deviation of values (representing the variation of the factor over the year). Aquatic macroinvertebrate communities were sampled at each site to infer the biological condition of the stream based on the relative sensitivity of the community to environmental stressors. A Spearman correlation analysis was used to evaluate relations between (1) urban development and each characterization of the stream-chemistry factors and (2) the biological condition of a stream and the different characterizations of chloride and pesticide toxicity. Overall, the study areas where the land cover before urban development was primarily forested had a greater number of moderate and strong relations compared with the study areas where the land cover before urban development was primarily agriculture; this was true when urban development was correlated with the stream-chemistry factors (except chloride) and when chloride and pesticide toxicity was correlated with the biological condition. Except for primarily phosphorus in two study areas, stream-chemistry factors generally increased with urban development, and among the different characterizations, the median value typically indicated the strongest relations. The variation in stream-chemistry factors throughout the year generally increased with urban development, indicating that water quality became less consistent as watersheds were developed. In study areas with high annual snow fall, the variation in chloride concentrations throughout the year was particularly strongly related to urban development, likely a result of road salt applications during the winter. The relations of the biological condition to chloride and pesticide toxicity were calculated irrespective of urban development, but the overall results indicated that the relations were still stronger in the study areas that had been forested before urban development. The weaker relations in the study areas that had been agricultural before urban development were likely the results of biological communities having been degraded from agricultural practices in the watersheds. Collectively, these results indicated that, compared with sampling a stream at a single point in time, sampling at regular intervals during a year may provide a more representative measure of water quality, especially in the areas of high urban development where water quality fluctuated more widely between samples. Furthermore, the use of "integrated" values of stream chemistry factors may be more appropriate when assessing relations to the biological condition of a stream because the taxa composition of a biological community typically reflects the water-quality conditions over time.
The Wildland-Urban Interface: Increasing Significance, Complexity and Contribution
John F. Dwyer; Sarah M. McCaffrey
2002-01-01
During the past two decades, presentations at International Symposia on Society and Resource Management (ISSRM) have covered an increasingly broad scope of topics on natural resource issues. The wildland-urban interface (WUI) was a key topic of discussion at the ninth ISSRM in 2002: a reflection of the response by social scientists to increasing residential development...
NASA Astrophysics Data System (ADS)
Li, M.; Lo Seen, D.; Zhang, Z.
2015-12-01
The urban population is expected to rise 67% in developing countries and 86% in developed regions by 2050. As the most populous country in the world, China has been experiencing a remarkable urbanization process since the initialization of the reform and opening-up policies in the late 1970s. During the past several decades, the coastal zone undergone the highest urbanization and motst rapid economic development in China. Accurately understanding the characteristics of the spatial-temporal urban sprawl is helpful for urban planning on optimal land use in the future. Ocelet is an interactive visual interpretation and dynamic coding method that has been designed for studying issues related to space, time and multiple scales that are raised when dynamic landscapes are modelled. Using Ocelet, we aim to study the characteristics of the spatial-temporal urban sprawl in thirteen major Chinese coastal cities and how urban sprawl affects the surrounding land changes. Landsat MSS/TM/ETM/OLI, the China-Brazil Earth Resources Satellite (CBERS) and Chinese HJ-1A data are adopted to acquire urban built-up areas and their dynamic changes from 1979 to 2013. The results show that the urban built-up area increased gradually from 1979 to 2002 (~105 km²/yr), then accelerated about four times from 2002 to 2010 (~396 km²/yr) in thirteen major Chinese coastal cities. Although the expansion slowed down since 2010, the urban built-up area still increased at a fairly high rate (~210 km²/yr) from 2010 to 2013. The urban sprawl speed and pattern in each coastal city has also been analyzed, and has been grouped in three costal zones geographically. As a result of urban sprawl, large areas of arable land, rural settlements and forests were lost in these coastal cities. The lost non-urban land types and areas are different in the three costal zones and quantified respectively.
Martin Frechilla, J J
1996-01-01
The individuals and circumstances involved in the creation of the first graduate urban studies program in Venezuela are recalled, beginning with the odernization of Caracas under the impulse of President Antonio Guzman Blanco, elected in 1870. Guzman Blanco converted himself into Venezuela's first urbanist with the establishment of organizational frameworks and completion of massive public works projects, which were based largely on the urban models of the US and Europe. Engineering and public health were consolidated as the two most influential sources of professional competence for guiding urban development. By the mid-1930s, growth fueled by petroleum revenues was causing rapid urbanization, and it became apparent that trained professionals able to manage the increasingly complex tasks of urban planning were in short supply. A new surge of modernizing construction began in 1936 and led to a cooperative arrangement with a French firm, whose personnel were to be required to train Venezuelan engineers for future service in urban planning. An influx of refugees from the Spanish Civil War and the increasing influence of urban planning processes in the US were also observed. The National Commission on Urbanism was created in 1946 as a dependency of the Ministry of Planning to facilitate public administration of the development and control of cities. Throughout the period, a debate was underway on the need for a multidisciplinary approach to urban planning versus a primarily architectural or engineering approach. In 1957, some consensus was reached on the need for urban planning to be viewed as more than a speciality of architecture. A framework was developed for a graduate program in 1969 in the Central University of Venezuela. The National Commission on Urbanism was disbanded in 1957, largely because of its excessive focus on architecture to the exclusion of other disciplines relevant to the urbanization process.
Urban ecology in a developing world: why advanced socioecological theory needs Africa
Bunn, David N; Pickett, Steward TA; Twine, Wayne
2014-01-01
Socioecological theory, developed through the study of urban environments, has recently led to a proliferation of research focusing on comparative analyses of cities. This research emphasis has been concentrated in the more developed countries of the Northern Hemisphere (often referred to as the “Global North”), yet urbanization is now occurring mostly in the developing world, with the fastest rates of growth in sub-Saharan Africa. Countries like South Africa are experiencing a variety of land-cover changes that may challenge current assumptions about the differences between urban and rural environments and about the connectivity of these dynamic socioecological systems. Furthermore, questions concerning ecosystem services, landscape preferences, and conservation – when analyzed through rural livelihood frameworks – may provide insights into the social and ecological resilience of human settlements. Increasing research on urban development processes occurring in Africa, and on patterns of kinship and migration in the less developed countries of the “Global South”, will advance a more comprehensive worldview of how future urbanization will influence the progress of sustainable societies. PMID:24891843
Yang Yang; Theodore A. Endreny; David J. Nowak
2015-01-01
Impervious land cover was the choice for many urban development projects in order to accelerate runoff and reduce the depth and duration of local flooding, however this led to increases in downstream runoff characterized by large, flashy peak flows. Urban ecosystem restoration now involves slowing down urban runoff to restore local hydrology with green infrastructure,...
The Conundrum of Impacts of Climate Change on Urbanization and the Urban Heat Island Effect
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2011-01-01
The twenty-first century is the first urban century according to the United Nations Development Program. The focus on cities reflects awareness of the growing percentage of the world's population that lives in urban areas. In 2000, approximately 3 billion people representing about 40% of the global population resided in urban areas. The United Nations estimates that by 2025, 60% of the world s population will live in urban areas. As a consequence, the number of megacities (those cities with populations of 10 million inhabitants or more) will increase by 100 by 2025. Thus, there is a critical need to understand the spatial growth of urban areas and what the impacts are on the environment. Moreover, there is a critical need to assess how under global climate change, cities will affect the local, regional, and even global climate. As urban areas increase in size, it is anticipated there will be a concomitant growth of the Urban Heat Island effect (UHI), and the attributes that are related to its spatial and temporal dynamics. Therefore, how climate change, including the dynamics of the UHI, will affect the urban environment, must be explored to help mitigate potential impacts on the environment (e.g., air quality, heat stress, vectorborne disease) and on human health and well being, to develop adaptation schemes to cope with these impacts.
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Liang, Song; Ruan, Yong; Huang, Jie
2008-10-01
During the urbanization process, when facing complex requirements of city development, ever-growing urban data, rapid development of planning business and increasing planning complexity, a scalable, extensible urban planning management information system is needed urgently. PM2006 is such a system that can deal with these problems. In response to the status and problems in urban planning, the scalability and extensibility of PM2006 are introduced which can be seen as business-oriented workflow extensibility, scalability of DLL-based architecture, flexibility on platforms of GIS and database, scalability of data updating and maintenance and so on. It is verified that PM2006 system has good extensibility and scalability which can meet the requirements of all levels of administrative divisions and can adapt to ever-growing changes in urban planning business. At the end of this paper, the application of PM2006 in Urban Planning Bureau of Suzhou city is described.
Urban sprawl and delayed ambulance arrival in the U.S.
Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E
2009-11-01
Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.
Population trends and demographic problems in Africa with special reference to unemployment.
Ominde, S H
1976-02-01
This paper examines unemployment as it relates to rural-urban migration and also examines the gap between job expectation and job reality in Kenya. The author links changes in the laborforce to population increase and says that by the year 2000, the number of people in the laborforce is expected to increase 170%. With that rise, there will also be an increase in the number of dependents needing care. Rural-urban migration poses the largest threat to unemployment. Urban population, in the year 2000 is expected to be 4.2 times that of 1970. 66 cities in Africa have already reached the 100,000 plus population mark in a 20 year period. Urban unemployment ranges from 10-25%. Because of low availability of investment capital and low level domestic savings, the African economy has been unable to provide jobs. Another major cause of unemployment is the development of schools whose curricula is unrelated to Africa's needs. While more people are educated, no job opportunities exist for them. Population policy in respect to redistribution of the population must clearly be a priority. This means development of rural areas to ease urban pressure, programs in which new economic growth regions would provide jobs for people, and concentration on labor intensive rather than capital intensive industries. African nations must also develop plans for economic development, family planning, education, health, nutrition and recreation.
NASA Astrophysics Data System (ADS)
Harned, D. A.; Cuffney, T. F.; Giddings, E. M.; McMahon, G.
2004-12-01
A study of urban basins located in the Piedmont of North Carolina is underway as part of the U. S. Geological Survey National Water-Quality Assessment (NAWQA) to determine the relation between level of urban development and water quality. Data were collected from 30 basins on water chemistry (nutrient, pesticide, and ion concentrations), geomorphic and habitat characteristics, hydrologic stage, discharge, water temperature, pH, dissolved-oxygen concentration, specific conductance, benthic algae, invertebrate communities, and fish communities. Collection frequency for water chemistry ranged from 2 samples (at 20 sites) to 6 samples (at 10 sites). Biological data were collected in each basin twice. Investigation of the effects of urbanization on water quality must control for the effects of natural factors, while varying the degree of urbanization between study basins. A regional framework was used to control variability in natural factors that influence water-quality. The urban intensity in each basin was measured by using an index to integrate information on human influences. The Urban Index includes information about land cover, infrastructure, population, and socioeconomic characteristics. Sites were selected to represent the full gradient of undeveloped to fully urbanized basins. A preliminary review of the stream water-chemistry data indicates distinct relations between ionic composition and the Urban Index. Mean specific conductance was positively correlated with the Urban Index (Spearman correlation coefficient (r) = 0.77; 95-percent confidence limits (95CL) 0.61 - 0.93; probability (pr) <0.0001; N=30). Specific conductance ranged from 56 microsiemens (uS) at the least developed site to 607 uS at the most developed site. Dissolved sulfate (r=0.74; 95CL 0.57 - 0.91; pr <0.0001) and chloride (r=0.71; 95CL 0.52 - 0.90; pr <0.0001) were also positively correlated with the Urban Index. Sulfate ranged from 2.3 to 66 milligrams per liter (mg/L), and chloride ranged from 3.5 to 96 mg/L. Urban sources of sulfate include domestic sewage and emissions from the combustion of automotive and diesel fuels. Sources of chloride include sewage and road salting. pH was positively correlated with the Urban Index (r=0.60; 95CL 0.38 - 0.84; pr= 0.0005) with a range from 6.5 at the least urban site to 7.5 at the most urban site. The increase in pH may be due in part to conversion of organic forest soils to less acidic soils of urban lawns. The overall trend of increasing total dissolved nitrogen (r=0.46; 95CL 0.12 - 0.80; pr=0.0103) and nitrite plus nitrate (r=0.46; 95CL 0.09 - 0.83; pr=0.0109) concentrations, with increasing Urban Index may reflect sources such as sewage and lawn fertilizer use in the more urban basins. However, some of the least urban basins also had elevated nitrogen concentrations reflecting possible agricultural influences such as fertilizer use and animal waste. Total nitrogen concentration ranged from 0.31 to 14 mg/L. Unit-area stream discharge during low-flow periods was negatively correlated with the Urban Index (r= -0.56; 95CL -0.74 - -0.37; pr=0.0014). Reduced discharge with greater urban development may be a result of reduced infiltration caused by impervious surfaces. Unit discharge ranged from 0.47 to 2.27 cubic feet per second per square mile of drainage area.
Insecticide Resistance and Management Strategies in Urban Ecosystems
Zhu, Fang; Lavine, Laura; O’Neal, Sally; Lavine, Mark; Foss, Carrie; Walsh, Douglas
2016-01-01
The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs. PMID:26751480
Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T
2011-10-15
Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. Published by Elsevier B.V.
Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.
2011-01-01
Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. ?? 2011.
A comparative analysis: storm water pollution policy in California, USA and Victoria, Australia.
Swamikannu, X; Radulescu, D; Young, R; Allison, R
2003-01-01
Urban drainage systems historically were developed on principles of hydraulic capacity for the transport of storm water to reduce the risk of flooding. However, with urbanization the percent of impervious surfaces increases dramatically resulting in increased flood volumes, peak discharge rates, velocities and duration, and a significant increase in pollutant loads. Storm water and urban runoff are the leading causes of the impairment of receiving waters and their beneficial uses in Australia and the United States today. Strict environmental and technology controls on wastewater treatment facilities and industry for more than three decades have ensured that these sources are less significant today as the cause of impairment of receiving waters. This paper compares the approach undertaken by the Environmental Protection Authority Victoria for the Melbourne metropolitan area with the approach implemented by the California Environmental Protection Agency for the Los Angeles area to control storm water pollution. Both these communities are largely similar in population size and the extent of urbanization. The authors present an analysis of the different approaches contrasting Australia with the USA, comment on their comparative success, and discuss the relevance of the two experiences for developed and developing nations in the context of environmental policy making to control storm water and urban runoff pollution.
Haase, Dagmar; Kabisch, Nadja; Haase, Annegret
2013-01-01
In European cities, the rate of population growth has declined significantly, while the number of households has increased. This increase in the number of households is associated with an increase in space for housing. To date, the effects of both a declining population and decreasing household numbers remain unclear. In this paper, we analyse the relationship between population and household number development in 188 European cities from 1990-2000 and 2000-2006 to the growth of urban land area and per capita living space. Our results support a trend toward decreasing population with simultaneously increasing household number. However, we also found cites facing both a declining population and a decreasing household number. Nevertheless, the urban land area of these "double-declining" cities has continued to spread because the increasing per capita living space counteracts a reduction in land consumption. We conclude that neither a decline in population nor in household number "automatically" solve the global problem of land consumption.
Urbanization and the global malaria recession.
Tatem, Andrew J; Gething, Peter W; Smith, David L; Hay, Simon I
2013-04-17
The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control.
Synergies and trade-offs between energy-efficient urbanization and health
NASA Astrophysics Data System (ADS)
Ahmad, Sohail; Pachauri, Shonali; Creutzig, Felix
2017-11-01
Energy-efficient urbanization and public health pose major development challenges for India. While both issues are intensively studied, their interaction is not well understood. Here we explore the relationship between urban infrastructures, public health, and household-related emissions, identifying potential synergies and trade-offs of specific interventions by analyzing nationally representative household surveys from 2005 and 2012. Our analysis confirms previous characterizations of the environmental-health transition, but also points to an important role of energy use and urbanization as modifiers of this transition. We find that non-motorized transport may prove a sweet spot for development, as its use is associated with lower emissions and better public health in cities. Urbanization and improved access to basic services correlate with lower short-term morbidity (STM), such as fever, cough and diarrhea. Our analysis suggests that a 10% increase in urbanization from current levels and concurrent improvement in access to modern cooking and clean water could lower STM for 2.4 million people. This would be associated with a modest increase in electricity related emissions of 84 ktCO2e annually. Promoting energy-efficient mobility systems, for instance by a 10% increase in bicycling, could lower chronic conditions like diabetes and cardio-vascular diseases for 0.3 million people while also abating emissions. These findings provide empirical evidence to validate that energy-efficient and sustainable urbanization can address both public health and climate change challenges simultaneously.
Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previo...
Water resource managers have been successful in developing approaches for reducingnonpoint source pollution in newly developing urban areas. Isssues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previou...
24 CFR 206.25 - Calculation of payments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 206.25 Housing and Urban Development Regulations Relating to Housing and Urban Development... number of months in the payment term equals 100 minus the age of the youngest mortgagor multiplied by 12... principal limit increases under § 206.3. A payment under the line of credit may not exceed the difference...
King, Gary M
2014-09-01
Humans increasingly occupy cities. Globally, about 50% of the total human population lives in urban environments, and in spite of some trends for deurbanization, the transition from rural to urban life is expected to accelerate in the future, especially in developing nations and regions. The Republic of Korea, for example, has witnessed a dramatic rise in its urban population, which now accounts for nearly 90% of all residents; the increase from about 29% in 1955 has been attributed to multiple factors, but has clearly been driven by extraordinary growth in the gross domestic product accompanying industrialization. While industrialization and urbanization have unarguably led to major improvements in quality of life indices in Korea and elsewhere, numerous serious problems have also been acknowledged, including concerns about resource availability, water quality, amplification of global warming and new threats to health. Questions about sustainability have therefore led Koreans and others to consider deurbanization as a management policy. Whether this offers any realistic prospects for a sustainable future remains to be seen. In the interim, it has become increasingly clear that built environments are no less complex than natural environments, and that they depend on a variety of internal and external connections involving microbes and the processes for which microbes are responsible. I provide here a definition of the urban microbiome, and through examples indicate its centrality to human function and wellbeing in urban systems. I also identify important knowledge gaps and unanswered questions about urban microbiomes that must be addressed to develop a robust, predictive and general understanding of urban biology and ecology that can be used to inform policy-making for sustainable systems.
Third-world development: urbanizing for the future.
Mcilwaine, C
1997-01-01
This article reviews some issues reflected in the 1996 UN Habitat II agenda and recent research on urbanization. The themes of the 1996 Habitat conference were urban development, urban poverty, and governance, civil society, and social capital. It is expected that over 50% of total world population will live in cities in the year 2000. Cities are viewed both as engines of economic growth and centers of severe economic, environmental, and social problems. There is some disagreement about whether cities are rational economic structures or what the World Bank's urban agenda is and its relationship with macroeconomic policy. Discussions of global urban issues are criticized for their neglect of issues of equity and poverty, cultural diversity, and identity and representation. Habitat II also stressed urban sustainability. There is growing recognition that urban management involves more than the "Brown Agenda" of environmental and physical aspects of urban growth. Recent studies identify how politics and power affect people's access to basic urban services. Urban economic activity can also contribute to environmental problems. Urban growth affects the provision of health services. Although there is not a consensus on the role of cities in expanding economic and social development and the best management practices, there is sufficient evidence to indicate that urban processes are varied throughout the developing world. The links between urban and rural areas differentiate cities and expose the need to understand the role of intermediate urban areas surrounding and between larger cities. Poverty has become increasingly urbanized, but the extent of poverty is unknown. Habitat II was an unprecedented effort to engage nongovernment groups, local government staff, trade unions, and the private sector and to emphasize community participation. Networks of trust and reciprocity are key to solving poverty, inequality, and disempowerment problems.
Hydrological processes at the urban residential scale
Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin
2007-01-01
In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...
Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry
NASA Astrophysics Data System (ADS)
Steele, M.; Badgley, B.
2017-12-01
Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.
A decision-support tool for the control of urban noise pollution.
Suriano, Marcia Thais; de Souza, Léa Cristina Lucas; da Silva, Antonio Nelson Rodrigues
2015-07-01
Improving the quality of life is increasingly seen as an important urban planning goal. In order to reach it, various tools are being developed to mitigate the negative impacts of human activities on society. This paper develops a methodology for quantifying the population's exposure to noise, by proposing a classification of urban blocks. Taking into account the vehicular flow and traffic composition of the surroundings of urban blocks, we generated a noise map by applying a computational simulation. The urban blocks were classified according to their noise range and then the population was estimated for each urban block, by a process which was based on the census tract and the constructed area of the blocks. The acoustical classes of urban blocks and the number of inhabitants per block were compared, so that the population exposed to noise levels above 65 dB(A) could be estimated, which is the highest limit established by legislation. As a result, we developed a map of the study area, so that urban blocks that should be priority targets for noise mitigation actions can be quickly identified.
Urbane Hydrogeologie - Herausforderungen für Forschung und Praxis
NASA Astrophysics Data System (ADS)
Schirmer, M.; Strauch, G.; Reinstorf, F.; Schirmer, K.
2007-09-01
Urban areas are a focus of increasing conflict with regard to water use and water protection. Half of the world’s population and about 73 % of Europeans live in cities. Currently, about 82 % of the total population growth of the world occurs in the cities of the developing countries (UN 2004). As a direct and/or indirect consequence of human activity, urban water systems are frequently polluted with organic contaminants. Many of these contaminants are related to human behaviour and activity, such as pharmaceuticals, personal care products (collectively PPCPs) and endocrine-active substances, and are increasingly found in urban water systems. However, the behaviour and the effects of these contaminants in the environment have been widely unknown until now. Consequently, it is important to pay more attention to such substances and to explore new integrated methodologies (including flux calculations as well as chemical and biological investigations) for determining the impact of human activities on urban water systems and on processes within the urban watershed. The overall goal is to assess the risks to humans and the ecosystem, and to support the development of suitable management strategies.
NASA Astrophysics Data System (ADS)
Fletcher, T. D.; Andrieu, H.; Hamel, P.
2013-01-01
Urban hydrology has evolved to improve the way urban runoff is managed for flood protection, public health and environmental protection. There have been significant recent advances in the measurement and prediction of urban rainfall, with technologies such as radar and microwave networks showing promise. The ability to predict urban hydrology has also evolved, to deliver models suited to the small temporal and spatial scales typical of urban and peri-urban applications. Urban stormwater management increasingly consider the needs of receiving environments as well as those of humans. There is a clear trend towards approaches that attempt to restore pre-development flow-regimes and water quality, with an increasing recognition that restoring a more natural water balance benefits not only the environment, but enhances the liveability of the urban landscape. Once regarded only as a nuisance, stormwater is now increasingly regarded as a resource. Despite the advances, many important challenges in urban hydrology remain. Further research into the spatio-temporal dynamics of urban rainfall is required to improve short-term rainfall prediction. The performance of stormwater technologies in restoring the water balance and in removing emerging priority pollutants remain poorly quantified. All of these challenges are overlaid by the uncertainty of climate change, which imposes a requirement to ensure that stormwater management systems are adaptable and resilient to changes. Urban hydrology will play a critical role in addressing these challenges.
Sustainable urban systems: Co-design and framing for transformation.
Webb, Robert; Bai, Xuemei; Smith, Mark Stafford; Costanza, Robert; Griggs, David; Moglia, Magnus; Neuman, Michael; Newman, Peter; Newton, Peter; Norman, Barbara; Ryan, Chris; Schandl, Heinz; Steffen, Will; Tapper, Nigel; Thomson, Giles
2018-02-01
Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social-ecological-technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda.
An Applied Mereology of the City: Unifying Science and Philosophy for Urban Planning.
Epting, Shane
2016-10-01
Based on their research showing that growing cities follow basic principles, two theoretical physicists, Luis Bettencourt and Geoffrey West, call for researchers and professionals to contribute to a grand theory of urban sustainability. In their research, they develop a 'science of the city' to help urban planners address problems that arise from population increases. Although they provide valuable insights for understanding urban sustainability issues, they do not give planners a manageable way to approach such problems. I argue that developing an applied mereology to understand the concept of 'city identity' gives planners a theoretical device for addressing urban affairs, including ethical concerns. In turn, I devise a model of city identity to show how a 'philosophy of the city' contributes to a grand theory of urban sustainability.
Will it rise or will it fall? Managing the complex effects of urbanization on base flow
Bhaskar, Aditi; Beesley, Leah; Burns, Matthew J.; Fletcher, T. D.; Hamel, Perrine; Oldham, Carolyn; Roy, Allison
2016-01-01
Sustaining natural levels of base flow is critical to maintaining ecological function as stream catchments are urbanized. Research shows a variable response of stream base flow to urbanization, with base flow or water tables rising in some locations, falling in others, or elsewhere remaining constant. The variable baseflow response is due to the array of natural (e.g., physiographic setting and climate) and anthropogenic (e.g., urban development and infrastructure) factors that influence hydrology. Perhaps as a consequence of this complexity, few simple tools exist to assist managers to predict baseflow change in their local urban area. This paper addresses this management need by presenting a decision support tool. The tool considers the natural vulnerability of the landscape, together with aspects of urban development in predicting the likelihood and direction of baseflow change. Where the tool identifies a likely increase or decrease it guides managers toward strategies that can reduce or increase groundwater recharge, respectively. Where the tool finds an equivocal result, it suggests a detailed water balance be performed. The decision support tool is embedded within an adaptive-management framework that encourages managers to define their ecological objectives, assess the vulnerability of their ecological objectives to changes in water table height, and monitor baseflow responses to urbanization. We trial our framework using two very different case studies: Perth, Western Australia, and Baltimore, Maryland, USA. Together, these studies show how pre-development water table height, climate and geology together with aspects of urban infrastructure (e.g., stormwater practices, leaky pipes) interact such that urbanization has overall led to rising base flow (Perth) and falling base flow (Baltimore). Greater consideration of subsurface components of the water cycle will help to protect and restore the ecology of urban freshwaters.
Coleman, Joanna L.; Barclay, Robert M. R.
2011-01-01
Background We address three key gaps in research on urban wildlife ecology: insufficient attention to (1) grassland biomes, (2) individual- and population-level effects, and (3) vertebrates other than birds. We hypothesized that urbanization in the North American Prairies, by increasing habitat complexity (via the proliferation of vertical structures such as trees and buildings), thereby enhancing the availability of day-roosts, tree cover, and insects, would benefit synanthropic bats, resulting in increased fitness among urban individuals. Methodology/Principal Findings Over three years, we captured more than 1,600 little brown bats (Myotis lucifugus) in urban and non-urban riparian sites in and around Calgary, Alberta, Canada. This species dominated bat assemblages throughout our study area, but nowhere more so than in the city. Our data did not support most of our specific predictions. Increased numbers of urban bats did not reflect urbanization-related benefits such as enhanced body condition, reproductive rates, or successful production of juveniles. Instead, bats did best in the transition zone situated between strictly urban and rural areas. Conclusions/Significance We reject our hypothesis and explore various explanations. One possibility is that urban and rural M. lucifugus exhibit increased use of anthropogenic roosts, as opposed to natural ones, leading to larger maternity colonies and higher population densities and, in turn, increased competition for insect prey. Other possibilities include increased stress, disease transmission and/or impacts of noise on urban bats. Whatever the proximate cause, the combination of greater bat population density with decreased body condition and production of juveniles indicates that Calgary does not represent a population source for Prairie bats. We studied a highly synanthropic species in a system where it could reasonably be expected to respond positively to urbanization, but failed to observe any apparent benefits at the individual level, leading us to propose that urban development may be universally detrimental to bats. PMID:21857890
Nonomura, Atsuko; Kitahara, Mutsuko; Takuro Masuda
2009-08-01
There is a lack of information on urban heat island impact on the thermal environment due to low populated urban sprawl, although densely populated urban sprawl impact has been identified by several researchers. The Takamatsu area has recently developed in a low populated urban sprawl style without any increase in population. This paper examined the impact of a low populated urban sprawl on the thermal environment through an analysis of the last 30 years data set and investigated the contribution of vegetation fraction and population density to the temperature trend. As a consequence, it was shown that one of the most significant causative factors of temperature increase is an expansion of non-vegetated area even without population growth. This result implied that vegetated zones should be maintained in urban areas in order to realize sustainable urbanization.
Angelier, Frédéric; Meillère, Alizée; Grace, Jacquelyn K; Trouvé, Colette; Brischoux, François
2016-06-01
Anthropogenic noise can have important physiological and behavioral effects on wild animals. For example, urban noise could lead to a state of chronic stress and could alter the development of the hypothalamus-pituitary-adrenal (HPA) axis. Supporting this hypothesis, several studies have found that human disturbance is associated with increased circulating corticosterone (CORT) levels. However, it remains unclear whether increased CORT levels are the result of anthropogenic noise or other anthropogenic factors. Here, we experimentally tested the impact of urban noise on the CORT stress response in an urban exploiter (the house sparrow, Passer domesticus) by exposing chicks to a traffic noise ('disturbed chicks') or not ('control chicks'). If noise exposure has a negative impact on developing chicks, we predicted that (1) disturbed chicks will grow slower, will be in poorer condition, and will have a lower fledging probability than controls; (2) disturbed chicks will have higher baseline CORT levels than control; (3) the CORT stress response will be affected by this noise exposure. Contrary to these predictions, we found no effect of our experiment on growth, body condition, and fledging success, suggesting that house sparrow chicks were not negatively affected by this noise exposure. Moreover, we did not find any effect of noise exposure on either baseline CORT levels or the CORT stress response of chicks. This suggests not only that house sparrow chicks did not perceive this noise as stressful, but also that the development of the HPA axis was not affected by such noise exposure. Our study suggests that, contrary to urban avoiders, urban exploiters might be relatively insensitive to urban noise during their development. Further comparative studies are now needed to understand whether such insensitivity to anthropogenic noise is a consistent phenomenon in urban exploiters and whether this is a major requirement of an urban way of life. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Rickards, N. J.; Kjeldsen, T. R.; Hutchins, M.; Rowland, C.; Prudhomme, C.; Maliko, T.; Fidal, J.; Hagen-Zanker, A.
2016-12-01
The UK population is set to increase by 16% by 2035; it is therefore increasingly important to understand the impact this may have on urban populations, and in turn how this will affect river flow regimes and water quality in urban areas. A growing population is likely to lead to an increase in urban land use and impervious surfaces, the implications of which are not yet fully understood for issues such as future flood risk. The aim of this paper is to develop a greater understanding of the impacts of both an increasing population and urban extent in the context of a changing climate, and to assess the effect these may have on urban streamflow regimes and water security in the future. Flows are modelled for selected catchments in the Thames basin using URBMOD, a lumped rainfall runoff model that is able to represent both pervious and impervious surfaces, reducing infiltration in catchments where there is a greater urban extent. The model uses daily catchment average rainfall and evapotranspiration derived from gridded data, and is calibrated against long-term river flow records. Historic satellite imagery is used to train cellular automata land use models, which are then applied under different scenarios of urban development up to 2035. These changes in land use are combined with a range of climate change scenarios to give an indication of how urban flow regimes may be altered in the Thames basin over the next 20 years. Results suggest an intensification of the hydrological regime in the majority of catchments, with increases in high flow magnitudes (Q10) of up to 5%. The trend for low flows (Q90) is less clear, with some catchments displaying reductions of around 4%, whilst others show slight increased flows. We identify the main drivers behind these changes, from which the fine-scale impacts of urbanisation on water resources can be better understood. Research findings are being used to inform a regional-scale model, coupling water quantity and quality and providing insight to urban planners and stakeholders on the future urban hydrological regime in the Thames basin. Similar approaches are being used to assess impacts of anthropogenic drivers on water resources in the Cauvery basin in India, whereby the applicability of the model under very different climate and urban morphology will be tested.
NASA Astrophysics Data System (ADS)
Wang, Mingna; Yan, Xiaodong; Liu, Jiyuan; Zhang, Xuezhen
2013-11-01
This paper addresses the contribution of urban land use change to near-surface air temperature during the summer extreme heat events of the early twenty-first century in the Beijing-Tianjin-Hebei metropolitan area. This study uses the Weather Research Forecasting model with a single urban canopy model and the newest actual urban cover datasets. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60 °C. This change is most obvious at night with an increase up to 0.95 °C, for which the total contribution of anthropogenic heat is 34 %. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs, an effective way of reducing urban heat island, which can reduce the urban mean temperature by approximately 0.51 °C and counter approximately 80 % of the heat wave results from urban sprawl during the last 20 years.
NASA Astrophysics Data System (ADS)
Löwe, Roland; Urich, Christian; Sto. Domingo, Nina; Mark, Ole; Deletic, Ana; Arnbjerg-Nielsen, Karsten
2017-07-01
We present a new framework for flexible testing of flood risk adaptation strategies in a variety of urban development and climate scenarios. This framework couples the 1D-2D hydrodynamic simulation package MIKE FLOOD with the agent-based urban development model DAnCE4Water and provides the possibility to systematically test various flood risk adaptation measures ranging from large infrastructure changes over decentralised water management to urban planning policies. We have tested the framework in a case study in Melbourne, Australia considering 9 scenarios for urban development and climate and 32 potential combinations of flood adaptation measures. We found that the performance of adaptation measures strongly depended on the considered climate and urban development scenario and the other implementation measures implemented, suggesting that adaptive strategies are preferable over one-off investments. Urban planning policies proved to be an efficient means for the reduction of flood risk, while implementing property buyback and pipe increases in a guideline-oriented manner was too costly. Random variations in location and time point of urban development could have significant impact on flood risk and would in some cases outweigh the benefits of less efficient adaptation strategies. The results of our setup can serve as an input for robust decision making frameworks and thus support the identification of flood risk adaptation measures that are economically efficient and robust to variations of climate and urban layout.
The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City
NASA Astrophysics Data System (ADS)
Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.
2017-12-01
Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the inner city and by 6°C during a period of hot days. The scenarios of future temperature are ongoing and will show how heat stress will change in Brisbane when both urban growth and climate change are considered.
Sediment sources in an urbanizing, mixed land-use watershed
NASA Astrophysics Data System (ADS)
Nelson, Erin J.; Booth, Derek B.
2002-07-01
The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.
Global typology of urban energy use and potentials for an urbanization mitigation wedge
Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.
2015-01-01
The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508
Current and historical land use influence soil-based ecosystem services in an urban landscape.
Ziter, Carly; Turner, Monica G
2018-04-01
Urban landscapes are increasingly recognized as providing important ecosystem services (ES) to their occupants. Yet, urban ES assessments often ignore the complex spatial heterogeneity and land-use history of cities. Soil-based services may be particularly susceptible to land-use legacy effects. We studied indicators of three soil-based ES, carbon storage, water quality regulation, and runoff regulation, in a historically agricultural urban landscape and asked (1) How do ES indicators vary with contemporary land cover and time since development? (2) Do ES indicators vary primarily among land-cover classes, within land-cover classes, or within sites? (3) What is the relative contribution of urban land-cover classes to potential citywide ES provision? We measured biophysical indicators (soil carbon [C], available phosphorus [P], and saturated hydraulic conductivity [K s ]) in 100 sites across five land-cover classes, spanning an ~125-year gradient of time since development within each land-cover class. Potential for ES provision was substantial in urban green spaces, including developed land. Runoff regulation services (high K s ) were highest in forests; water quality regulation (low P) was highest in open spaces and grasslands; and open spaces and developed land (e.g., residential yards) had the highest C storage. In developed land covers, both C and P increased with time since development, indicating effects of historical land-use on contemporary ES and trade-offs between two important ES. Among-site differences accounted for a high proportion of variance in soil properties in forests, grasslands, and open space, while residential areas had high within-site variability, underscoring the leverage city residents have to improve urban ES provision. Developed land covers contributed most ES supply at the citywide scale, even after accounting for potential impacts of impervious surfaces. Considering the full mosaic of urban green space and its history is needed to estimate the kinds and magnitude of ES provided in cities, and to augment regional ES assessments that often ignore or underestimate urban ES supply. © 2018 by the Ecological Society of America.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2007-01-01
The twenty-first century is the first "urban century" according to the United Nations Development Program. The focus of cities reflects awareness of the growing percentage of the world's population that lives in urban areas. In environmental terms, cities are the original producers of many of the global problems related to waste disposal, air and water pollution, and associated environmental and ecological challenges. Expansion of cities, both in population and areal extent, is a relentless process. In 2000, approximately 3 billion people representing about 40% of the global population, resided in urban areas. Urban population will continue to rise substantially over the next several decades according to UN estimates, and most of this growth will Occur in developing countries. The UN estimates that by 2025, 60% of the world's population will live in urban areas. As a consequence, the number of"megacities" (those cities with populations of 10 million inhabitants or more) will increase by 100 by 2025. Thus, there is a critical need to understand urban areas and what their impacts are on environmental, ecological and hydrologic resources, as well as on the local, regional, and even global climate. One of the more egregious side effects of urbanization is the increase in surface and air temperatures that lead to deterioration in air quality. In the United States, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency in 1997, nearly 300 counties in 34 states will not meet these new air quality standards for ground level ozone. Mitigation of the urban heat island (UHI) effect is actively being evaluated as a possible way to reduce ground ozone levels in cities and assist states in improving air quality. Foremost in the analysis of how the UHI affects air quality and other environmental factors is the use of remote sensing technology and data to characterize urban land covers in sufficient detail to quantifiably measure the impact of increased urban heating on air quality. The urban landscape impacts surface thermal energy exchanges that determine development of the UHI. This paper will illustrate how we are using high spatial remote sensing data collected over the Atlanta, Georgia metropolitan area in conjunction with other geographic information, to perform a detailed urban land cover classification and to determine the contribution of these land covers to the urban heat island effect. Also, the spatial arrangement of the land covers and the impact on urban heating from these selected patterns of development are evaluated. Additionally, this paper will show how these data are being used as inputs to improve air quality modeling for Atlanta, including potential benefits from UHI mitigation.
NASA Astrophysics Data System (ADS)
Trudeau, M. P.; Richardson, Murray
2016-10-01
We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (<4%). Urban land use had a very strong influence on total runoff and event-scale hydrologic characteristics, with the exception of 80th percentile flows, which had a curvilinear relationship with urban cover. Event flow acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event flow accelerations.
Sustainable sanitation and water in small urban centres.
Rosemarin, A
2005-01-01
The objective of this paper is to review the global trends in urbanization with respect to availability of adequate sanitation and water supply services. Urbanization is unrelenting and rapid increase in the urban population in the less developed countries is of major global concern regarding this topic of sustainable sanitation and water. Most global urban growth is in the smaller cities and in the developing world. Half the urban developing world lacks adequate water and sanitation. Global urban access to waterborne sanitation is not affordable and thus is not a realistic option so alternative approaches are necessary. The treatment of drinking water cannot be a substitute for sanitation. In order to achieve sustainable sanitation, a change in attitude about human excreta and use of water is required. Essential features of a sustainable sanitation system are: containment, sanitisation and recycling. To improve water supply, we need to improve management practices, use full-cost pricing, introduce watershed approaches to protection and provide improved sanitation. Small urban initiatives need to go beyond the traditional sectors and new initiatives are required like on-site urban ecostations, source-separation of urine and faeces, decentralised greywater treatment and integration of sanitation into the cost of housing.
ERIC Educational Resources Information Center
Smith, Kirk
2002-01-01
Recently, many urban public universities have seen a drastic increase in competition. This project integrates Schumpeter's economic theories from 70 years ago with current strategic management theory in order to provide a framework for strategic response to that competition. This article explores all possible combinations of the high-low quality…
Cultivating Noble Purpose in Urban Middle Schools: A Missing Piece in School Transformation
ERIC Educational Resources Information Center
Hatchimonji, Danielle R.; Linsky, Arielle V.; Elias, Maurice J.
2017-01-01
In urban schools overwhelmed by increasing demands to raise test scores, exclusive focus on increasing academic competencies has proven ineffective. School-wide, comprehensive social-emotional and character development (SECD), focused on the cultivation of Noble Purpose, provides an alternative pathway toward life, college, and career success. We…
Foster, Charlie; Hutchinson, Lauren; Arambepola, Carukshi
2008-01-01
During and beyond the twentieth century, urbanization has represented a major demographic shift particularly in the developed world. The rapid urbanization experienced in the developing world brings increased mortality from lifestyle diseases such as cancer and cardiovascular disease. We set out to understand how urbanization has been measured in studies which examined chronic disease as an outcome. Following a pilot search of PUBMED, a full search strategy was developed to identify papers reporting the effect of urbanization in relation to chronic disease in the developing world. Full searches were conducted in MEDLINE, EMBASE, CINAHL, and GLOBAL HEALTH. Of the 868 titles identified in the initial search, nine studies met the final inclusion criteria. Five of these studies used demographic measures (such as population density) at an area level to measure urbanization. Four studies used more complicated summary measures of individual and area level data (such as distance from a city, occupation, home and land ownership) to define urbanization. The papers reviewed were limited by using simple area level summary measures (e.g., urban rural dichotomy) or having to rely on preexisting data at the individual level. Further work is needed to develop a measure of urbanization that treats urbanization as a process and which is sensitive enough to track changes in “urbanicity” and subsequent emergence of chronic disease risk factors and mortality. Electronic supplementary material The online version of this article doi:10.1007/s11524-008-9325-4 contains supplementary material, which is available to authorized users. PMID:18931915
ERIC Educational Resources Information Center
Cohen, Jonathan D.; Renken, Maggie; Calandra, Brendan
2017-01-01
As part of the design and development of an informal learning environment meant to increase urban middle school students' interest in technology-focused STEM careers, and to support their twenty-first century skill development, researchers developed and administered the ICT/Twenty-First Century Skills Questionnaire. Both STEM-ICT professionals and…
NASA Technical Reports Server (NTRS)
Alonso, Juan J.; Arneson, Heather M.; Melton, John E.; Vegh, Michael; Walker, Cedric; Young, Larry A.
2017-01-01
There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses.
Risk-based zoning for urbanizing floodplains.
Porse, Erik
2014-01-01
Urban floodplain development brings economic benefits and enhanced flood risks. Rapidly growing cities must often balance the economic benefits and increased risks of floodplain settlement. Planning can provide multiple flood mitigation and environmental benefits by combining traditional structural measures such as levees, increasingly popular landscape and design features (green infrastructure), and non-structural measures such as zoning. Flexibility in both structural and non-structural options, including zoning procedures, can reduce flood risks. This paper presents a linear programming formulation to assess cost-effective urban floodplain development decisions that consider benefits and costs of development along with expected flood damages. It uses a probabilistic approach to identify combinations of land-use allocations (residential and commercial development, flood channels, distributed runoff management) and zoning regulations (development zones in channel) to maximize benefits. The model is applied to a floodplain planning analysis for an urbanizing region in the Baja Sur peninsula of Mexico. The analysis demonstrates how (1) economic benefits drive floodplain development, (2) flexible zoning can improve economic returns, and (3) cities can use landscapes, enhanced by technology and design, to manage floods. The framework can incorporate additional green infrastructure benefits, and bridges typical disciplinary gaps for planning and engineering.
Contribution of urban farms to urban ecology of a developing city
NASA Astrophysics Data System (ADS)
Iswoyo, H.; Dariati, T.; Vale, B.; Bryant, M.
2018-05-01
Urban ecology has become a more popular concern as the awareness for mutual sharing between humans and other ecosystem members is increasing. This study aimed at assessing the value of urban farms in the city of Makassar, a fast-developing Indonesian city which according to its city council classification covered significant area of the city. The research employed Rapid Biodiversity Assessment (RBA) to assess quality of urban farms. The method assessed two important aspects of spaces in terms of ecology i.e. vegetation structures and vascular plants. Results showed the biodiversity of urban farms in Makassar compared to other typologies was high. Urban farms in Makassar in general have potential for ecological spots because despite they are more cultural than natural, their high plant biodiversity score, dominance of trees and less built areas make them always available for improvement to become more ecological spots.
Roué-Le Gall, Anne; Jabot, Françoise
2017-06-01
In France, there is increasing interest in health impact assessments (HIAs) and most are performed on urban projects. The field of expertise is still under development and mostly established within the public health sector. To date, in France, all HIAs conducted in urban planning are stand-alone HIAs disconnected from the required environmental impact assessment (EIA). The paper opens with an introduction of the close and complex relationship between health and urban planning, HIA and a description of key elements needed for understanding the French context. Then, the paper analyses the context and the implementation process for four HIAs in progress in order to understand the specific characteristics of urban development, identify the key stages for introducing a health perspective into urban projects, and extract avenues to be explored when adapting HIAs applied to urban planning in France. Using a qualitative multiple case study design, an analysis framework was built to compare several aspects of the four HIAs and made it possible to highlight three pathways for adapting HIA to the urban planning sector: the schedule, links between the EIA and HIA, and the complementarity of the initiatives to involve residents. Legal measures enable a point of contact that brings health institutions and cities closer together. HIA is yet another tool that public authorities now have at their fingertips to work together in strengthening democracy and in reducing social, geographical and environmental health inequalities. More research must be undertaken to develop an understanding of the practice-related context; to judge HIA's capacity to draw on existing approaches in different fields; and to explore the different avenues leading to increased health, wellbeing and equity.
NASA Astrophysics Data System (ADS)
Fan, J.; He, H.; Hu, T.; Li, G.; Gao, H.; Zhao, X.
2017-09-01
China's cities have been undergoing rapid and intense urbanization processes in the past few decades. Shandong is a coastal province which is located in East China with big economy and population scales, and which also plays an important role in the rapid process of China's modernization. The DMSP/OLS dataset has been widely used for the urban development assessments in long time-series and large spatial scales situations. In this paper, we used a time series of nighttime light data to estimate the landscape spatial pattern changes of cities in Shandong province from 1994 to 2012. Nine landscape metrics were calculated and analyzed to figure out the spatial patterns of urban area developments of the cities in Shandong province. The landscape metrics include the number of patches (NP), the landscape total area (TA), the aggregation index (AI), the largest patch index (LPI), the mean patch area (AREA_MN), the landscape shape index (LSI), the total edge length (TE), the edge density (ED), and the mean radius of gyration (GYRATE_MN). The experimental results reveal that, in 1994-2012, the total urban area of cities in Shandong province expanded for 1.17 times, the average urban area increased by about 93.00%, the average annual growth rate of the TE metric is 2.67 %, while the ED metric decreased about 1.44 % annually. Bigger cities in this area show relative slower urbanization development processes, such as Jinan and Qingdao. Coastal cities represented much more rapid expansion velocities than inland cities. In the middle area of Shandong province, the connectivity between developed urban areas was constantly increased.
Contribution of future urbanisation expansion to flood risk changes
NASA Astrophysics Data System (ADS)
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.
Facetten der Reurbanisierung. Das Beispiel Mönchengladbach
NASA Astrophysics Data System (ADS)
Hamm, Rüdiger; Jäger, Angelika; Keggenhoff, Katja
2017-06-01
In the light of an increasing importance of the discussion on reurbanization, the article analyses the current socioeconomical and structural development of the city of Moenchengladbach. City development processes are marked by a high degree of dynamic individualization - an increasing number of cities have achieved a stage of reurbanization, whereas others have not completeley reached that stage of urban renewal. An analysis of Moenchengladbach indicates that quantative aspects of reurbanization are fulfilled, whereas qualitative reurbanisation processes as an increasing attractiveness, urban revaluation, and gentrification of innercity areas remain a future potential.
NASA Astrophysics Data System (ADS)
Iino, Shota; Ito, Riho; Doi, Kento; Imaizumi, Tomoyuki; Hikosaka, Shuhei
2017-10-01
In the developing countries, urban areas are expanding rapidly. With the rapid developments, a short term monitoring of urban changes is important. A constant observation and creation of urban distribution map of high accuracy and without noise pollution are the key issues for the short term monitoring. SAR satellites are highly suitable for day or night and regardless of atmospheric weather condition observations for this type of study. The current study highlights the methodology of generating high-accuracy urban distribution maps derived from the SAR satellite imagery based on Convolutional Neural Network (CNN), which showed the outstanding results for image classification. Several improvements on SAR polarization combinations and dataset construction were performed for increasing the accuracy. As an additional data, Digital Surface Model (DSM), which are useful to classify land cover, were added to improve the accuracy. From the obtained result, high-accuracy urban distribution map satisfying the quality for short-term monitoring was generated. For the evaluation, urban changes were extracted by taking the difference of urban distribution maps. The change analysis with time series of imageries revealed the locations of urban change areas for short-term. Comparisons with optical satellites were performed for validating the results. Finally, analysis of the urban changes combining X-band, L-band and C-band SAR satellites was attempted to increase the opportunity of acquiring satellite imageries. Further analysis will be conducted as future work of the present study
Urbanization as a determinant of health: a socioepidemiological perspective.
Patil, Rajan R
2014-01-01
Urbanization is a process that leads to the growth of cities due to industrialization and economic development and that leads to urban-specific changes. Urbanization is associated with profound changes in diet and exercise that in turn increase the prevalence of obesity with attendant increases in risk of type II diabetes and cardiovascular disease. The growing burden of disease among vulnerable populations and pervasive socioeconomic inequities within urban systems exaggerates the adverse impacts of urbanization on health. More than one half of children younger than age 5 of urban poor are stunted and/or underweight. More than one half of the child births occur at home, in slums, putting the life of the mother and newborn in serious risk. Inadequate reach of services due to illegality, social exclusion of slums, hidden slum pockets, and weak social fabric have resulted in a rapid proliferation of the unqualified private health sector, leading to high health expenditures and continuing a vicious cycle of poverty and ill health in urban slums.
Emerging solutions to the water challenges of an urbanizing world.
Larsen, Tove A; Hoffmann, Sabine; Lüthi, Christoph; Truffer, Bernhard; Maurer, Max
2016-05-20
The top priorities for urban water sustainability include the provision of safe drinking water, wastewater handling for public health, and protection against flooding. However, rapidly aging infrastructure, population growth, and increasing urbanization call into question current urban water management strategies, especially in the fast-growing urban areas in Asia and Africa. We review innovative approaches in urban water management with the potential to provide locally adapted, resource-efficient alternative solutions. Promising examples include new concepts for stormwater drainage, increased water productivity, distributed or on-site treatment of wastewater, source separation of human waste, and institutional and organizational reforms. We conclude that there is an urgent need for major transdisciplinary efforts in research, policy, and practice to develop alternatives with implications for cities and aquatic ecosystems alike. Copyright © 2016, American Association for the Advancement of Science.
A comparative analysis of vaccine administration in urban and non-urban skilled nursing facilities.
Pu, Yuan; Dolar, Veronika; Gucwa, Azad L
2016-07-29
The U.S. population is aging at an unprecedented rate, resulting in an increased demand for skilled nursing facilities (SNFs) and long-term care. Residents of these facilities are at a high risk for pneumococcal disease or severe influenza-related illnesses and death. For these reasons, the Centers for Medicare and Medicaid Services use influenza and pneumococcal vaccination rates as a quality measure in the assessment of SNFs, as complications related to these infections increase morbidity and mortality rates. Disparities have been reported amongst vaccination with increased rates in urban areas as compared to their non-urban counterparts. Statistical analyses were performed to compare influenza and pneumococcal vaccination in urban and non-urban SNFs to determine variables that may influence vaccination status. Of the 15,639 nursing homes included in the study, 10,107 were in urban areas, while 5532 were considered non-urban. We found the percent of eligible and willing residents with up-to-date influenza and pneumococcal vaccinations increased with overall five-star ratings of SNFs. Somewhat paradoxically, although urban SNFs had higher mean overall five-star ratings, they showed lower rates of influenza and pneumococcal vaccination compared to non-urban SNFs. Ordinary least squares regression analysis comparing overall ratings, type of ownership, and geographic location by region yielded statistically significant results in which the overall rating, ownership-type and certificate-type favored urban SNFs (p < 0.001). This is the first systematic and comparative analysis to use the Nursing Home Compare database to assess vaccine administration of urban and non-urban SNFs. The findings of this study may be used to encourage the development of programs to improve vaccination rates and the quality of care in these facilities.
Strategies for managing the effects of urban development on streams
Cappiella, Karen; Stack, William P.; Fraley-McNeal, Lisa; Lane, Cecilia; McMahon, Gerard
2012-01-01
Urban development remains an important agent of environmental change in the United States. The U.S. population grew by 17 percent from 1982 to 1997, while urbanized land area grew by 47 percent, suggesting that urban land consumption far outpaced population growth (Fulton and others, 2001; Sierra Club, 2003; American Farmland Trust, 2009). Eighty percent of Americans now live in metropolitan areas. Each American effectively occupies about 20 percent more developed land (for housing, schools, shopping, roads, and other related services) than 20 years ago (Markham and Steinzor, 2006). Passel and Cohn (2008) predict a dramatic 48 percent increase in the population of the United States from 2005 to 2050. The advantages and challenges of living in these developed areas—convenience, congestion, employment, pollution—are part of the day-to-day realities of most Americans. Nowhere are the environmental changes associated with urban development more evident than in urban streams. The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program investigation of the effects of urban development on stream ecosystems (EUSE) during 1999–2004 provides the most spatially comprehensive analysis of stream impacts of urban development that has been completed in the United States. A nationally consistent study design was used in nine metropolitan areas of the United States—Portland, Oregon; Salt Lake City, Utah; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; Boston, Massachusetts; Denver, Colorado; Dallas, Texas; and Milwaukee, Wisconsin. A summary report published as part of the EUSE study describes several of these impacts on urban streams (Coles and others, 2012).
Recent work into the implementation of low-impact development and green infrastructure suggests that a decentralized, source-control approach has the potential to significantly reduce urban stormwater runoff quantity. We posit that the factors of increasing public participation i...
Psychological Development and Educational Problems of Left-Behind Children in Rural China
ERIC Educational Resources Information Center
Sun, Xiaojun; Tian, Yuan; Zhang, Yongxin; Xie, Xiaochun; Heath, Melissa A.; Zhou, Zongkui
2015-01-01
With China's rapidly developing economy and increasing urbanization, many adults from rural areas migrate to urban areas for better paid jobs. A side effect of this migration is that parents frequently leave their children behind (left-behind children). This research investigated left-behind children's and non-left-behind children's psychological,…
Market-Based Approaches toward the Development of Urban Forest Carbon Projects in the United States
Neelam C. Poudyal; Jacek P. Siry; J. M. Bowker
2012-01-01
The United States has observed unprecedented urban growth over the last few decades. Nowak et al. (2005) noted that between 1990 and 2000, the share of urban land area in the nation increased from 2.5% to 3.1%. Existing urban areas in the U.S. maintain average tree coverage of 27% (Nowak et al. 2001), and consist of millions of trees along streets and in parks,...
URBAN: Development of a Citizen Science Biomonitoring Program Based in Hamilton, Ontario, Canada
ERIC Educational Resources Information Center
Cartwright, Lyndsay A.; Cvetkovic, Maja; Graham, Spencer; Tozer, Douglas; Chow-Fraser, Patricia
2015-01-01
Due to increasing urbanization, wetlands and streams within city limits are being altered, filled in, and degraded. The habitat that remains is critical for providing urban areas with ecosystem services and maintaining biodiversity, yet is often insufficiently monitored by environmental agencies due to a lack of resources. To help fill this void,…
ERIC Educational Resources Information Center
Joens-Matre, Roxane R.; Welk, Gregory J.; Calabro, Miguel A.; Russell, Daniel W.; Nicklay, Elizabeth; Hensley, Larry D.
2008-01-01
Context: The increasing prevalence of overweight in youth has been well chronicled, but less is known about the unique patterns and risks that may exist in rural and urban environments. A better understanding of possible rural-urban differences in physical activity profiles may facilitate the development of more targeted physical activity…
ERIC Educational Resources Information Center
Lerner, Amy M.; Eakin, Hallie; Sweeney, Stuart
2013-01-01
The rates of urban growth globally continue to rise, especially in small and intermediary cities and peri-urban areas of the developing world. Communities in these settings share characteristics with rural areas, in terms of continued connections with agriculture, yet with an increasing reliance of non-agricultural employment which poses…
Allometric equations for urban ash trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada
Paula J. Peper; Claudia P. Alzate; John W. McNeil; Jalil Hashemi
2014-01-01
Tree growth equations are an important and common tool used to effectively assess the yield and determine management practices in forest plantations. Increasingly, they are being developed for urban forests, providing tools to assist urban forest managers with species selection, placement, and estimation of management costs and ecosystem services. This study describes...
Lindsay K. Campbell; Erika S. Svendsen; Lara A. Roman
2016-01-01
Cities are increasingly engaging in sustainability efforts and investment in green infrastructure, including large-scale urban tree planting campaigns. In this context, researchers and practitioners are working jointly to develop applicable knowledge for planning and managing the urban forest. This paper presents three case studies of knowledge co-production in the...
ERIC Educational Resources Information Center
Claycomb, Carla; Hawley, Willis D.
This analysis discusses ways to address the persistent challenge of ensuring that students who attend urban schools are taught by highly effective teachers. It presents a four-point strategic plan that includes: (1) increase the quantity and quality of people entering and returning to teaching in urban districts (precollegiate recruitment, higher…
Regional and County-Level Disparities in the Post-Socialist Urban System of Romania
NASA Astrophysics Data System (ADS)
Török, Ibolya; Veress, Nóra-Csilla
2016-10-01
The evolution of the urban system in Romania in the last decades has been strongly influenced by its historical background, as well as the changing political, social and economic context. The main step in this process was marked by the year 2004 when 38 settlements received the urban status, influencing thus not only the country's urbanization level but the increased inter-regional disparities as well. The paper aims to analyze the post-urbanization process in Romania, highlighting those factors which have contributed to the deepening development differences between the country's urban areas.
Managing rapid urbanization in the third world: some aspects of policy.
Hope, K R
1989-01-01
A priority task for developing countries is the formulation of national urbanization policies that: 1) foster the full development of national resources; 2) promote cohesion among regions, especially where there are striking inequities in per capita output; 3) prevent or correct the overconcentration of economic activity in a few urban centers; and 4) create a more efficient, equitable management of growth within cities. Although urban households tend to be served better by the health and educational sectors than their rural counterparts, the urban poor are denied these benefits in the absence of special programs to ensure universal access. The urban poor are further denied access to the benefits of urban centers through a transportation policy that is oriented more toward roads and cars than public transit systems. Of major concern are the overcrowded squatter settlements that have developed in response to massive rural-urban migration. Since the landlessness, joblessness, and demoralization in rural areas and the consequent urban influx are at the root of the urban crisis in the Third World, integrated rural development is essential to retain substantial new additions to the urban labor force in rural areas. Land reform is the single strategy with the greatest potential to improve the quality of life of the landless poor and small holders. Other needs include programs of labor-intensive rural public works to provide supplementary income-earning opportunities and improve the rural infrastructure and more widespread participation of the rural poor in the development process. Increasingly sophisticated administrative and financing systems will be required to carry out a national urbanization policy, and current politicized bureaucracies must be replaced by a reliance on technically skilled professional administrators.
NASA Astrophysics Data System (ADS)
Marpu, P. R.; Lazzarini, M.; Molini, A.; Ghedira, H.
2013-12-01
Urban areas represent a unique micro-climatic system, mainly characterized by scarcity of vegetation and ground moisture, an albedo strictly dependent on building materials and urban forms, high heat capacity, elevated pollutants emissions, anthropogenic heat production, and a characteristic boundary layer dynamics. For obvious historical reasons, the first to be addressed in the literature were the effects of urbanization on the local microclimate of temperate regions, where most of the urban development took place in the last centuries. Here micro-climatic characteristics all contribute to the warming of urban areas, also known as 'urban heat island' effect, and are expected to crucially impact future energy and water consumption, air quality, and human health. However, rapidly increasing urbanization rates in arid and hyper-arid developing countries could soon require more attention towards studying the effects of urban development on arid climates, which remained mainly unexplored till now. In this talk we investigate the climatology of urban heat islands in seven highly urbanized desert cities based on day and night temporal trends of land surface temperature (LST) and normalized difference vegetation index (NDVI) acquired using MODIS satellite during 2000-2012. Urban and rural areas are distinguished by analyzing the high-resolution temporal variability and averaged monthly values of LST, NDVI and Surface Urban Heat Island (SUHI) for all the seven cities and adjacent sub-urban areas. Different thermal behaviors were observed at the selected sites, also including temperature mitigation and inverse urban heat island, and are here discussed together with detailed analysis of the corresponding trends.
Engineering novel habitats on urban infrastructure to increase intertidal biodiversity.
Chapman, M G; Blockley, D J
2009-09-01
Urbanization replaces natural shorelines with built infrastructure, seriously impacting species living on these "new" shores. Understanding the ecology of developed shorelines and reducing the consequences of urban development to fauna and flora cannot advance by simply documenting changes to diversity. It needs a robust experimental programme to develop ways in which biodiversity can be sustained in urbanized environments. There have, however, been few such experiments despite wholesale changes to shorelines in urbanized areas. Seawalls--the most extensive artificial infrastructure--are generally featureless, vertical habitats that support reduced levels of local biodiversity. Here, a mimic of an important habitat on natural rocky shores (rock-pools) was experimentally added to a seawall and its impact on diversity assessed. The mimics created shaded vertical substratum and pools that retained water during low tide. These novel habitats increased diversity of foliose algae and sessile and mobile animals, especially higher on the shore. Many species that are generally confined to lowshore levels, expanded their distribution over a greater tidal range. In fact, there were more species in the constructed pools than in natural pools of similar size on nearby shores. There was less effect on the abundances of mobile animals, which may be due to the limited time available for recruitment, or because these structures did not provide appropriate habitat. With increasing anthropogenic intrusion into natural areas and concomitant loss of species, it is essential to learn how to build urban infrastructure that can maintain or enhance biodiversity while meeting societal and engineering criteria. Success requires melding engineering skills and ecological understanding. This paper demonstrates one cost-effective way of addressing this important issue for urban infrastructure affecting nearshore habitats.
Do, Loan Minh; Tran, Toan Khanh; Eriksson, Bo; Petzold, Max; Ascher, Henry
2017-06-19
A plateau in childhood overweight and obesity has been reported in some developed countries while in almost all developing countries this problem is on the rise. The aim of this paper is to describe the changes in prevalence of overweight and obesity within a cohort of preschool children followed for 3 years, and to estimate and compare the incidences in urban and rural children of Hanoi, Vietnam. A longitudinal study of a cohort of 2677 children aged 3 to 6 years old at the beginning of the study was conducted in urban DodaLab and rural FilaBavi, Hanoi, Vietnam. Overall, 2602 children, 1311 urban and 1291 rural, were followed for 3 years with identical measurements of weight and height in 2013, 2014 and 2016. Standard methods were used to estimate prevalence and incidence as well as confidence intervals. During the three-year follow-up, the overall estimated prevalence of overweight increased from 9.1% to 16.7%. For the urban children, the increase was considerably higher. The overall prevalence of obesity decreased from 6.4% to 4.5% with less decrease in the urban children. In the group of children who were overweight and obese at the start of the study, 41.4% and 30.7%, respectively, remained in the same state three years later. The incidence of overweight and obesity during the three years were 12.4% and 2.7%, respectively. Boys were more likely to develop obesity than girls. Already in preschool age, the prevalence of overweight is high and it continues to increase with age, especially in the urban area. Prevention and intervention programs need to start at early preschool age and actions in urban areas deserve priority.
Characterizing the Effects of Stormwater Mitigation on Nutrient Export and Stream Concentrations
NASA Astrophysics Data System (ADS)
Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.
2017-04-01
Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.
The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation.
Irwin, Elena G; Bockstael, Nancy E
2007-12-26
We investigate the dynamics and spatial distribution of land use fragmentation in a rapidly urbanizing region of the United States to test key propositions regarding the evolution of sprawl. Using selected pattern metrics and data from 1973 and 2000 for the state of Maryland, we find significant increases in developed and undeveloped land fragmentation but substantial spatial heterogeneity as well. Estimated fragmentation gradients that describe mean fragmentation as a function of distance from urban centers confirm the hypotheses that fragmentation rises and falls with distance and that the point of maximum fragmentation shifted outward over time. However, rather than outward increases in sprawl balanced by development infill, we find substantial and significant increases in mean fragmentation values along the entire urban-rural gradient. These findings are in contrast to the results of Burchfield et al. [Burchfield M, Overman HG, Puga D, Turner MA (2006) Q J Econ 121:587-633], who conclude that the extent of sprawl remained roughly unchanged in the Unites States between 1976 and 1992. As demonstrated here, both the data and pattern measure used in their study are systematically biased against recording low-density residential development, the very land use that we find is most strongly associated with fragmentation. Other results demonstrate the association between exurban growth and increasing fragmentation and the systematic variation of fragmentation with nonurban factors. In particular, proximity to the Chesapeake Bay is negatively associated with fragmentation, suggesting that an attraction effect associated with this natural amenity has concentrated development.
1992-05-01
Urban centers are growing due to natural increase and the movement of people from rural areas. Urban areas are the traditional centers of trade, science, and culture, but growth over a threshold results in crime, congestion, and pollution. Sustainability is threatened in modern towns that are dependent on other sources for food, fuel, or water. Housing, water, food supplies, and sanitation, communication, and transportation services are threatened in rapidly growing cities. In 1990 45/100 people lived in towns or cities. Hyper-cities have grown in number to 20, of which 14 are in developing countries. 83% of world population increase is expected to occur in cities. In 48 countries with faster population growth cities had growth rates averaging about 6.1% per year, and the urban share of total population averaged 2.8%. In 49 countries with slower population growth, urban growth rates averaged only 3.6% per year, and the urban share of total population averaged about 1.8%. Squatter settlements are endemic to urban areas that are congested and without basic services, limited housing particularly for the poor, and few job opportunities. The number of street children in urban areas has risen. This child population is subjected to low wages, overwork, auto accidents, poor health, and lack of social services. Malnutrition is a more serious issue in urban areas. In the Philippines malnutrition is 3% nationally and 9% in Metro Manila. Rural land reform in the Philippines is no longer a viable solution. In Metro Manila squatters are expected to increase in number to 4 million people by the year 2000, which would be almost 50% of total population. The squatter areas are areas of neglect, decay, and poverty. Cities are viewed as development's "blind alleys."
Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.
Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B
2014-01-01
With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes.
Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects
Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.
2014-01-01
With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes. PMID:24810286
Urbanization and industrialization effects on haze in China: take Jinagsu for example
NASA Astrophysics Data System (ADS)
Liu, Duanyang; Wei, Jiansu; Kang, Zhiming; Yan, Wenlian; Cao, Lu; Chen, Hao
2017-04-01
Since the policy of ''Reform and Open to the Outside World'' was implemented from 1978, urbanization and industrialization have been rapid in China, leading to the expansion of urban areas, industrial district and population synchronous with swift advances in economy. With urban industrialization development underway, the urban heat island (UHI) and air pollution are being enhanced, together with vegetation coverage and relative humidity on the decrease. Based on the surface meteorological data of Jiangsu Province during 1980-2012, the climatic characteristics and the trends of haze were analyzed. The results indicated that during 1980-2012 haze days increased; in particular, severe and moderate haze days significantly increased. In the northern and coastal cities of Jiangsu Province China, haze days showed a significant increase. Haze often appeared in fall and winter, and rare in summer in the study area. It also occurred more often inland, and less along the coast. Haze occurred more often in June due to straw burning in the harvest time. The haze day increased during the 1990's over southern and southwestern Jiangsu Province; in central and northern Jiangsu, haze day increased after 2000. The continuous, regional and regional continuous haze days all showed increasing trends. As the urban area expanded each year, industrial emissions, coal consumption and car ownership increased accordingly, resulting in regional temperature increase and relative humidity decrease, which formed the urban heat island and dry island effects. Hence, haze formation and maintenance conditions became more favorable for more haze days, which led to the increase of haze days, and the significant increases of continuous, regional and regional continuous haze days.
Urbanisation and infectious diseases in a globalised world.
Alirol, Emilie; Getaz, Laurent; Stoll, Beat; Chappuis, François; Loutan, Louis
2011-02-01
The world is becoming urban. The UN predicts that the world's urban population will almost double from 3·3 billion in 2007 to 6·3 billion in 2050. Most of this increase will be in developing countries. Exponential urban growth is having a profound effect on global health. Because of international travel and migration, cities are becoming important hubs for the transmission of infectious diseases, as shown by recent pandemics. Physicians in urban environments in developing and developed countries need to be aware of the changes in infectious diseases associated with urbanisation. Furthermore, health should be a major consideration in town planning to ensure urbanisation works to reduce the burden of infectious diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of a Tool for Siting Low Impact Development in Urban Watersheds
NASA Astrophysics Data System (ADS)
Martin-Mikle, C.; de Beurs, K.; Julian, J.
2013-12-01
Low impact development (LID) -- a comprehensive land use planning and design approach with the goal of mitigating development impacts on hydrologic/nutrient cycles and ecosystems -- is increasingly being touted as an effective approach to lessen overland runoff and pollutant loadings. Examples of LIDs include riparian buffers, grassed swales, detention/retention ponds, rain gardens, green roofs and rain barrels. Broad-scale decision support tools for siting LIDs have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity and lack of necessary high-resolution geospatial data. Here, we develop a framework to assist city planners and water quality managers in siting LIDs in urban watersheds. One key component of this research is a framework accessible to those interested in using it. Hence, development of the framework has centered around 1) determining optimal data requirements for siting LID in an urban watershed and 2) developing a tool compatible with both open-source and commercial GIS software. We employ a wide variety of landscape metrics to evaluate the tool. A case study of the Lake Thunderbird Watershed, an urbanized watershed southeast of Oklahoma City, illustrates the effectiveness of a tool that is capable of siting LID in an urban watershed.
[The urbanized societies of Latin America and the Caribbean: some dimensions and observations].
Ebanks, G E
1993-06-01
A demographic perspective on urbanization patterns in Latin America and the Caribbean is provided. The level and rate of urbanization and the hierarchies of urban places are considered, along with the determinants and consequences of these trends. Latin America and the Caribbean are the most urbanized of the developing regions, with almost 70% of the population classified as urban in 1991. Most Latin American and Caribbean countries have rural populations capable of maintaining continuous growth of the urban population for some time through internal migration and reclassification of localities. Latin American societies are urban in nature, and it is unlikely that decentralization and deconcentration policies will have significant repercussions. The Latin American urban population is estimated to have increased from 164 million in 1970 to 320 million in 1990, while the rural population increased from 122 to 128 million in the same years. Most governments of the region are preoccupied by the size of the urban population. There are too many urban residents to be absorbed in productive activities, but all require public services generally financed through taxation. The small tax bases result in frequent decisions to finance services through deficit spending. The size of the population and the level of urbanization may not be the principal agents of ecological deterioration or the greatest obstacles to development, but they play a significant role in these problems. Incorporating millions of urban residents into the productive sector of the economy is an important challenge for the development of these societies. The urban population in Latin America and the Caribbean is expected to continue growing at significant rates until well into the next century. In most countries of the region, internal migration accounted for 30-40% of urban growth between 1950 and 1970, but its contribution loses importance as the level of urbanization exceeds 70% or so. The number of urban places as well as the sizes of cities have been increasing. From the end of World War II to the 1970s, the principal urban centers grew most rapidly, but in the 1980s and early 1990s the medium sized cities experienced the most rapid growth. Latin America and the Caribbean are a region of high urban primacy, in which one city, generally the capital, is several times larger than the second city or cities. Mexico City, Sao Paulo, Buenos Aires, and Rio de Janeiro are megalopolises. Latin America's population is excessively concentrated in three ways: into urban localities, into a small area of the national territory, and into megalopolises. Excessive concentration is associated with severe environmental problems. Most have possible solutions, but costs will be high and great political will is required. The quality of life is poor for a large segment of urban dwellers and poverty is pervasive. Urgent action is needed to improve the quality of life and protect the environment.
Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin
2013-09-01
Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.
2014-01-01
With the increasing trend in refugee urbanisation, growing numbers of refugees are diagnosed with chronic noncommunicable diseases (NCDs). However, with few exceptions, the local and international communities prioritise communicable diseases. The aim of this study is to review the literature to determine the prevalence and distribution of chronic NCDs among urban refugees living in developing countries, to report refugee access to health care for NCDs and to compare the prevalence of NCDs among urban refugees with the prevalence in their home countries. Major search engines and refugee agency websites were systematically searched between June and July 2012 for articles and reports on NCD prevalence among urban refugees. Most studies were conducted in the Middle East and indicated a high prevalence of NCDs among urban refugees in this region, but in general, the prevalence varied by refugees’ region or country of origin. Hypertension, musculoskeletal disease, diabetes and chronic respiratory disease were the major diseases observed. In general, most urban refugees in developing countries have adequate access to primary health care services. Further investigations are needed to document the burden of NCDs among urban refugees and to identify their need for health care in developing countries. PMID:24708876
NASA Astrophysics Data System (ADS)
Lee, O.; Choi, J.; Lee, J.; Kim, S.
2017-12-01
Since the 20th century, urbanization has resulted in increased impermeable land surface and reduced infiltration capacity in catchment scale. Especially, when agriculture area or forest area would be developed into urban area, it can cause more runoff in the same climate condition. Such urbanization causes problems such as changes in hydrological cycle and ecosystem disturbance. Various methods have been proposed worldwide to reduce the impact of such urbanization. Among the various strategies, the low-impact development is a development strategy that aims to return to pre-development state by minimizing the change of the hydrological cycle due to urbanization. In this strategy, the infiltration and/or surface storage of stormwater runoff can be increased through the installation of various facilities. In this study, a facility capacity design strategy is proposed to return into the natural water cycle through the installation of various LID facilities. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. For this purpose, EPA-SWMM is constructed with a part of Busan Metropolitan City Noksan Industrial Complex as a virtual processing area. Under the various land-use scenarios, the optimum design capacity of various LID facilities capable of retaining the flow duration curve before and after development is determined. In addition, the sensitivity of the optimal design capacity of LID facilities is analyzed according to the design specifications of various LID facilities, the local rainfall characteristics, and the size of the treatment area. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.
New light on old problem: population.
Padilla, T
1982-01-01
A central issue of the Third Asian and Pacific Population Conference, to be held in Sri Lanka in September 1982, is the need for full recognition on the part of developing countries that an integrated approach to population and development is essential. Such an approach requires the following: management of internal migration and urbanization; women's participation in development; and increased involvement in promoting family planning, family welfare, and family health programs. Of much concern is the fact that the ESCAP region's urban population is projected to grow from 660 million in 1980 to 1347 million by the year 2000. Much of this increase will occur in the largest cities. Unplanned urbanization and a growing population reservoir in rural areas will continue to spur movements to the cities, aggravating the urban malaise, yet migration is young people's only option if rural populations are to survive. These problems plague most governments. A recent conference held in Rome urged governments to formulate comprehensive population policies and programs, to specify goals on the rate of population growth and on the distribution of population between urban and rural areas, and to plan for the redistribution of population. The conference also recommended that cities pay attention to problems of the shantytown and slum dwellers who are principally rural migrants and the urban poor. In addition the region's corps of development planners and experts worry about the staggering increase in migration by 3rd world guest workers to the high income OPEC members in the Middle East and the industrialized market economy nations. The proper management of international migration should increase the reabsorptive capacity of sending countries to ensure the reintegration of returning off-loaded guest workers and should try to prevent the rural stagnation due to large scale migration by the young and the better educated from the countryside. Internal and international migration give women an opportunity to discover their great development potential. Yet, more generally, women breaking out of social structures that foster dependency and exploitation are in need of more than simple, single factor solutions. Emerging relationships between declining mortality levels and women's participation in development and economic activities will be explored at the Third Asian and Pacific Population Conference.
NASA Astrophysics Data System (ADS)
Aryaningsih, NN; Irianto, Kt; Marsa Arsana, Md; Juli Suarbawa, Kt
2018-01-01
The rapid increased of urban population can not be controlled by the city government. This will have an impact on the emergence of new poverty in urban areas, due to inadequate of the job opportunities and skills. Government programs for poverty alleviation can reduce some rural poverty, but have not been able to overcome poverty in urban areas. The diversity of urban issues and needs is greater than in rural areas. Therefore, it is necessary to conduct the research with the aim to build urban poverty reduction model through the development of entrepreneurship spirit and business competence. This research was conducted by investigation method, and questionnaire. Questionnaires are arranged with rating scale measurements. The validity and reliability of the questionnaire were tested by factor analysis. Model construction is constructed from various informant analyzes and descriptive statistical analysis. The results show that poverty alleviation model is very effective done by developing spirit of entrepreneurship and business competence.
Zhou, Decheng; Zhang, Liangxia; Hao, Lu; Sun, Ge; Liu, Yongqiang; Zhu, Chao
2016-02-15
Urban heat island (UHI) represents a major anthropogenic modification to the Earth system and its relationship with urban development is poorly understood at a regional scale. Using Aqua MODIS data and Landsat TM/ETM+ images, we examined the spatiotemporal trends of the UHI effect (ΔT, relative to the rural reference) along the urban development intensity (UDI) gradient in 32 major Chinese cities from 2003 to 2012. We found that the daytime and nighttime ΔT increased significantly (p<0.05, mostly in linear form) along a rising UDI for 27 and 30 out of 32 cities, respectively. More rapid increases were observed in the southeastern and northwestern parts of China in the day and night, respectively. Moreover, the ΔT trends differed greatly by season and during daytime in particular. The ΔT increased more rapidly in summer than in winter during the day and the reverse occurred at night for most cities. Inter-annually, the ΔT increased significantly in about one-third of the cities during both the day and night times from 2003 to 2012, especially in suburban areas (0.25
Urbanization and the global malaria recession
2013-01-01
Background The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. Methods Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. Results/Conclusions A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control. PMID:23594701
Conversion of prime agricultural land to urban land uses in Kansas City
NASA Technical Reports Server (NTRS)
Shaklee, R. V.
1976-01-01
In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.
A web-based 3D visualisation and assessment system for urban precinct scenario modelling
NASA Astrophysics Data System (ADS)
Trubka, Roman; Glackin, Stephen; Lade, Oliver; Pettit, Chris
2016-07-01
Recent years have seen an increasing number of spatial tools and technologies for enabling better decision-making in the urban environment. They have largely arisen because of the need for cities to be more efficiently planned to accommodate growing populations while mitigating urban sprawl, and also because of innovations in rendering data in 3D being well suited for visualising the urban built environment. In this paper we review a number of systems that are better known and more commonly used in the field of urban planning. We then introduce Envision Scenario Planner (ESP), a web-based 3D precinct geodesign, visualisation and assessment tool, developed using Agile and Co-design methods. We provide a comprehensive account of the tool, beginning with a discussion of its design and development process and concluding with an example use case and a discussion of the lessons learned in its development.
Dynamics of the Urban Water-Energy Nexuses of Mumbai and London
NASA Astrophysics Data System (ADS)
De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V.
2016-12-01
Both in developing as well as industrialized countries, cities are seeing their populations increase as more people concentrate in urban settlements. This burdens existing water and energy systems, which are also increasingly stressed on the supply side due to availability, and policy goals. In addition to the water and energy embedded in the electricity, fuels and water delivered to the city, the linkages in the urban environment itself are important and in magnitude they significantly exceed those upstream in the case of industrialized countries. However, little research has been published on urban water-energy linkages in developing countries. For cities in general, there is also a dearth of studies on the dynamics of these linkages with urban growth and socioeconomic development, and hence of the mutual influence of the urban water and energy systems. System dynamics modeling was used to understand and simulate these dynamics, building on modeling techniques from the water, energy, and urban systems literature. For each of the two characteristically different cities of Mumbai and London a model was constructed and calibrated with data from various public sources and personal interviews. The differences between the two cases are discussed by means of the models. Transition pathways to sustainable cities with respect to water use, energy use and greenhouse gas emissions are illustrated for each city. Furthermore, uncertainties and model sensitivity, and their implications, are presented. Finally, applicability of either or a hybrid of these models to other cities is investigated.
NASA Astrophysics Data System (ADS)
Nardoto, Gabriela; Svirejeva-Hopkin, Anastasia; Martinelli, Luiz Antonio
2010-05-01
Urbanization is considered one of the most powerful and characteristic anthropogenic forces on Earth in the 21st century. Although, currently, cities occupy only about 2 percent of the Earth's land surface, they are home to over 50 percent of the world's population. While in cities of some developed countries, urban population might stabilize or even slightly decrease, its rate of growth in developing countries is faster than in the industrialized nations. Such increase is accompanied by growing energy production, increased food demand, expanding transportation and industrialization. Although agricultural production is by far the largest cause of the doubling in the amount of reactive nitrogen entering the biospheric cycle compared to pre-industrial conditions, nowadays more than half of the crops produced in rural areas are consumed in urban zones. Having in mind that there is a clear global trend towards urbanization and growing urban areas, the objective of this study was to compare major nitrogen fluxes between a mega city situated in a developing country (São Paulo Metropolitan Area - SPMA) in Brazil with one of the largest city of highly industrialized Europe (Paris Metropolitan Area - PMA). We make the first step in producing a detailed N mass balance for the SPMA and PMA in order to estimate the magnitude of major fluxes across the urban landscape and see how N cycling vary among urban system components. This effort may help to highlight differences between developing and developed areas and subsidize the formulation of public policies towards reduction of N related pollution of recipient systems. The N mass balance showed the SPMA as a net source of nitrogen, emitting in total about 93.5 Gg of N per year, or about 4750 g of N per capita. Most N inputs to the SPMA are directly related to food consumption, N in wastewater and landfills. These fluxes are quite amendable to management efforts to reduce N input to the receiver component of the urban ecosystem (rivers and soil). For example treated sewage effluent could be used as a source of N for some crops, especially vegetables. PMA is also a source of reactive nitrogen, emitting in total about 32 Gg of N per year, or about 3000 g of N per capita, being the major part attributed to the atmospheric emissions from transportation and energy. An important outcome of this study has been the identification of several key uncertainties regarding the N budget that require further research for either developed and developing regions studied. The following uncertainties of N cycling in an urban system need better understanding: the mechanisms of dry-deposition processes in urban systems with patchy vegetation; high NOx emissions and the increase in travel distance of smaller particles coming from modern engines; and complex patterns of air flow in the dense build-up areas. Urban soil N dynamics is very uncertain, while soil represents a major sink of N in natural ecosystems. Ultimately, the challenge is to integrate human choices and ecosystem dynamics into a multidisciplinary model of biogeochemical cycling in urban ecosystems, focusing as a first step on the quantitatively evaluating the mutual relationship between urban land-use changes and natural ecosystem from the standpoint of global N balance. To develop those schemes will require the construction of detailed ecosystem-level N balances, an in-depth understanding of the interplay of inputs, geographical and climatic factors, nonspecific management practices, and deliberate N management practices that control the fate of N in urban landscapes.
Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area
NASA Astrophysics Data System (ADS)
Black, Adam Leland
Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.
Global Patterns in Overweight Among Children and Mothers in Less Developed Countries
Van Hook, Jennifer; Altman, Claire; Balistreri, Kelly S.
2012-01-01
Objective Past research has identified increases in national income and urbanization as key drivers of the global obesity epidemic. This work further identifies educational attainment as an important moderator of these effects. However, this work has tended to assume that children and adults respond in the same way to these factors. Design In this article, we evaluate how the socioeconomic and country-level factors associated with obesity differ between children and their mothers. Setting We analyzed 95 nationally representative health and nutrition surveys conducted between 1990 and 2008 from 33 developing countries. Subjects Our sample includes children aged 2 to 4 (N=253,442) and their mothers (N = 228,655). Results Consistent with prior research, we found that mother’s risk of overweight was positively associated with economic development, urban residence, and maternal education. Additionally, economic development was associated with steeper increases in mothers’ risk of overweight among those with low (versus high) levels of education and among those living in rural (versus urban) areas. However, these associations were far weaker for children. Child overweight was unassociated with maternal education and urban residence, and negatively associated with national income. Conclusions We speculate that the distinctive patterns for children may arise from conditions in low- and middle-income developing countries that increase the risk of child underweight and poor nutrition. PMID:22583613
Lewis, Jesse S; Logan, Kenneth A; Alldredge, Mat W; Bailey, Larissa L; VandeWoude, Sue; Crooks, Kevin R
2015-10-01
Urbanization is a primary driver of landscape conversion, with far-reaching effects on landscape pattern and process, particularly related to the population characteristics of animals. Urbanization can alter animal movement and habitat quality, both of which can influence population abundance and persistence. We evaluated three important population characteristics (population density, site occupancy, and species detection probability) of a medium-sized and a large carnivore across varying levels of urbanization. Specifically, we studied bobcat and puma populations across wildland, exurban development, and wildland-urban interface (WUI) sampling grids to test hypotheses evaluating how urbanization affects wild felid populations and their prey. Exurban development appeared to have a greater impact on felid populations than did habitat adjacent to a major urban area (i.e., WUI); estimates of population density for both bobcats and pumas were lower in areas of exurban development compared to wildland areas, whereas population density was similar between WUI and wildland habitat. Bobcats and pumas were less likely to be detected in habitat as the amount of human disturbance associated with residential development increased at a site, which was potentially related to reduced habitat quality resulting from urbanization. However, occupancy of both felids was similar between grids in both study areas, indicating that this population metric was less sensitive than density. At the scale of the sampling grid, detection probability for bobcats in urbanized habitat was greater than in wildland areas, potentially due to restrictive movement corridors and funneling of animal movements in landscapes influenced by urbanization. Occupancy of important felid prey (cottontail rabbits and mule deer) was similar across levels of urbanization, although elk occupancy was lower in urbanized areas. Our study indicates that the conservation of medium- and large-sized felids associated with urbanization likely will be most successful if large areas of wildland habitat are maintained, even in close proximity to urban areas, and wildland habitat is not converted to low-density residential development.
Diverse multi-decadal changes in streamflow within a rapidly urbanizing region
NASA Astrophysics Data System (ADS)
Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.
2018-01-01
The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing groundwater infiltration into sewers. The impacts of urbanization on streamflow within the metropolitan area have undoubtedly been felt by a wide of range of communities.
Altarejos, R G
1990-01-01
Due to a combination of rapid population growth and high levels of rural-urban migration, overcrowding will be common in many cities around the world in the 21st century. Currently at 5.3 billion, the global population is expected to increase to 6 billion by the year 2000, and to 9 billion by 2025. Experts predict that urban centers will bear the brunt of the population growth. Rural areas have seen declines in the standard of living, partly due to natural disasters, civil war, and economic policies favoring urban centers. In search of jobs, better access to education, and health services, rural populations will flock to cities. But the rapid growth of cities will inevitably lead to the creation of slums, which will hamper urban development. Urban demographers predict that by the end of the century, 1/2 of the world's population will be urban, and 1/5 of these people will be concentrated in "mega cities," populations of 4 million or more. International migration will play a significant role, as people cross borders in search of opportunity. But contrary to the traditional model of urban growth, much of it will take place in developing countries. According to a 1985 study, developed nations had an urbanization level of 71%, compared to 31% in developing countries. However, experts calculate that by 2025, these levels will practically even out, with an urbanization level of 74% for developing countries and 77% for developed countries. By 2025, 25 cities will have populations of over 9 million, including Mexico City (25.8), Sao Paulo (24.0), Tokyo (20.2), Calcutta (16.5), Greater Bombay (16.0), and New York (15.8).
Effects of urbanization on carnivore species distribution and richness
Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.
2010-01-01
Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.
Schuster, R.L.; Highland, L.M.
2007-01-01
As a result of population pressures, hillsides in the world's urban areas are being developed at an accelerating rate. This development increases the risk for urban landslides triggered by rainfall or earthquake activity. To counter this risk, four approaches have been employed by landslide managers and urban planners: (1) restricting development in landslide-prone areas; (2) implementing and enforcing excavation, grading, and construction codes; (3) protecting existing developments by physical mitigation measures and (4) developing and installing monitoring and warning systems. Where they have been utilized, these approaches generally have been effective in reducing the risk due to landslide hazards. In addition to these practices, landslide insurance holds promise as a mitigative measure by reducing the financial impact of landslides on individual property owners. Until recently, however, such insurance has not been widely available and, where it is available, it is so expensive that it has been little used. ?? Springer-Verlag 2006.
ERIC Educational Resources Information Center
Byerlee, Derek; And Others
Study objectives were to: increase the understanding of rural to urban migration processes in Africa and Sierra Leone; develop and test a theoretical schema and survey methodology for migration research; and evaluate the effects of policy on migration. The migration survey was conducted in rural areas, urban areas, and again in the rural areas…
Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado
Soule, James M.; Fitch, Harold R.
1974-01-01
An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.
Establishing sustainable strategies in urban underground engineering.
Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A
2004-07-01
Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.
ERIC Educational Resources Information Center
Kim, Sangwon; Orpinas, Pamela; Kamphaus, Randy; Kelder, Steven H.
2011-01-01
This study empirically derived a multiple risk factors model of the development of aggression among middle school students in urban, low-income neighborhoods, using Hierarchical Linear Modeling (HLM). Results indicated that aggression increased from sixth to eighth grade. Additionally, the influences of four risk domains (individual, family,…
Making green infrastructure healthier infrastructure
Lõhmus, Mare; Balbus, John
2015-01-01
Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823
Making green infrastructure healthier infrastructure.
Lõhmus, Mare; Balbus, John
2015-01-01
Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.
Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W
2018-07-01
Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.
2014-12-01
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.
Urban plant physiology: adaptation-mitigation strategies under permanent stress.
Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo
2015-02-01
Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.
Longwave infrared observation of urban landscapes
NASA Technical Reports Server (NTRS)
Goward, S. N.
1981-01-01
An investigation is conducted regarding the feasibility to develop improved methods for the identification and analysis of urban landscapes on the basis of a utilization of longwave infrared observations. Attention is given to landscape thermal behavior, urban thermal properties, modeled thermal behavior of pavements and buildings, and observed urban landscape thermal emissions. The differential thermal behavior of buildings, pavements, and natural areas within urban landscapes is found to suggest that integrated multispectral solar radiant reflectance and terrestrial radiant emissions data will significantly increase potentials for analyzing urban landscapes. In particular, daytime satellite observations of the considered type should permit better identification of urban areas and an analysis of the density of buildings and pavements within urban areas. This capability should enhance the utility of satellite remote sensor data in urban applications.
Fan, Peilei; Ouyang, Zutao; Basnou, Corina; Pino, Joan; Park, Hogeun; Chen, Jiquan
2017-07-01
Using Barcelona and Shanghai as case studies, we examined the nature-based solutions (NBS) in urban settings-specifically within cities experiencing post-industrialization and globalization. Our specific research questions are: (1) What are the spatiotemporal changes in urban built-up land and green space in Barcelona and Shanghai? (2) What are the relationships between economic development, exemplified by post-industrialization, globalization, and urban green space? Urban land use and green space change were evaluated using data derived from a variety of sources, including satellite images, landscape matrix indicators, and a land conversion matrix. The relationships between economic development, globalization, and environmental quality were analyzed through partial least squares structural equation modeling based on secondary statistical data. Both Barcelona and Shanghai have undergone rapid urbanization, with urban expansion in Barcelona beginning in the 1960s-1970s and in Shanghai in the last decade. While Barcelona's urban green space and green space per capita began declining between the 1950s and 1990s, they increased slightly over the past two decades. Shanghai, however, has consistently and significantly improved urban green space and green space per capita over the past six decades, especially since the economic reform in 1978. Economic development has a direct and significant influence on urban green space for both cities and post-industrialization had served as the main driving force for urban landscape change in Barcelona and Shanghai. Based on secondary statistical and qualitative data from on-site observations and interviews with local experts, we highlighted the institution's role in NBS planning. Furthermore, aspiration to become a global or globalizing city motivated both cities to use NBS planning as a place-making tool to attract global investment, which is reflected in various governing policies and regulations. The cities' effort to achieve a higher status in the global city hierarchy may have contributed to the increase in total green space and urban green per capita. In addition, various institutional shifts, such as land property rights in a market economy vs. a transitional economy, may also have contributed to the differences in efficiency when expanding urban green space in Barcelona and Shanghai. Copyright © 2017 Elsevier Inc. All rights reserved.
Schram, Ashley; Labonté, Ronald; Sanders, David
2013-01-01
There are three dominant globalization pathways affecting noncommunicable diseases in Sub-Saharan Africa (SSA): urbanization, trade liberalization, and investment liberalization. Urbanization carries potential health benefits due to improved access to an increased variety of food imports, although for the growing number of urban poor, this has often meant increased reliance on cheap, highly processed food commodities. Reduced barriers to trade have eased the importation of such commodities, while investment liberalization has increased corporate consolidation over global and domestic food chains. Higher profit margins on processed foods have promoted the creation of 'obesogenic' environments, which through progressively integrated global food systems have been increasingly 'exported' to developing nations. This article explores globalization processes, the food environment, and dietary health outcomes in SSA through the use of trend analyses and structural equation modelling. The findings are considered in the context of global barriers and facilitators for healthy public policy. © 2013.
Urbanization and the problem of restricting the growth of very large cities.
Bialkovskaia, V; Novikov, V
1983-10-01
This article discusses the problem of preventing the excessive growth of very large cities to the detriment of the development of smaller urban settlements in the USSR. The increase in size of the urban population throughout the entire USSR is mainly connected with the increase in the number of city dwellers. In 1960 and 1970 the number of largest cities in the USSR increased, along with a share of the nation's population living in these large cities. The low natural increase in population of very large cities creates a high demand for labor power which must come from the population of other cities. In 1970-1980, Moscow, one of the largest millionaire cities, had the lowest population growth rate of all major USSR cities (113.7%). The growth of Moscow and other very large cities in the last few years has been due to the mechanical increase in population and the increase in area. The analysis of Moscow's pattern of population growth over time focuses on changes in the level of availability of social and everyday services. The prewar period is characterized by a reserve of labor resources, the highest growth in industry and science, but a low overall population dynamic in the city. In the postwar period there was a significant decline in the annual increase of all indicators; this was a period of strong social development of the city. The period between 1966 and 1980 shows a further slowdown in the growth rate of city forming branches by an accelerated development of municipal service branches. The demand for measures to restrict the growth of very large Soviet cities depends on: 1) the reorientation of the development of the economic base, 2) the restructuring of their economy, and 3) the siting of various types of production of goods and services. Developing the specialization of the urban economy consists of planned development of the production of goods and services based on the use of available resources.
A Meta-Analysis of Global Urban Land Expansion
Seto, Karen C.; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K.
2011-01-01
The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely. PMID:21876770
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
NASA Astrophysics Data System (ADS)
Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun
2018-02-01
To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.
Rural-urban migration in a developing country: Botswana, Africa.
Tarver, J D; Miller, H M
1987-01-01
Trends in internal migration in Botswana are analyzed, with a focus on rural-urban migration. Data are from the 1981 census and from a survey carried out in 1979. The authors note that even though the predominance of subsistence agriculture acts as a deterrent to rural-urban migration, it is probable that the total and percentage of people living in urban areas will increase. However, the magnitude and pattern of future migration will fluctuate over time as social and economic conditions change.
Neuman, Melissa; Kawachi, Ichiro; Gortmaker, Steven; Subramanian, S V
2013-01-01
Background: Urbanization is often cited as a main cause of increasing BMIs in low- and middle-income countries (LMICs), and urban residents in LMICs tend to have higher BMIs than do rural residents. However, urban-rural differences may be driven by differences in socioeconomic status (SES). Objective: Using nationally representative data collected at 2 time points in 38 LMICs, we assessed the association between urban residence and BMI before and after adjustment for measures of individual- and household-level SES. Design: We conducted a cross-sectional analysis of nationally representative samples of 678,471 nonpregnant women aged 15–49 y, with 225,312 women in the earlier round of surveys conducted between 1991 and 2004 and 453,159 women in the later round conducted between 1998 and 2010. We used linear and ordered multinomial analysis with a country fixed effect to obtain a pooled estimate and a country-stratified analysis. Results: We found that mean BMI (kg/m2) in less-developed countries was generally higher within urban areas (excess BMI associated with urban residence before wealth index adjustment: 1.55; 95% CI: 1.52, 1.57). However, the urban association was attenuated after SES was accounted for (association after adjustment: 0.44; 95% CI: 0.41, 0.47). Individual- and household-level SES measures were independently and positively associated with BMI. Conclusion: The association between urban residence and obesity in LMICs is driven largely by higher individual- and community-level SES in urban areas, which suggests that urban residence alone may not cause increased body weight in developing countries. PMID:23283503
Durbin, Timothy J.
1974-01-01
The Stanford Watershed Model was used to simulate the effects of urbanization on the discharge from five drainage basins in the upper Santa Ana Valley, an area with an average annual precipitation of 15 inches. The drainage basins ranged in size from 3.72 to 83.4 square miles. Using the model, synthetic records of streamflow for each basin were generated to represent various degrees of urban development. Examination of the synthetic records indicated that urbanization has the following effects on streamflow in the area:Average annual runoff from a drainage basin with an effective impervious area of 10 percent of the drainage area is approximately 2 inches, and increases by 1 inch for each increase in effective impervious cover equal to 10 percent of the drainage area. About 30 percent of a fully urbanized area is effectively impervious.Urbanization can increase the magnitude of peak discharge and daily mean discharge with a recurrence interval of 2 years by a factor of three to six.Peak discharges and daily mean discharges that have recurrence intervals greater than a limiting value ranging from 50 to 200 years or more are little affected by urbanization.
Study on temporal and spatial variations of urban land use based on land change data
NASA Astrophysics Data System (ADS)
Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang
2009-10-01
With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.
[Trends in the urbanization process in Central America in the 1980's].
Lungo Ucles, M
1990-01-01
In the 1980s, urbanization in Central America was increasing compared to the three previous decades. By 1990, the urban population reached 42% in Guatemala, 44% in El Salvador, 43% in Honduras, 59% in Nicaragua, 53% in Costa Rica, and 54% in Panama. The urban population increased mostly in the largest cities, in contrast to Latin America, where secondary cities grew fastest. This trend was particularly true in Managua and San Salvador because of the military conflicts. The only exception was Honduras, where the second city underwent stronger growth. The urban population comprised 51.7% women and 48.3% men in Central America. The segregation and polarization of social classes was also increasing because of increased poverty and unemployment during the 1980s. This was partly caused by the increasing privatization of public services, decentralization, and the reinforcement of local governments, which all ensued from the structural readjustment programs of the International Monetary Fund. This neoliberal model of economic development in the short run resulted in increased poverty and unemployment for the urban populations. In 1982, the informal sector represented 29% of the total employment in Central America, and its share reached 40% in Managua and San Salvador. Urban unemployment increased from 2.2% in 1980 to 12% in 1988 in Guatemala; from 8.8% to 13.1% in Honduras; and from 10.4% to 20.8% in Panama. In the political arena, the process of democratization was underway, with civil presidents taking power and promoting privatization and deregulation of the economy. There was a close relationship between the urban social structure, the economy, and politics in the region. In Costa Rica, during the Arias administration between 1986 and 1990, a program was implemented creating 80,000 new homes, and in El Salvador there was an increasing demand to find a negotiated solution to the military conflict. These new political and economic perspectives could lead to genuine popular participation in solving urban problems.
Sunde, Michael G; He, Hong S; Hubbart, Jason A; Urban, Michael A
2018-08-15
Future urban development and climatic changes are likely to affect hydrologic regimes in many watersheds. Quantifying potential water regime changes caused by these stressors is therefore crucial for enabling decision makers to develop viable environmental management strategies. This study presents an approach that integrates mid-21st century impervious surface growth estimates derived from the Imperviousness Change Analysis Tool with downscaled climate model projections and a hydrologic model Soil and Water Assessment Tool to characterize potential water regime changes in a mixed-use watershed in central Missouri, USA. Results for the climate change only scenario showed annual streamflow and runoff decreases (-10.7% and -9.2%) and evapotranspiration increases (+6.8%), while results from the urbanization only scenario showed streamflow and runoff increases (+3.8% and +9.3%) and evapotranspiration decreases (-2.4%). Results for the combined impacts scenario suggested that climatic changes could have a larger impact than urbanization on annual streamflow, (overall decrease of -6.1%), and could largely negate surface runoff increases caused by urbanization. For the same scenario, climatic changes exerted a stronger influence on annual evapotranspiration than urbanization (+3.9%). Seasonal results indicated that the relative influences of urbanization and climatic changes vary seasonally. Climatic changes most greatly influenced streamflow and runoff during winter and summer, and evapotranspiration during summer. During some seasons the directional change for hydrologic processes matched for both stressors. This work presented a practicable approach for investigating the relative influences of mid-21st century urbanization and climatic changes on the hydrology of a representative mixed-use watershed, adding to a limited body of research on this topic. This was done using a transferrable approach that can be adapted for watersheds in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
The soundscapes of lakes across an urbanization gradient.
Kuehne, Lauren M; Padgham, Britta L; Olden, Julian D
2013-01-01
BACKGROUND/METHODOLOGY: A significant implication of increasing urbanization is anthropogenic noise pollution. Although noise is strongly associated with disruption of animal communication systems and negative health effects for humans, the study of these consequences at ecologically relevant spatial and temporal scales (termed soundscape ecology) is in early stages of application. In this study, we examined the above- and below-water soundscape of recreational and residential lakes in the region surrounding a large metropolitan area. Using univariate and multivariate approaches we test the importance of large- and local-scale landscape factors in driving acoustic characteristics across an urbanization gradient, and visualize changes in the soundscape over space and time. Anthropogenic noise (anthrophony) was strongly predicted by a landcover-based metric of urbanization (within a 10 km radius), with presence of a public park as a secondary influence; this urbanization signal was apparent even in below-water recordings. The percent of hourly measurements exceeding noise thresholds associated with outdoor disturbance was 67%, 17%, and 0%, respectively, for lakes characterized as High, Medium, and Low urbanization. Decreased biophony (proportion of natural sounds) was associated with presence of a public park followed by increased urbanization; time of day was also a significant predictor of biophony. Local-scale (shoreline) residential development was not related to changes in anthrophony or biophony. The patterns we identify are illustrated with a multivariate approach which allows use of entire sound samples and facilitates interpretation of changes in a soundscape. As highly valued residential and recreation areas, lakes represent everyday soundscapes important to both humans and wildlife. Our findings that many of these areas, particularly those with public parks, routinely experience sound types and levels associated with disturbance, suggests that urban planners need to account for the effect of increasing development on soundscapes to avoid compromising goals for ecological and human health.
Relation Decomposing between Urbanization and Consumption of Water-Energy Sources
NASA Astrophysics Data System (ADS)
Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.
2017-12-01
Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.
Developing Urban Environment Indicators for Neighborhood Sustainability Assessment in Tripoli-Libya
NASA Astrophysics Data System (ADS)
Elgadi, Ahmed. A.; Hakim Ismail, Lokman; Abass, Fatma; Ali, Abdelmuniem
2016-11-01
Sustainability assessment frameworks are becoming increasingly important to assist in the transition towards a sustainable urban environment. The urban environment is an effective system and requires regular monitoring and evaluation through a set of relevant indicators. The indicator provides information about the state of the environment through the production value of quantity. The indicator creates sustainability assessment requests to be considered on all spatial scales to specify efficient information of urban environment sustainability in Tripoli-Libya. Detailed data is necessary to assess environmental modification in the urban environment on a local scale and ease the transfer of this information to national and global stages. This paper proposes a set of key indicators to monitor urban environmental sustainability developments of Libyan residential neighborhoods. The proposed environmental indicator framework measures the sustainability performance of an urban environment through 13 sub-categories consisting of 21 indicators. This paper also explains the theoretical foundations for the selection of all indicators with reference to previous studies.
Fan, Peilei; Chen, Jiquan; John, Ranjeet
2016-01-01
Driven by drastic socioeconomic changes in China and Mongolia, urbanization has become one of the most significant driving forces in the transformation of the Mongolian Plateau in the past 30 years. Using Hohhot and Ulaanbaatar as case studies, we developed a holistic approach to examine the socioeconomic and natural driving forces for urbanization and to investigate the impact on the urban environment. We used a multidisciplinary approach and relied on a variety of data sources to assess the changes of the landscape and environment of the two cities. We detected a rapid urbanization in Hohhot and Ulaanbaatar, both in terms of urban population growth and urban land expansion, from 1990 to 2010, with a much faster speed in 2000-2010. The local geo-physical conditions have constrained the spatial direction of expansion. Ulaanbaatar lagged behind Hohhot for about a decade when measured by indicators of urban population and urban land. Both cities have a degraded urban environment and a growing air pollution epidemic. While Hohhot had worse air pollution than Ulaanbaatar in the early 2000s, the gap between the two cities became smaller after 2010. The research presented here highlights the following as key determinants for urbanization and environmental change: (1) the co-evolution of urbanization, economic development, and environmental change; (2) the urbanization of transitional economies driven by the change of the economic structure, i.e., the development by both manufacturing and tertiary sectors and the change in the primary sector; and (3) the recent institutional changes and increased integration with the global economy. Copyright © 2015 Elsevier Inc. All rights reserved.
Kathryn Kromroy; Kathleen Ward; Paul Castillo; Jennifer Juzwik
2006-01-01
Urbanization was associated with loss and transformation of the oak forest in the Twin Cities (Minneapolis and St. Paul) metropolitan area (TCMA) over a recent 7-year interval. Between 1991 and 1998, urbanization increased based on several indicators: population density, area of developed land, and area of impervious surface?total impervious area and area within three...
Challenges to Autonomous Navigation in Complex Urban Terrain
2012-03-23
a, Robert E. Karlsen a, Chip DiBerardino b, Edward Mottern b, & N. Joseph Kott, III a aU.S. Army Tank- Automotive Research, Development & Engineering...threat, but this becomes especially challenging when dealing with humans or animals that may change trajectory, suddenly and without warning. The...people and animals . In urban environments, the number of potential vehicle to civilian encounters increases exponentially as the urban population
[Fertility in rural and urban areas of Mexico].
Garcia Y Garma, I O
1989-01-01
Data from 6 fertility surveys conducted in Mexico between 1969-87 were used to compare rural and urban fertility and to determine whether a significant level of contraceptive usage could be achieved in rural areas despite their lack of socioeconomic development. Age-specific marital fertility rates were calculated for the 4 national-level and 2 rural fertility surveys. The index of fertility control developed by Coale and Trussel was calculated for rural, urban, and all areas. The marital total fertility rate in rural areas declined from 10.6 in 1970 to 7.4 in 1982, a decline of 2.5% annually. From 1982-87 the annual rate of decline in rural fertility slowed to 1.6%, reaching 6.8 children in 1987. The urban marital total fertility rate declined from 7.72 in 1976 to 5.03 in 1987, while the marital total fertility rate for Mexico as a whole declined from 9.04 in 1976 to 5.85 in 1987. The indices of fertility control showed slowly increasing use of contraception in rural areas starting from the very low level of 1969. The urban index of fertility control showed some contraceptive use for all age groups in all surveys. The increases in contraceptive usage were considerable in rural areas from 1976-82 and much less marked in urban areas. From 1982-87 the inverse was observed and the fertility decline in urban areas was more marked. The condition of natural fertility found in rural areas in 1969 subsequently disappeared. Over time, fertility decline and use of contraception have intensified. Contraception is widely practiced in urban areas and is continuing to become more prevalent. The rural fertility decline in 1976-82 suggests that at least sometimes increases in fertility control are more important in rural areas than in urban areas. The theory of modernization, which holds that fertility decline in developed countries is attributable to factors associated with the process of modernization, thus comes into question. However, it is probable that a sustained fertility decline in the most depressed rural areas will be achieved only with substantial socioeconomic change.
NASA Astrophysics Data System (ADS)
Uzokwe, V. N. E. N.; Muchelo, R. O.; Odeh, I. A.
2015-12-01
In Sub-Saharan Africa (SSA), urban intensification and expansion are increasing at alarming rates due to rapid population growth and rural-to-urban migration. This has led to the premise that the proportion of SSA urban residents most vulnerable to food insecurity is the highest in the world. Using a focused survey and multi-temporal (decadal) land use/cover classification of Landsat images, we explored the effect of urban intensification and expansion on urban agriculture and food security, focusing on a megacity and a regional center in Uganda: Kampala and Mbarara, respectively. We found that food insecurity arose due to a number of reasons, among which are: i) expansion and intensification of of urban settlements into previously productive agricultural lands in urban and peri-urban areas; ii) loss of predominantly young (rural agricultural) adult labor force to urban centers, leading to decline in rural food production; iii) lack of proper urban planning incorporating green and agricultural development leading to low productive market garden systems. We discussed these outcomes in light of existing studies which estimated that urban agriculture alone supports over 800 million people globally and accounts for 15-20% of world food supply. In spite of this relatively low contribution by urban/peri-urban agriculture, it probably accounts for higher proportion of food supply to urban poor in SSA and thus are most vulnerable to the loss of urban and peri-urban agricultural land. Further recommendations require policy makers and urban planners to team up to design a suitable framework for sustainable urban planning and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.
High spatiotemporal resolution air temperature (Ta) datasets are increasingly needed for assessing the impact of temperature change on people, ecosystems, and energy system, especially in the urban domains. However, such datasets are not widely available because of the large spatiotemporal heterogeneity of Ta caused by complex biophysical and socioeconomic factors such as built infrastructure and human activities. In this study, we developed a 1-km gridded dataset of daily minimum Ta (Tmin) and maximum Ta (Tmax), and the associated uncertainties, in urban and surrounding areas in the conterminous U.S. for the 2003–2016 period. Daily geographically weighted regression (GWR) models were developedmore » and used to interpolate Ta using 1 km daily land surface temperature and elevation as explanatory variables. The leave-one-out cross-validation approach indicates that our method performs reasonably well, with root mean square errors of 2.1 °C and 1.9 °C, mean absolute errors of 1.5 °C and 1.3 °C, and R 2 of 0.95 and 0.97, for Tmin and Tmax, respectively. The resulting dataset captures reasonably the spatial heterogeneity of Ta in the urban areas, and also captures effectively the urban heat island (UHI) phenomenon that Ta rises with the increase of urban development (i.e., impervious surface area). The new dataset is valuable for studying environmental impacts of urbanization such as UHI and other related effects (e.g., on building energy consumption and human health). The proposed methodology also shows a potential to build a long-term record of Ta worldwide, to fill the data gap that currently exists for studies of urban systems.« less
NASA Astrophysics Data System (ADS)
Maximova, Ekaterina
2017-10-01
Creation of the new image of cities becomes an important modern tendency. Foreign experience creation of the comfortable living conditions for the urban population could show the improvement of many social indicators of the society development. Existence of the positive result from the renovation of city territories performance in Russia can be indicated on the example of the city of Moscow. This article shows the tasks which state plans to create for the comfortable urban environment. In this regard, the directions of the development of the construction industry, which allow to increase the level of business activity are shown.
Wildfire hazard mapping: exploring site conditions in eastern US wildlandruban interfaces
Matthew P. Peters; Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad
2013-01-01
Wildfires are a serious threat for land managers and property owners, and over the last few decades this threat has expanded as a result of increased rural development. Most wildfires in the north-eastern US occur in the wildlandurban interface, those regions of intermingling urban and non-developed vegetated lands, where access to firefighting resources can...
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
NASA Astrophysics Data System (ADS)
Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.
2017-12-01
Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.
NASA Astrophysics Data System (ADS)
Fenger, Jes
Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate more traffic and may thus have the opposite effect.
NASA Astrophysics Data System (ADS)
Tian, L.; Shu, A. P.; Huang, L.
2017-12-01
Along with accelerating in Chinese urbanization, a increasing number of urban construction projects have been built, which cause the growth of impervious surface ratio in cities. Large areas of impervious surface hinders city normal natural water cycles, increases surface runoff coefficient, brings flood peak forward, and increases risk of flooding . Therefore, with the view of reducing risk of urban waterlogging disaster, improving water resource cyclic utilization, and maximizing recovery of urban eco-hydrological process, China begins to promote Sponge city construction using LID as core idea. The paper take five kinds of collecting and utilization rainwater measure as research example, analysis their characteristic ,take investment cost, economic benefit and enviromental benefit as principle of assessment. The weight of the evaluation criterion are gained by entropy method. The final evaluation of urban stormwater measures configuration mode based on the low impact development with PROMETHEE method . The sensitivity of evaluation criterion are analysised by GAIA. Finally, the examples are given to explain the feasibility . The result shows that comprehensive benefit of the mode containing green roof, permeable pavement, Sunken green space and rainwater harvesting tank is the highest. It turn out that reasonable and various types rainwater measures and high land utilization is significant for increasing the its comprehensive efficiency. Besides, the environmental benefit of urban rainwater measures is significantly greater than the economic benefit. There is a positive correlation between plant significantly greater than the economic benefit. There is a positive correlation between plant shallow groove, sunken green space and comprehensive benefit of rainwater measure. Because they can effectively removes water pollutants in stormwater. The studies not only have a great significance in optimizing configuration mode of urban rainwater measures, but also push development of the sponge city construction and propel exploration in developmental model of ideal city forward.
Modelling spatial patterns of urban growth in Africa
Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius
2013-01-01
The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552
Trlica, Andrew; Brown, Sally
2013-07-02
The interrelation between urban areas and land use options for greenhouse gas mitigation was evaluated by assessing the utility of urban residuals for soil reclamation. Long-term impacts on soil C storage for mine lands restored with urban organic residuals were quantified by sampling historic sites reclaimed both conventionally and with residuals-based amendments. Use of amendments resulted in greater C storage compared to conventional practices for all sites sampled, with increases ranging from 14.2 Mg C ha(-1) in a coalmine in WA to 38.4 Mg C ha(-1) for a copper mine in British Columbia. Expressed as Mg C per Mg amendment, effective C increases ranged from 0.03 to 0.31 Mg C per Mg amendment. Results were applied to three alternative land-use scenarios to model the net GHG balance for a site restored to forest or low-density development. The model included construction of 3.9 243 m(2)-homes, typical of urban sprawl. Emissions for home and road construction and use over a 30-year period resulted in net emissions of 1269 Mg CO2. In contrast, conventional reclamation to forestland or reclamation with 100 Mg of residuals resulted in net GHG reductions of -293 and -475 Mg CO2. Construction of an equivalent number of smaller homes in an urban core coupled with restoration of 1 ha with amendments was close to carbon neutral. These results indicate that targeted use of urban residuals for forest reclamation, coupled with high-density development, can increase GHG mitigation across both sectors.
Impacts of Urban Sprawl on Soil Resources in the Changchun⁻Jilin Economic Zone, China, 2000⁻2015.
Li, Xiaoyan; Yang, Limin; Ren, Yongxing; Li, Huiying; Wang, Zongming
2018-06-06
The Changchun⁻Jilin Economic Zone (CJEZ) is one of the most rapidly developing areas in Northeast China, as well as one of the famous golden maize belts in the world. This is a case study to assess the impacts of urban sprawl on soil resources using remote sensing imagery and geographic spatial analysis methods. The common urbanization intensity index (CUII), soil quality index, and soil landscape metrics were calculated to reflect urbanization and the response of soil resource. Results showed that the area of soil sealing changed from 112,460 ha in 2000 to 139,233 ha in 2015, and in the rural region, the area occupied by urbanization nearly kept balance with the area of rural residential expansion. Urban land increased by 26,767 ha at an annual rate of 3.23% from 2000 to 2015. All seven soil types were occupied during the urbanization process, among which black soil ranked the highest (18,560 ha) and accounted for 69.34% of the total occupied area. Soils of Grades I (3927 ha) and II (15,016 ha) were 64.75% of the total occupied soil areas. Urban land expanded in an irregular shape and a disordered way, which led to an increasing large patch index (LPI) and aggregation index (AI), and a decreasing edge density (ED) and Shannon’s diversity index (SHDI) of the soil landscape in the study area during 2000⁻2015. According to the geographically weighted regression (GWR) model analysis, the R ² between the CUII and soil landscape metrics decreased from the LPI and ED to SHDI and in turn to AI. The local R ² between SHDI, ED, and CUII showed a gradient structure from the inner city to peri-urban areas, in which larger values appeared with strongly intensive urbanization in urban fringes. Soil sealing induced by urbanization has become a significant factor threatening soil, the environment, and food security. How to coordinate regional development and ensure the sustainability of the multiple functions of soil is a problem that needs to be taken into account in the future development of the region.
1981-09-01
The government of Ghana sees the country's population as a valuable natural resource and emphasizes national population policy as an important part of overall socioeconomic planning and development. A formal system of development planning has been in effect since 1951. Decennial censuses are conducted relatively regularly but vital registration is thought to be incomplete. The current population size is 11,679,000 and the current rate of natural increase (3.1%) is considered too high, constraining the achievement of socioeconomic development. The high rate of growth is taxing on employment and public services. High fertility rates are influenced both by regional norms, such as early and universal marriage, and demographic factors, i.e., an increasingly higher proportion of the population in the 0-14 age group. The government sponsors family planning services which can be obtained free or at subsidized rates and seeks to upgrade the health and living standards of the population. Sterilization is permitted for medical reasons only, and abortions are restricted. Crude death rates have declined steadily and are currently estimated at 21-23/1000 population. The infant mortality rate is approximately 125.7/1000 live births. These rates are considered unacceptable and budget allocations for curative and preventive services have continuously risen. Uneven regional distribution of services continues to be problematic. Efforts to curb immigration in 1969 are thought to have resulted in the current satisfactory situation. Restrictive measures to prevent the emigration of skilled personnel are in effect. 60-65% of the population are urban dwellers and the proportion is expected to increase. The current spatial distribution of the population is considered inappropriate, rapid urbanization is causing rural depopulation, overburdening urban services and accentuating rural-urban disparaties. 2 approaches to the problem have been implemented: the urban increase is accomodated by increasing outlays for services, and new public investments are widely dispersed, particularly in rural areas. The industrial policy is expected to shift to exploitation of the country's natural resources in order to develop the interior.
Problems of modern urban drainage in developing countries.
Silveira, A L L
2002-01-01
Socio-economic factors in developing countries make it more difficult to solve problems of urban drainage than in countries that are more advanced. Factors inhibiting the adoption of modern solutions include: (1) in matters of urban drainage, 19th-century sanitary philosophy still dominates; (2) both legal and clandestine land settlement limits the space that modern solutions require; (3) contamination of storm runoff by foul sewage, sediment and garbage prevents adoption of developed-country practices; (4) climatic and socio-economic factors favour the growth of epidemics where runoff is retained for flood-avoidance and to increase infiltration; (5) lack of a technological basis for adequate drainage management and design; (6) lack of the interaction between community and city administration that is needed to obtain modern solutions to urban drainage problems. Awareness of these difficulties is fundamental to the search for modern and viable solutions appropriate for developing countries.
NASA Astrophysics Data System (ADS)
Wang, Mingna
2015-04-01
The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80°C at local noon. Moreover, the nighttime temperature also shows slightly cooler, approximately 0.2°C, because there is still considerable heat which is stored in the daytime released from urban surfaces at night. The results also suggest that increasing the albedo of urban roofs can reduce the urban mean temperature by approximately 0.51°C during summer extreme heat events. In urban areas, white roofs can counter 80% of the heat wave results from urban sprawl during the last 20 years. These results suggest that increasing the albedo of roofs in the Beijing-Tianjin-Hebei metropolitan area is an effective way of countering some hazards of heat waves. Using a regional climate model, we proposed that white roofs may be an effective strategy to complement urban heat wave mitigation efforts as a way of further slowing the rate of global temperature increase in response to continued greenhouse gas emissions.
The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.
Terando, Adam; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.
The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S
Terando, Adam J.; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime A.
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires. PMID:25054329
Urban local air quality management framework for non-attainment areas in Indian cities.
Gulia, Sunil; Nagendra, S M Shiva; Barnes, Jo; Khare, Mukesh
2018-04-01
Increasing urban air pollution level in Indian cities is one of the major concerns for policy makers due to its impact on public health. The growth in population and increase in associated motorised road transport demand is one of the major causes of increasing air pollution in most urban areas along with other sources e.g., road dust, construction dust, biomass burning etc. The present study documents the development of an urban local air quality management (ULAQM) framework at urban hotspots (non-attainment area) and a pathway for the flow of information from goal setting to policy making. The ULAQM also includes assessment and management of air pollution episodic conditions at these hotspots, which currently available city/regional-scale air quality management plans do not address. The prediction of extreme pollutant concentrations using a hybrid model differentiates the ULAQM from other existing air quality management plans. The developed ULAQM framework has been applied and validated at one of the busiest traffic intersections in Delhi and Chennai cities. Various scenarios have been tested targeting the effective reductions in elevated levels of NO x and PM 2.5 concentrations. The results indicate that a developed ULAQM framework is capable of providing an evidence-based graded action to reduce ambient pollution levels within the specified standard level at pre-identified locations. The ULAQM framework methodology is generalised and therefore can be applied to other non-attainment areas of the country. Copyright © 2017 Elsevier B.V. All rights reserved.
LABORATORY-SCALE SIMULATION OF RUNOFF RESPONSE FROM PERVIOUS-IMPERVIOUS SYSTEMS
Urban development yields landscapes that are composites of impervious and pervious areas, with a consequent reduction in infiltration and increase in stormwater runoff. Although basic rainfall-runoff models are used in the vast majority of runoff prediction in urban landscapes, t...
Baruch-Mordo, Sharon; Wilson, Kenneth R.; Lewis, David L.; Broderick, John; Mao, Julie S.; Breck, Stewart W.
2014-01-01
The rapid expansion of global urban development is increasing opportunities for wildlife to forage and become dependent on anthropogenic resources. Wildlife using urban areas are often perceived dichotomously as urban or not, with some individuals removed in the belief that dependency on anthropogenic resources is irreversible and can lead to increased human-wildlife conflict. For American black bears (Ursus americanus), little is known about the degree of bear urbanization and its ecological mechanisms to guide the management of human-bear conflicts. Using 6 years of GPS location and activity data from bears in Aspen, Colorado, USA, we evaluated the degree of bear urbanization and the factors that best explained its variations. We estimated space use, activity patterns, survival, and reproduction and modeled their relationship with ecological covariates related to bear characteristics and natural food availability. Space use and activity patterns were dependent on natural food availability (good or poor food years), where bears used higher human density areas and became more nocturnal in poor food years. Patterns were reversible, i.e., individuals using urban areas in poor food years used wildland areas in subsequent good food years. While reproductive output was similar across years, survival was lower in poor food years when bears used urban areas to a greater extent. Our findings suggest that bear use of urban areas is reversible and fluctuates with the availability of natural food resources, and that removal of urban individuals in times of food failures has the potential to negatively affect bear populations. Given that under current predictions urbanization is expected to increase by 11% across American black bear range, and that natural food failure years are expected to increase in frequency with global climate change, alternative methods of reducing urban human-bear conflict are required if the goal is to prevent urban areas from becoming population sinks. PMID:24416350
Baruch-Mordo, Sharon; Wilson, Kenneth R; Lewis, David L; Broderick, John; Mao, Julie S; Breck, Stewart W
2014-01-01
The rapid expansion of global urban development is increasing opportunities for wildlife to forage and become dependent on anthropogenic resources. Wildlife using urban areas are often perceived dichotomously as urban or not, with some individuals removed in the belief that dependency on anthropogenic resources is irreversible and can lead to increased human-wildlife conflict. For American black bears (Ursus americanus), little is known about the degree of bear urbanization and its ecological mechanisms to guide the management of human-bear conflicts. Using 6 years of GPS location and activity data from bears in Aspen, Colorado, USA, we evaluated the degree of bear urbanization and the factors that best explained its variations. We estimated space use, activity patterns, survival, and reproduction and modeled their relationship with ecological covariates related to bear characteristics and natural food availability. Space use and activity patterns were dependent on natural food availability (good or poor food years), where bears used higher human density areas and became more nocturnal in poor food years. Patterns were reversible, i.e., individuals using urban areas in poor food years used wildland areas in subsequent good food years. While reproductive output was similar across years, survival was lower in poor food years when bears used urban areas to a greater extent. Our findings suggest that bear use of urban areas is reversible and fluctuates with the availability of natural food resources, and that removal of urban individuals in times of food failures has the potential to negatively affect bear populations. Given that under current predictions urbanization is expected to increase by 11% across American black bear range, and that natural food failure years are expected to increase in frequency with global climate change, alternative methods of reducing urban human-bear conflict are required if the goal is to prevent urban areas from becoming population sinks.
Urbanization and carbon dioxide emissions in Singapore: evidence from the ARDL approach.
Ali, Hamisu Sadi; Abdul-Rahim, A S; Ribadu, Mohammed Bashir
2017-01-01
The main aim of this article is to examine empirically the impact of urbanization on carbon dioxide emissions in Singapore from 1970 to 2015. The autoregressive distributed lags (ARDL) approach is applied within the analysis. The main finding reveals a negative and significant impact of urbanization on carbon emissions in Singapore, which means that urban development in Singapore is not a barrier to the improvement of environmental quality. Thus, urbanization enhances environmental quality by reducing carbon emissions in the sample country. The result also highlighted that economic growth has a positive and significant impact on carbon emissions, which suggests that economic growth reduces environmental quality through its direct effect of increasing carbon emissions in the country. Despite the high level of urbanization in Singapore, which shows that 100 % of the populace is living in the urban center, it does not lead to more environmental degradation. Hence, urbanization will not be considered an obstacle when initiating policies that will be used to reduce environmental degradation in the country. Policy makers should consider the country's level of economic growth instead of urbanization when formulating policies to reduce environmental degradation, due to its direct impact on increasing carbon dioxide emissions.
The importance of urban gardens in supporting children's biophilia.
Hand, Kathryn L; Freeman, Claire; Seddon, Philip J; Recio, Mariano R; Stein, Aviva; van Heezik, Yolanda
2017-01-10
Exposure to and connection with nature is increasingly recognized as providing significant well-being benefits for adults and children. Increasing numbers of children growing up in urban areas need access to nature to experience these benefits and develop a nature connection. Under the biophilia hypothesis, children should innately affiliate to nature. We investigated children's independent selection of spaces in their neighborhoods in relation to the biodiversity values of those spaces, in three New Zealand cities, using resource-selection analysis. Children did not preferentially use the more biodiverse areas in their neighborhoods. Private gardens and yards were the most preferred space, with the quality of these spaces the most important factor defining children's exposure to nature. Children's reliance on gardens and yards for nature experiences raises concerns for their development of a nature connection, given disparities in biodiversity values of private gardens in relation to socioeconomic status, and the decline in sizes of private gardens in newer urban developments.
2016-01-01
Uncontrolled urbanization in developing countries has led to widespread urban poverty and increased susceptibility to environmental exposures owing to the hazardous occupational activities of the urban poor. Street vending and waste picking are the dominant works undertaken by the urban poor, and besides the physical hazards, it also exposes them to several pathogens and high levels of air pollutants present in the outdoor environment. The situation has severe consequences for the health of the workers. Eliminating these occupational activities from the urban landscape of developing countries should therefore receive urgent attention from the global health community and governments. In this article, we provide evidence to support this policy recommendation by documenting exposure experiences of the workers, the associated adverse health effects, whilst also outlining measures for addressing the problem sustainably. We conclude that with the adoption of the sustainable development goals (SDG), governments now have a commitment to address poverty and the associated occupational health hazards experienced by the poor through their choices to help achieve the health-related SDG target (3.9) of substantially reducing the number of deaths and illnesses from hazardous chemicals and air, water, and soil pollution and contamination by 2030. PMID:27467691
Greif, Meredith J; Nii-Amoo Dodoo, F
2015-05-01
Urban health in developing counties is a major public health challenge. It has become increasingly evident that the dialog must expand to include mental health outcomes, and to shift focus to the facets of the urban environment that shape them. Population-based research is necessary, as empirical findings linking the urban environment and mental health have primarily derived from developed countries, and may not be generalizable to developing countries. Thus, the current study assesses the prevalence of mental health problems (i.e., depression, perceived powerlessness), as well as their community-based predictors (i.e., crime, disorder, poverty, poor sanitation, local social capital and cohesion), among a sample of 690 residents in three poor urban communities in Accra, Ghana. It uncovers that residents in poor urban communities in developing countries suffer from mental health problems as a result of local stressors, which include not only physical and structural factors but social ones. Social capital and social cohesion show complex, often unhealthy, relationships with mental health, suggesting considerable drawbacks in making social capital a key focus among policymakers. Copyright © 2015. Published by Elsevier Ltd.
Amegah, Adeladza Kofi; Jaakkola, Jouni J K
2016-07-01
Uncontrolled urbanization in developing countries has led to widespread urban poverty and increased susceptibility to environmental exposures owing to the hazardous occupational activities of the urban poor. Street vending and waste picking are the dominant works undertaken by the urban poor, and besides the physical hazards, it also exposes them to several pathogens and high levels of air pollutants present in the outdoor environment. The situation has severe consequences for the health of the workers. Eliminating these occupational activities from the urban landscape of developing countries should therefore receive urgent attention from the global health community and governments. In this article, we provide evidence to support this policy recommendation by documenting exposure experiences of the workers, the associated adverse health effects, whilst also outlining measures for addressing the problem sustainably. We conclude that with the adoption of the sustainable development goals (SDG), governments now have a commitment to address poverty and the associated occupational health hazards experienced by the poor through their choices to help achieve the health-related SDG target (3.9) of substantially reducing the number of deaths and illnesses from hazardous chemicals and air, water, and soil pollution and contamination by 2030.
New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.
Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo
2015-08-18
Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.
Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua; Xia, Gengrui
2015-03-01
Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-23.35 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year(-1) to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of urbanization on heavy metal accumulation in surface soils, Beijing.
Wang, Meie; Liu, Rui; Chen, Weiping; Peng, Chi; Markert, Bernd
2018-02-01
Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecological function of vegetation covers shifting from natural to agricultural settings and then to urban greenbelts could increase the zinc (Zn) concentrations of soils successively. The Zn concentration of urban soils was significantly correlated to the percentage of the impervious land surface at the 500m×500m spatial scale. For urban parks, the age or years since the development accounted for 80% of the variances of cadmium (Cd) and Zn in soils. The population density, however, did not affect the heavy metal distributions in urban soils. To conclude, the urban age turned out to be a notable factor in quantifying heavy metal accumulation in urban soils. Copyright © 2017. Published by Elsevier B.V.
Evaluation of wildfire patterns at the wildland-urban fringe across the continental U.S.
NASA Astrophysics Data System (ADS)
Kinoshita, A. M.; Hogue, T. S.
2014-12-01
Wildfires threaten ecosystems and urban development across the United States, posing significant implications for land management and natural processes such as watershed hydrology. This study investigates the spatial association between large wildfires and urbanization. Several geospatial dataset are combined to map wildfires (Monitoring Trends in Burn Severity for 1984 to 2012) and housing density (SILVIS Lab Spatial Analysis for Conservation and Sustainability decadal housing density for 1940 to 2030) relative to natural wildlands across the contiguous U.S. Several buffers (i.e. 25 km) are developed around wildlands (Protected Areas Database of the United States) to quantify the change and relationship in spatial fire and housing density patterns. Since 1984, wildfire behavior is cyclical and follows general climatology, where warmer years have more and larger fires. Ignition locations also follow transportation corridors and development which provide easy accessibility to wildlands. In California, both fire frequency and total acres burned exhibit increasing trends (statistically significant at 95%). The 1980s average wildfire frequency and total acres burned was 3100 fires and approximately 1200 km2, respectively. These numbers have increased to 2200 fires and over 1500 km2 in the 2010 to 2012 period alone. Initial observations also show that decennial population and area burned for four major Californian counties (Los Angeles, San Bernardino, San Diego, and Shasta) show strong correlation between the last decade of burned area, urban-fringe proximity, and urbanization trends. Improving our understanding of human induced wildfire regimes provides key information on urban fringe communities most vulnerable to the wildfire risks and can help inform regional development planning.
The impact of urban planning on land use and land cover in Pudong of Shanghai, China.
Zhao, Bin; Nakagoshi, Nobukazu; Chen, Jia-kuan; Kong, Ling-yi
2003-03-01
Functional zones in cities constitute the most conspicuous components of newly developed urban area, and have been a hot spot for domestic and foreign investors in China, which not only show the expanse of urban space accompanied by the shifts both in landscape (from rural to urban) and land use (from less extensive to extensive), but also display the transformation of regional ecological functions. By using the theories and methods of landscape ecology, the structure of landscape and landscape ecological planning can be analyzed and evaluated for studying the urban functional zones' layout. In 1990, the Central Government of China declared to develop and open up Pudong New Area so as to promote economic development in Shanghai. Benefited from the advantages of Shanghai's location and economy, the government of Pudong New Area has successively built up 7 different functional zones over the past decade according to their functions and strategic goals. Based on the multi-spectral satellite imageries taken in 1990, 1997 and 2000, a landscape ecology analysis was carried out for Pudong New Area of Shanghai, supported by GIS technology. Green space (including croplands) and built-up area are the major factors considered in developing urban landscape. This paper was mainly concerned with the different spatial patterns and dynamic of green space, built-up areas and new buildings in different functional zones, influenced by different functional layouts and development strategies. The rapid urbanization in Pudong New Area resulted in a more homogeneous landscape. Agricultural landscape and suburban landscape were gradually replaced by urban landscape as the degree of urbanization increased. As consequence of urbanization in Pudong, not only built-up patches, but also newly-built patches and green patches merged into one large patch, which should be attributed to the construction policy of extensive green space as the urban development process in Pudong New Area. The shape of green area of 7 functional zones became more and more regular because of the horticultural needs in Shanghai urban planning. Some suggestions were finally made for the study of future urban planning and layout.
Zhou, Xuefan; Chen, Hong
2018-04-24
Urban growth and development caused by urbanization influence the urban heat island (UHI) phenomenon. With the rapid development of urbanization, China's major cities are facing more serious climate change problems, especially the UHI phenomenon. Proper planning and urban design of compact cities may improve the ventilation of street canyons and change the heat balance in the urban canopy and thus mitigate the UHI phenomenon. The aim of this study is to evaluate and discuss the mitigation of UHI with different types of land-use and land-cover (LUCC), as well as different development patterns for compact cities. To this end, we applied the weather research and forecasting model (WRF) with urban canopy model (WRF/UCM) in this study. To evaluate the impact of LUCC changes on the UHI, we set 2 cases based on land use and land cover statistical data from 1965 and 2008 of Wuhan. Also, to evaluate the impact of urban morphology changes on the UHI, we designed 2 hypothetical cases based on 2 different urban developing patterns, one is high rise case and another is high density case, to simulate the impact of urban morphology on the UHI. As for the results of this study, with different LUCC of 1965 and 2008, UHI intensity of Wuhan increased by 0.2 °C-0.4 °C in average. Moreover, the critical wind speed which can mitigate UHI of case 1965 is much lower than case 2008. With different urban morphology, the high-rise case may lead to lower UHI intensity at the pedestrian level due to the shading effects of high-rise buildings. However, the critical value of wind speed in the high-rise case was almost 1.5-2 times greater than that of the high-density case, which illustrates the reduced possibility of mitigating the UHI phenomenon for high-rise buildings in Wuhan City. Copyright © 2018 Elsevier B.V. All rights reserved.
Inostroza, Luis; Baur, Rolf; Csaplovics, Elmar
2013-01-30
South America is one of the most urbanized continents in the world, where almost 84% of the total population lives in cities, more urbanized than North America (82%) and Europe (73%). Spatial dynamics, their structure, main features, land consumption rates, spatial arrangement, fragmentation degrees and comparability, remain mostly unknown for most Latin American cities. Using satellite imagery the main parameters of sprawl are quantified for 10 Latin American cities over a period of 20 years by monitoring growth patterns and identifying spatial metrics to characterize urban development and sprawling features measured with GIS tools. This quantification contributes to a better understanding of urban form in Latin America. A pervasive spatial expansion has been observed, where most of the studied cities are expanding at fast rates with falling densities trend. Although important differences in the rates of land consumption and densities exist, there is an underlying fragmentation trend towards increasing sprawl. These trends of spatial discontinuity may eventually be intensified by further economic development. Urban Sprawl/Latin America/GIS metrics/spatial development. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Y. D.; Jiang, B. T.; Ye, X. Y.
2016-06-01
Urbanization is one of the most important human social activities in the 21st century (Chaolin et al., 2012). With an increasing number of people visiting cities, the provision of adequate urban service facilities, including public and commercial service facilities, in locations where people live has become an important guarantee of the success of urbanization. Exploring the commercial service facilities in a specific area of a city can help us understand the progress and trends of urban renewal in the area, provide a quantitative basis for evaluating the rationality of planning implementation, and facilitate an analysis of the effects of different factors on the regional development of a city (Schor et al. 2003). In this paper, we proposed a data processing and analysis method for studying the distribution and development pattern of urban commercial facilities based on customer reviews. In addition, based on road network constraints, we explored the patterns contained in customer reviews data, including patterns for the spatial distribution and spatial-temporal evolution of facilities as well as the number of facilities and degree of satisfaction.
Suburban wildlife: Lessons, challenges, and opportunities
DeStefano, S.; Deblinger, R.D.; Miller, C.
2005-01-01
The United States, as well as most developed and many developing nations worldwide, is becoming increasingly urban and suburban.Although urban, suburban, and commercial development account for less than one percent to just over 20% of land use among states, 50-90% of the residents of those states can be classified as urban or suburban dwellers. The population of the U.S. as a whole has risen from being > 95% rural in the 1790s to about 80% urban-suburban today. With these changes in land use and demographic patterns come changes in values and attitudes; many urbanites and suburbanites view wildlife and nature differently than rural residents. These are among the challenges faced by wildlife biologists and natural resource managers in a rapidly urbanizing world. In 2003, we convened a symposium to discuss issues related to suburban wildlife. The papers presented in this special issue of Urban Ecosystems address the lessons learned from the early and recently rapidly expanding literature, the challenges we face today, and the opportunities that can help deal with what is one of the biggest challenges to conservation in a modernizing world. ?? 2005 Springer Science + Business Media, Inc.
NASA Astrophysics Data System (ADS)
Pueyo Anchuela, O.; Soriano, A.; Casas Sainz, A.; Pocoví Juan, A.
2009-12-01
Industrial and urban growth must deal in some settings with geological hazards. In the last 50 years, the city of Zaragoza (NE Spain) has developed an increase of its urbanized area in a progression several orders higher than expected from its population increase. This fast growth has affected several areas around the city that were not usually used for construction. Maps of the Zaragoza city area at the end of the XIXth century and beginning of the XXth reveal the presence of karst hazards in several zones that can be observed in more modern data, as aerial photographs taken during a period ranging from 1927 to present. The urban and industrial development has covered many of these hazardous zones, even though potential risks were known. The origins of the karst problems are related to the solution of evaporites (mainly gypsum, glauberite and halite) that represent the Miocene substratum of the Zaragoza area underlying the Quaternary terraces and pediments related to the Ebro River and its tributaries. Historical data show the persistence of subsidence foci during long periods of time while in recent urbanized areas this stability is not shared, observing the increase of activity and/or radius affection in short periods of time after building over. These problems can be related to two factors: i) urban development over hazardous areas can increase the karst activity and ii) the affection radius is not properly established with the commonly applied methods. One way to develop these detailed maps can be related to the geophysical approach. The applied geophysical routine, dependent on the characteristics of the surveyed area, is based on potential geophysical techniques (magnetometry and gravimetry) and others related to the application of induced fields (EM and GPR). The obtained results can be related to more straightforward criteria as the detection of cavities in the subsoil and indirect indicators related to the long-term activity of the subsidence areas (changes in the filling of the subsidence area, changes in the position of the substratum or processes inferred from geometrical changes from the surveyed materials). In open field, techniques as magnetometry and EM radiation can be a very fast survey methodology and GPR and microgravimetry can be applied to inhomogeneous identified zones. In urban settings GPR must be applied first, followed by gravimetry in the inhomogeneous zones. Some hazardous areas can be unnoticed from the sole application of aerial photography or historical cartographies whereas when used together with multidisciplinar geophysical surveys, they can be sensitive to the different karst hazards features. The presented routine can permit the urban planning development at regional and local scale or the engineering and architectural building development at more local scale.
Huang, Changchun; Zhang, Mingli; Zou, Jun; Zhu, A-Xing; Chen, Xia; Mi, Yin; Wang, Yanhua; Yang, Hao; Li, Yunmei
2015-12-01
Understanding changes in climate and environment on a regional scale can provide useful guidance for regional socio-economic development. The present study characterizes changes in the environment, climate, land use and cover types via in situ observed, statistical data and remote sensing images for Jiangsu Province, China, during the period 1980-2012. Statistical and spatial analyses indicate that the pace of urbanization in southern Jiangsu is more rapid than that in northern Jiangsu. Urbanization (92.7%) results primarily from the loss of farmland. While emissions of pollutants from industrial sources were well controlled, and wastewater, which more frequently derives from urban domestic sources, was found to be increasing. The rates of wastewater to population increased from 0.17±0.017 to 0.32±0.090 (billion ton/million persons) during the two periods of 1980-2000 and 2000-2012. However, the rates of wastewater to Gross Domestic Product (GDP) decreased from 0.26±0.20 to 0.014±0.009 (billion ton/billion Yuan), respectively. The significant increase in scattering radiance and Earth's albedo caused by the urbanization and its process (Pearson correlation coefficient (r) between urban land and scattering radiance=0.86, p<0.0001; r between farmland and scattering radiance=-0.92, p<0.0001) aggravates the warming in the regional scale. This correlation analysis indicates that temperature will decrease with the increase of woodland, grassland and farmland, and will increase with the increase of urbanized and unexploited lands. Added to warming caused by an increase in CO2, land use/cover change and human activities may be the primary reason for the rising temperatures in Jiangsu Province. The change in regional thermal conditions reduces both local humidity and land atmosphere flux exchange. The low atmosphere flux exhange contributes to the spread of atmospheric pollutants and the deposition of atmospheric particles. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of urban sprawl on water quality in eastern Massachusetts, USA.
Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan
2007-08-01
A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.
Coexistence of coyotes (Canis latrans) and red foxes (Vulpes vulpes) in an urban landscape.
Mueller, Marcus A; Drake, David; Allen, Maximilian L
2018-01-01
Urban environments are increasing worldwide and are inherently different than their rural counterparts, with a variety of effects on wildlife due to human presence, increased habitat fragmentation, movement barriers, and access to anthropogenic food sources. Effective management of urban wildlife requires an understanding of how urbanization affects their behavior and ecology. The spatial activity and interactions of urban wildlife, however, have not been as rigorously researched as in rural areas. From January 2015 to December 2016, we captured, radio-collared, and tracked 11 coyotes and 12 red foxes in Madison, WI. Within our study area, coyotes strongly selected home ranges with high proportions of natural areas; conversely, red foxes selected home ranges with open space and moderately developed areas. Use of highly developed areas best explained variation among individual home range sizes and inversely affected home range size for coyotes and red foxes. Coyote and red fox home ranges showed some degree of spatial and temporal overlap, but generally appeared partitioned by habitat type within our study area. Coyotes and red foxes were both active at similar times of the day, but their movement patterns differed based on species-specific habitat use. This spatial partitioning may promote positive co-existence between these sympatric canids in urban areas, and our findings of spatial activity and interactions will better inform wildlife managers working in urban areas.
Coexistence of coyotes (Canis latrans) and red foxes (Vulpes vulpes) in an urban landscape
Drake, David; Allen, Maximilian L.
2018-01-01
Urban environments are increasing worldwide and are inherently different than their rural counterparts, with a variety of effects on wildlife due to human presence, increased habitat fragmentation, movement barriers, and access to anthropogenic food sources. Effective management of urban wildlife requires an understanding of how urbanization affects their behavior and ecology. The spatial activity and interactions of urban wildlife, however, have not been as rigorously researched as in rural areas. From January 2015 to December 2016, we captured, radio-collared, and tracked 11 coyotes and 12 red foxes in Madison, WI. Within our study area, coyotes strongly selected home ranges with high proportions of natural areas; conversely, red foxes selected home ranges with open space and moderately developed areas. Use of highly developed areas best explained variation among individual home range sizes and inversely affected home range size for coyotes and red foxes. Coyote and red fox home ranges showed some degree of spatial and temporal overlap, but generally appeared partitioned by habitat type within our study area. Coyotes and red foxes were both active at similar times of the day, but their movement patterns differed based on species-specific habitat use. This spatial partitioning may promote positive co-existence between these sympatric canids in urban areas, and our findings of spatial activity and interactions will better inform wildlife managers working in urban areas. PMID:29364916
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
Concentrating buildings and socio-economic activities, urban areas are particularly vulnerable to hydrological risks. Modification in climate may intensify already existing issues concerning stormwater management (due to impervious area) and water supply (due to the increase of the population). In this context, water use efficiency and best water management practices are key-issues in the urban environment already stressed. Blue and green infrastructures are nature-based solutions that provide synergy of the blue and green systems to provide multifunctional solutions and multiple benefits: increased amenity, urban heat island improvement, biodiversity, reduced energy requirements... They are particularly efficient to reduce the potential impact of new and existing developments with respect to stormwater and/or water supply issues. The Multi-Hydro distributed rainfall-runoff model represents an adapted tool to manage the impacts of such infrastructures at the urban basin scale. It is a numerical platform that makes several models interact, each of them representing a specific portion of the water cycle in an urban environment: surface runoff and infiltration depending on a land use classification, sub-surface processes and sewer network drainage. Multi-Hydro is still being developed at the Ecole des Ponts (open access from https://hmco.enpc.fr/Tools-Training/Tools/Multi-Hydro.php) to take into account the wide complexity of urban environments. The latest advancements have made possible the representation of several blue and green infrastructures (green roof, basin, swale). Applied in a new urban development project located in the Paris region, Multi-Hydro has been used to simulate the impact of blue and green infrastructures implementation. It was particularly focused on their ability to fulfil regulation rules established by local stormwater managers in order to connect the parcel to the sewer network. The results show that a combination of several blue and green infrastructures, if they are widely implemented, could represent an efficient tool to ensure regulation rules at the parcel scale.
Rural-urban migration and socioeconomic development in Ghana: some discussions.
Twumasi-ankrah, K
1995-01-01
This article presents a discussion of rural-urban migration as a source of social and behavioral change in Ghana. It explores the extent to which the urban social environment in Ghana generates conflicts for migrants with a different value orientation and the degree of influence of the urban social environment on migrants' behavior. The first part of the discussion focuses on the nature of Ghana's urbanization process, the motivation and characteristics of rural-urban migrants, and the nature of the social interaction between migrants and the social urban environment. Migrants contribute directly and indirectly to rural development in many ways. Some urban migrants achieve economic and material wealth and, through their attachment to voluntary tribal associations, assist local community development. Government can augment this process of migrant investment in rural life by identifying these actions as patriotic efforts and awarding citizenship medals or challenge grants. Governments need to review their citizenship laws carefully in light of the "brain drain" issues in the new world order and maximize the flow of resources, technical skills, and ideas from international migrants. A high-quality rural labor force can be enticed to live in rural areas by offering higher salaries and benefits, low income tax rates, better housing, and rural electrification and sanitation. Private firms should be offered incentives to locate in rural areas and increase employment opportunities for rural labor. Career advancement of development planners should be tied to program success or some form of public accountability for careful allocation of resources in rural areas. Fertility policies should be sensitive to urban subgroups. Urban and rural social differences are minor and do not impede urban assimilation, but unemployment and underemployment are problems for many.
Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan
2017-07-15
The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation measures need development to make them relevant to various climates and throughout the year. There are also many possible sources of future study, and alternative measures for mitigation have been described, thereby providing scope for future research and development following this review. Copyright © 2017 Elsevier Ltd. All rights reserved.
Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorado, 1997
Apodaca, L.E.; Bails, J.B.; Smith, C.M.
2002-01-01
Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water-quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground-water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground-water quality in the study area.
The nexus between urbanization and PM2.5 related mortality in China.
Liu, Miaomiao; Huang, Yining; Jin, Zhou; Ma, Zongwei; Liu, Xingyu; Zhang, Bing; Liu, Yang; Yu, Yang; Wang, Jinnan; Bi, Jun; Kinney, Patrick L
2017-08-01
The launch of China's new national urbanization plan, coupled with increasing concerns about air pollution, calls for better understandings of the nexus between urbanization and the air pollution-related health. Based on refined estimates of PM 2.5 related mortality in China, we developed an Urbanization-Excess Deaths Elasticity (U-EDE) indicator to measure the marginal PM 2.5 related mortality caused by urbanization. We then applied statistical models to estimate U-EDE and examined the modification effects of income on U-EDE. Urbanization in China between 2004 and 2012 led to increased PM 2.5 related mortality. A 1% increase in urbanization was associated with a 0.32%, 0.14%, and 0.50% increase in PM 2.5 related mortality of lung cancer, stroke, and ischemic heart disease. U-EDEs were modified by income with an inverted U curve, i.e., lower marginal impacts at the lowest and highest income levels. In addition, we projected the future U-EDE trend of China as a whole and found that China had experienced the peak of U-EDE and entered the second half of the inverted U-shaped curve. In the near future, national average U-EDE in China will decline along with the improvement of income level if no dramatic changes happen. However, the decreased U-EDE only implies that marginal PM 2.5 -related mortality brought by urbanization would decrease in China. Total health damage of urbanization will keep going up in the predictable future because the U-EDE is always positive. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of Urban Growth in Edwardsville Illinois Using Remote Sensing and Population Change
NASA Astrophysics Data System (ADS)
Onuoha, Hilda U.
Rapid urbanization is one of the many critical, global issues. This very significant social and economic phenomenon has brought about much debate in the past twenty years and has become a very important policy issue. Understanding its dynamics and patterns is important to develop appropriate policies and make more informed planning decisions. Many dimensions to the urban land growth have been identified in related literature including drivers, relationship with other factors like population, impacts, and methods of measurement. In this study, urban growth in the Edwardsville area (composed of Edwardsville and Glen Carbon, Illinois) is analyzed spatio-temporally using remote sensing and population change from 1990 to 2015. The objectives of this study are (a) identifying the major land use changes in the Edwardsville area from 1990 to 2015, (b) analyzing the rate of urban growth and its relationship to population change in the area from 1990 to 2015, (c) identifying the general pattern and direction of urban growth in the study area. Using multi-temporal satellite images to classify and derive changes in land cover classes during the study period, results showed that the land cover classes with major changes are the urban/built-up land and agricultural/grassland, with a steady increase in the former and steady decrease in the later. Results also show the highest rate of increase in urban land was between 2000 and 2010. In comparison to population, the both show increase over the study years but urban land shows a higher rate of increase indicating dispersion. To analyze urban growth pattern in the area, the study area was divided into three zones: NE, SE, and W. The SE zone showed the highest amount of the growth and from the results, the infill type of growth was inferred.
NASA Astrophysics Data System (ADS)
Tsai, Y.; Turnbull, S.; Zia, A.
2015-12-01
In rural areas where farming competes with urban development and environmental amenities, urban and forest transitions occur simultaneously at different locales with different rates due to the underlying socio-economic shifts. Here we develop an interactive land use transition agent-based model (ILUTABM) in which farmers' land use decisions are made contingent on expansion and location choices of urban businesses and urban residences, as well as farmers' perceived ecosystem services produced by their land holdings. The ILUTABM simulates heterogeneity in land use decisions at parcel levels by differentiating decision making processes for agricultural and urban landowners. Landowners are simulated to make land-use transition decisions as bounded rational agents that maximize their partial expected utility functions under different underlying socio-economic conditions given the category of a landowner and the spatial characteristics of the landowner's landholdings. The ILUTABM is parameterized by spatial data sets such as National Land Cover Database (NLCD), zoning, parcels, property prices, US census, farmers surveys, building/facility characteristics, soil, slope and elevation. We then apply the ILUTABM to the rural Vermont landscape, located in the Northeast Arm District of Lake Champlain and the downstream sub-watersheds of Missisquoi River, to generate phase transitions of rural land towards urban land near peri-urban areas and towards forest land near financially stressed farmlands during 2001-2051. Possible tipping point trajectories of rural land towards regional forest or urban transition are simulated under three socio-economic scenarios: business as usual (ILUTABM calibrated to 2011 NLCD), increased incentives for conservation easements, and increased incentives for attracting urban residences and businesses.
Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin
NASA Astrophysics Data System (ADS)
Gudoshava, M.; Semazzi, F. H. M.
2014-12-01
In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.
Maia, Alexandre Gori; Sakamoto, Camila Strobl
2016-11-01
This study analysed the impact of changing family structure on income distribution. Specifically, it analysed how changes in the proportions of different categories of family in the population contributed to increases in the income of the richest and poorest social strata in Brazil, and the consequent impacts on income inequality. Rural and urban families were compared in order to understand how these dynamics had different impacts on more developed (urban) and less developed (rural) areas. The results emphasize how changes observed in family structure are more pronounced among the richest families, contributing to an increase in (i) the income of the richest families and (ii) income inequality between the richest and poorest families, as well as between urban and rural areas.
Urbanization disrupts latitude-size rule in 17-year cicadas.
Beasley, DeAnna E; Penick, Clint A; Boateng, Nana S; Menninger, Holly L; Dunn, Robert R
2018-03-01
Many ectotherms show a decrease in body size with increasing latitude due to changes in climate, a pattern termed converse Bergmann's rule. Urban conditions-particularly warmer temperatures and fragmented landscapes-may impose stresses on development that could disrupt these body size patterns. To test the impact of urbanization on development and latitudinal trends in body size, we launched a citizen science project to collect periodical cicadas ( Magicicada septendecim ) from across their latitudinal range during the 2013 emergence of Brood II. Periodical cicadas are long-lived insects whose distribution spans a broad latitudinal range covering both urban and rural habitats. We used a geometric morphometric approach to assess body size and developmental stress based on fluctuating asymmetry in wing shape. Body size of rural cicadas followed converse Bergmann's rule, but this pattern was disrupted in urban habitats. In the north, urban cicadas were larger than their rural counterparts, while southern populations showed little variation in body size between habitats. We detected no evidence of differences in developmental stress due to urbanization. To our knowledge, this is the first evidence that urbanization disrupts biogeographical trends in body size, and this pattern highlights how the effects of urbanization may differ over a species' range.
Tüzün, Nedim; Op de Beeck, Lin; Brans, Kristien I; Janssens, Lizanne; Stoks, Robby
2017-12-01
The rapidly increasing rate of urbanization has a major impact on the ecology and evolution of species. While increased temperatures are a key aspect of urbanization ("urban heat islands"), we have very limited knowledge whether this generates differentiation in thermal responses between rural and urban populations. In a common garden experiment, we compared the thermal performance curves (TPCs) for growth rate and mortality in larvae of the damselfly Coenagrion puella from three urban and three rural populations. TPCs for growth rate shifted vertically, consistent with the faster-slower theoretical model whereby the cold-adapted rural larvae grew faster than the warm-adapted urban larvae across temperatures. In line with costs of rapid growth, rural larvae showed lower survival than urban larvae across temperatures. The relatively lower temperatures hence expected shorter growing seasons in rural populations compared to the populations in the urban heat islands likely impose stronger time constraints to reach a certain developmental stage before winter, thereby selecting for faster growth rates. In addition, higher predation rates at higher temperature may have contributed to the growth rate differences between urban and rural ponds. A faster-slower differentiation in TPCs may be a widespread pattern along the urbanization gradient. The observed microgeographic differentiation in TPCs supports the view that urbanization may drive life-history evolution. Moreover, because of the urban heat island effect, urban environments have the potential to aid in developing predictions on the impact of climate change on rural populations.
Nutrient removal of agricultural drainage water using algal turf scrubbers and solar power
USDA-ARS?s Scientific Manuscript database
Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...
ERIC Educational Resources Information Center
Glaeser, Edward L.
2012-01-01
Urbanization almost invariably accompanies development, and the cities of India and China are experiencing spectacular increases in population. The concentration of millions of people in a small mass creates challenges for public policy, especially in the areas of basic infrastructure, public health, traffic congestion, and often law enforcement…
Monitoring the expansion of built-up areas in Seberang Perai region, Penang State, Malaysia
NASA Astrophysics Data System (ADS)
Samat, N.
2014-02-01
Rapid urbanization has caused land use transformation and encroachment of built environment into arable agriculture land. Uncontrolled expansion could bring negative impacts to society, space and the environment. Therefore, information on expansion and future spatial pattern of built-up areas would be useful for planners and decision makers in formulating policies towards managing and planning for sustainable urban development. This study demonstrates the usage of Geographic Information System in monitoring the expansion of built-up area in Seberang Perai region, Penang State, Malaysia. Built-up area has increased by approximately 20% between 1990 and 2001 and further increased by 12% between 2001 and 2007. New development is expected to continue encroach into existing open space and agriculture area since those are the only available land in this study area. The information on statistics of the expansion of built-up area and future spatial pattern of urban expansion were useful in planning and managing urban spatial growth.
Evidence of Urban-Induced Precipitation Variability in Arid Climate Regimes
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall
2005-01-01
Water is essential to life in the Earth system. The water cycle components that sustain life are becoming more scarce and polluted. The most recent (1999-2004) drought experienced in the southwestern United States is the seventh worst in the approximately 500-year proxy tree-ring record. As a result, many regions contemplated drought emergencies in which severe water restrictions are implemented. Though larger weather and climate processes likely control drought processes, there is increasing evidence that anthropogenic or human-related activities can significantly alter precipitation processes. Urbanization is an example of anthropogenic forcing. Recent studies continue to provide evidence that urban environments can modify or induce precipitation under a specific set of conditions. Arid and semi-arid regions of the southwestern United States and other parts of the world are rapidly developing and placing greater demands on the environmental system. In the past fifty years, Phoenix has expanded from a predominantly agricultural center to an urbanized region with extent 700 percent larger than its size in the middle of the twentieth century. Riyadh's population grew from about a half million people in 1972 to almost two million by 2000. Saudi Arabia experienced urbanization later than many other countries; in the early 1970s its urban-rural ratio was still about 1:3. By 1990 the ratio had reversed to about 3:l. In the mid-1970s Riyadh's population was increasing by about 10 percent a year. Irrigation also significantly increased between 1972 and 1990 southeast of Riyadh. The study employs a 108-year precipitation historical data record, global climate observing network observations and satellite data to identify possible anomalies in rainfall in and around two major arid urban areas, Phoenix, Arizona and Riyadh, Saudi Arabia. It provides statistically sound evidence that rainfall distribution and magnitude is statistically different in post-urban than in pre-urban (1900-1950) Phoenix. The study hypothesis that a complex interaction between the city landscape, irrigated lands, and nearby mountains have created preferred regions for rainfall development. The study also provides early evidence that rapidly urbanizing parts of the arid Middle East may also be experiencing different precipitation regimes in response to urbanization and irrigation.
Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools
NASA Astrophysics Data System (ADS)
Seto, K. C.; Guneralp, B.; Hutyra, L.
2012-12-01
Urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. Yet, despite projections that world urban populations will increase to 4.3 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop the first global probabilistic forecasts of urban land cover change and explore the impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue, then by 2030, urban land cover will expand between 800,000 and 3.3 million km2, representing a doubling to five-fold increase from the global urban land cover in 2000. This would result in considerable loss of habitats in key biodiversity hotspots, including the Guinean forests of West Africa, Tropical Andes, Western Ghats and Sri Lanka. Within the pan-tropics, loss in forest biomass from urban expansion is estimated to be 1.38 PgC (0.05 PgC yr-1), equal to approximately 5% of emissions from tropical land use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and forest carbon losses.
Analyzing urban ecosystem variation in the City of Dongguan: A stepwise cluster modeling approach.
Sun, J; Li, Y P; Gao, P P; Suo, C; Xia, B C
2018-06-13
In this study, a stepwise cluster modeling approach (SCMA) is developed for analyzing urban ecosystem variation via Normalized Difference Vegetation Index (NDVI). NDVI is an indicator of vegetation growth and coverage and useful in reflecting urban ecosystem. SCMA is established on a cluster tree that can characterize the complex relationship between independent and dependent variables. SCMA is applied to the City of Dongguan for simulating the urban NDVI and identifying associated drivers of human activity, topography and meteorology without specific functions. Results show that SCMA performances better than conventional statistical methods, illustrating the ability of SCMA in capturing the complex and nonlinear features of urban ecosystem. Results disclose that human activities play negative effects on NDVI due to the destruction of green space for pursuing more space for buildings. NDVI reduces gradually from the south part to the north part of Dongguan due to increased gross domestic product and population density, indicating that the ecosystem in Dongguan is better in the south part. NDVI in the northeast part (dominated by agriculture) is sensitive to the growth of economy and population. More attention should be paid to this part for sustainable development, such as increasing afforestation, planting grass and constructing parks. Precipitation has a positive effect on NDVI due to the promotion of soil moisture that is beneficial to plants' growth. Awareness of these complexities is helpful for sustainable development of urban ecosystem. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ning; Yearsley, John; Baptiste, Marisa
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution.more » DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 ºC), TSS load (up to 182%), and TP load (up to 74%).« less
NASA Astrophysics Data System (ADS)
García-Gil, Alejandro; Epting, Jannis; Mueller, Matthias H.; Huggenberger, Peter; Vázquez-Suñé, Enric
2015-04-01
In urban areas the shallow subsurface often is used as a heat resource (shallow geothermal energy), i.e. for the installation and operation of a broad variety of geothermal systems. Increasingly, groundwater is used as a low-cost heat sink, e.g. for building acclimatization. Together with other shallow geothermal exploitation systems significantly increased groundwater temperatures have been observed in many urban areas (urban heat island effect). The experience obtained from two selected case study cities in Basel (CH) and Zaragoza (ES) has allowed developing concepts and methods for the management of thermal resources in urban areas. Both case study cities already have a comprehensive monitoring network operating (hydraulics and temperature) as well as calibrated high-resolution numerical groundwater flow and heat-transport models. The existing datasets and models have allowed to compile and compare the different hydraulic and thermal boundary conditions for both groundwater bodies, including: (1) River boundaries (River Rhine and Ebro), (2) Regional hydraulic and thermal settings, (3) Interaction with the atmosphere under consideration of urbanization and (4) Anthropogenic quantitative and thermal groundwater use. The potential natural states of the considered groundwater bodies also have been investigated for different urban settings and varying processes concerning groundwater flow and thermal regimes. Moreover, concepts for the management of thermal resources in urban areas and the transferability of the applied methods to other urban areas are discussed. The methods used provide an appropriate selection of parameters (spatiotemporal resolution) that have to be measured for representative interpretations of groundwater flow and thermal regimes of specific groundwater bodies. From the experience acquired from the case studies it is shown that understanding the variable influences of the specific geological and hydrogeological as well as hydraulic and thermal boundary conditions in urban settings is crucial. It also could be shown that good quality data are necessary to appropriately define and investigate thermal boundary conditions and the temperature development in urban systems. Groundwater temperatures in both investigated groundwater bodies are already over-heated and essentially impede further thermal groundwater use for cooling purposes. Current legislation approaches are not suitable to evaluate new concessions for thermal exploitation. Therefore, novel approaches for the assessment of new concessions which take into account the complex interaction of natural boundaries as well as existing shallow geothermal systems have to be developed.
Urban compaction or dispersion? An air quality modelling study
NASA Astrophysics Data System (ADS)
Martins, Helena
2012-07-01
Urban sprawl is altering the landscape, with current trends pointing to further changes in land use that will, in turn, lead to changes in population, energy consumption, atmospheric emissions and air quality. Urban planners have debated on the most sustainable urban structure, with arguments in favour and against urban compaction and dispersion. However, it is clear that other areas of expertise have to be involved. Urban air quality and human exposure to atmospheric pollutants as indicators of urban sustainability can contribute to the discussion, namely through the study of the relation between urban structure and air quality. This paper addresses the issue by analysing the impacts of alternative urban growth patterns on the air quality of Porto urban region in Portugal, through a 1-year simulation with the MM5-CAMx modelling system. This region has been experiencing one of the highest European rates of urban sprawl, and at the same time presents a poor air quality. As part of the modelling system setup, a sensitivity study was conducted regarding different land use datasets and spatial distribution of emissions. Two urban development scenarios were defined, SPRAWL and COMPACT, together with their new land use and emission datasets; then meteorological and air quality simulations were performed. Results reveal that SPRAWL land use changes resulted in an average temperature increase of 0.4 °C, with local increases reaching as high as 1.5 °C. SPRAWL results also show an aggravation of PM10 annual average values and an increase in the exceedances to the daily limit value. For ozone, differences between scenarios were smaller, with SPRAWL presenting larger concentration differences than COMPACT. Finally, despite the higher concentrations found in SPRAWL, population exposure to the pollutants is higher for COMPACT because more inhabitants are found in areas of highest concentration levels.
Kuwahara, Y; Kondoh, J; Tatara, K; Azuma, E; Nakajima, T; Hashimoto, M; Komachi, Y
2001-03-01
Airway allergic diseases, such as bronchial asthma and allergic rhinitis, have increased, especially in urban areas. These diseases are characterized by airway inflammation with enhanced eosinophil activity, and the risk of disease development has been shown to increase with the prevalence of atopy. Questionnaires were administered to 426 healthy adult women aged 30-74 years, living in an urban area of Osaka, Japan, to survey individual living environments and airway allergic symptoms such as cough, sputum, and wheezing. Moreover, serum house-dust-mite (Dermatophagoides pteronyssinus, [Der p])-specific immunoglobulin E (IgE) and serum eosinophil cationic protein (ECP) were examined by radioimmunoassay, and the atopic status (atopic sensitization) and enhanced eosinophil activity were assessed as Der p-specific IgE RAST scores of 2-6 and ECP levels of more than 10 ng/ml, respectively. Intensive use of electric air conditioners in hot weather (odds ratio: 2.07 [95% CI: 1.11-3.87]) and mold proliferation in the kitchen (2.77 [1.34-5.73]) significantly increased the risk of atopic sensitization. Poor home ventilation and family smoking appeared to be positively but not significantly associated with atopic sensitization. Personal smoking and intensive use of the air conditioner appeared to be positively related to enhanced eosinophil activity. Atopic status showed significant involvement in the development of wheezing, and the development of cough was significantly associated with enhanced eosinophil activity. The results suggest that some urban styles of living are involved in atopic sensitization and enhanced eosinophil activity in the Japanese urban population, probably due to living conditions, such as indoor dampness and poor home ventilation, caused by tight insulation, which increase exposure to indoor air pollutants, such as respirable mite allergens and tobacco smoke.
NASA Astrophysics Data System (ADS)
Dovbysh, V. O.; Burakova, L. N.; Burakova, A. D.
2018-01-01
The article raises the problem of the maintenance of the urban area in winter, namely, the problem of disposal of snow masses from the urban area. The article describes the main disadvantages of the existing snow-melting systems for the utilization of city snow mass and are encouraged to develop an installation for melting of snow, functioning at the expense of power consumption. The developed installation allows to reduce the noise level during its operation, to exclude the influence of exhaust gases on the environment, therefore, to improve the environmental safety of the urban infrastructure.
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.; Takakuwa, S.
2016-12-01
Economic development in Southeast Asia megacities leads to rapid transformation into more complicated urban configurations. These configurations, including building geometry, enhance aerodynamic drag thus reducing near-surface wind speeds. Roughness parameters representing building geometry, along with anthropogenic heat emissions, contribute to the formation of urban heat islands (UHI). All these have been reproduced successfully in the Weather Research and Forecasting (WRF) Model coupled with an improved single-layer urban canopy model incorporating a realistic distribution of urban parameters and anthropogenic heat emission in the Jakarta Greater Area. We apply this technology to climate change studies by introducing future urbanization defined by urban sprawl, vertical rise in buildings, and increase anthropogenic heat emission (AHE) due to population changes, into futuristic climate modelling. To simulate 2050s future climate, pseudo-global warming method was used which relied on current and ensembles of 5 CMIP5 GCMs for 2 representative concentration pathways (RCP), 2.6 and 8.5. To determine future urbanization level, 2050 population growth and energy consumption were estimated from shared socioeconomic pathways (SSP). This allows the estimation of future urban sprawl, building geometry, and AHE using the SLEUTH urban growth model and spatial growth assumptions. Two cases representing combinations of RCP and SSP were simulated in WRF: RCP2.6-SSP1 and RCP8.5-SSP3. Each case corresponds to best and worst-case scenarios of implementing adaptation and mitigation strategies, respectively. It was found that 2-m temperature of Jakarta will increase by 0.62°C (RCP2.6) and 1.44°C (RCP8.5) solely from background climate change; almost on the same magnitude as the background temperature increase of RCP2.6 (0.5°C) and RCP8.5 (1.2°C). Compared with previous studies, the result indicates that the effect of climate change on UHI in tropical cities may be lesser than cities located in the mid-latitudes. However, it is expected that the combined effect of urbanization and climate change will result to significant changes on future urban temperature. ACK: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea
2015-02-01
Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Forecasting land use change and its environmental impact at a watershed scale.
Tang, Z; Engel, B A; Pijanowski, B C; Lim, K J
2005-07-01
Urban expansion is a major driving force altering local and regional hydrology and increasing non-point source (NPS) pollution. To explore these environmental consequences of urbanization, land use change was forecast, and long-term runoff and NPS pollution were assessed in the Muskegon River watershed, located on the eastern coast of Lake Michigan. A land use change model, LTM, and a web-based environmental impact model, L-THIA, were used in this study. The outcomes indicated the watershed would likely be subjected to impacts from urbanization on runoff and some types of NPS pollution. Urbanization will slightly or considerably increase runoff volume, depending on the development rate, slightly increase nutrient losses in runoff, but significantly increase losses of oil and grease and certain heavy metals in runoff. The spatial variation of urbanization and its impact were also evaluated at the subwatershed scale and showed subwatersheds along the coast of the lake and close to cities would have runoff and nitrogen impact. The results of this study have significant implications for urban planning and decision making in an effort to protect and remediate water and habitat quality of Muskegon Lake, which is one of Lake Michigan's Areas of Concern (AOC), and the techniques described here can be used in other areas.
Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-03-01
The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.
Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald
2014-01-01
Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890
NASA Astrophysics Data System (ADS)
Kort, E. A.; Ware, J.; Duren, R. M.; Schimel, D.; Miller, C. E.; Decola, P.
2014-12-01
Urban regions play a dominant role in the anthropogenic perturbation to atmospheric carbon dioxide and methane. With increasing urbanization (notably in developing nations) and increasing emissions, quantitative observational information on emissions of CO2 and CH4 becomes critical for improved understanding of the global carbon cycle and for carbon management/policy decisions. In this presentation, we will discuss the impact uncertainty in anthropogenic emissions has on global carbon-climate understanding, providing broad geophysical motivation for urban studies. We will further discuss observations of urban regions at different scales (satellite vs. in-situ), and investigate the information content of these complementary methods for answering targeted questions on both global carbon fluxes and regional management decisions. Finally, we will present new attempts at reducing uncertainty in high-resolution inversions leveraging remotely sensed aerosol profiles to constrain both mixing depths and vertical distributions of trace gases.
Hale, James D.; Fairbrass, Alison J.; Matthews, Tom J.; Sadler, Jon P.
2012-01-01
Background Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Conclusions/Significance Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification. PMID:22428015
Hale, James D; Fairbrass, Alison J; Matthews, Tom J; Sadler, Jon P
2012-01-01
Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km(2) scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification.
Neighborhood Variation of Sustainable Urban Morphological Characteristics.
Lai, Poh-Chin; Chen, Si; Low, Chien-Tat; Cerin, Ester; Stimson, Robert; Wong, Pui Yun Paulina
2018-03-07
Compact cities and their urban forms have implications on sustainable city development because of high density urban settlement, increased accessibility, and a balanced land use mix. This paper uses quantitative means of understanding urban morphological characteristics with reference to the differing qualities of the urban form (i.e., street patterns, building volumes, land uses and greenery). The results, based on 89 neighborhood communities of Hong Kong, show varying degrees of regional differences in the urban built form supported by numerical statistics and graphical illustrations. This paper offers empirical evidence on some morphological characteristics that can be estimated objectively using modern geospatial technologies and applied universally to inform urban planning. However, more studies linking these quantifiable measures of the physical form with sustainable urban living are needed to account for human comfort in the totality of environmental, social, and economic responsibilities.
Neighborhood Variation of Sustainable Urban Morphological Characteristics
Chen, Si; Stimson, Robert
2018-01-01
Compact cities and their urban forms have implications on sustainable city development because of high density urban settlement, increased accessibility, and a balanced land use mix. This paper uses quantitative means of understanding urban morphological characteristics with reference to the differing qualities of the urban form (i.e., street patterns, building volumes, land uses and greenery). The results, based on 89 neighborhood communities of Hong Kong, show varying degrees of regional differences in the urban built form supported by numerical statistics and graphical illustrations. This paper offers empirical evidence on some morphological characteristics that can be estimated objectively using modern geospatial technologies and applied universally to inform urban planning. However, more studies linking these quantifiable measures of the physical form with sustainable urban living are needed to account for human comfort in the totality of environmental, social, and economic responsibilities. PMID:29518956
Li, Xia; Mitra, Chandana; Dong, Li; ...
2017-02-02
In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xia; Mitra, Chandana; Dong, Li
In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xia; Mitra, Chandana; Dong, Li
To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, butmore » expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region. (C) 2017 Elsevier Ltd. All rights reserved.« less
Ibáñez, Luis; Sanzana, Ruth; Salas, Carlos; Navarrete, Claudia; Cartes-Velásquez, Ricardo; Rainqueo, Angélica; Jara, Tamara; Pérez-Bravo, Francisco; Ulloa, Natalia; Calvo, Carlos; Miquel, Juan F; Celis-Morales, Carlos
2014-08-01
Metabolic Syndrome (MS) increases the risk of diabetes and mortality associated with cardiovascular disease. However, the prevalence of MS could differ by ethnicity and lifestyle factors. To determine the prevalence of MS in Mapuche individuals living in urban and rural environments in Chile and to investigate whether the prevalence and risk of MS in urban and rural environments differs by sex, age and nutritional status. A total of 1077 Mapuche participants were recruited from urban (MU = 288) and rural (MR = 789) settings. Body mass index, waist circumference and blood pressure were measured. A fasting blood sample was obtained to measure serum glucose, HDL cholesterol and triacylglycerol. The prevalence of MS was determined using the unified IDF and ATP-III criteria. An environment and sex interaction was found for the prevalence of MS (p = 0.042). The prevalence was significantly lower in male MR (13%) compared to other groups (22, 23 and 25% among female MR, female MU and male MU respectively). Also, the prevalence of central obesity and low HDL-cholesterol were significantly lower in male MR. MU are at an increased risk of developing MS compared to MR, with an odds ratio of 1.59 (95% confidence intervals 1.1 to 2.2). This risk increases along with age or body mass index of the population. The adoption of an urbanized lifestyle increases the risk of developing MS in Mapuche individuals. This risk is enhanced by age and nutritional status.
Analysis of Urban Forest Needs as Anthropogenic (CO2) Gas Absorbent in Semarang City
NASA Astrophysics Data System (ADS)
Febriani, Anisa Putri; Retnaningsih Soeprobowati, Tri; Maryono
2018-02-01
Green open space in cities in significant needs to maintenance environment quality. On of the critical function is to absorb increasing number of gas CO2. Therefore, developing urban forest in cities is very importance. The objective of the study is to determine the area of urban forest as CO2 gas anthropogenic absorb which is formed from fuel, diesel fuel, liquid petroleum gas. The study consists of (1) Analyzing the number of CO2 gas emission by calculating the needs of petroleum and gas based on the number of population, (2) Analyzing the power of gas absorption, (3) Measuring the air concentration of CO2 gas ambient based on daily traffic activities. This study shown that from year 2013 to year 2017, the increasing of urban forest is not so significant. For year 2013 the green open space in Semarang City are 373.67 hectares (7.5 percent from Semarang City area), consists of 239 parks, 11 public cemeteries, production forests, community forests, and urban forests, however the area of urban forest is not increase. The study assess that Antidesmabunius is one of the green species which high absorb capacity planted for Semarang. This trees produce 31,31 ton annually. This study proposed to fostering Antidesmabunius as one principle threes in Semarang urban forest.
Urban growth and the water regimen
Savini, John; Kammerer, J.C.
1961-01-01
The continuing growth and concentration of population and industry in urban and suburban areas in recent decades has caused a complex merging of social, economic, and physical problems, The interrelationships of man and his use and development of the land and water resources is a particularly significant aspect of urbanization, but there has been relatively little study to date of the effect of urban man upon natural hydrologic conditions. As urban man changes an area from one of field and forest to one of buildings and streets, he covers land where water once entered the soil, and thus creates or aggravates problems of drainage, including storm-water runoff. As he requires increasing amounts of water for home and factory, he drills deeper wells, and builds longer aqueducts and larger dams and reservoirs. As he disposes of un- wanted waste materials, he either treats them by using water or pollutes the receiving body of water. As he dredges and deepens coastal streams carrying salt water, and he pumps greater quantities of water from wells in coastal areas, he increases the likelihood of salt-water contamination. These and many other urban effects upon hydrology deserve increasing study if we are to provide for the best use of the water and land resources available to the Nation's urban centers.
NASA Astrophysics Data System (ADS)
Chen, Y.
2017-12-01
Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.
Bates, Carolyn R; Bohnert, Amy M; Gerstein, Dana E
2018-01-01
Children from low-income families are increasingly growing up in urban areas with limited access to nature. In these environments, strategies that promote access to natural outdoor spaces, such as green schoolyards, may enhance positive youth development outcomes by promoting physical activity (PA) and prosocial behavior, as well as increasing perceptions of safety. The current study examines children's PA and social interactions, as well as caregiver and teacher perceptions of safety, injuries, teasing/bullying, and gang activity on three newly renovated green schoolyards in low-income urban neighborhoods. A multi-method strategy, including behavioral mapping and caregiver- and teacher-reported surveys, was utilized at three time points to examine positive youth development outcomes and maintenance of effects over time. Analyses revealed that children evidenced a range of PA on the green schoolyards and demonstrated significant decreases in sedentary activity over time. The majority of children were engaged in social interactions with peers on the green schoolyards when observed. Less than 3% of interactions were negative and follow-up analyses found significant increases in positive interactions on the green schoolyards up to 24 months post-renovation. Caregivers and teachers reported increased perceptions of safety, fewer injuries, less teasing/bullying, and less gang-related activity on the renovated green schoolyards in comparison to the pre-renovation schoolyards, and these effects were maintained up to 32 months post-renovation. Overall, the study suggests that green schoolyards may promote positive development outcomes among youth living in urban, low-income neighborhoods by providing natural and safe spaces for PA and prosocial behavior.
NASA Astrophysics Data System (ADS)
Su, Weizhong
2017-03-01
There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rural land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed-scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.
Global Urban Mapping and Modeling for Sustainable Urban Development
NASA Astrophysics Data System (ADS)
Zhou, Y.; Li, X.; Asrar, G.; Yu, S.; Smith, S.; Eom, J.; Imhoff, M. L.
2016-12-01
In the past several decades, the world has experienced fast urbanization, and this trend is expected to continue for decades to come. Urbanization, one of the major land cover and land use changes (LCLUC), is becoming increasingly important in global environmental changes, such as urban heat island (UHI) growth and vegetation phenology change. Better scientific insights and effective decision-making unarguably require reliable science-based information on spatiotemporal changes in urban extent and their environmental impacts. In this study, we developed a globally consistent 20-year urban map series to evaluate the time-reactive nature of global urbanization from the nighttime lights remote sensing data, and projected future urban expansion in the 21st century by employing an integrated modeling framework (Zhou et al. 2014, Zhou et al. 2015). We then evaluated the impacts of urbanization on building energy use and vegetation phenology that affect both ecosystem services and human health. We extended the modeling capability of building energy use in the Global Change Assessment Model (GCAM) with consideration of UHI effects by coupling the remote sensing based urbanization modeling and explored the impact of UHI on building energy use. We also investigated the impact of urbanization on vegetation phenology by using an improved phenology detection algorithm. The derived spatiotemporal information on historical and potential future urbanization and its implications in building energy use and vegetation phenology will be of great value in sustainable urban design and development for building energy use and human health (e.g., pollen allergy), especially when considered together with other factors such as climate variability and change. Zhou, Y., S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson & M. Imhoff (2014) A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sensing of Environment, 147, 173-185. Zhou, Y., S. J. Smith, K. Zhao, M. Imhoff, A. Thomson, B. Bond-Lamberty, G. R. Asrar, X. Zhang, C. He & C. D. Elvidge (2015) A global map of urban extent from nightlights. Environmental Research Letters, 10, 054011.
Urban Impact at the Urban-Agricultural Interface in Madison, WI: an Ecosystem Modeling Approach
NASA Astrophysics Data System (ADS)
Logan, K. E.; Kucharik, C. J.; Schneider, A.
2009-12-01
Global population and the proportion of people living in urban areas both continue to grow while average urban density is decreasing worldwide. Because urban areas are often located in the most agriculturally productive lands, expansion of the built environment can cause sharp reductions in land available for cultivation. Conversion of land to urban use also significantly alters climate variables. Urban materials differ from natural land covers in terms of albedo, thermal properties, and permeability, altering energy and water cycles. Anthropogenic heat emissions also alter the energy balance in and around a city. Preliminary analysis of urban impacts around Madison, WI, a small city located in a thriving agricultural region, was performed using the National Land Cover Database (NLCD), MODIS albedo products, ground-based observations, and a simulation of urban expansion, within a geographic information system (GIS). Population of the county is expected to increase by 58% while urban density is projected to decrease by 49% between 1992 and 2030, reflecting projected worldwide patterns. Carbon stored in the top 25cm of soil was found to be over 2.5 times greater in remnant prairies than in croplands and was calculated to be even less in urban areas; projected urban development may thus lead to large losses in carbon storage. Albedo measurements also show a significant decrease with urban development. Projected urban expansion between 2001 and 2030 is expected to convert enough agricultural lands to urban areas to result in a loss of 247,000 tons of crop yield in Dane County alone, based on current yields. For a more complete analysis of these impacts, urban parameters are incorporated into a terrestrial ecosystem model known as Agro-IBIS. This approach allows for detailed comparison of energy balance and biogeochemical cycles between local crop systems, lawns, and impervious city surfaces. Changes in these important cycles, in soil carbon storage, and in crop productivity/yield for 1992 - 2001 and projected 2030 development around Madison, WI will be shown.
The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations
NASA Astrophysics Data System (ADS)
Stwertka, C.; Strong, C.
2012-12-01
A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.
Examining the contradiction in 'sustainable urban growth': an example of groundwater sustainability
Zellner, Moira L.; Reeves, Howard W.
2012-01-01
The environmental planning literature proposes a set of 'best management practices' for urban development that assumes improvement in environmental quality as a result of specific urban patterns. These best management practices, however, often do not recognise finite biophysical limits and social impacts that urban patterns alone cannot overcome. To shed light on this debate, we explore the effects of different degrees of urban clustering on groundwater levels using a coupled land-use change and groundwater-flow model. Our simulations show that specific urban forms only slow down the impact on groundwater. As population increases, the pattern in which it is accommodated ceases to matter, and widespread depletion ensues. These results are predictable, yet current planning practice tends to take growth for granted and is reluctant to envision either no-growth scenarios or the prospect of depletion. We propose to use simulations such as those presented here to aid in policy discussions that allow decision makers to question the assumption of sustainable growth and suggest alternative forms of development.
Health anthropology and urban health research.
Obrist, Brigit; VAN Eeuwijk, Peter; Weiss, Mitchell G
2003-12-01
We live in a rapidly urbanising world. According to the 2001 statistics of the United Nations,a the proportion of urban dwellers rose from 30% in 1950 to 47% in 2000 and will probably attain 60% in 2030. Almost 70% of these urban dwellers live in cities of developing regions. At the current rates of urbanisation, the number of city dwellers in the world will equal that of their rural counterparts by 2007. In the late 1980s, researchers became increasingly concerned about the combined impact of rapid urban growth and economic recession on the health of a majority of people in African and Asian cities. Several books established urban health research with a focus on developing countries as a multidisciplinary field of inquiry (Harpham et al., 1988; Salem &Jeannée, 1989). It is now widely recognised that urbanisation per se is not necessarily bad for health, but it becomes so if urban governments fail to establish and support necessary infrastructure and services to protect citizens from environmental hazards and from social, economic and political insecurity.
NASA Astrophysics Data System (ADS)
Geldiyev, P.
2017-12-01
Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.
Energy performance of areas for urban development (Arkhangelsk is given as example)
NASA Astrophysics Data System (ADS)
Popova, Olga; Glebova, Yulia
2017-01-01
The present research provides an overview and analysis of the legal framework and the technology to increase energy save and energy efficiency. The challenges of the mentioned activities implementation in urban areas are revealed in the paper. A comparison was made of the principal methods of increasing energy efficiency that is based on payback period. The basic shortcomings of the methods used are found. The way of capital reproducing assets acquisition is proposed with consideration of the rate of wear and tear and upgrading of urban residential development. The present research aims at characterizing energy sustainability of urban areas for forming the information basis that identifies capital construction projects together within the urban area. A new concept - area energy sustainability is introduced in the study to use system-structural approach to energy saving and energy efficiency. Energy sustainability of the area as an integral indicator of the static characteristics of the territory is considered as a complex involving the following terms: energy security, energy intensity and energy efficiency dynamic indicators of all the components of the power system of the area. Dimensions and parameters of energy sustainability of the area are determined. Arkhangelsk is given as example.
NASA Astrophysics Data System (ADS)
Shafique, Muhammad; Kim, Reeho
2017-06-01
Low impact development (LID)/green infrastructure (GI) practices have been identified as the sustainable practices of managing the stormwater in urban areas. Due to the increasing population, most of the cities are more developing which results in the change of natural area into impervious areas (roads, buildings etc.). Moreover, urbanization and climate change are causing many water-related problems and making over cities unsafe and insecure. Under these circumstances, there is a need to introduce new stormwater management practices into developed cities to reduce the adverse impacts of urbanization. For this purpose, retrofitting low impact development practices demands more attention to reduce these water-related problems and trying to make our cities sustainable. In developed areas, there is a little space is available for the retrofitting of LID practices for the stormwater management. Therefore, the selection of an appropriate place to retrofitting LID practices needs more concern. This paper describes the successfully applied retrofitting LID practices around the globe. It also includes the process of applying retrofitting LID practices at the suitable place with the suitable combination. Optimal places for the retrofitting of different LID practices are also mentioned. This paper also highlights the barriers and potential solutions of retrofitting LID practices in urban areas.
Balancing Heritage Conservation and Sustainable Development - The Case of Bordeaux
NASA Astrophysics Data System (ADS)
Appendino, Federica
2017-10-01
Over the past few decades sustainability concerns have positioned themselves with a central importance to the contemporary debate on the future development of cities, due to fast urbanization, increasing pollution, intensity of climate change and resource consumption. In this worldwide context, the historic city is suffering from pressures never seen before. For this reason, in the historic urban landscape urban conservation strategies have to be integrated within the large goals of sustainable development, as affirmed by the recent UNESCO’s Recommendation on the Historic Urban Landscape adopted in 2011. The Recommendation reflects the actual international attention given in order to find a holistic approach, which integrates urban conservation and development in balance with social, environmental, economic and cultural sustainable considerations. Through this framework, certain questions emerge: how can urban conservation open up to sustainability whilst keeping intact tangible and intangible values and heritage? What are the strategies and policies implemented? Recognizing that sustainability is a primary challenge that urban conservation faces, this paper aims to present the case study of Bordeaux, a port city in south-western France. Since 2007, Bordeaux has been inscribed as an inhabited historic city on the World Heritage List on the basis of an outstanding urban and architectural ensemble. Yet at the same time, it has developed a series of interesting policies in order to avoid a “museification” of the inner city with the aim of ensuring a “historic living city”, able to evolve and develop itself in a sustainable way over time in accordance with its heritage. For these reasons the case of Bordeaux is emblematic to demonstrate the possible adaptation of urban conservation tools in order to take into account sustainability aims and shows a great step forward in wedding heritage preservation and sustainable development, currently still far from being a common practice.
NASA Astrophysics Data System (ADS)
Wattenbach, M.; Delgado, J. M.; Roessner, S.; Bochow, M.; Güntner, A.; Kropp, J.; Cantu Ros, A. G.; Hattermann, F.; Kolbe, T.; Sodoudi, S.; Cubasch, U. Ulrich; Zeitz, J.; Ross, L.; Böckel, K.; Fang, C.; Bo, L.; Pan, G.
2012-04-01
As the world's biggest economy, China is becoming the biggest consumer of resources globally. Given this trend, the over-proportional fast increase in urbanization presents China with fundamental problems. Among the most urgent ones is the increasing loss of agricultural land as urbanization takes place in the most productive regions along the coast. The latter is being responsible for a shift in agriculture production towards climatically less favorable areas. At the same time, the loss of green areas in and around growing cities is increasing the effect of the urban heat island. The perception of the potential risks related to this phenomenon, in the context of climate change, has led the Shanghai city administration to increase its urban-greening efforts, expanding the per capita area of green from 1m2 in 1990 to 12.5m2 in 2008. In this context, this paper aims at identifying the influence of urban and peri-urban agriculture (UPA) on the sustainability of the urban regions of Shanghai and Nanjing. In particular, it focuses on the effects of UPA on the greenhouse gas (GHG) emissions, soil nutrients and water balances, local climate and the structure and functions of the urbanized areas. We propose an interdisciplinary framework combining remote sensing, model simulations and GHG field observations and targeted at identifying "win-win" strategies for sustainable planning pathways showing high potentials for UPA. The framework is based on spatial scenario modeling, automatic classification of urban structure types and on a prototype of a high-quality spatial database consisting of a 3D city model. Dynamic boundary conditions for climate and urban development are provided by state of the art models. These approaches meet the needs of stakeholders and planners in China. A special emphasis is put on interdependencies between small holder farming in the urban and peri-urban zone and climate change adaptation and mitigation strategies focusing on improved management of local water and nutrient cycles. The whole database generated will be structured and made accessible for planners and stakeholders in the form of a 3D city visualization model.
Management of Urban Stormwater Runoff in the Chesapeake Bay Watershed
Hogan, Dianna M.
2008-01-01
Urban and suburban development is associated with elevated nutrients, sediment, and other pollutants in stormwater runoff, impacting the physical and environmental health of area streams and downstream water bodies such as the Chesapeake Bay. Stormwater management facilities, also known as Best Management Practices (BMPs), are increasingly being used in urban areas to replace functions, such as flood protection and water quality improvement, originally performed by wetlands and riparian areas. Scientists from the U.S. Geological Survey (USGS) have partnered with local, academic, and other Federal agency scientists to better understand the effectiveness of different stormwater management systems with respect to Chesapeake Bay health. Management of stormwater runoff is necessary in urban areas to address flooding and water quality concerns. Improving our understanding of what stormwater management actions may be best suited for different types of developed areas could help protect the environmental health of downstream water bodies that ultimately receive runoff from urban landscapes.
Decades of urban growth and development on the Asian megadeltas
NASA Astrophysics Data System (ADS)
Small, Christopher; Sousa, Daniel; Yetman, Gregory; Elvidge, Christopher; MacManus, Kytt
2018-06-01
The current and ongoing expansion of urban areas worldwide represents the largest mass migration in human history. It is well known that the world's coastal zones are associated with large and growing concentrations of population, urban development and economic activity. Among coastal environments, deltas have long been recognized for both benefits and hazards. This is particularly true on the Asian megadeltas, where the majority of the world's deltaic populations reside. Current trends in urban migration, combined with demographic momentum suggest that the already large populations on the Asian megadeltas will continue to grow. In this study, we combine recently released gridded population density (circa 2010) with a newly developed night light change product (1992 to 2012) and a digital elevation model to quantify the spatial distribution of population and development on the nine Asian megadeltas. Bivariate distributions of population as functions of elevation and coastal proximity quantify potential exposure of deltaic populations to flood and coastal hazards. Comparison of these distributions for the Asian megadeltas show very different patterns of habitation with peak population elevations ranging from 2 to 11 m above sea level over a wide range of coastal proximities. Over all nine megadeltas, over 174 million people reside below a peak population elevation of 7 m. Changes in the spatial extent of anthropogenic night light from 1992 to 2012 show widely varying extents and changes of lighted urban development. All of the deltas except the Indus show the greatest increases in night light brightness occurring at elevations <10 m. At global and continental scales, growth of settlements of all sizes takes the form of evolving spatial networks of development. Spatial networks of lighted urban development in Asia show power law scaling properties consistent with other continents, but much higher rates of growth. The three largest networks of development in China all occur on deltas and adjacent lowlands, and are growing faster than the rest of the urban network in China. Since 2000, the Huanghe Delta + North China Plain urban network has surpassed the Japanese urban network in size and may soon connect with the Changjiang Delta + Yangtze River urban network to form the largest conurbation in Asia.
Riley, S.P.D.; Busteed, G.T.; Kats, L.B.; Vandergon, T.L.; Lee, L.F.S.; Dagit, R.G.; Kerby, J.L.; Fisher, R.N.; Sauvajot, R.M.
2005-01-01
Urbanization negatively affects natural ecosystems in many ways, and aquatic systems in particular. Urbanization is also cited as one of the potential contributors to recent dramatic declines in amphibian populations. From 2000 to 2002 we determined the distribution and abundance of native amphibians and exotic predators and characterized stream habitat and invertebratecommunities in 35 streams in an urbanized landscape north of Los Angeles (U.S.A.). We measured watershed development as the percentage of area within each watershed occupied by urban land uses. Streams in more developed watersheds often had exotic crayfish (Procambarus clarkii) and fish, and had fewer native species such as California newts (Taricha torosa) and California treefrogs (Hyla cadaverina). These effects seemed particularly evident above 8% development, a result coincident with other urban stream studies that show negative impacts beginning at 10-15% urbanization. For Pacific treefrogs (H. regilla), the most widespread native amphibian, abundance was lower in the presence of exotic crayfish, although direct urbanization effects were not found. Benthic macroinvertebrate communities were also less diverse in urban streams, especially for sensitive species. Faunal community changes in urban streams may be related to changes in physical stream habitat, such as fewer pool and more run habitats and increased water depth and flow, leading to more permanent streams. Variation in stream permanence was particularly evident in 2002, a dry year when many natural streams were dry but urban streams were relatively unchanged. Urbanization has significantly altered stream habitat in this region and may enhance invasion by exotic species and negatively affect diversity and abundance of native amphibians. ??2005 Society for Conservation Biology.
Yadouleton, Anges William M; Asidi, Alex; Djouaka, Rousseau F; Braïma, James; Agossou, Christian D; Akogbeto, Martin C
2009-05-14
A fast development of urban agriculture has recently taken place in many areas in the Republic of Benin. This study aims to assess the rapid expansion of urban agriculture especially, its contribution to the emergence of insecticide resistance in populations of Anopheles gambiae. The protocol was based on the collection of sociological data by interviewing vegetable farmers regarding various agricultural practices and the types of pesticides used. Bioassay tests were performed to assess the susceptibility of malaria vectors to various agricultural insecticides and biochemical analysis were done to characterize molecular status of population of An. gambiae. This research showed that:(1) The rapid development of urban agriculture is related to unemployment observed in cities, rural exodus and the search for a balanced diet by urban populations;(2) Urban agriculture increases the farmers' household income and their living standard;(3) At a molecular level, PCR revealed the presence of three sub-species of An. gambiae (An. gambiae s.s., Anopheles melas and Anopheles arabiensis) and two molecular forms (M and S). The kdr west mutation recorded in samples from the three sites and more specifically on the M forms seems to be one of the major resistance mechanisms found in An. gambiae from agricultural areas. Insecticide susceptibility tests conducted during this research revealed a clear pattern of resistance to permethrin (76% mortality rate at Parakou; 23.5% at Porto-Novo and 17% at Cotonou). This study confirmed an increase activity of the vegetable farming in urban areas of Benin. This has led to the use of insecticide in an improper manner to control vegetable pests, thus exerting a huge selection pressure on mosquito larval population, which resulted to the emergence of insecticide resistance in malaria vectors.
Sustainable urban development in Brisbane City--the Holy Grail?
Rahman, K; Weber, T
2003-01-01
Impacts from urban stormwater runoff on receiving environments have been well documented, particularly through specific regional scientific studies. Using various local government planning and management elements, urban developments in Brisbane City are now able to address stormwater management in an increasingly holistic context. One key initiative includes facilitating Water Sensitive Urban Design (WSUD) components within an Integrated Water Management Strategy that looks at policy formation, planning strategies, design option, community marketing and acceptance, maintenance programs and finally evaluation of various WSUD approaches. These can include the use of Natural Channel Designs, grassed swales, bio-filtration systems, porous pavements and roofwater tanks in several economic combinations. By linking with the Cooperative Research Centre for Catchment Hydrology, Brisbane City Council has influenced the design of WSUD planning tools and benefited the city with academic inputs into extensive evaluation programs. As well, it has also contributed to the Cooperative Research Centre's research outcomes. These evaluation programs are increasingly providing better understanding of various stormwater quality best management practices throughout Australia. As part of the overall implementation process, active involvement by a range of stakeholders has been crucial. These stakeholders have included internal planning, development assessment and design staff, external consultants, developers, and other local and state government agencies. The latter two groups are assisting in the important task of "regionalisation" of Brisbane City Council's policies and guidelines. Implementation of WSUD initiatives and stormwater re-use strategies under Council's new "Integrated Water Management" agenda are showing some excellent results, suggesting that sustainable urban development is no longer like the search for the Holy Grail.
Mitchell, Logan E.; Lin, John C.; Bowling, David R.; ...
2018-03-05
Cities are concentrated areas of CO 2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO 2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO 2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO 2 trends to changes in emissions, since we did not find longterm trends in atmospheric mixing proxies. Three contrasting CO 2 trends emerged across urban types: negative trends atmore » a residentialindustrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO 2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of populationwithin the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO 2, implying a nonlinear relationshipwith CO 2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO 2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.« less
NASA Astrophysics Data System (ADS)
Mitchell, Logan E.; Lin, John C.; Bowling, David R.; Pataki, Diane E.; Strong, Courtenay; Schauer, Andrew J.; Bares, Ryan; Bush, Susan E.; Stephens, Britton B.; Mendoza, Daniel; Mallia, Derek; Holland, Lacey; Gurney, Kevin R.; Ehleringer, James R.
2018-03-01
Cities are concentrated areas of CO2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO2 trends to changes in emissions, since we did not find long-term trends in atmospheric mixing proxies. Three contrasting CO2 trends emerged across urban types: negative trends at a residential-industrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of population within the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO2, implying a nonlinear relationship with CO2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Logan E.; Lin, John C.; Bowling, David R.
Cities are concentrated areas of CO 2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO 2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO 2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO 2 trends to changes in emissions, since we did not find longterm trends in atmospheric mixing proxies. Three contrasting CO 2 trends emerged across urban types: negative trends atmore » a residentialindustrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO 2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of populationwithin the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO 2, implying a nonlinear relationshipwith CO 2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO 2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.« less
Rural-Urban Dimensions of Inequality Change. Working Papers.
ERIC Educational Resources Information Center
Eastwood, Robert; Lipton, Michael
This study reviews evidence that overall within-country inequality, although showing no trends from 1960-80, increased after 1980-85, focusing on developing and transitional countries. It explores trends in rural-urban, intrarural, and intraurban inequality of income, poverty risk, health, and education, and the offsetting trends in inequality…
ERIC Educational Resources Information Center
Wolfe, Kate S.
2015-01-01
This article details an assignment developed to teach students at urban community colleges information-literacy skills. This annotated bibliography assignment introduces students to library research skills, helps increase information literacy in beginning college students, and helps psychology students learn research methodology crucial in…
An Integrated Approach for Urban Earthquake Vulnerability Analyses
NASA Astrophysics Data System (ADS)
Düzgün, H. S.; Yücemen, M. S.; Kalaycioglu, H. S.
2009-04-01
The earthquake risk for an urban area has increased over the years due to the increasing complexities in urban environments. The main reasons are the location of major cities in hazard prone areas, growth in urbanization and population and rising wealth measures. In recent years physical examples of these factors are observed through the growing costs of major disasters in urban areas which have stimulated a demand for in-depth evaluation of possible strategies to manage the large scale damaging effects of earthquakes. Understanding and formulation of urban earthquake risk requires consideration of a wide range of risk aspects, which can be handled by developing an integrated approach. In such an integrated approach, an interdisciplinary view should be incorporated into the risk assessment. Risk assessment for an urban area requires prediction of vulnerabilities related to elements at risk in the urban area and integration of individual vulnerability assessments. However, due to complex nature of an urban environment, estimating vulnerabilities and integrating them necessities development of integrated approaches in which vulnerabilities of social, economical, structural (building stock and infrastructure), cultural and historical heritage are estimated for a given urban area over a given time period. In this study an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the smallest administrative unit, namely at neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate and decision makers seek for prioritization of their limited resources in risk reduction in the administrative districts from which they are responsible. The methodology integrates socio-economical, structural, coastal, ground condition, organizational vulnerabilities, as well as accessibility to critical services within the framework. The proposed framework has the following eight components: Seismic hazard analysis, soil response analysis, tsunami inundation analysis, structural vulnerability analysis, socio-economic vulnerability analysis, accessibility to critical services, GIS-based integrated vulnerability assessment, and visualization of vulnerabilities in 3D virtual city model The integrated model for various vulnerabilities obtained for the urban area is developed in GIS environment by using individual vulnerability assessments for considered elements at risk and serve for establishing the backbone of the spatial decision support system. The stages followed in the model are: Determination of a common mapping unit for each aspect of urban earthquake vulnerability, formation of a geo-database for the vulnerabilities, evaluation of urban vulnerability based on multi attribute utility theory with various weighting algorithms, mapping of the evaluated integrated earthquake risk in geographic information systems (GIS) in the neighborhood scale. The framework is also applicable to larger geographical mapping scales, for example, the building scale. When illustrating the results in building scale, 3-D visualizations with remote sensing data is used so that decision-makers can easily interpret the outputs. The proposed vulnerability assessment framework is flexible and can easily be applied to urban environments at various geographical scales with different mapping units. The obtained total vulnerability maps for the urban area provide a baseline for the development of risk reduction strategies for the decision makers. Moreover, as several aspects of elements at risk for an urban area is considered through vulnerability analyses, effect on changes in vulnerability conditions on the total can easily be determined. The developed approach also enables decision makers to monitor temporal and spatial changes in the urban environment due to implementation of risk reduction strategies.
Acceptance of a community-based navigator program for cancer control among urban African Americans.
Halbert, Chanita Hughes; Briggs, Vanessa; Bowman, Marjorie; Bryant, Brenda; Bryant, Debbie Chatman; Delmoor, Ernestine; Ferguson, Monica; Ford, Marvella E; Johnson, Jerry C; Purnell, Joseph; Rogers, Rodney; Weathers, Benita
2014-02-01
Patient navigation is now a standard component of cancer care in many oncology facilities, but a fundamental question for navigator programs, especially in medically underserved populations, is whether or not individuals will use this service. In this study, we evaluated acceptance of a community-based navigator program for cancer control and identified factors having significant independent associations with navigation acceptance in an urban sample of African Americans. Participants were African American men and women ages 50-75 who were residents in an urban metropolitan city who were referred for navigation. Of 240 participants, 76% completed navigation. Age and perceived risk of developing cancer had a significant independent association with navigation acceptance. Participants who believed that they were at high risk for developing cancer had a lower likelihood of completing navigation compared with those who believed that they had a low risk for developing this disease. The likelihood of completing navigation increased with increases in age. None of the socioeconomic factors or health care variables had a significant association with navigation acceptance. There are few barriers to using community-based navigation for cancer control among urban African Americans. Continued efforts are needed to develop and implement community-based programs for cancer control that are easy to use and address the needs of medically underserved populations.
Acceptance of a community-based navigator program for cancer control among urban African Americans
Halbert, Chanita Hughes; Briggs, Vanessa; Bowman, Marjorie; Bryant, Brenda; Bryant, Debbie Chatman; Delmoor, Ernestine; Ferguson, Monica; Ford, Marvella E.; Johnson, Jerry C.; Purnell, Joseph; Rogers, Rodney; Weathers, Benita
2014-01-01
Patient navigation is now a standard component of cancer care in many oncology facilities, but a fundamental question for navigator programs, especially in medically underserved populations, is whether or not individuals will use this service. In this study, we evaluated acceptance of a community-based navigator program for cancer control and identified factors having significant independent associations with navigation acceptance in an urban sample of African Americans. Participants were African American men and women ages 50–75 who were residents in an urban metropolitan city who were referred for navigation. Of 240 participants, 76% completed navigation. Age and perceived risk of developing cancer had a significant independent association with navigation acceptance. Participants who believed that they were at high risk for developing cancer had a lower likelihood of completing navigation compared with those who believed that they had a low risk for developing this disease. The likelihood of completing navigation increased with increases in age. None of the socioeconomic factors or health care variables had a significant association with navigation acceptance. There are few barriers to using community-based navigation for cancer control among urban African Americans. Continued efforts are needed to develop and implement community-based programs for cancer control that are easy to use and address the needs of medically underserved populations. PMID:24173501
Zank, Ben; Bagstad, Kenneth J.; Voigt, Brian; Villa, Ferdinando
2016-01-01
Urban expansion and its associated landscape modifications are important drivers of changes in ecosystem service (ES). This study examined the effects of two alternative land use-change development scenarios in the Puget Sound region of Washington State on natural capital stocks and ES flows. Land-use change model outputs served as inputs to five ES models developed using the Artificial Intelligence for Ecosystem Services (ARIES) platform. While natural capital stocks declined under managed (1.3–5.8%) and unmanaged (2.8–11.8%) development scenarios, ES flows increased by 18.5–56% and 23.2–55.7%, respectively. Human development of natural landscapes reduced their capacity for service provision, while simultaneously adding beneficiaries, particularly along the urban fringe. Using global and local Moran’s I, we identified three distinct patterns of change in ES due to projected landuse change. For services with location-dependent beneficiaries – open space proximity, viewsheds, and flood regulation – urbanization led to increased clustering and hot-spot intensities. ES flows were greatest in the managed land-use change scenario for open space proximity and flood regulation, and in the unmanaged land-use change scenario for viewsheds—a consequence of the differing ES flow mechanisms underpinning these services. We observed a third pattern – general declines in service provision – for carbon storage and sediment retention, where beneficiaries in our analysis were not location dependent. Contrary to past authors’ finding of ES declines under urbanization, a more nuanced analysis that maps and quantifies ES provision, beneficiaries, and flows better identifies gains and losses for specific ES beneficiaries as urban areas expand.
NASA Astrophysics Data System (ADS)
Sun, Hai; Wang, Cheng; Ren, Bo
2007-06-01
Daily works of Law Enforcement Bureau are crucial in the urban management. However, with the development of the city, the information and data which are relative to Law Enforcement Bureau's daily work are increasing and updating. The increasing data result in that some traditional work is limited and inefficient in daily work. Analyzing the demands and obstacles of Law Enforcement Bureau, the paper proposes a new method to solve these problems. A web-GIS based information management system was produced for Bureau of Law Enforcement for Urban Management of Foshan. First part of the paper provides an overview of the system. Second part introduces the architecture of system and data organization. In the third part, the paper describes the design and implement of functional modules detailedly. In the end, this paper is concluded and proposes some strategic recommendations for the further development of the system. This paper focuses on the architecture and implementation of the system, solves the developing issues based on ArcServer, and introduces a new concept to the local government to solve the current problems. Practical application of this system showed that it played very important role in the Law Enforcement Bureau's work.
Computing Pathways for Urban Decarbonization.
NASA Astrophysics Data System (ADS)
Cremades, R.; Sommer, P.
2016-12-01
Urban areas emit roughly three quarters of global carbon emissions. Cities are crucial elements for a decarbonized society. Urban expansion and related transportation needs lead to increased energy use, and to carbon-intensive lock-ins that create barriers for climate change mitigation globally. The authors present the Integrated Urban Complexity (IUC) model, based on self-organizing Cellular Automata (CA), and use it to produce a new kind of spatially explicit Transformation Pathways for Urban Decarbonization (TPUD). IUC is based on statistical evidence relating the energy needed for transportation with the spatial distribution of population, specifically IUC incorporates variables from complexity science related to urban form, like the slope of the rank-size rule or spatial entropy, which brings IUC a step beyond existing models. The CA starts its evolution with real-world urban land use and population distribution data from the Global Human Settlement Layer. Thus, the IUC model runs over existing urban settlements, transforming the spatial distribution of population so the energy consumption for transportation is minimized. The statistical evidence that governs the evolution of the CA departs from the database of the International Association of Public Transport. A selected case is presented using Stuttgart (Germany) as an example. The results show how IUC varies urban density in those places where it improves the performance of crucial parameters related to urban form, producing a TPUD that shows where the spatial distribution of population should be modified with a degree of detail of 250 meters of cell size. The TPUD shows how the urban complex system evolves over time to minimize energy consumption for transportation. The resulting dynamics or urban decarbonization show decreased energy per capita, although total energy increases for increasing population. The results provide innovative insights: by checking current urban planning against a TPUD, urban planners could understand where existing plans contradict the Agenda 2030, primarily the Sustainable Development Goals (SDGs) Climate Action (SDG 13), and Sustainable Cities and Communities (SDG 11). For the first time, evidence-based transformation pathways are produced to decarbonize cities.
Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.
Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh
2014-01-01
The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved.
Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran
Mohd Shafri, Helmi Zulhaidi; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh
2014-01-01
The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956–2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858
Pandemic Influenza as 21st Century Urban Public Health Crisis
Weisfuse, Isaac B.; Hernandez-Avila, Mauricio; del Rio, Carlos; Bustamante, Xinia; Rodier, Guenael
2009-01-01
The percentage of the world’s population living in urban areas will increase from 50% in 2008 to 70% (4.9 billion) in 2025. Crowded urban areas in developing and industrialized countries are uniquely vulnerable to public health crises and face daunting challenges in surveillance, response, and public communication. The revised International Health Regulations require all countries to have core surveillance and response capacity by 2012. Innovative approaches are needed because traditional local-level strategies may not be easily scalable upward to meet the needs of huge, densely populated cities, especially in developing countries. The responses of Mexico City and New York City to the initial appearance of influenza A pandemic (H1N1) 2009 virus during spring 2009 illustrate some of the new challenges and creative response strategies that will increasingly be needed in cities worldwide. PMID:19961676
Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea.
Kim, Hyunsu; Kim, Yoo-Keun; Song, Sang-Keun; Lee, Hwa Woon
2016-11-15
The influence of changes in future urban growth (e.g., land use changes) on the future climate variability in the Seoul metropolitan area (SMA), Korea was evaluated using the WRF model and an urban growth model (SLEUTH). The land use changes in the study area were simulated using the SLEUTH model under three different urban growth scenarios: (1) current development trends scenario (SC 1), (2) managed development scenario (SC 2) and (3) ecological development scenario (SC 3). The maximum difference in the ratio of urban growth between SC 1 and SC 3 (SC 1 - SC 3) for 50years (2000-2050) was approximately 6.72%, leading to the largest differences (0.01°C and 0.03ms(-1), respectively) in the mean air temperature at 2m (T2) and wind speed at 10m (WS10). From WRF-SLEUTH modeling, the effects of future urban growth (or future land use changes) in the SMA are expected to result in increases in the spatial mean T2 and WS10 of up to 1.15°C and 0.03ms(-1), respectively, possibly due to thermal circulation caused by the thermal differences between urban and rural regions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.
2012-12-01
The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a particular emphasis on various approaches to sustainable economic development. Brazil represents the case of shifts to alternate energy sources (bioethanol and hydroelectric power), while India and China are on the fossil fuel dependent trajectories, the same that North America and Europe had followed. Rapid increases in population, urbanization, and economic development of African cities presents an interesting case study for choices available for sustainable development, similar to that of Brazil rather than that followed by India and China. Coordinated air quality monitoring at urban and reference sites needs to be established to follow the fast-changing conditions.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
2006-01-01
Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London s heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI s are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI s can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment (e.g., rooftops, pavements) interact from a surface-lower atmosphere energy flux perspective, to force the development of the UHI. Moreover, the airborne TIR sensor we used in our UHI studies was a multispectral sensor that had six channels in the 8-12pm range. The advantages of collecting multispectral TIR data became readily evident as a valuable tool for better calculation of unique surface thermal energy responses for urban materials over the 8-12 micrometer region, and also for getting a better handle on surface emissivity characteristics for these discrete surfaces. In this presentation, we will provide evidence on the virtues of how high spatial resolution multispectral TIR data can provide for better analysis of the UHI that cannot now be attained via TIR data obtained from satellites. Furthermore, we wish to provide compelling evidence on why future TIR satellite sensors should collect data at fine spatial resolutions (e.g. less than or equal to 30m) to better allow for measurement of surface thermal energy fluxes from discrete urban surfaces, and to better understand how surface fluxes from different urban materials in cities around the world in different climatic regimes, affect development of the UHI characteristics.
Megacities and tall buildings: symbiosis
NASA Astrophysics Data System (ADS)
Safarik, Daniel; Ursini, Shawn; Wood, Antony
2018-03-01
Anyone concerned with the development of human civilization in the 21st Century will likely have heard the term «megacity». It is - as it should be - increasingly prevalent in both mainstream and academic discussions of the great trends of our time: urbanization, rising technological and physical connectivity, increasingly polarized extremes of wealth and poverty, environmental degradation, and climate change. It is a subject as large and far-reaching as its name implies. This paper sets the scene on how megacities and the built environment are growing together, and examines the implications for those who plan, design, develop and operate tall buildings and urban infrastructure.
A National Assessment of Changes in Flood Exposure in the United States
NASA Astrophysics Data System (ADS)
Lam, N.; Qiang, Y.; Cai, H.; Zou, L.
2017-12-01
Analyzing flood exposure and its temporal trend is the first step toward understanding flood risk, flood hazard, and flood vulnerability. This presentation is based on a national, county-based study assessing the changes in population and urban areas in high-risk flood zones from 2001-2011 in the contiguous United States. Satellite land use land cover data, Federal Emergency Management Agency (FEMA)'s 100-year flood maps, and census data were used to extract the proportion of developed (urban) land in flood zones by county in the two time points, and indices of difference were calculated. Local Moran's I statistic was applied to identify hotspots of increase in urban area in flood zones, and geographically weighted regression was used to estimate the population in flood zones from the land cover data. Results show that in 2011, an estimate of about 25.3 million people (8.3% of the total population) lived in the high-risk flood zones. Nationally, the ratio of urban development in flood zones is less than the ratio of land in flood zones, implying that Americans were responsive to flood hazards by avoiding development in flood zones. However, this trend varied from place to place, with coastal counties having less urban development in flood zones than the inland counties. Furthermore, the contrast between coastal and inland counties increased during 2001-2011. Finally, several exceptions from the trend (hotspots) were detected, most notably New York City and Miami where significant increases in urban development in flood zones were found. This assessment provides important baseline information on the spatial patterns of flood exposure and their changes from 2001-2011. The study pinpoints regions that may need further investigations and better policy to reduce the overall flood risks. Methodologically, the study demonstrates that pixelated land cover data can be integrated with other natural and human data to investigate important societal problems. The same methodology can be easily extended worldwide to assess the overall trend as well as identify hotspots that need further attention.
Stone, Brian; Hess, Jeremy J.; Frumkin, Howard
2010-01-01
Background Extreme heat events (EHEs) are increasing in frequency in large U.S. cities and are responsible for a greater annual number of climate-related fatalities, on average, than any other form of extreme weather. In addition, low-density, sprawling patterns of urban development have been associated with enhanced surface temperatures in urbanized areas. Objectives In this study. we examined the association between urban form at the level of the metropolitan region and the frequency of EHEs over a five-decade period. Methods We employed a widely published sprawl index to measure the association between urban form in 2000 and the mean annual rate of change in EHEs between 1956 and 2005. Results We found that the rate of increase in the annual number of EHEs between 1956 and 2005 in the most sprawling metropolitan regions was more than double the rate of increase observed in the most compact metropolitan regions. Conclusions The design and management of land use in metropolitan regions may offer an important tool for adapting to the heat-related health effects associated with ongoing climate change. PMID:21114000
NASA Astrophysics Data System (ADS)
Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano
2016-04-01
Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model was calibrated for the hydrological years 2008 to 2010 and validated for the three following years using streamflow data. The impact of future land use changes was analysed by investigating the impact of the size and location of the urban areas within the catchment. Modelling results are expected to support the decision making process in planning and developing new urban areas.
Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments
NASA Astrophysics Data System (ADS)
Liu, Xi; Mijic, Ana; Maksimovic, Cedo
2014-05-01
As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.
Kabaria, Caroline W; Molteni, Fabrizio; Mandike, Renata; Chacky, Frank; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2016-07-30
With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. The predictive maps produced can serve as valuable resources for municipal councils aiming to shrink the extents of malaria across cities, target resources for vector control or intensify mosquito and disease surveillance. The semi-automated modelling process developed can be replicated in other urban areas to identify factors that influence heterogeneity in malaria risk patterns and detect vulnerable zones. There is a definite need to expand research into the unique epidemiology of malaria transmission in urban areas for focal elimination and sustained control agendas.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul
2015-04-01
Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different patterns in the timing and magnitude of the contributions of the different land use zones and their nested integrated runoff response at increasing scales. These can be clearly linked to variations in antecedent conditions and precipitation patterns. For low antecedent flow conditions, the main flood peak is dominated by urban origins (faster responding and larger in relative magnitude); for high antecedent flow conditions, rural (and peri-urban) sources are most dominant. A third type of response involves mixed events, where both rural and urban contributions interact and reinforce the peak flow response. Our analyses showed that the effectiveness of the GIs varied substantially between the different events, suggesting that their design could be improved by introducing variable drainage rates and strategic placements to allow for interactions with the stream network. However, more information is needed on the spatio-temporal variability in water sources, flow pathways and residence times. This is of particular importance to also assess other multiple benefits of GIs, including the impacts on water quality. These challenges are currently addressed in two new case study catchment in the North East of Scotland (10km2) which are undergoing major land use change from rural to urban. Here, integrated tracer and hydrometric data are being collected to characterise the integrated impacts of urbanisation and GIs on flow pathways (nature and length) and associated water quality.
Prevalent vegetation growth enhancement in urban environment.
Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng
2016-05-31
Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.
Prevalent vegetation growth enhancement in urban environment
Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng
2016-01-01
Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued. PMID:27185955
The Soundscapes of Lakes across an Urbanization Gradient
Kuehne, Lauren M.; Padgham, Britta L.; Olden, Julian D.
2013-01-01
Background/Methodology A significant implication of increasing urbanization is anthropogenic noise pollution. Although noise is strongly associated with disruption of animal communication systems and negative health effects for humans, the study of these consequences at ecologically relevant spatial and temporal scales (termed soundscape ecology) is in early stages of application. In this study, we examined the above- and below-water soundscape of recreational and residential lakes in the region surrounding a large metropolitan area. Using univariate and multivariate approaches we test the importance of large- and local-scale landscape factors in driving acoustic characteristics across an urbanization gradient, and visualize changes in the soundscape over space and time. Principal Findings Anthropogenic noise (anthrophony) was strongly predicted by a landcover-based metric of urbanization (within a 10 km radius), with presence of a public park as a secondary influence; this urbanization signal was apparent even in below-water recordings. The percent of hourly measurements exceeding noise thresholds associated with outdoor disturbance was 67%, 17%, and 0%, respectively, for lakes characterized as High, Medium, and Low urbanization. Decreased biophony (proportion of natural sounds) was associated with presence of a public park followed by increased urbanization; time of day was also a significant predictor of biophony. Local-scale (shoreline) residential development was not related to changes in anthrophony or biophony. The patterns we identify are illustrated with a multivariate approach which allows use of entire sound samples and facilitates interpretation of changes in a soundscape. Conclusions/Significance As highly valued residential and recreation areas, lakes represent everyday soundscapes important to both humans and wildlife. Our findings that many of these areas, particularly those with public parks, routinely experience sound types and levels associated with disturbance, suggests that urban planners need to account for the effect of increasing development on soundscapes to avoid compromising goals for ecological and human health. PMID:23424636
Monitoring and assessing global impacts of roads and off-road vehicle traffic
USDA-ARS?s Scientific Manuscript database
Rapid increases in the number of vehicles, urban sprawl, exurban development and infrastructure development for energy and water have led to dramatic increases in both the size and extent of the global road network. Anecdotal evidence suggests that off-road vehicle traffic has also increased in many...
Effects of landscape-based green infrastructure on stormwater runoff in suburban developments
The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reachi...
NASA Astrophysics Data System (ADS)
Liu, Z.; Li, Y.
2018-04-01
This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.
NASA Astrophysics Data System (ADS)
Sargeant, S.; Sorensen, M. B.
2011-12-01
More than 50% of the world's population now live in urban areas. In less developed countries, future urban population increase will be due to natural population growth and rural-to-urban migration. As urban growth continues, the vulnerability of those living in these areas is also increasing. This presents a wide variety of challenges for humanitarian organisations that often have more experience of disaster response in rural settings rather than planning for large urban disasters. The 2010 Haiti earthquake highlighted the vulnerability of these organisations and the communities that they seek to support. To meet this challenge, a key consideration is how scientific information can support the humanitarian sector and their working practices. Here we review the current state of earthquake scenario modelling practice, with special focus on scenarios to be used in disaster response and response planning, and present an evaluation of how the field looks set to evolve. We also review current good practice and lessons learned from previous earthquakes with respect to planning for and responding to earthquakes in urban settings in the humanitarian sector, identifying key sectoral priorities. We then investigate the interface between these two areas to investigate the use of earthquake scenarios in disaster response planning and identify potential challenges both with respect to development of scientific models and their application on the ground.
Agent-based model to rural urban migration analysis
NASA Astrophysics Data System (ADS)
Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.
2006-05-01
In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.
Peng, Jian; Ma, Jing; Liu, Qianyuan; Liu, Yanxu; Hu, Yi'na; Li, Yingru; Yue, Yuemin
2018-09-01
As an important theme in global climate change and urban sustainable development, the changes of land surface temperature (LST) and surface urban heat island (SUHI) have been more and more focused by urban ecologists. This study used land-use data to identify the urban-rural areas in 285 cities in China and comparatively analyzed LST in urban-rural areas with the perspective of spatial-temporal dynamics heterogeneity. The results showed that, 98.9% of the cities exhibited SUHI effect in summer nighttime and the effect was stronger in northern cities than that in southern cities. In 2010, the mean SUHI intensity was the largest in summer daytime, with 4.6% of the cities having extreme SUHI of over 4°C. From 2001 to 2010, the nighttime LST of most cities increased more quickly in urban areas compared with rural areas, with an increasing tendency of the urban-rural LST difference. The difference in the urban- rural LST change rate was concentrated in the range of 0-0.1°C/year for 68.0% of cities in winter and 70.8% of cities in summer. For the higher LST increasing in urban areas compared with rural areas, there were more cities in summer than winter, indicating that the summer nighttime was the key temporal period for SUHI management. Based on the change slope of urban-rural LST, cities were clustered into four types and the vital and major zones for urban thermal environment management were identified in China. The vital zone included cities in Hunan, Hubei and other central rising provinces as well as the Beibu Gulf of Guangxi Province. The major zone included most of the cities in Central Plain Urban Agglomeration, Yangtze River Delta and Pearl River Delta. These results can provide scientific basis for SUHI adaptation in China. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mubako, S. T.; Hargrove, W. L.; Heyman, J. M.; Reyes, C. S.
2016-12-01
Urbanization is an area of growing interest in assessing the impact of human activities on water resources in arid regions. Remote sensing techniques provide an opportunity to analyze land cover change over time, and are useful in monitoring areas undergoing rapid urban growth. This case study for the water-scarce Upper Rio Grande River Basin uses a supervised classification algorithm to quantify the rate and evaluate the pattern of urban sprawl. A focus is made on the fast growing El-Paso-Juarez metropolitan area on the US-Mexico border and the City of Las Cruces in New Mexico, areas where environmental challenges and loss of agricultural and native land to urban development are major concerns. Preliminary results show that the land cover is dominantly native with some significant agriculture along the Rio Grande River valley. Urban development across the whole study area expanded from just under 3 percent in 1990, to more than 11 percent in 2015. The urban expansion is occurring mainly around the major urban areas of El Paso, Ciudad Juarez, and Las Cruces, although there is visible growth of smaller urban settlements scattered along the Rio Grande River valley during the same analysis period. The proportion of native land cover fluctuates slightly depending on how much land is under crops each analysis year, but there is a decreasing agricultural land cover trend suggesting that land from this sector is being lost to urban development. This analysis can be useful in planning to protect the environment, preparing for growth in infrastructure such as schools, increased traffic demands, and monitoring availability of resources such as groundwater as the urban population grows.
The importance of urban gardens in supporting children's biophilia
Hand, Kathryn L.; Freeman, Claire; Seddon, Philip J.; Recio, Mariano R.; Stein, Aviva; van Heezik, Yolanda
2017-01-01
Exposure to and connection with nature is increasingly recognized as providing significant well-being benefits for adults and children. Increasing numbers of children growing up in urban areas need access to nature to experience these benefits and develop a nature connection. Under the biophilia hypothesis, children should innately affiliate to nature. We investigated children’s independent selection of spaces in their neighborhoods in relation to the biodiversity values of those spaces, in three New Zealand cities, using resource-selection analysis. Children did not preferentially use the more biodiverse areas in their neighborhoods. Private gardens and yards were the most preferred space, with the quality of these spaces the most important factor defining children’s exposure to nature. Children’s reliance on gardens and yards for nature experiences raises concerns for their development of a nature connection, given disparities in biodiversity values of private gardens in relation to socioeconomic status, and the decline in sizes of private gardens in newer urban developments. PMID:28028204
NASA Astrophysics Data System (ADS)
Esau, Igor; Miles, Victoria V.; Davy, Richard; Miles, Martin W.; Kurchatova, Anna
2016-08-01
Exploration and exploitation of oil and gas reserves of northern West Siberia has promoted rapid industrialization and urban development in the region. This development leaves significant footprints on the sensitive northern environment, which is already stressed by the global warming. This study reports the region-wide changes in the vegetation cover as well as the corresponding changes in and around 28 selected urbanized areas. The study utilizes the normalized difference vegetation index (NDVI) from high-resolution (250 m) MODIS data acquired for summer months (June through August) over 15 years (2000-2014). The results reveal the increase of NDVI (or "greening") over the northern (tundra and tundra-forest) part of the region. Simultaneously, the southern, forested part shows the widespread decrease of NDVI (or "browning"). These region-wide patterns are, however, highly fragmented. The statistically significant NDVI trends occupy only a small fraction of the region. Urbanization destroys the vegetation cover within the developed areas and at about 5-10 km distance around them. The studied urbanized areas have the NDVI values by 15 to 45 % lower than the corresponding areas at 20-40 km distance. The largest NDVI reduction is typical for the newly developed areas, whereas the older areas show recovery of the vegetation cover. The study reveals a robust indication of the accelerated greening near the older urban areas. Many Siberian cities become greener even against the wider browning trends at their background. Literature discussion suggests that the observed urban greening could be associated not only with special tending of the within-city green areas but also with the urban heat islands and succession of more productive shrub and tree species growing on warmer sandy soils.
NASA Astrophysics Data System (ADS)
de la Barrera, Francisco; Henríquez, Cristian
2017-10-01
The well-being of people living in cities is strongly dependent on the existence of urban vegetation because of the ecosystem services or benefits it provides. This is why governments develop plans to create green spaces, plant trees, promote the maintenance of vegetation in private spaces and also monitor their status over time. In Latin America, and particularly in Chile, the increase of urban vegetation has been stimulated through different initiatives and regulations. However, development of monitoring programs at the national level is scarce, so it is yet unknown if these initiatives and regulations have had positive effects. In this article, we monitor the change in urban vegetation in 13 Chilean cities located in a latitudinal gradient of practically zero to almost 1800 mm of annual rainfall. We calculated the trends in NDVI (2000-2016) as an indicator of change in urban greenery using data from the MODIS Subsets platform. Likewise, to assess whether the initiatives have had an effect we quantified the number of urban parks existing at the beginning of the period and how many were created during the study period. For this, we analysed official databases and high spatial resolution satellite images. Armed with said data, we assessed whether these new parks had impacted the tendency toward change in urban greenery. The results indicate that, in general, Chilean cities vary greatly inter-annually in urban greenery and have lost urban vegetation in the last 16 years, with significant losses in four of those cities. Two cities located in desert ecosystems represent an exception and showed positive trends in their urban vegetation. The rainfall in cities has an impact on the amount of vegetation, but not on their tendency to change, i.e. there are cities with loss of vegetation at all levels of precipitation. The creation of parks has not been able to reverse negative trends, which indicates the prevalence of other drivers of change that are not sufficiently compensated by initiatives and regulations that seek to increase urban vegetation. Today, planning and management of urban vegetation is a challenge for urban sustainability and must be addressed systematically, integrally and implemented via urban regulations. It is imperative to focus on cities in extenso, taking into consideration residential areas, private spaces, peri-urban areas, etc. Likewise, climate in each city, inter-annual variability and future changes must also be considered when designing green areas to make them resilient, prevent increases in maintenance costs and provide benefits for the inhabitants in perpetuity.
Future trends in flood risk in Indonesia - A probabilistic approach
NASA Astrophysics Data System (ADS)
Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip
2014-05-01
Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.
Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang
2018-05-08
The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.
Coles, J.F.; Cuffney, T.F.; McMahon, G.; Rosiu, C.J.
2010-01-01
The US Geological Survey conducted an urban land-use study in the New England Coastal Basins (NECB) area during 2001 to determine how urbanization relates to changes in the ecological condition of streams. Thirty sites were selected that differed in their level of watershed development (low to high). An urban intensity value was calculated for each site from 24 landscape variables. Together, these 30 values reppresented a gradient of urban intensity. Among various biological, chemical, and physical factors surveyed at each site, benthic invertebrate assemblages were sampled from stream riffles and also from multiple habitats along the length of the sampling reach. We use some of the NECB data to derive a four-variable urbanintensity index (NECB-UII), where each variable represents a distinct component of urbanization: increasing human presence, expanding infrastructure, landscape development, and riparian vegetation loss. Using the NECB-UII as a characterization of urbanization, we describe how landscape fragmentation occurs with urbanization and how changes in the invertebrate assemblages, represented by metrics of ecological condition, are related to urbanization. Metrics with a strong linear response included EPT taxa richness, percentage richness of non-insect taxa, and pollution-tolerance values. Additionally, we describe how these relations can help in estimating the expected condition of a stream for its level of urbanization, thereby establishing a baseline for evaluating possible affects from specific point-source stressors.
NASA Astrophysics Data System (ADS)
Su, Meirong; Chen, Chen; Lu, Weiwei; Liu, Gengyuan; Yang, Zhifeng; Chen, Bin
2013-06-01
Urban public health is an important global issue, and receives extensive attention. It is necessary to compare urban public health status among different cities, so that each city can define its own health patterns and limiting factors. The following assessment indicators were established to evaluate urban public health status: living conditions, physical health, education and culture, environmental quality, and social security. A weighted-sum model was used in combination with these indicators to compare the urban public health status in four cities—Beijing, New York, London, and Tokyo—using data for 2000-2009. Although the urban public health level of Beijing was lower than that of the other cities, it showed the greatest increase in this level over the study period. Different patterns of urban public health were identified: London had the most balanced, steady pattern (almost all factors performed well and developed stably); New York and Tokyo showed balanced, but unsteady patterns (most factors remained high, though social security and environmental quality fluctuated); Beijing had the most unbalanced, unsteady pattern (the different factors were at different levels, and education and culture and social security fluctuated). For enhanced urban public health status, environmental quality and education and culture clearly need to be improved in Beijing. This study demonstrates that a comparison of different cities is helpful in identifying limiting factors for urban public health and providing an orientation for future urban development.
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...
2017-11-13
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
The central city site: an urban underserved family medicine training track.
Bade, Elizabeth; Baumgardner, Dennis; Brill, John
2009-01-01
We describe the development of an urban track in family medicine residency designed to recruit a high percentage of minority students and promote their future practice in urban, underserved areas of Milwaukee. We report here on the residents and their first practice location and compared this information to what occurred in our original "main" residency program. Information about the program's development was obtained through testimonials from faculty and residency graduates and review of the original accreditation application to the Residency Review Committee. Information about the residents and their practice locations was obtained from the National Resident Matching Program and graduate placement data. The goal of training more minority doctors in Milwaukee was met, with eight of 16 (50%) residents at our urban-track site from minority groups. This compared to only 12% at our main program. Thirty-eight percent of graduates stayed to practice in an underserved area, compared to only 21% in our main program. Development of an urban track for our family medicine residency increased the number of minority physicians trained and the number of physicians practicing in underserved areas after graduation.
The impact of urbanization on the community food environment in China.
Wu, Yang; Xue, Hong; Wang, Huijun; Su, Chang; Du, Shufa; Wang, Youfa
2017-05-01
Research on how urbanization has influenced the food environment in China is limited. The study aimed to examine the impact of urbanization on the food environment in China. Longitudinal data collected during 1989-2009 from the China Health and Nutrition Survey were used, which covered 9 provinces in China. Urbanicity index (0-10) was assessed using an urbanicity scale. Final analyses included 216 communities. Random-effect models were used in analyses. Urbanization (higher urbanicity index) increased the odds of having fast food restaurants (OR=2.78, 95% CI: 2.18-3.54) and other indoor restaurants (OR=2.93, 95% CI: 2.28-3.76) within the community, the odds of having supermarkets (OR=2.43, 95% CI: 2.04-2.89) and free markets (OR=2.56, 95% CI: 1.77-3.70) within 30 minutes' bus ride from the community. Food prices for apples (β=0.06, 95% CI: 0.04-0.08) and lean pork (β =0.02, 95% CI: 0.01-0.03) increased with urbanicity, while prices for other food did not. Urbanicity was positively associated with community norms for fast food consumption (RR=1.28, 95% CI: 1.22-1.33), fast food preferences (RR=1.09, 95% CI: 1.06-1.12) and nutrition knowledge (RR=1.02, 95% CI: 1.01-1.03). Urbanization is associated with food environment in China. The findings provide insight for future economic development and public health efforts related to urbanization.
Seaburn, G.E.
1969-01-01
The study described in this report is concerned with the effects of intensive urban development on direct runoff to East Meadow Brook, a southward-flowing stream in central Nassau County, N.Y., during the period 1937-66. The specific objectives of the study were (a) to relate indices of urban development to increases in the volume of annual direct runoff to the stream; (b) to compare hydrograph features at different periods during the transition of the drainage basin from rural to urban conditions; and (c) to compare the rainfall-runoff relations for periods before and after urban development.Periods of housing and street construction in the drainage basin correspond to three distinct periods of increased direct runoff after the base period 1937-43-namely, 1944-51, 1952-59, and 1960-62. During each period, the average annual direct runoff increased because of an increase in the area served by storm sewers that discharged into East Meadow Brook. The amount of land served by sewers increased from about 570 acres in 1943 to about 3,600 acres in 1962, or about 530 percent. During this same period, the average annual direct runoff increased from about 920 acre-feet per year to about 3,400 acre-feet per year, or about 270 percent.The shape of direct-runoff unit hydrographs of East Meadow Brook also changed during the period of study. The average peak discharge of a 1-hour-duration unit hydrograph increased from 313 cubic feet per second, for storms in 1937-43, to 776 cubic feet per second, for storms in 1960-62, or about 2.5 times. In addition, the widths of the unit hydrographs for 1960-62 at values of 50 and 75 percent of the peak discharge were 38 and 28 percent, respectively, the comparable widths of the unit hydrographs for 1937-43.An analysis of the rainfall-runoff relations for both preurban and urban conditions indicates that the direct runoff for both periods increased with the magnitude of the storm. However, the direct runoff during a period of urbanized conditions (1964- 66) was from 1.1 to 4.6 times greater than the corresponding runoff during the preurban period 1937-43, depending on the size of the individual storm.The volume of direct runoff from the parts of the subarea equipped with storm sewers that discharged into East Meadow Brook is estimated to have been roughly 3,000 acre-feet per year in 1960-62, or about 20 percent of the precipitation on those parts of the area.The increase in direct runoff probably represents a loss of ground-water recharge. However, because data changes in evapo-transpiration are insufficient and because the effects of recharge basins are unknown, adequate quantitative estimates of groundwater recharge can not be made.On the basis of the present zoning regulations and on assumption that an additional 320 acres in the Hempstead subarea will be serviced by storm sewers that discharge into East Meadow Brook, direct runoff from the subarea is expected to increase in the future to an estimated 4,000-4,500 acre-feet per year.
The Problematic Potential of Universities to Advance Critical Urban Politics
ERIC Educational Resources Information Center
Pendras, Mark; Dierwechter, Yonn
2012-01-01
Recent research has explored the connections between universities and the cities/places in which they are located. Increasingly, emphasis is placed on the economic role of the university and on universities as urban stabilizers that can mobilize investment and advance development goals. This article explores a different charge for the university:…
Population growth, urban expansion, and private forestry in western Oregon.
Jeffrey D. Kline; David L. Azuma; Ralph J. Alig
2004-01-01
Private forestlands in the United States face increasing pressures from growing populations, resulting in greater numbers of people living in closer proximity to forests. What often is called the "wildland/urban interface" is characterized by expansion of residential and other developed land uses onto forested landscapes in a manner that threatens forestlands...
Land use change and human health
NASA Astrophysics Data System (ADS)
Patz, Jonathan A.; Norris, Douglas E.
Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.
Flood forecasting within urban drainage systems using NARX neural network.
Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi
2017-11-01
Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.
Urban Modification of Convection and Rainfall in Complex Terrain
NASA Astrophysics Data System (ADS)
Freitag, B. M.; Nair, U. S.; Niyogi, D.
2018-03-01
Despite a globally growing proportion of cities located in regions of complex terrain, interactions between urbanization and complex terrain and their meteorological impacts are not well understood. We utilize numerical model simulations and satellite data products to investigate such impacts over San Miguel de Tucumán, Argentina. Numerical modeling experiments show urbanization results in 20-30% less precipitation downwind of the city and an eastward shift in precipitation upwind. Our experiments show that changes in surface energy, boundary layer dynamics, and thermodynamics induced by urbanization interact synergistically with the persistent forcing of atmospheric flow by complex terrain. With urbanization increasing in mountainous regions, land-atmosphere feedbacks can exaggerate meteorological forcings leading to weather impacts that require important considerations for sustainable development of urban regions within complex terrain.
Temporal changes in greenspace in a highly urbanized region.
Dallimer, Martin; Tang, Zhiyao; Bibby, Peter R; Brindley, Paul; Gaston, Kevin J; Davies, Zoe G
2011-10-23
The majority of the world's population now lives in towns and cities, and urban areas are expanding faster than any other land-use type. In response to this phenomenon, two opposing arguments have emerged: whether cities should 'sprawl' into the wider countryside, or 'densify' through the development of existing urban greenspace. However, these greenspaces are increasingly recognized as being central to the amelioration of urban living conditions, supporting biodiversity conservation and ecosystem service provision. Taking the highly urbanized region of England as a case study, we use data from a variety of sources to investigate the impact of national-level planning policy on temporal patterns in the extent of greenspace in cities. Between 1991 and 2006, greenspace showed a net increase in all but one of 13 cities. However, the majority of this gain occurred prior to 2001, and greenspace has subsequently declined in nine cities. Such a dramatic shift in land use coincides with policy reforms in 2000, which favoured densification. Here, we illustrate the dynamic and policy-responsive nature of urban land use, thereby highlighting the need for a detailed investigation of the trade-offs associated with different mechanisms of urban densification to optimize and secure the diverse benefits associated with greenspaces.
Monitoring the effects of land use/landcover changes on urban heat island
NASA Astrophysics Data System (ADS)
Gee, Ong K.; Sarker, Md Latifur Rahman
2013-10-01
Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to reduce UHI effects as soon as possible.
A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin
NASA Astrophysics Data System (ADS)
Carstens, D.; Amer, R. M.
2017-12-01
The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that decrease in dissolved oxygen and phosphorus, and the increase in specific conductance, nitrogen and pH from 1985 to 2015 are consistent with the rate of urban sprawl that occurred during this time period. Future work will include analysis of changes in agricultural and industrial activities and correlation with changes of water quality parameters.
Can Biogeochemists Help To Enhance Urban Resilience?
NASA Astrophysics Data System (ADS)
Baker, L. A.
2012-12-01
Throughout history, many human settlements have collapsed, often caused or triggered by extreme climatic fluctuation, resource depletion, or pollution. In today's world, with rapid urbanization, much of it in "informal" peri-urban settlements, increasing per capita wealth and consumption, climate warming, and widespread pollution, the potential for collapse of modern cities is a realistic hazard. This presentation addresses the question: can biogeochemists contribute knowledge, and translate that knowledge, into greater resilience of urban systems? I argue that we can, and present four examples, each illustrated with case studies. The first is an example of resource depletion - the eventual exhaustion of P rock used for fertilizer. Phosphate rock reserves are limited, at least in the U.S., causing us to import fertilizer P. Prices are rising, prompting more efficient use. Over the long term, depletion of phosphate rock globally may lead to a "brown devolution". We have started a process of tracking P from agricultural watersheds to the "urban plate", and the potential for recycling urban wastes back to agriculture. Early findings in our lab show that agricultural P use in a high-production watershed is now quite efficient, but urban P use is extremely inefficient. A P balance of the Minneapolis-St. Paul region showed that only 4% of input P was recycled, but 75% recycling was possible, even with off-the-shelf technologies. Recycling urban P to agricultural systems, at least for cities in agricultural regions, could close the P cycle and add resilience to the urban food system. A second example is the loss of resilience caused by pollution. Cities often pollute their groundwater, especially with nitrate, salts, and bacteria, limiting the potential for using underlying aquifers for water supply during drought periods and reducing the resilience of the urban system. This is a serious problem in cities in the developing world that do not have water-based waste removal systems. Better biogeochemical knowledge of urban nutrient flows - and perhaps development of mitigation strategies, such as wetland treatment systems- could help prevent degradation of urban aquifers or restore them, increasing resilience of cities to drought. Third, we know little about how extreme climatic fluctuations alter biogeochemical cycles and how these alterations might affect resilience of cities. The current drought, for example, has had profound effects on lake ecosystems in the Twin Cities. Some of these effects may be semi-permanent, such as "switching" of shallow lakes from macrophyte dominated to algae dominated systems with substantial reduction in human utilization. Finally, simply acquiring biogeochemical knowledge is not sufficient to develop urban resilience. This knowledge needs to be translated into meaningful measurements (to provide feedback) and appropriate responses. Urban biogeochemists need to be involved in translational activities, but cannot do this on an ad hoc basis. Instead, universities need to develop new models to support translational research for urban ecosystems.
Balancing alternative land uses in conservation prioritization.
Moilanen, Atte; Anderson, Barbara J; Eigenbrod, Felix; Heinemeyer, Andreas; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J; Thomas, Chris D
2011-07-01
Pressure on ecosystems to provide various different and often conflicting services is immense and likely to increase. The impacts and success of conservation prioritization will be enhanced if the needs of competing land uses are recognized at the planning stage. We develop such methods and illustrate them with data about competing land uses in Great Britain, with the aim of developing a conservation priority ranking that balances between needs of biodiversity conservation, carbon storage, agricultural value, and urban development potential. While both carbon stocks and biodiversity are desirable features from the point of view of conservation, they compete with the needs of agriculture and urban development. In Britain the greatest conflicts exist between biodiversity and urban areas, while the largest carbon stocks occur mostly in Scotland in areas with low agricultural or urban pressure. In our application, we were able successfully to balance the spatial allocation of alternative land uses so that conflicts between them were much smaller than had they been developed separately. The proposed methods and software, Zonation, are applicable to structurally similar prioritization problems globally.
Response of vegetation phenology to urbanization in the conterminous United States
Li, Xuecao; Zhou, Yuyu; Asrar, Ghassem R.; ...
2016-12-18
The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003–2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends latermore » (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days.Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6–6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. In conclusion, the quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology.« less
NASA Astrophysics Data System (ADS)
Kimijiama, S.; Nagai, M.
2014-06-01
In Greater Mekong Sub-region (GMS), economic liberalization and deregulation facilitated by GMS Regional Economic Corporation Program (GMS-ECP) has triggered urbanization in the region. However, the urbanization rate and its linkage to socio-economic activities are ambiguous. The objectives of this paper are to: (a) determine the changes in urban area from 1972 to 2013 using remote sensing data, and (b) analyse the relationships between urbanization with respect to socio-economic activities in central Laos. The study employed supervised classification and human visible interpretation to determine changes in urbanization rate. Regression analysis was used to analyze the correlation between the urbanization rate and socio-economic variables. The result shows that the urban area increased significantly from 1972 to 2013. The socio-economic variables such as school enrollment, labour force, mortality rate, water source and sanitation highly correlated with the rate of urbanization during the period. The study concluded that identifying the highly correlated socio-economic variables with urbanization rate could enable us to conduct a further urbanization simulation. The simulation helps in designing policies for sustainable development.
Data and Information Management: Essential Basis for Sustainable Urban Management and Development
NASA Astrophysics Data System (ADS)
Geerders, P.; Kokke, E.
2011-08-01
Management of the urban environment and urban development require well organized data and information as a basis for decision making, planning and policy development. Such data and information needs to be up-to-date, reliable and complete, and moreover be available at the time of need. The latter is especially relevant in the case of disasters such as fires, flooding, earthquakes and volcanic eruptions. Current and future impacts of the on-going climate changes increase the need for geo-referenced data and information on environment, biodiversity and public health, in support of preparation, protection, mitigation and reconstruction. It is important that urban authorities devote more attention and resources to data and information management in order to be able to cope with the present and future challenges of ever growing cities with increasing impacts on their surroundings, and moreover to deal with the impacts of environment and biodiversity on the cities, their population and economies. SOD, Woerden has a long and successful track record of certified training and education in the field of data and information management for authorities, including urban government. The courses provided by SOD cover a wide range of subjects from metadata and digitizing, to enterprise content management and geo-information management. While focused on the Netherlands, SOD also has initiated similar training opportunities in Belgium and Surinam, and efforts are under way in other countries. P. Geerders Consultancy has considerable experience as a consultant and trainer in the field of methods and technologies for the provision of information in support of decision-making, planning and policy development related to integrated management and sustainable development of natural resources. Besides in various countries of Europe, he has worked in Latin America and the Caribbean region. Since several years, P. Geerders works as a freelance teacher with SOD. The paper presents a vision on training and education of urban authorities in information handling and management.
NASA Astrophysics Data System (ADS)
Roman, M. O.; Wang, Z.; Kalb, V.; Cole, T.; Oda, T.; Stokes, E.; Molthan, A.
2016-12-01
A new generation of satellite instruments, represented by the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), offer global measurements of nocturnal visible and near-infrared light suitable for urban science research. While many promising urban-focused applications have been developed using nighttime satellite imagery in the past 25 years, most studies to-date have been limited by the quality of the captured imagery and the retrieval methods used in heritage (DMSP/OLS) products. Instead, science-quality products that are temporally consistent, global in extent, and local in resolution were needed to monitor human settlements worldwide —particularly for studies within dense urban areas. Since the first-light images from the VIIRS were received in January 2012, the NASA Land Science Investigator-led Processing System (Land SIPS) team has worked on maximizing the capabilities of these low-light measurements to generate a wealth of new information useful for understanding urbanization processes, urban functions, and the vulnerability of urban areas to climate hazards. In a recent case study, our team demonstrated that tracking daily dynamic VIIRS nighttime measurements can provide valuable information about the character of the human activities and behaviors that shape energy consumption and vulnerability (Roman and Stokes, 2015). Moving beyond mapping the physical qualities of urban areas (e.g. land cover and impervious area), VIIRS measurements provide insight into the social, economic, and cultural activities that shape energy and infrastructure use. Furthermore, as this time series expands and is merged with other sources of optical remote sensing data (e.g., Landsat-8 and Sentinel 2), VIIRS has the potential to increase our understanding of changes in urban form, structure, and infrastructure—factors that may also influence urban resilience—and how the increasing frequency and severity of climate-related hazards can ultimately affect development pathways and urban policies in the long term.
Urbanization may limit impacts of an invasive predator on native mammal diversity
Reichert, Brian E.; Sovie, Adia R.; Udell, Brad J.; Hart, Kristen M.; Borkhataria, Rena R.; Bonneau, Mathieu; Reed, Robert; McCleery, Robert A.
2017-01-01
AimOur understanding of the effects of invasive species on faunal diversity is limited in part because invasions often occur in modified landscapes where other drivers of community diversity can exacerbate or reduce the net impacts of an invader. Furthermore, rigorous assessments of the effects of invasive species on native communities that account for variation in sampling, species-specific detection and occurrence of rare species are lacking. Invasive Burmese pythons (Python molurus bivittatus) may be causing declines in medium- to large-sized mammals throughout the Greater Everglades Ecosystem (GEE); however, other factors such as urbanization, habitat changes and drastic alteration in water flow may also be influential in structuring mammal communities. The aim of this study was to gain an understanding of how mammal communities simultaneously facing invasive predators and intensively human-altered landscapes are influenced by these drivers and their interactions.LocationFlorida, USA.MethodsWe used data from trail cameras and scat searches with a hierarchical community model that accounts for undetected species to determine the relative influence of introduced Burmese pythons, urbanization, local hydrology, habitat types and interactive effects between pythons and urbanization on mammal species occurrence, site-level species richness, and turnover.ResultsPython density had significant negative effects on all species except coyotes. Despite these negative effects, occurrence of some generalist species increased significantly near urban areas. At the community level, pythons had the greatest impact on species richness, while turnover was greatest along the urbanization gradient where communities were increasingly similar as distance to urbanization decreased.Main conclusionsWe found evidence for an antagonistic interaction between pythons and urbanization where the impacts of pythons were reduced near urban development. Python-induced changes to mammal communities may be mediated near urban development, but elsewhere in the GEE, pythons are likely causing a fundamental restructuring of the food web, declines in ecosystem function, and creating complex and unpredictable cascading effects.
NASA Astrophysics Data System (ADS)
Harun, R.
2013-05-01
This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the relative effectiveness of the two models, ANN and CA, in urban planning. The questions that are addressed in this research are: a) What makes ANN models different from CA models?; b) Which model has higher accuracy in predicting future urban land use change?; and c) Are the models effective enough in guiding urban land use policies and strategies? The models that are used for this research are Multilayer Perceptron (MLP) and CA model, available in IDRISI Taiga. Since, the objective is to perform a comparative analysis and draw general inferences irrespective of specific urban policies, the availability of data was given more emphasis over the selection of particular location. Urban area in Massachusetts was chosen to conduct the study due to data availability. Extensive literature review was performed to understand the functionality of the two models. The models were applied to predict future changes and the accuracy assessment was performed using standard matrix. Inferences were drawn about the applicability of the models in urban planning context along with recommendations. This research will not only develop understanding of land use models among urban planners, but also will create an environment of coupled research between planners and modellers.
Street Level Hydrology: An Urban Application of the WRF-Hydro Framework in Denver, Colorado
NASA Astrophysics Data System (ADS)
Read, L.; Hogue, T. S.; Salas, F. R.; Gochis, D.
2015-12-01
Urban flood modeling at the watershed scale carries unique challenges in routing complexity, data resolution, social and political issues, and land surface - infrastructure interactions. The ability to accurately trace and predict the flow of water through the urban landscape enables better emergency response management, floodplain mapping, and data for future urban infrastructure planning and development. These services are of growing importance as urban population is expected to continue increasing by 1.84% per year for the next 25 years, increasing the vulnerability of urban regions to damages and loss of life from floods. Although a range of watershed-scale models have been applied in specific urban areas to examine these issues, there is a trend towards national scale hydrologic modeling enabled by supercomputing resources to understand larger system-wide hydrologic impacts and feedbacks. As such it is important to address how urban landscapes can be represented in large scale modeling processes. The current project investigates how coupling terrain and infrastructure routing can improve flow prediction and flooding events over the urban landscape. We utilize the WRF-Hydro modeling framework and a high-resolution terrain routing grid with the goal of compiling standard data needs necessary for fine scale urban modeling and dynamic flood forecasting in the urban setting. The city of Denver is selected as a case study, as it has experienced several large flooding events in the last five years and has an urban annual population growth rate of 1.5%, one of the highest in the U.S. Our work highlights the hydro-informatic challenges associated with linking channel networks and drainage infrastructure in an urban area using the WRF-Hydro modeling framework and high resolution urban models for short-term flood prediction.
Relation between urbanization and water quality of streams in the Austin area, Texas
Veenhuis, J.E.; Slade, R.M.
1990-01-01
The ratio of the number of samples with detectable concentrations to the total number of samples analyzed for 18 inorganic trace elements and the concentrations of many of these minor constituents increased with increasing development classifications. Twenty-two of the 42 synthetic organic compounds for which samples were analyzed were detected in one or more samples. The compounds were detected more frequently and in larger concentrations at the sites with more urban classifications.
NASA Astrophysics Data System (ADS)
Altürk, Bahadır; Konukcu, Fatih
2017-04-01
Agricultural lands that supply food, energy and ecosystem services for human life have been lost due to anthropogenic activities such as construction of roads, urban and industry areas. The significant reasons for the increase of artificial surfaces were poorly planned economic decisions by the government and internal migration due to this poorly planning. Unplanned urban sprawl also give rise to land fragmentation. Fragmentation of agricultural land affects both the agricultural production capacity and rural sustainable employment. In this study: i) Land use changes between 1990-2014 period were assessed using remotely sensed data and ii) Spatial and temporal agricultural land fragmentation were investigated using landscape pattern indice (effective mesh size), Morphological Spatial Pattern Analysis (MSPA) and Entropy method for 25 years period. The selected"hot spot" study area is located on east Thrace region of Turkey, being the service and industrial development zone where agricultural activities, water resources and natural habitat have been damaged due to rapid urban and industrial development for about 25 years. The results showed that agricultural lands decreased 6.44%, urban areas increased 111.68% and industry areas increased 251.19% during this 25 years period. Additionally, fragmentation analyses demonstrated that core agricultural areas sharply decreased and relative fragmentation (effective mesh size) increased from 50.68% to 56.77% during 1990 and 2014.
A framework for developing safe and effective large-fire response in a new fire management paradigm
Christopher J. Dunn; Matthew P. Thompson; David E. Calkin
2017-01-01
The impacts of wildfires have increased in recent decades because of historical forest and fire management, a rapidly changing climate, and an increasingly populated wildland urban interface. This increasingly complex fire environment highlights the importance of developing robust tools to support risk-informed decision making. While tools have been developed to aid...
Mechanisms associated with an advance in the timing of seasonal reproduction in an urban songbird
Fudickar, Adam M.; Greives, Timothy J; Abolins-Abols, Mikas; Atwell, Jonathan W.; Meddle, Simone L.; Friis, Guillermo; Stricker, Craig A.; Ketterson, Ellen D.
2017-01-01
The colonization of urban environments by animals is often accompanied by earlier breeding and associated changes in seasonal schedules. Accelerated timing of seasonal reproduction in derived urban populations is a potential cause of evolutionary divergence from ancestral populations if differences in physiological processes that regulate reproductive timing become fixed over time. We compared reproductive development in free-living and captive male dark-eyed juncos deriving from a population that recently colonized a city (~35 years) and ceased migrating to that of conspecifics that live in sympatry with the urban population during winter and spring but migrate elsewhere to breed. We predicted that the earlier breeding sedentary urban birds would exhibit accelerated reproductive development in the spring along the hypothalamic-pituitary-gonadal (HPG) axis as compared to migrants. We found that free-living sedentary urban and migrant juncos differed at the level of the pituitary when measured as baseline luteinizing hormone (LH) levels, but not in increased LH when challenged with Gonadotropin-Releasing Hormone (GnRH). Among captives held in a common garden, and at the level of the gonad, we found that sedentary urban birds produced more testosterone in response to GnRH than migrants living in the same common environment, suggesting greater gonadal sensitivity in the derived urban population. Greater gonadal sensitivity could arise from greater upstream activation by LH or FSH or from reduced suppression of gonadal development by the adrenal axis. We compared abundance of gonadal transcripts for LH receptor (LHR), follicle stimulating hormone receptor (FSHR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) in the common-garden, predicting either more abundant transcripts for LHR and FSHR or fewer transcripts for GR and MR in the earlier breeding sedentary urban breeders, as compared to the migrants. We found no difference in the expression of these genes. Together these data suggest that advanced timing of reproduction in a recently derived urban population is facilitated by earlier increase in upstream baseline activity of the HPG and earlier release from gonadal suppression by yet-to-be-discovered mechanisms. Evolutionarily, our results suggest that potential for gene flow between seasonally sympatric populations may be limited due to urban-induced advances in the timing of reproduction and resulting allochrony with ancestral forms.
Liu, G F; Sun, M P; Wang, Z Y; Jian, W Y
2016-06-18
To explore the association between different urbanization levels and non-communicable diseases (NCDs) in China and provide suggestions on designing relevant health policies in the urbanization process. We obtained health-related data from China Health and Retirement Longitudinal Study (CHARLS) 2011. This study used multistage sampling in design stage and covered 150 districts/counties, representative at the levels of the country. Geo-information system (GIS) method was used to get district areas data, and in combination with the Sixth National Census population data, we computed the population density which was regarded as the proxy variable of urbanization level in every city. The Logistic model was used to explore the effect of urbanization level on hypertension, diabetes, smoking, drinking, overweight and obesity. Compared with other cities in China, Shanghai and Shenzhen, with the population density of more than 3 000 people per km(2), were the cities with highest urbanization level. From the map of urbanization distribution across China, it was found that the urbanization levels of the northwestern districts were lower than those of the southeastern and coastal districts. The hypertension rate increased with the development of urbanization but there was no statistical significance. The proportion of patients with diabetes went up first and then saw a decrease trend in the process of urbanization. Drinking rate, overweight rate and obesity rate had similar trends, falling to their lowest point when urbanization level equaled 737,1 186 and 1 353 people per km(2) respectively and then experienced upward trends. By contrast, smoking rate declined first and then went up (the turning point was 1 029 people per km(2)). Different urbanization levels have different effects on NCDs, health-related behavior, overweight and obesity. Low urbanization level may create negative impact on health while high level can pose positive effect and increase people's health condition possibly due to the improvement of health care accessibility and the quality of living environment. Policy-makers should specially focus on different residents'health problems in different periods of urbanization, such as the impact of environmental pollution, health resources' allocation and accessibility of health services. It is necessary to reduce or avoid the negative effect of urbanization on NCDs during the local development process to face the NCDs' threat.
NASA Astrophysics Data System (ADS)
Lv, Jinxia; Jiang, Weiguo
2017-04-01
With the economic development and technological innovation, urban planning and construction has already broken through the shackles of the natural conditions such as topography and geomorphology, and the social factors such as politics and location have been affected by the urbanization process in the process of urbanization. At the same time, the synergies between urban development and local economy, national policy, industrial distribution and so on are also paid more attention. As the third pole of Chinese economy after the Pearl River Delta and the Yangtze River Delta, the Beijing-Tianjin-Hebei Metropolis Circle has attracted extensive attention on experts and scholars in its urban development and location. In recent years, studies on urban development have not only analyzed the spatial characteristics of urban or urban agglomerations, but also discussed the relationship between urban development and certain elements or phenomena. This paper presents a multi-threshold and multi-feature extraction method for building land using the optical characteristics of different landforms, based on Landsat remote sensing images from 1984 to 2016. The method selected Automated Water Extraction Index (AWEI), Normalized Difference Vegetation Index (NDVI), Soil Extraction Index (SOEI) and Normalized Difference Built-up Index (BUEI) to extract the construction land. It is an example study area of Beijing to extract the construction land in 30 years and to do a examine research. Using the ArcGIS software to calculate, we can get the coordinates of the city center of gravity in Beijing in various years. It can be seen that the center of gravity of built-up area and the movement of the center of gravity in Beijing. The results showed that the construction land in Beijing has an increasing tendency in recent 30 years. The main characteristic of expansion is the way of high-speed outward development. From 1984 to 1999, the center of gravity of the city shifted to the northeast, and from 2000 to 2016 the center of gravity shifted to the southeast. In the further study, we would do a research in the whole area in Beijing-Tianjin-Hebei and pay more attention to built-up land expansion prediction.
Urbanization in Africa: challenges and opportunities for conservation
NASA Astrophysics Data System (ADS)
Güneralp, Burak; Lwasa, Shuaib; Masundire, Hillary; Parnell, Susan; Seto, Karen C.
2017-12-01
Africa, a continent exceptionally rich in biodiversity, is rapidly urbanizing. Africa’s urbanization is manifest in the growth of its megacities as well as that of its smaller towns and cities. The conservation planning and practice will increasingly need to account for direct and indirect impacts of the continent’s urbanization. The objective of our study is to pinpoint the outstanding challenges and opportunities afforded by the growing cities on the continent to the conservation goals and practices. While there have been many studies on the impacts of urbanization and development on conservation in Africa these studies tended to focus on specific issues. Here, we provide a synthesis of this body of work supported by new analysis. Urban areas, growing both in population and in land cover, pose threats to the integrity of the continent’s ecosystems and biodiversity but their growth also create opportunities for conservation. The burgeoning urban populations, especially in Sub-Saharan Africa, increase the strain on already insufficient infrastructure and bring new governance challenges. Yet, Africa’s ecosystems can serve as foundations for green infrastructure to serve the needs of its urban populations while safeguarding fragile biodiversity. Overall, while worsening social problems overshadow the concerns for biodiversity there are also promising initiatives to bring these concerns into the fold to address social, institutional, and ecological challenges that emerge with the continued urbanization of the continent.
The Urban Heat Island Behavior of a Large Northern Latitude Metropolitan Area
NASA Astrophysics Data System (ADS)
Twine, T. E.; Snyder, P. K.; Hertel, W.; Mykleby, P.
2012-12-01
Urban heat islands (UHIs) occur when urban and suburban areas experience elevated temperatures relative to their rural surroundings because of differences in vegetation cover, buildings and other development, and infrastructure. Most cities in the United States are warming at twice the rate of the outlying rural areas and the planet as a whole. Temperatures in the urban center can be 2-5°C warmer during the daytime and as much as 10°C at night. Urban warming is responsible for excessive energy consumption, heat-related health effects, an increase in urban pollution, degradation of urban ecosystems, changes in the local meteorology, and an increase in thermal pollution into urban water bodies. One mitigation strategy involves manipulating the surface energy budget to either reduce the amount of solar radiation absorbed at the surface or offset absorbed energy through latent cooling. Options include using building materials with different properties of reflectivity and emissivity, increasing the reflectivity of parking lots, covering roofs with vegetation, and increasing the amount of vegetation overall through tree planting or increasing green space. The goal of the Islands in the Sun project is to understand the formation and behavior of urban heat islands and to mitigate their effects through sensible city engineering and design practices. As part of this project, we have been characterizing the UHI of the Twin Cities Metropolitan Area (TCMA), a 16,000 square kilometer urban and suburban region located in east central Minnesota that includes the two cities of Minneapolis and Saint Paul, and evaluating mitigation strategies for reducing urban warming. Annually, the TCMA has a modest 2-3°C UHI that is especially apparent in winter when the urban core can be up to 5-6°C warmer than the surrounding countryside. We present an analysis of regional temperature variations from a dense network of sensors located throughout the TCMA. We focus on the diurnal and seasonal behavior of the TCMA UHI with an emphasis on the contribution of different land use types on the UHI. We also present a comparison of thermal and radiative properties of two different roofing materials with data collected from the roof of the Science Museum of Minnesota in Saint Paul, MN. The impact of the TCMA UHI on thermal pollution into local water bodies is also investigated.
NASA Astrophysics Data System (ADS)
Pavao-Zuckerman, M.
2010-12-01
As rates of urbanization continue to rise and a greater proportion of the population lives in urban and suburban areas, the provision of ecological services and functions become increasingly important to sustain human and environmental health in urban ecosystems. Soils play a primary role in the healthy functioning of ecosystems that provide supporting, provisioning, regulating, preserving, and cultural ecosystem services, yet developing our understanding of how urban soils function to provide these services within an ecological context is just getting underway. Soils in urban ecosytems are highly heterogeneous, and are affected by both direct and indirect influences and local modifications which alter their functioning relative to non-urbanized local soils. Here I discuss the functioning of rain gardens in and around Tucson, AZ, that have been installed in the urban landscape with the purpose of providing various ecosystem services to local residents and the greater urban ecosystem. This reconnection of ecohydrologic flows in the city has the potential to alter the structure and function of urban ecosystems in positive (through the increase in water availability) and negative (through the import of pollutants to soils) ways. This study compares soil properties, microbial function, and ecosystem functions within the urban ecosystem to determine how urbanization alters soils in semi-arid environments, and to determine if green urban modifications in desert cities can improve soils and ecosystem services. Soils in rain gardens have nearly twice the organic matter contents of native and urban soils, and correspondingly, greater microbial function (as indicated through respiration potential), higher abundance (through substrate induced respiration), and community complexity (indicated by a 3x increase in metabolic diversity) in these green design modifications. Net N-mineralization rates are almost 1.5 times faster in the rain garden basins than urban soils in general. This study also includes the comparison of different approaches to installing rain gardens to illustrate the effects of different management strategies on biogeochemical cycling. The inclusion of mulch in the garden design increases microbial biomass and reduces the rate of N-mineralization. These data indicate that soil quality is improved in arid system rain gardens. Such urban modifications both improve soils and reconnect ecohydrologic flows in Tucson neighborhoods, suggesting that the provision of ecosystem services in cities can be assisted with small scale green infrastructure modifications. In fact, such small scale improvements in ecosystem functioning may contribute to broader scale resilience of the urban ecosystem.
Application of the Water Needs Index: Can Tho City, Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Moglia, Magnus; Neumann, Luis E.; Alexander, Kim S.; Nguyen, Minh N.; Sharma, Ashok K.; Cook, Stephen; Trung, Nguyen H.; Tuan, Dinh D. A.
2012-10-01
SummaryProvision of urban water supplies to rapidly growing cities of South East Asia is difficult because of increasing demand for limited water supplies, periodic droughts, and depletion and contamination of surface and groundwater. In such adverse environments, effective policy and planning processes are required to secure adequate water supplies. Developing a Water Needs Index reveals key elements of the complex urban water supply by means of a participatory approach for rapid and interdisciplinary assessment. The index uses deliberative interactions with stakeholders to create opportunities for mutual understanding, confirmation of constructs and capacity building of all involved. In Can Tho City, located at the heart of the Mekong delta in Vietnam, a Water Needs Index has been developed with local stakeholders. The functional attributes of the Water Needs Index at this urban scale have been critically appraised. Systemic water issues, supply problems, health issues and inadequate, poorly functioning infrastructure requiring attention from local authorities have been identified. Entrenched social and economic inequities in access to water and sanitation, as well as polluting environmental management practices has caused widespread problems for urban populations. The framework provides a common language based on systems thinking, increased cross-sectoral communication, as well as increased recognition of problem issues; this ought to lead to improved urban water management. Importantly, the case study shows that the approach can help to overcome biases of local planners based on their limited experience (information black spots), to allow them to address problems experienced in all areas of the city.
NASA Astrophysics Data System (ADS)
Al-sharif, Abubakr A. A.; Pradhan, Biswajeet; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri
2014-06-01
Urban expansion is a spatial phenomenon that reflects the increased level of importance of metropolises. The remotely sensed data and GIS have been widely used to study and analyze the process of urban expansions and their patterns. The capital of Libya (Tripoli) was selected to perform this study and to examine its urban growth patterns. Four satellite imageries of the study area in different dates (1984, 1996, 2002 and 2010) were used to conduct this research. The main goal of this work is identification and analyzes the urban sprawl of Tripoli metropolitan area. Urban expansion intensity index (UEII) and degree of freedom test were used to analyze and assess urban expansions in the area of study. The results show that Tripoli has sprawled urban expansion patterns; high urban expansion intensity index; and its urban development had high degree of freedom according to its urban expansion history during the time period (1984-2010). However, the novel proposed hypothesis used for zones division resulted in very good insight understanding of urban expansion direction and the effect of the distance from central business of district (CBD).
Developing micro-level urban ecosystem indicators for sustainability assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dizdaroglu, Didem, E-mail: dizdaroglu@bilkent.edu.tr
Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national andmore » global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [Turkish] Highlights: • As the impacts of environmental problems have multi-scale characteristics, sustainability assessment needs to be considered on all scales. • The detailed data is necessary to assess local environmental change in urban ecosystems to provide insights into the national and global scales. • This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. • This paper also describes theoretical foundations for the selection of each indicator with reference to the literature.« less
Quantifying the Influence of Urbanization on a Coastal Floodplain
NASA Astrophysics Data System (ADS)
Sebastian, A.; Juan, A.; Bedient, P. B.
2016-12-01
The U.S. Gulf Coast is the fastest growing region in the United States; between 1960 and 2010, the number of housing units along the Gulf of Mexico increased by 246%, vastly outpacing growth in other parts of the country (NOAA 2013). Numerous studies have shown that increases in impervious surface associated with urbanization reduce infiltration and increase surface runoff. While empirical evidence suggests that changes in land use are leading to increased flood damage in overland areas, earlier studies have largely focused on the impacts of urbanization on surface runoff and watershed hydrology, rather than quantifying its influence on the spatial extent of flooding. In this study, we conduct a longitudinal assessment of the evolution of flood risk since 1970 in an urbanizing coastal watershed. Utilizing the distributed hydrologic model, Vflo®, in combination with the hydraulic model, HEC-RAS, we quantify the impact of localized land use/land cover (LULC) change on the spatial extent of flooding in the watershed and the underlying flood hazard structure. The results demonstrate that increases in impervious cover between 1970 and 2010 (34%) and 2010 and 2040 (18%) increase the size of the floodplain by 26 and 17%, respectively. Furthermore, the results indicate that the depth and frequency of flooding in neighborhoods within the 1% floodplain have increased substantially (see attached figure). Finally, this analysis provides evidence that outdated FEMA floodplain maps could be underestimating the extent of the floodplain by upwards of 25%, depending on the rate of urbanization in the watershed; and, that by incorporating physics-based distributed hydrologic models into floodplain studies, floodplain maps can be easily updated to reflect the most recent LULC information available. The methods presented in this study have important implications for the development of mitigation strategies in coastal areas, such as deterring future development in flood prone areas and directing flood mitigation efforts in already flood prone communities. ReferencesNational Oceanic and Atmospheric Administration (NOAA). (2013). National Coastal Population Report: Population Trends from 1970 to 2020.
NASA Astrophysics Data System (ADS)
Panagopoulos, George P.
2014-10-01
The multivariate statistical techniques conducted on quarterly water consumption data in Mytilene reveal valuable tools that could help the local authorities in assigning strategies aimed at the sustainable development of urban water resources. The proposed methodology is an innovative approach, applied for the first time in the international literature, to handling urban water consumption data in order to analyze statistically the interrelationships among the determinants of urban water use. Factor analysis of demographic, socio-economic and hydrological variables shows that total water consumption in Mytilene is the combined result of increases in (a) income, (b) population, (c) connections and (d) climate parameters. On the other hand, the per connection water demand is influenced by variations in water prices but with different consequences in each consumption class. Increases in water prices are faced by large consumers; they then reduce their consumption rates and transfer to lower consumption blocks. These shifts are responsible for the increase in the average consumption values in the lower blocks despite the increase in the marginal prices.
Thorne, James H.; Santos, Maria J.; Bjorkman, Jacquelyn H.
2013-01-01
Assessment of landscape change is critical for attainment of regional sustainability goals. Urban growth assessments are needed because over half the global population now lives in cities, which impact biodiversity, ecosystem structure and ecological processes. Open space protection is needed to preserve these attributes, and provide the resources humans need. The San Francisco Bay Area, California, is challenged to accommodate a population increase of 3.07 million while maintaining the region’s ecosystems and biodiversity. Our analysis of 9275 km2 in the Bay Area links historic trends for three measures: urban growth, protected open space, and landcover types over the last 70 years to future 2050 projections of urban growth and open space. Protected open space totaled 348 km2 (3.7% of the area) in 1940, and expanded to 2221 km2 (20.2%) currently. An additional 1038 km2 of protected open space is targeted (35.1%). Urban area historically increased from 396.5 km2 to 2239 km2 (24.1% of the area). Urban growth during this time mostly occurred at the expense of agricultural landscapes (62.9%) rather than natural vegetation. Smart Growth development has been advanced as a preferred alternative in many planning circles, but we found that it conserved only marginally more open space than Business-as-usual when using an urban growth model to portray policies for future urban growth. Scenarios to 2050 suggest urban development on non-urban lands of 1091, 956, or 179 km2, under Business-as-usual, Smart Growth and Infill policy growth scenarios, respectively. The Smart Growth policy converts 88% of natural lands and agriculture used by Business-as-usual, while Infill used only 40% of those lands. Given the historic rate of urban growth, 0.25%/year, and limited space available, the Infill scenario is recommended. While the data may differ, the use of an historic and future framework to track these three variables can be easily applied to other metropolitan areas. PMID:23755204
Thorne, James H; Santos, Maria J; Bjorkman, Jacquelyn H
2013-01-01
Assessment of landscape change is critical for attainment of regional sustainability goals. Urban growth assessments are needed because over half the global population now lives in cities, which impact biodiversity, ecosystem structure and ecological processes. Open space protection is needed to preserve these attributes, and provide the resources humans need. The San Francisco Bay Area, California, is challenged to accommodate a population increase of 3.07 million while maintaining the region's ecosystems and biodiversity. Our analysis of 9275 km² in the Bay Area links historic trends for three measures: urban growth, protected open space, and landcover types over the last 70 years to future 2050 projections of urban growth and open space. Protected open space totaled 348 km² (3.7% of the area) in 1940, and expanded to 2221 km² (20.2%) currently. An additional 1038 km² of protected open space is targeted (35.1%). Urban area historically increased from 396.5 km² to 2239 km² (24.1% of the area). Urban growth during this time mostly occurred at the expense of agricultural landscapes (62.9%) rather than natural vegetation. Smart Growth development has been advanced as a preferred alternative in many planning circles, but we found that it conserved only marginally more open space than Business-as-usual when using an urban growth model to portray policies for future urban growth. Scenarios to 2050 suggest urban development on non-urban lands of 1091, 956, or 179 km², under Business-as-usual, Smart Growth and Infill policy growth scenarios, respectively. The Smart Growth policy converts 88% of natural lands and agriculture used by Business-as-usual, while Infill used only 40% of those lands. Given the historic rate of urban growth, 0.25%/year, and limited space available, the Infill scenario is recommended. While the data may differ, the use of an historic and future framework to track these three variables can be easily applied to other metropolitan areas.
Zhang, Kan; Zhang, Jianying; Chen, Yingxu; Zhu, Yinmei
2006-10-01
Based on the Landset TM information of land use/cover change and greenbelt distribution in Hangzhou city in 1994 and 2004, and by using CITYgreen model, this paper estimated the eco-service value of urban greenbelt in the city under the effects of land use change and economic development. The results showed that in the 10 years from 1994 to 2004, the greenbelt area in the city decreased by 20. 4% , while its eco-service value increased by 168 million yuan. The annual increment of greenbelt eco-service value and GDP was 111.92% and 5. 32% , respectively. Suitable adjustment of land use pattern in the city harmonized the relationships between urban economic development and urban eco-function, and achieved higher eco-service efficiency of land utilization.
Urban enhancement of the heat waves in Madrid and its metropolitan area
NASA Astrophysics Data System (ADS)
Fernandez, F.; Rasilla, D.
2009-04-01
The urban heat island (UHI) is a worldwide phenomenon that causes an increase of the temperatures in the centre of the cities. The process of urbanization has developed an intense urban heat island in Madrid, with temperature differences up to 10°C higher than the surrounding rural environment. Such differences may potentially increase the magnitude and duration of heat waves within cities, exacerbating their most negative effects over human health, particularly by night, as it deprives urban residents of the cool relief found in rural areas. In this contribution we study the long term trends on warm extreme temperature episodes in the Madrid metropolitan area, and their impact at local scale, on the onw city of Madrid. For the first task, we have compared maximum and minimum temperatures from rural (Barajas and Torrejón) and urban (El Retiro, Cuatro Vientos, Getafe) stations from 1961-2008; for the second one a local network of automated meteorological stations inside the city provided hourly data from the 2002-2004 years. Finally, the 2003 heat wave is used as an example of the spatial and temporal patterns of temperature and ozone concentrations during those extreme episodes. Our results show a regional increase in the frequency and duration of those extreme warm episodes since the end of the 80´s, although their absolute magnitude remains unchanged. The urban environment exacerbates the heat load due to the persistence of the high temperatures during the night-time hours, as it is shown by the above average number of tropical nights (> 20°C) inside the urban spaces, simultaneous to the increasing trend of maximum temperatures. Besides, the diversity of urban morphologies introduces a spatial variability on the strength of this nocturnal heat load, aggravating it in the densely urbanized areas and mitigating it in the vicinities of the green areas. The regional meteorological conditions associated to these warm episodes, characterized also by low wind speed and high values of sunshine and solar irradiation, are very favourable to increases of the levels of ozone, thus exacerbating the negative effects of the heat waves.
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; sheikhi, A.; Kang, C. S.
2014-02-01
Development of cities has led to various environmental problems as a consequence of non sustaibale town planning. One of the strategies to make cities a livable place and to achieve low levels of CO2 emissions (low carbon cities or LCC) is the integration of the blue and green infrastructure into the development and planning of new urban areas. Iskandar Malaysia (IM) located in the southern part of Malaysia is a special economic zone that has major urban centres. The planning of these urban centres will incorporate LCC strategies to achieve a sustainable development. The role of green (plants) and blue bodies (lakes and rivers) in moderating temperature in IM have been investigated in the current study. A remotely sensed satellite imagery was used to calculate the vegetation density and land surface temperature (LST). The effect of lakes in cooling the surrounding temperature was also investigated. Results show that increasing vegetation density by 1% can decrease the LST by 0.09°C. As for the water bodies we found as the distance increased from the lake side the temperature also increased about 1.7°C and the reduction in air humidity is 9% as the distance increased to 100 meter away from the lake.
NASA Astrophysics Data System (ADS)
Hidayati, D.; Delinom, R. M.; Abdurachim, A. Y.; Dalimunthe, S.; Haba, J.; Pawitan, H.
2014-12-01
This paper discusses water-food issues in relation to how livelihoods of the poor community in Jakarta Bayarein high risk ofrapid urbanization and climate changes. As a part of the capital city of Indonesia, this area has experienced rapid increase in populationand extensive developments causing significant increase in the built up area. This city is unable to keep with demand on sewers, water and solid waste management, leading to settlement with concentrated slum pockets areas and widespread of flooding. The community is mostly poor people of productive group, live with urban pressure in fragile home and livelihoods.The situation becomes much worse due to the impact of climate change with flooding as the greatest climate and disaster risk. With lack of basic services, coastal water inundation (BanjirRob)commonly occursand floods the community housing areaswithout patternanymore. The community has lack of fresh and clean water sources and facedeconomic problem, particularly significant reduction of fishing activities. Coastal reclamation and water pollution from nearby industries are blamed as the main reason for these problems. Strategies therefore have to be developed, especially increasing community awareness and preparedness, and poverty alleviation, to sustain their livelihoods in this high risk urban area.
NASA Astrophysics Data System (ADS)
Rozenberg, J.
2015-12-01
Colombo faces recurrent floods that threaten its long-term economic development. Its urban wetlands have been identified by local agencies as a critical component of its flood reduction system, but they have declined rapidly in recent years due to continuous infilling, unmanaged land development and dredging to create lakes. In collaboration with government agencies, NGOs and local universities, the World Bank has carried out a Robust Decision Making analysis to examine the value of Colombo urban wetlands, both in the short-term and long-term, and identify what are the most viable strategies available to increase the city's flood resilience in an unclear future (in terms of climate change and patterns of urban development). This has involved the use of numerous hydrological and socio-economic scenarios as well as the evaluation of some wetlands benefits, like ecosystem services, wastewater treatment, or recreational services. The analysis has determined that if all urban wetlands across the Colombo catchment were lost, in some scenarios the metropolitan area would have to cope with an annual average flood loss of approximately 1% of Colombo GDP in the near future. For long-term strategies, trade-offs between urban development, lake creation and wetland conservation were analyzed and it was concluded that an active management of urban wetlands was the lowest regret option. Finally, the analysis also revealed that in the future, with climate change and fast urban development, wetlands will not be sufficient to protect Colombo against severe floods. Pro-active urban planning and land-use management are therefore necessary, both to protect existing wetlands and to reduce future exposure. The use of many different scenarios, the consideration of several policy options, and the open participatory process ensured policy-makers' buy-in and lead to the decision to actively protect urban wetlands in Colombo.
Suburbanization and sustainability in metropolitan Moscow.
Mason, Robert J; Nigmatullina, Liliya
2011-01-01
Although Soviet-era urban-growth controls produced relatively sustainable metropolitan development patterns, low-density suburban sprawl has accelerated markedly in modern Russia. Distinctive features of Moscow's development history are its greenbelt, which dates from 1935 and is becoming increasingly fragmented, proliferation of satellite cities at the urban fringe, conversion of seasonal dachas into full-time residences, the very exclusive Rublevo Uspenskoe Highway development, and today's crippling traffic congestion. The recent economic crisis has slowed development and actually increased the supply of “economy-class” single-family homes, for which there is much pent-up desire but insufficient credit availability to meet the demand. A renewed commitment to sustainability's triple bottom line—environmental quality, equity, and economic prosperity—will require greater government transparency and fairness, stronger planning controls, and an expanded public transportation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xuecao; Zhou, Yuyu; Asrar, Ghassem R.
The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003–2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends latermore » (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days.Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6–6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. In conclusion, the quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology.« less
Modeling the effects of LID practices on streams health at watershed scale
NASA Astrophysics Data System (ADS)
Shannak, S.; Jaber, F. H.
2013-12-01
Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing potential erosion from stream beds and banks by studying annual average excess shear and reducing potential impact on aquatic life by studying rapid changes and variation in flow regimes in urban streams. This study will contribute to develop a methodology that evaluates the impact of hydrological changes that occur due to urban development, on aquatic life, stream bank and bed erosion. This is an ongoing research project and results will be shared and discussed at the conference.
Peña-Fernández, A; González-Muñoz, M J; Lobo-Bedmar, M C
2014-11-01
Rapid development, industrialisation, and urbanisation have resulted in serious contamination of soil by metals and metalloids from anthropogenic sources in many areas of the world, either directly or indirectly. Exponential urban and economic development has resulted in human populations settling in urban areas and as a result being exposed to these pollutants. Depending on the nature of the contaminant, contaminated urban soils can have a deleterious effect on the health of exposed populations and may require decontamination, recovery, remediation and restoration. Therefore, human health risk assessments in urban environments are very important. In the case of Spain, there are few studies regarding risk assessment of trace elements in urban soils, and those that exist have been derived mainly from areas potentially exposed to industrial contamination or in the vicinity of point pollution. The present study analysed Al, As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Ti, Tl, V and Zn soil concentrations in and around the city of Alcalá de Henares (35 km NE of Madrid). Soil samples were collected in public parks and recreation areas within the city and in an industrial area on the periphery of the city. From these results, an assessment of the health risk for the population was performed following the methodology described by the US EPA (1989). In general, it was observed that there could be a potential increased risk of developing cancer over a lifetime from exposure to arsenic (As) through ingestion of the soils studied (oral intake), as well as an increased risk of cancer due to inhalation of chromium (Cr) present in re-suspended soils from the industrial area. Our group has previously reported (Granero and Domingo, 2002; Peña-Fernández et al., 2003) that there was an increased risk of developing cancer following exposure to As in the same soils in a previous study. Therefore, it is necessary to reduce the levels of contaminants in these soils, especially As and Cr as these have been found to exceed safe levels for human health. Copyright © 2014 Elsevier Ltd. All rights reserved.
McIlwaine, Rebekka; Doherty, Rory; Cox, Siobhan F; Cave, Mark
2017-01-01
Increasing urbanisation has a direct impact on soil quality, resulting in elevated concentrations of potentially toxic elements (PTEs) in soils. This research aims to assess if soil PTE concentrations can be used as an 'urbanisation tracer' by investigating geogenic and anthropogenic source contributions and controls, and considering PTE enrichment across historical urban development zones. The UK cities of Belfast and Sheffield are chosen as study areas, where available shallow and deep concentrations of PTEs in soil are compared to identify geogenic and anthropogenic contributions to PTEs. Cluster analysis and principal component analysis are used to elucidate the main controls over PTE concentrations. Pollution indices indicate that different periods of historical development are linked to enrichment of different PTEs. Urban subdomains are identified and background values calculated using various methodologies and compared to generic site assessment criteria. Exceedances for a number of the PTEs considered suggest a potential human health risk could be posed across subdomains of both Belfast and Sheffield. This research suggests that airborne diffuse contamination from often historical sources such as traffic, domestic combustion and industrial processes contribute greatly to soil contamination within urban environments. The relationship between historical development and differing PTEs is a novel finding, suggesting that PTEs have the potential for use as 'urbanisation tracers'. The investigative methodology employed has potential applications for decision makers, urban planners, regulators and developers of urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of urbanisation on urban-rural water cycle: a China case study
NASA Astrophysics Data System (ADS)
Wang, Mingna; Singh, Shailesh Kumar; Zhang, Jun-e.; Khu, Soon Thiam
2016-04-01
Urbanization, which essentially create more impervious surface, is an inevitable part of modern societal development throughout the world. It produces several changes in the natural hydrological cycle by adding several processes. A better understanding of the impacts of urbanization, will allow policy makers to balance development and environment sustainability needs. It also helps underdeveloped countries make strategic decisions in their development process. The objective of this study is to understand and quantify the sensitivity of the urban-rural water cycle to urbanisation. A coupled hydrological model, MODCYCLE, was set up to simulate the effect of changes in landuse on daily streamflow and groundwater and applied to the Tianjin municipality, a rapidly urbanising mega-city on the east coast of China. The model uses landuse, land cover, soil, meteorological and climatic data to represent important parameters in the catchment. The fraction of impervious surface was used as a surrogate to quantify the degree of landuse change. In this work, we analysed the water cycle process under current urbanization situation in Tianjin. A number of different future development scenarios on based on increasing urbanisation intensity is explored. The results show that the expansion of urban areas had a great influence on generation of flow process and on ET, and the surface runoff was most sensitive to urbanisation. The results of these scenarios-based study about future urbanisation on hydrological system will help planners and managers in taking proper decisions regarding sustainable development.
NASA Astrophysics Data System (ADS)
Alcoforado, M. J.; Campos, V.; Oliveira, S.; Andrade, H.; Festas, M. J.
2009-09-01
Following the IPCC predictions of climate change, even considering one of the "best” scenarios (B1), temperature will rise circa 2°C by 2100. In southern Europe, predictions also indicate a greater precipitation variability, that is the increase in drought frequency, together with an increment of flood risk, with detrimental impacts on water availability and quality, summer tourism and crop productivity, among others. Urban areas create their own local climate, resulting in higher temperatures (UHI), modified wind patterns and lower air quality, among several other consequences. Therefore, as a result of both global and urban induced changes, the climate of cities has suffered several modifications over time, particularly in sprawling urban areas. In November 2007, the ministers responsible for spatial planning and territorial cohesion of the European Union, gathered at the Azores Informal Ministerial on Territorial Cohesion during the Portuguese Presidency, considered climate change to be one of the most important territorial challenges Europe is facing and stated that "our cities and regions need to become more resilient in the context of climate change”. They also agreed that spatial and urban planning is a suitable tool to define cost-effective adaptation measures. Furthermore, the Ministers committed themselves to put mitigation and adaptation issues of climate change into the mainstream of spatial and urban development policy at national, regional and local level. These decisions have lead to different actions in the Member States. In Portugal, the new Policy for the Cities POLIS XXI has selected the relationship between climate change and urban development as one of the key issues to be addressed by projects initiated by local authorities and submitted for co-financing through the OP "Territorial Enhancement” of the NSRF. This paper presents one of the actions taken by the Portuguese Directorate General for Spatial Planning and Urban Development (DGOTDU), the national authority responsible for the technical implementation of the Policy for the Cities, in order to raise awareness on this issue and stimulate local authorities to carry out projects aimed at enabling urban communities to increase their resilience to climate change. A booklet on climate change in urban areas, prepared in collaboration with the University of Lisbon, will soon be edited by DGOTDU. This booklet, addressed to local decision makers, both politicians and technicians, starts by giving an overall view of the state of the art science-based knowledge on climate change, both on global and regional scale. It moves on to explain the challenges raised by climate change in Portugal, focusing on urban areas and urban development issues. The content makes use of the results of previous research, such as the results obtained from the SIAM project and other studies on urban climate, carried out by the University of Lisbon. These results were complemented with a focused approach on specific urban development issues, through collaboration with DGOTDU. The booklet ends by presenting selected examples of "good practices”, aimed at either tackling the negative impacts or enhancing the potential positive consequences of climate change. An extensive reference bibliography for further consultation is also included.
Characteristics of urban natural areas influencing winter bird use in southern Ontario, Canada.
Smith, Paul G R
2007-03-01
Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (<20 g) and insectivorous species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (<6.5 ha), while less common non-residents increased with area, indicative of a nested distribution. Areas at least 6.5 ha and more generally >20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and <5% alien species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.
Characteristics of Urban Natural Areas Influencing Winter Bird Use in Southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Smith, Paul G. R.
2007-03-01
Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (<20 g) and insectivorous species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (<6.5 ha), while less common non-residents increased with area, indicative of a nested distribution. Areas at least 6.5 ha and more generally >20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and <5% alien species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.
Integrative sensing and prediction of urban water for sustainable cities (iSPUW)
NASA Astrophysics Data System (ADS)
Seo, D. J.; Fang, N. Z.; Yu, X.; Zink, M.; Gao, J.; Kerkez, B.
2014-12-01
We describe a newly launched project in the Dallas-Fort Worth Metroplex (DFW) area to develop a cyber-physical prototype system that integrates advanced sensing, modeling and prediction of urban water, to support its early adoption by a spectrum of users and stakeholders, and to educate a new generation of future sustainability scientists and engineers. The project utilizes the very high-resolution precipitation and other sensing capabilities uniquely available in DFW as well as crowdsourcing and cloud computing to advance understanding of the urban water cycle and to improve urban sustainability from transient shocks of heavy-to-extreme precipitation under climate change and urbanization. All available water information from observations and models will be fused objectively via advanced data assimilation to produce the best estimate of the state of the uncertain system. Modeling, prediction and decision support tools will be developed in the ensemble framework to increase the information content of the analysis and prediction and to support risk-based decision making.
Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo
2012-06-01
Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
Asset management to support urban land and subsurface management.
Maring, Linda; Blauw, Maaike
2018-02-15
Pressure on urban areas increases by demographic and climate change. To enable healthy, adaptive and liveable urban areas different strategies are needed. One of the strategies is to make better use of subsurface space and its functions. Asset management of the Subsurface (AMS) contributes to this. Asset management provides transparency of trade-offs between performance, cost and risks throughout the entire lifecycle of these assets. AMS is based on traditional asset management methods, but it does not only take man-made assets in the subsurface into account. AMS also considers the natural functions that the subsurface, including groundwater, has to offer (ecosystem services). A Dutch community of practice consisting of national and municipal authorities, a consultancy-engineering and a research institute are developing AMS in practice in order to 1) enhance the urban underground space planning (using its benefits, avoiding problems) and 2) use, manage and maintain the (urban) subsurface and its functions. The method is currently still under development. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Andoni, Heri; Wonorahardjo, Surjamanto
2018-05-01
Urban Heat Island (UHI) has many harm impacts to urban and human life, the examples are increased building and energy consumption, increased air pollutants emissions, compromised human comfort and health, and many more. Despite UHI phenomenon and those impacts has been realized long enough by the experts along with development of major cities in the world, but its mitigation technology has not been well developed. This paper discusses few mitigation technologies for UHI phenomenon that have been developed by experts. Some mitigation technologies such as double skin façade, shading strategies, and many more are discussed in this study, include the strengths and the weaknesses of each strategy. The focus of the study is mainly on the potential of building skin engineering in which thermal conductivity, infrared emissivity, and specific heat factors. The selected case discussed are buildings made of heavy weight materials. The result in this study reveals a potential map where thermal insulation is one potential strategy to reduce the intensity of UHI through the reduction of heat emissions of heavy building materials components. By this study, improvement of the urban life in its relation to UHI are expected to occur, especially in housing and settlements area.
NASA Astrophysics Data System (ADS)
Cross, J. A.
2006-12-01
A Geographical Information System (GIS) is an invaluable tool in the estimation of land use changes and spatial variability in urban areas. (Non-Point Source (NPS) models provide hypothetical opportunities to assess impacts which storm water management strategies and land use changes have on watersheds by predicting loadings on a watershed scale. This study establishes a methodology for analyzing land use changes and management associated with them by utilizing a GIS analysis of impervious surfaces and AGricultural Non- Point Source (AGNPS) modeling. The GIS analysis of Total Impervious Area (TIA) was used to quantify increases in development and provided land use data for use in AGNPS modeling in a small artificially- delineated urban watershed. AGNPS modeling was executed in several different scenarios to predict changes in NPS loadings associated with increases in TIA and its subsequent management in a small artificially- delineated urban watershed. Data editing, creation and extracting was completed using ArcView (3.2) GeoMedia (6) GIS systems. The GIS analysis quantified the increase in urbanization via TIA within the Bluebonnet Swamp Watershed (BSW) in East Baton Rouge Parish (EBRP), Louisiana. The BSW had significant increases in urbanization in the 8 year time span of 1996 2004 causing and increase in quantity and decrease in quality of subsequent runoff. Datasets made available from the GIS analysis included TIA and the change in percentage from 1996 to 2004. This information is fundamental for the AGNPS model because it was used to calculate TIA percentages within each AGNPS cell. A 30 year daily climate file was used to execute AGNPS in different land use and storm water management scenarios within the 1100 acre BSW. Runoff qualities and quantities were then compared for different periods of 1996 and 2004. Predictions of sediment, erosion and runoff were compared according by scenario year. Management practices were also simulated by changing the Runoff Curve Number (RCN) within AGNPS and their results were also compared. This study provides an aid to planners and managers in estimating increases in urbanization by artificially- delineated watershed. It also in illustrates how to use AGNPS to predict NPS pollution and the influence that change in TIA, land use and storm water management strategies have on sediment loadings, erosion and runoff in a watershed.
NASA Astrophysics Data System (ADS)
Jiao, S.; Yu, J.; Wang, Y.; Zhu, L.; Zhou, Q.
2018-04-01
In recent decades, urbanization has resulted a massive increase in the amount of infrastructure especially large buildings in large cities worldwide. There has been a noticeable expansion of entire cities both horizontally and vertically. One of the common consequences of urban expansion is the increase of ground loads, which may trigger land subsidence and can be a potential threat of public safety. Monitoring trends of urban expansion and land subsidence using remote sensing technology is needed to ensure safety along with urban planning and development. The Defense Meteorological Satellite Program Operational Line scan System (DMSP/OLS) Night-Time Light (NTL) images have been used to study urbanization at a regional scale, proving the capability of recognizing urban expansion patterns. In the current study, a normalized illuminated urban area dome volume (IUADV) based on inter-calibrated DMSP/OLS NTL images is shown as a practical approach for estimating urban expansion of Beijing at a single period in time and over subsequent years. To estimate the impact of urban expansion on land subsidence, IUADV was correlated with land subsidence rates obtained using the Stanford Method for Persistent Scatterers (StaMPS) approach within the Persistent Scatterers InSAR (PSInSAR) methodology. Moderate correlations are observed between the urban expansion based on the DMSP/OLS NTL images and land subsidence. The correlation coefficients between the urban expansion of each year and land subsidence tends to gradually decrease over time (Coefficient of determination R = 0.80 - 0.64 from year 2005 to year 2010), while the urban expansion of two sequential years exhibit an opposite trend (R = 0.29 - 0.57 from year 2005 to year 2010) except for the two sequential years between 2007 and 2008 (R = 0.14).
Roads to ruin: conservation threats to a sentinel species across an urban gradient.
Feist, Blake E; Buhle, Eric R; Baldwin, David H; Spromberg, Julann A; Damm, Steven E; Davis, Jay W; Scholz, Nathaniel L
2017-12-01
Urbanization poses a global challenge to species conservation. This is primarily understood in terms of physical habitat loss, as agricultural and forested lands are replaced with urban infrastructure. However, aquatic habitats are also chemically degraded by urban development, often in the form of toxic stormwater runoff. Here we assess threats of urbanization to coho salmon throughout developed areas of the Puget Sound Basin in Washington, USA. Puget Sound coho are a sentinel species for freshwater communities and also a species of concern under the U.S. Endangered Species Act. Previous studies have demonstrated that stormwater runoff is unusually lethal to adult coho that return to spawn each year in urban watersheds. To further explore the relationship between land use and recurrent coho die-offs, we measured mortality rates in field surveys of 51 spawning sites across an urban gradient. We then used spatial analyses to measure landscape attributes (land use and land cover, human population density, roadways, traffic intensity, etc.) and climatic variables (annual summer and fall precipitation) associated with each site. Structural equation modeling revealed a latent urbanization gradient that was associated with road density and traffic intensity, among other variables, and positively related to coho mortality. Across years within sites, mortality increased with summer and fall precipitation, but the effect of rainfall was strongest in the least developed areas and was essentially neutral in the most urbanized streams. We used the best-supported structural equation model to generate a predictive mortality risk map for the entire Puget Sound Basin. This map indicates an ongoing and widespread loss of spawners across much of the Puget Sound population segment, particularly within the major regional north-south corridor for transportation and development. Our findings identify current and future urbanization-related threats to wild coho, and show where green infrastructure and similar clean water strategies could prove most useful for promoting species conservation and recovery. © 2017 by the Ecological Society of America.
Evolution of life in urban environments.
Johnson, Marc T J; Munshi-South, Jason
2017-11-03
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Bornstein, R. D.; Lebassi, B.; Gonzalez, J.
2010-12-01
The study evaluated long-term (1948-2005) air temperatures at over 300 urban and rural sites in California (CA) during summer (June-August, JJA). The aggregate CA results showed asymmetric warming, as daily min temperatures increased faster than daily max temperatures. The spatial distributions of daily max temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a “reverse-reaction” to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. That daytime summer coastal cooling was seen in coastal urban areas implies that urban heat island (UHI) warming was weaker than the reverse-reaction sea breeze cooling; if there was no UHI effect, then the cooling would have been even stronger. Analysis of daytime summer max temperatures at four adjacent pairs of urban and rural sites near the inland cooling-warming boundary, however, showed that the rural sites experienced cooling, while the urban sites showed warming due to UHI development. The rate of heat island growth was estimated as the sum of each urban warming rate and the absolute magnitude of the concurrent adjacent rural cooling rate. Values ranged from 0.12 to 0.55 K decade-1, and were proportional to changes in urban population and urban extent. As Sacramento, Modesto, Stockton, and San José have grown in aerial extent (21 to 59%) and population (40 to 118%), part of the observed increased JJA max values could be due to increased daytime UHI-intensity. Without UHI effects, the currently observed JJA SFBA coastal-cooling area might have expanded to include these sites, as the first three are adjacent to rural airport sites that showed cooling max-values due to increased marine influences. In addition, all urbanized sites with decreasing max-values would probably show even larger cooling rates if UHI effects could be removed. Significant societal impacts may result from this observed reverse-reaction to GHG-warming. Possible beneficial effects (especially during periods of UHI growth) include decreased maximum: O3 levels, per-capita energy requirements for cooling, and human thermal-stress levels.
Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.
Nelson, Amanda E; Forbes, Andrew A
2014-01-01
Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.
Urban Land Use Decouples Plant-Herbivore-Parasitoid Interactions at Multiple Spatial Scales
Nelson, Amanda E.; Forbes, Andrew A.
2014-01-01
Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor. PMID:25019962
ERIC Educational Resources Information Center
Neugebauer, Sabina; Coyne, Michael; McCoach, Betsy; Ware, Sharon
2017-01-01
Research to increase the early vocabulary development of urban students has emphasized the central role of teachers and the ways in which teachers use intervention curricula and strategies in their classroom contexts. This study explores teachers' fidelity to different components of a vocabulary intervention, specifically their use of prescribed…
The Prevalence and Incidence of Juvenile Rheumatiod Arthritis in an Urban Black Population.
ERIC Educational Resources Information Center
Hochberg, Marc C.; And Others
1983-01-01
Research conducted in an urban Black population in Baltimore, Maryland, suggests that the Black race is not associated with significantly increased risk of development of juvenile rheumatiod arthritis. The prevalence rate was estimated as 0.26 per 1,000 and the average annual incidence as 6.6 per 100,000/year. (GC)
Demography: a tool for understanding the wildland-urban interface fire problems
James B. Davis
1989-01-01
Fire managers across the nation are confronting the rapidly developing problem created by movement of people into wildland areas, increasing what has been termed the wildland-urban interface. The problem is very complex from the standpoint of fire planning and management. To plan and manage more effectively, fire managers should identify three types of interface areas...
ERIC Educational Resources Information Center
Bender, C. J. Gerda; Emslie, Annemarie
2010-01-01
The purpose of this article is to describe how school staff members, learners and parents collaborate to prevent adolescent learner violence in two different urban secondary schools. The increase in acts of interpersonal learner violence has a destructive effect on the safe and positive development of young people. Empirical evidence indicates…
ERIC Educational Resources Information Center
Rollins, Howard; And Others
The results of a 3-year project that developed a practical program for the wide-scale implementation of behavior modification in urban schools are presented in this paper. The major outcomes of the project were (a) a practical, cost-effective behavior modification program that reduces discipline problems, increases student motivation, and…
A multi-scalar approach to theorizing socio-ecological dynamics of urban residential landscapes
Rinku Roy Chowdhury; Kelli Larson; Morgan Grove; Colin Polsky; Elizabeth Cook; Jeffrey Onsted; Laura Ogden
2011-01-01
Urban residential expansion increasingly drives land use, land cover and ecological changes worldwide, yet social science theories explaining such change remain under-developed. Existing theories often focus on processes occurring at one scale, while ignoring other scales. Emerging evidence from four linked U.S. research sites suggests it is essential to examine...
78 FR 76810 - Information Collection; Environmental Justice and the Urban Forest in Atlanta, GA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... increase the amount of green space in cities across the country. The collected data will be used to help... implemented, related to Strategic Goal 6, and used ``to develop partnerships with nontraditional partners to... addresses environmental justice from the perspective of urban trees; and how this resource may contribute to...
Participatory Climate Research in a Dynamic Urban Context
NASA Astrophysics Data System (ADS)
Horton, R. M.
2016-12-01
The Consortium for Climate Risk in the Urban Northeast (CCRUN), one of ten NOAA-RISA's, supports resilience efforts in the urban corridor stretching from Philadelphia to Boston. Challenges and opportunities include the diverse set of needs in broad urban contexts, as well as the integration of interdisciplinary perspectives. CCRUN is addressing these challenges through 1) stakeholder surveys, 2) webinar series that enable scientists to engage with stakeholders, 3) leveraging extreme events as focusing opportunities, and 4) the development of an integrated project framework. Moving forward, increasing extreme events can lead to unexpected detours, and further effort is needed around facilitating place-based research in an interdisciplinary context.
Water for the cities - The outlook
Schneider, William Joseph; Spieker, Andrew Maute
1969-01-01
Rapid expansion of urban areas, particularly in the large metropolitan complexes of the United States, is placing urban political entities in ever closer juxtaposition to each other. The large demand for water for each entity is resulting in competition for available sources and is rapidly reaching critical proportions. Increasing awareness of the role of water in our society further complicates this competition. Pollution abatement, recreation, wildlife conservation, and aesthetics are demands now recognized by both rural and urban areas. Future development of water resources must consider regional demands and resources. Only in this way can our reasonably abundant water resources meet the severe demands imposed by our rapidly expanding urban areas.
NASA Astrophysics Data System (ADS)
Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Kovelskiy, Viktor
2015-12-01
This study illustrates the spatio-temporal dynamics of urban growth and land use changes in Samara city, Russia from 1975 to 2015. Landsat satellite imageries of five different time periods from 1975 to 2015 were acquired and quantify the changes with the help of ArcGIS 10.1 Software. By applying classification methods to the satellite images four main types of land use were extracted: water, built-up, forest and grassland. Then, the area coverage for all the land use types at different points in time were measured and coupled with population data. The results demonstrate that, over the entire study period, population was increased from 1146 thousand people to 1244 thousand from 1975 to 1990 but later on first reduce and then increase again, now 1173 thousand population. Built-up area is also change according to population. The present study revealed an increase in built-up by 37.01% from 1975 to 1995, than reduce -88.83% till 2005 and an increase by 39.16% from 2005 to 2015, along with the increase in population, migration from rural areas owing to the economic growth and technological advantages associated with urbanization. Information on urban growth, land use and land cover change study is very useful to local government and urban planners for the betterment of future plans to sustainable development of the city.
Invasion patterns along elevation and urbanization gradients in Hawaiian streams
Brasher, A.M.D.; Luton, C.D.; Goodbred, S.L.; Wolff, R.H.
2006-01-01
Hawaii's extreme isolation has resulted in a native stream fauna characterized by high endemism and unusual life history characteristics. With the rapid increase in the human population, the viability of Hawaiian stream ecosystems is threatened by development and the associated habitat alteration. Thirty-eight sites on three islands (Oahu, Kauai, and Hawaii) were sampled to determine how habitat alteration resulting from urbanization and development was associated with the establishment of introduced species. Undeveloped sites had higher streamflow velocities, more riffles, lower embeddedness, deeper water, larger substrate, and lower water temperature than developed sites. Developed sites additionally had more pools and greater sparseness of riparian canopy cover. Overall, 23 fish species from 11 families and 5 crustacean species from 3 families were collected. Of these, 16 fish species and 3 crustacean species were introduced. Developed sites had on average almost twice as many species as undeveloped sites and were dominated by introduced species. Low-elevation sites were the most developed and supported the highest number of introduced species. However, species composition at some relatively undeveloped sites was impacted by downstream habitat alteration, since all native species must pass through the lower reaches to complete their life cycles. With increasing urbanization and development, the habitat features required by native species are disappearing and streams are becoming more suitable for generalist introduced species, which are typically better adapted for altered habitats than are native species. As development pressures in tropical island ecosystems increase worldwide, this will become an increasingly important issue globally. An understanding of which habitats are most likely to support nonnative species provides information necessary for developing a management strategy to protect aquatic ecosystems from invasive nonnative species.
NASA Astrophysics Data System (ADS)
Podzikowski, L. Y.; Capps, K. A.; Calhoun, A.
2014-12-01
Vernal pools are ephemeral wetlands in forested landscapes that fill with snowmelt, precipitation, and/or groundwater in the spring, and characteristically dry down through the summer months. Typically, vernal pool research has focused on the population and community ecology of pool-breeding organisms (amphibians and macroinvertebrates) conducted during their relatively short breeding season. Yet, little is known about the temporal variability of biogeochemical processes within and among vernal pools in urbanizing landscapes. In this study, we monitored physicochemical characteristics and nutrient dynamics in 22 vernal pools in central Maine post thaw in 2014. Four pristine pools were sampled weekly in five locations within the pool for ambient nutrient concentrations (SRP, NH4, NOx) and at three locations for physicochemical characteristics (DO, pH, temperature, conductivity). In the remaining 18 pools, we sampled one location for nutrients and three locations for physicochemical characteristics at least monthly to estimate the influence of increasing urbanization on the physical and chemical environment. Our data suggest most pools found in urbanizing areas have higher conductivity (developed sites ranging 18.52 - 1238 μS cm-1 compared to pristine between 14.08 - 58.4 μS cm-1). Previous work suggests forested pools exhibit dystrophic conditions with high coloration from DOC limiting primary production due to increased light attenuation in pools. However, both pristine and urban pools experienced spikes in DO (>100% saturation) throughout the day, suggesting that high productivity is not a reliable indicator of the effects of urbanization on vernal pools. We argue that continued monitoring of vernal pools along a gradient of urbanization could give insight into the role of ephemeral wetlands as potential biogeochemical hotspots and may also indicate how human development may alter biogeochemical cycling in ephemeral wetlands.
NASA Astrophysics Data System (ADS)
Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.
2015-10-01
Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential element toward continued progress in urban climate assessment.
Stormwater Volume Control to Prevent Increases in Lake Flooding and Dam Failure Risk
NASA Astrophysics Data System (ADS)
Potter, K. W.
2017-12-01
Urban expansion is not often considered a major factor contributing to dam failure. But if urbanization occurs without mitigation of the hydrologic impacts, the risk of dam failure will increase. Of particular concern are increases in the volume of storm runoff resulting from increases in the extent of impervious surfaces. Storm runoff volumes are not regulated for much the U.S, and where they are, the required control is commonly less than 100%. Unmitigated increases in runoff volume due to urbanization can pose a risk to dams. A recent technical advisory committee of Dane County has recommended that the county require 100% control of stormwater volumes for new developments. The primary motivation was to prevent increases in the water levels in the Yahara Lakes, slowly draining lakes that are highly sensitive to runoff volume. The recommendations included the use of "volume trading" to achieve efficient compliance. Such recommendations should be considered for other slowly draining lakes, including those created by artificial structures.
[A review on the urban green space cooling effect based on field measurement of air temperature].
Liu, Feng Feng; Yan, Wei Jiao; Kong, Fan Hua; Yin, Hai Wei; Ban, Yu Long; Xu, Wen Bin
2017-04-18
With the development of urbanization, the effect of urban heat island has become increasingly evident. As an essential component of the urban natural landscapes, urban green space plays an important role in mitigating the effect of urban heat island. However, facing the rapid urbanization and changing environment, how to rationally plan and design the green space and realize its best cooling effect which can improve the urban environment and microclimate is still an urgent problem to be solved. So there is a strong need for mulitiscale researches on the cooling effect of urban green space. This paper systematically gave a review on the cooling effect of urban green space based on field measurement of air temperature, the main factors that influenced the cooling effect of green space were explored from three aspects including the area and shape characteristics of urban green space, the structure characteristics of vegetation and the external factors which affected the cooling effect, and the characteristics of the cooling effect of the green space were summarized from the aspect of time variation and distance decay. Then, the main problems and future research prospects of urban green space cooling effect were put forward.
Organic carbon storage change in China's urban landfills from 1978-2014
NASA Astrophysics Data System (ADS)
Ge, Shidong; Zhao, Shuqing
2017-10-01
China has produced increasingly large quantities of waste associated with its accelerated urbanization and economic development and deposited these wastes into landfills, potentially sequestering carbon. However, the magnitude of the carbon storage in China’s urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China’s urban landfills increased nearly 68-fold from the 1970s to the 2010s, and reached 225.2-264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4-157.5 Tg C) in 2014, followed by household waste (67.7-83.8 Tg C), and sewage sludge was the least (19.7-34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country’s carbon stocks in urban ecosystems. The annual increase (i.e. sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean ± 2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also have a respectable contribution to national carbon sequestration.
Organic carbon storage change in China's urban landfills from 1978 to 2014
NASA Astrophysics Data System (ADS)
Ge, S.; Zhao, S.
2017-12-01
China has produced increasingly large quantities of waste associated with her accelerated urbanization and economic development and deposited these wastes into landfills potentially sequestering carbon. However, the magnitude of the carbon storage in China's urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China's urban landfills increased nearly 68 folds from the 1970s to the 2010s, and reached 225.2 - 264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4 - 157.5 Tg C) in 2014, followed by household waste (67.7 - 83.8 Tg C), and sewage sludge was the least (19.7 - 34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country's carbon stocks in urban ecosystems. The annual increase (i.e., sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean±2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also contribute respectably to national carbon sequestration.
Fotso, Jean Christophe; Speizer, Ilene S; Mukiira, Carol; Kizito, Paul; Lumumba, Vane
2013-08-27
Kenya is characterized by high unmet need for family planning (FP) and high unplanned pregnancy, in a context of urban population explosion and increased urban poverty. It witnessed an improvement of its FP and reproductive health (RH) indicators in the recent past, after a period of stalled progress. The objectives of the paper are to: a) describe inequities in modern contraceptive use, types of methods used, and the main sources of contraceptives in urban Kenya; b) examine the extent to which differences in contraceptive use between the poor and the rich widened or shrank over time; and c) attempt to relate these findings to the FP programming context, with a focus on whether the services are increasingly reaching the urban poor. We use data from the 1993, 1998, 2003 and 2008/09 Kenya demographic and health survey. Bivariate analyses describe the patterns of modern contraceptive use and the types and sources of methods used, while multivariate logistic regression models assess how the gap between the poor and the rich varied over time. The quantitative analysis is complemented by a review on the major FP/RH programs carried out in Kenya. There was a dramatic change in contraceptive use between 2003 and 2008/09 that resulted in virtually no gap between the poor and the rich in 2008/09, by contrast to the period 1993-1998 during which the improvement in contraceptive use did not significantly benefit the urban poor. Indeed, the late 1990s marked the realization by the Government of Kenya and its development partners, of the need to deliberately target the poor with family planning services. Most urban women use short-term and less effective methods, with the proportion of long-acting method users dropping by half during the review period. The proportion of private sector users also declined between 2003 and 2008/09. The narrowing gap in the recent past between the urban poor and the urban rich in the use of modern contraception is undoubtedly good news, which, coupled with the review of the family program context, suggests that family planning programs may be increasingly reaching the urban poor.
NASA Astrophysics Data System (ADS)
Stuhlmacher, M.; Wang, C.; Georgescu, M.; Tellman, B.; Balling, R.; Clinton, N. E.; Collins, L.; Goldblatt, R.; Hanson, G.
2016-12-01
Global representations of modern day urban land use and land cover (LULC) extent are becoming increasingly prevalent. Yet considerable uncertainties in the representation of built environment extent (i.e. global classifications generated from 250m resolution MODIS imagery or the United States' National Land Cover Database) remain because of the lack of a systematic, globally consistent methodological approach. We aim to increase resolution, accuracy, and improve upon past efforts by establishing a data-driven definition of the urban landscape, based on Landsat 5, 7 & 8 imagery and ancillary data sets. Continuous and discrete machine learning classification algorithms have been developed in Google Earth Engine (GEE), a powerful online cloud-based geospatial storage and parallel-computing platform. Additionally, thousands of ground truth points have been selected from high resolution imagery to fill in the previous lack of accurate data to be used for training and validation. We will present preliminary classification and accuracy assessments for select cities in the United States and Mexico. Our approach has direct implications for development of projected urban growth that is grounded on realistic identification of urbanizing hot-spots, with consequences for local to regional scale climate change, energy demand, water stress, human health, urban-ecological interactions, and efforts used to prioritize adaptation and mitigation strategies to offset large-scale climate change. Future work to apply the built-up detection algorithm globally and yearly is underway in a partnership between GEE, University of California in San Diego, and Arizona State University.
Smucker, Nathan J; Kuhn, Anne; Cruz-Quinones, Carlos J; Serbst, Jonathan R; Lake, James L
2018-01-07
Watershed development and anthropogenic sources of nitrogen are among leading causes of negative impacts to aquatic ecosystems around the world. The δ 15 N of aquatic biota can be used as indicators of anthropogenic sources of nitrogen enriched in 15 N, but this mostly has been done at small spatial extents or to document effects of point sources. In this study, we sampled 77 sites along a forest to urban land cover gradient to examine food webs and the use of δ 15 N of periphyton and macroinvertebrate functional feeding groups (FFGs) as indicators of watershed development and nitrogen effects on streams. Functional feeding groups had low δ 15 N variability among taxa within sites. Mean absolute differences between individual taxa and their respective site FFG means were < 0.55‰, whereas site means of δ 15 N of FFGs had ranges of approximately 7-12‰ among sites. The δ 15 N of periphyton and macroinvertebrate FFGs distinguished least disturbed streams from those with greater watershed urbanization, and they were strongly correlated with increasing nitrogen concentrations and watershed impervious cover. Nonmetric multidimensional scaling, using δ 15 N of taxa, showed that changes in macroinvertebrate assemblages as a whole were associated with forest-to-urban and increasing nitrogen gradients. Assuming an average +3.4‰ per trophic level increase, δ 15 N of biota indicated that detrital pathways likely were important to food web structure, even in streams with highly developed watersheds. We used periphyton and macroinvertebrate FFG δ 15 N to identify possible management goals that can inform decisions affecting nutrients and watershed land use. Overall, the δ 15 N of periphyton and macroinvertebrates were strong indicators of watershed urban development effects on stream ecosystems, and thus, also could make them useful for quantifying the effectiveness of nitrogen, stream, and watershed management efforts.
Equity, sustainability and governance in urban settings.
Rice, Marilyn; Hancock, Trevor
2016-03-01
In this commentary the urban setting is explored from the perspective of ecological sustainability and social equity. Urban-related issues are highlighted related to social inequality, deficits in urban infrastructures, behavior-related illnesses and risks, global ecological changes, and urban sprawl. Approaches to addressing these issues are described from the perspective of urban governance, urban planning and design, social determinants of health, health promotion, and personal and community empowerment. Examples of successful strategies are provided from Latin America, including using participatory instruments (assessments, evaluation, participatory budgeting, etc.), establishing intersectoral committees, increasing participation of civil society organizations, and developing virtual forums and networks to channel participatory and collaborative processes. A way forward is proposed, using the urban setting to show the imperative of creating intersectoral policies and programs that produce environments that are both healthy and sustainable. It will be important to include new forms of social participation and use social media to facilitate citizen decision-making and active participation of all sectors of society, especially excluded groups. © The Author(s) 2015.
Lourenço, André; Álvarez, David; Wang, Ian J; Velo-Antón, Guillermo
2017-03-01
Urbanization is a severe form of habitat fragmentation that can cause many species to be locally extirpated and many others to become trapped and isolated within an urban matrix. The role of drift in reducing genetic diversity and increasing genetic differentiation is well recognized in urban populations. However, explicit incorporation and analysis of the demographic and temporal factors promoting drift in urban environments are poorly studied. Here, we genotyped 15 microsatellites in 320 fire salamanders from the historical city of Oviedo (Est. 8th century) to assess the effects of time since isolation, demographic history (historical effective population size; N e ) and patch size on genetic diversity, population structure and contemporary N e . Our results indicate that urban populations of fire salamanders are highly differentiated, most likely due to the recent N e declines, as calculated in coalescence analyses, concomitant with the urban development of Oviedo. However, urbanization only caused a small loss of genetic diversity. Regression modelling showed that patch size was positively associated with contemporary N e , while we found only moderate support for the effects of demographic history when excluding populations with unresolved history. This highlights the interplay between different factors in determining current genetic diversity and structure. Overall, the results of our study on urban populations of fire salamanders provide some of the very first insights into the mechanisms affecting changes in genetic diversity and population differentiation via drift in urban environments, a crucial subject in a world where increasing urbanization is forecasted. © 2017 John Wiley & Sons Ltd.
A new urban landscape in East-Southeast Asia, 2000-2010
NASA Astrophysics Data System (ADS)
Schneider, A.; Mertes, C. M.; Tatem, A. J.; Tan, B.; Sulla-Menashe, D.; Graves, S. J.; Patel, N. N.; Horton, J. A.; Gaughan, A. E.; Rollo, J. T.; Schelly, I. H.; Stevens, F. R.; Dastur, A.
2015-03-01
East-Southeast Asia is currently one of the fastest urbanizing regions in the world, with countries such as China climbing from 20 to 50% urbanized in just a few decades. By 2050, these countries are projected to add 1 billion people, with 90% of that growth occurring in cities. This population shift parallels an equally astounding amount of built-up land expansion. However, spatially-and temporally-detailed information on regional-scale changes in urban land or population distribution do not exist; previous efforts have been either sample-based, focused on one country, or drawn conclusions from datasets with substantial temporal/spatial mismatch and variability in urban definitions. Using consistent methodology, satellite imagery and census data for >1000 agglomerations in the East-Southeast Asian region, we show that urban land increased >22% between 2000 and 2010 (from 155 000 to 189 000 km2), an amount equivalent to the area of Taiwan, while urban populations climbed >31% (from 738 to 969 million). Although urban land expanded at unprecedented rates, urban populations grew more rapidly, resulting in increasing densities for the majority of urban agglomerations, including those in both more developed (Japan, South Korea) and industrializing nations (China, Vietnam, Indonesia). This result contrasts previous sample-based studies, which conclude that cities are universally declining in density. The patterns and rates of change uncovered by these datasets provide a unique record of the massive urban transition currently underway in East-Southeast Asia that is impacting local-regional climate, pollution levels, water quality/availability, arable land, as well as the livelihoods and vulnerability of populations in the region.
Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia.
Haddad, Leila; Schäfer, Axel; Streit, Fabian; Lederbogen, Florian; Grimm, Oliver; Wüst, Stefan; Deuschle, Michael; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas
2015-01-01
Urban upbringing has consistently been associated with schizophrenia, but which specific environmental exposures are reflected by this epidemiological observation and how they impact the developing brain to increase risk is largely unknown. On the basis of prior observations of abnormal functional brain processing of social stress in urban-born humans and preclinical evidence for enduring structural brain effects of early social stress, we investigated a possible morphological correlate of urban upbringing in human brain. In a sample of 110 healthy subjects studied with voxel-based morphometry, we detected a strong inverse correlation between early-life urbanicity and gray matter (GM) volume in the right dorsolateral prefrontal cortex (DLPFC, Brodmann area 9). Furthermore, we detected a negative correlation of early-life urbanicity and GM volumes in the perigenual anterior cingulate cortex (pACC) in men only. Previous work has linked volume reductions in the DLPFC to the exposure to psychosocial stress, including stressful experiences in early life. Besides, anatomical and functional alterations of this region have been identified in schizophrenic patients and high-risk populations. Previous data linking functional hyperactivation of pACC during social stress to urban upbringing suggest that the present interaction effect in brain structure might contribute to an increased risk for schizophrenia in males brought up in cities. Taken together, our results suggest a neural mechanism by which early-life urbanicity could impact brain architecture to increase the risk for schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mapping and analyzing urban growth in West Africa
NASA Astrophysics Data System (ADS)
Adhikari, P.; de Beurs, K. M.
2014-12-01
Africa has experienced the highest urban growth (~3.5% per year) in the developing world. West Africa in particular has seen significant urban growth mainly driven by the high natural population growth rate and the increasing percentage of population moving to urban areas. Urban growth in West Africa is expected to continue in decades to come. This study uses Landsat data at five different time steps (1970, 1980, 1990, 2000, and 2010) to map four cities from four different eco-regions of West Africa since the early 1970s. The selected four cities, Kumasi in Ghana, Abuja in Nigeria, Tahoua in Niger and Ouagadoughou in Burkina Faso, are some of the fastest growing cities in the region. We selected the cities in the following ecoregions: Eastern Guinean Forest, Guinean Forest-Savanna Mosaic, Sahelian Acacia Savanna and West Sudanian Savanna. We hypothesize that urban growth in West Africa is different compared to the other parts of the world primarily due to the dependency of about 60 percent of active labor force on subsistence agriculture in the region. As agriculture productivity is dependent on favorable climatic conditions (i.e., good rainfall, suitable temperature), any variability in climate impends the livelihood of subsistence farmers triggering the movements of more people towards the cities. Therefore, studying urban growth based on ecoregions help to better explain the urban development in West Africa. After mapping the urban areas, this study makes a comparative analysis of the temporal and spatial pattern of the urban growths across the ecoregions in West Africa.